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A Universal Approximation Result
for Difference of log-sum-exp Neural Networks
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and Corrado Possieri, Associate Member, IEEE

Abstract—We show that a neural network whose output is
obtained as the difference of the outputs of two feedforward
networks with exponential activation function in the hidden layer
and logarithmic activation function in the output node (LSE
networks) is a smooth universal approximator of continuous
functions over convex, compact sets. By using a logarithmic
transform, this class of networks maps to a family of subtraction-
free ratios of generalized posynomials, which we also show to be
universal approximators of positive functions over log-convex,
compact subsets of the positive orthant. The main advantage of
Difference-LSE networks with respect to classical feedforward
neural networks is that, after a standard training phase, they pro-
vide surrogate models for design that possess a specific difference-
of-convex-functions form, which makes them optimizable via
relatively efficient numerical methods. In particular, by adapting
an existing difference-of-convex algorithm to these models, we
obtain an algorithm for performing effective optimization-based
design. We illustrate the proposed approach by applying it to
data-driven design of a diet for a patient with type-2 diabetes.

Index Terms—Feedforward neural networks, Universal ap-
proximation, LSE networks, Surrogate models, Subtraction-free
expressions, DC programming, Data-driven optimization.

I. INTRODUCTION

A. Motivation

A well-known and compelling property of feedforward
neural network (FFNN) models is that they are capable of
approximating any continuous function over a compact set.
Indeed, classical results in, e.g., [1], [2], show that, given any
non-constant, bounded and continuous function, there exists
a FFNN with a single hidden layer that can approximate it
over a compact set. This universal approximation capability,
together with the development of efficient algorithms to tune
the network weights, paved the way to the efficient application
of artificial neural networks in several frameworks, such as
circuit design [3], control and identification of nonlinear
systems [4], optimization over graphs [5], and many others.

However, when the goal of a neural network model is
to construct a surrogate model for describing, and then op-
timizing, a complex input-output relation, it is of crucial
importance that the structure of the model be well tailored
for the subsequent numerical optimization phase. This is not
usually the case for generic FFNN. Indeed, if the input-output
model does not satisfy certain properties (such as, for instance,
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convexity [6]), then designing the input so that the output is
minimized, possibly under additional design constraints, can
be an extremely difficult task.

In [7], we showed that LSET -networks, that is, FFNN with
exponential activation functions in the inner layer and loga-
rithmic activation function in the output neuron, parametrized
by a positive “temperature” parameter T > 0, provide a
smooth convex model capable of approximating any convex
function over a convex, compact set. Maps in the LSET class
are precisely log-Laplace transforms of nonnegative measures
with finite support, a remarkable class of maps enjoying
smoothness and strict convexity properties. We showed in
particular that if the data to be approximated satisfy some
convexity assumptions, such network structures can be readily
exploited to perform data-driven design by using convex
optimization tools. Nevertheless, most real-life input-output
maps are of nonconvex nature, hence while they might still
be approximated via a convex model, such an approximation
may not yield a desirable accuracy.

B. Contribution

The purpose of this paper is to propose a new type of
neural network model, here named Difference-LSE network
(DLSET ), which is constructed by taking the difference of
the outputs of two LSET networks. First, we prove that
DLSET networks guarantee universal approximation capabil-
ities (thus overcoming the limitations of plain convex LSET
networks), see Theorem 2. By using a logarithmic transforma-
tion, DLSET networks map to a family of ratios of generalized
posynomials functions, which we show to be subtraction free
universal approximators of positive functions over compact
subsets of the positive orthant. Subtraction free expressions
are fundamental objects in algebraic complexity, studied in
particular in [8]. It is a result of independent interest that
subtraction free expressions provide universal approximators.

Moreover, we show that Difference-LSE network are of
practical interest, as they have a structure which is amenable
to effective optimization over the inputs by using “DC-
programming” methods, as discussed in Section VI.

Training and subsequent optimization of DLSET networks
has been implemented in a numerical Matlab toolbox1 named
DLSE_Neural_Network that we made publicly available.
The theoretical results in the paper are illustrated by an
example dealing with data-driven design of a diet for a patient
with type 2 diabetes.

1See https://github.com/Corrado-possieri/DLSE neural networks.
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C. Related work

Similar to our previous work [7] on which it builds, the
present paper is inspired by ideas from tropical geometry and
max-plus algebra. The class of functions in LSE that we study
here plays a key role in Viro’s patchworking methods [9],
[10] for real curves. We note that the application of tropical
geometry to neural networks is an emerging topic: at least
two recent works have used tropical methods to provide
combinatorial estimates, in terms of Newton polytopes, of
the “classifying power” of neural networks with piecewise
affine functions, see [11], [12]. Other related results concern
the “zero-temperature” (T = 0) limit of the approximation
problem that we consider, i.e., the representation of piecewise
linear functions by elementary expression involving min, max,
and affine terms [13], [14], and the approximation of functions
by piecewise linear functions. In particular, Th. 4.3 of [15]
shows that any continuous function can be approximately arbi-
trarily well on a compact domain by a difference of piecewise
linear convex functions. A related approximation result, still
concerning differences of structured piecewise linear convex
functions, has appeared in [16]. In contrast, our results provide
approximation by differences of a family of smooth structured
convex functions. This smoothing is essential when deriving
universal approximation results by subtraction free rational
expresssions.

II. NOTATION AND TECHNICAL PRELIMINARIES

Let N, Z, R, R>0, and R>0 denote the set of natural, integer,
real, nonnegative real, and positive real numbers, respectively.
Given a function φ : Rn → R ∪ {+∞}, we define its domain
as domφ

.
= {x ∈ Rn : φ(x) < +∞}. If the function φ :

Rn → R ∪ {+∞} is differentiable at point x, we denote by
∇φ(x) its gradient at x.

A. Log-Sum-Exp functions

Following [7], we define LSE (Log-Sum-Exp) as the class
of functions f : Rn → R that can be written as

f(x) = log

(
K∑
k=1

bk exp(〈α(k),x〉)
)
, (1)

for some K ∈ N, bk ∈ R>0, α(k) = [ α
(k)
1 · · · α

(k)
n ]> ∈

Rn, k = 1, . . . ,K, where x = [ x1 · · · xn ]> is a vector
of variables. Further, given T ∈ R>0, we define LSET as the
class of functions fT : Rn → R that can be written as

fT (x) = T log

(
K∑
k=1

b
1/T
k exp(〈α(k),x/T 〉)

)
, (2)

for some K ∈ N, bk ∈ R>0, and α(k) ∈ Rn, k = 1, . . . ,K.
By letting βk

.
= log bk, k = 1, . . . ,K, we have that functions

in the family LSET can be equivalently parameterized as

fT (x) = T log

(
K∑
k=1

exp(〈α(k),x/T 〉+ βk/T )

)
, (3)

where the βks have no sign restrictions. It may some-
times be convenient to highlight the full parameterization

of fT , in which case we shall write f
(−→α ,β)
T , where −→α =

(α(1), . . . ,α(K)), and β = (β1, . . . , βK). It can be readily
observed that, for any T > 0, the following property holds:

f
(−→α ,β)
T (x) = Tf

(−→α ,β/T )
1 (x/T ). (4)

The maps in LSET are special instances of the log-Laplace
transforms of nonnegative measures, studied in [17]. In par-
ticular, the maps in LSET are smooth, they are convex (this
is an easy consequence of Cauchy-Schwarz inequality), and
they are even strictly convex if the vectors −→α (k) constitute
an affine generating family of Rn, see [7, Prop. 1]. Maps of
this kind play a key role in tropical geometry, in the setting of
Viro’s patchworking method [9], dealing with the degeneration
of real algebraic curves to a piecewise linear limit. We note in
this respect that the family of functions (fT )T>0 given by (3)
converges uniformly on Rn, as T → 0+, to the function

f0(x)
.
= max

16k6K

(
〈α(k),x〉+ βk

)
.

Actually, the following inequality holds for all T > 0

f0(x) 6 fT (x) 6 T logK + f0(x), (5)

see [7] for details and background.

B. Posynomials and GPOST functions

Given ck > 0 and α(k) ∈ Rn, a positive monomial is

a product of the form ckx
α(k)

= ckx
α

(k)
1

1 x
α

(k)
2

2 · · ·xα
(k)
n
n . A

posynomial is a finite sum of positive monomials,

ψ(x) =

K∑
k=1

ckx
α(k)

. (6)

We denote by POS the class of functions ψ : Rn>0 → R>0

of the form (6). Posynomials are log-log-convex functions,
meaning that the log of a posynomial ψ is convex in the log
of its argument, see, e.g., Section II.B of [7]. We denote by
GPOST the class of functions that can be expressed as

ψT (x) = (ψ(x1/T ))T (7)

for some T > 0 and ψ ∈ POS. These functions are log-log-
convex, and they form a subset of the so-called generalized
posynomial functions, see, e.g., Section II.B of [7]. It is
observed in Proposition 3 of [7] that LSET and GPOST
functions are related by a one-to-one correspondence. That
is, for any f(x) ∈ LSET and ψ(z) ∈ GPOST it holds that

exp (f (log(z))) ∈ GPOST , log (ψ (exp(x))) ∈ LSET .

III. A UNIVERSAL APPROXIMATION THEOREM

A. Preliminary: approximation of convex functions

We start by recalling a key result of [7], stating that
functions in LSET are universal smooth approximators of
convex functions, see Theorem 2 in [7].

Theorem 1 (Universal approximators of convex functions,
[7]). Let φ be a real valued continuous convex function defined
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on a compact convex subset K ⊂ Rn. Then, for all ε > 0 there
exist T > 0 and a function fT ∈ LSET such that

|fT (x)− φ(x)| 6 ε, for all x ∈ K. (8)

We now extend the above result by showing that it actually
holds for the restricted class of LSET with rational parameters.
This extension will allow us to apply our results to the
approximation by subtraction free expressions.

Definition 1. A function fT ∈ LSET has rational parameters
if T > 0 is a rational number and fT = f

(−→α ,β)
T is of

the form (3) where the vectors α(1), . . . ,α(K) have rational
entries, and β1, . . . , βK are rational numbers. We shall also
say that fT is a ε-approximation of f on K when (8) holds.

The following corollary holds.

Corollary 1 (LSE approximation with rational parameters).
Under the hypotheses of Theorem 1, for all ε > 0 there exists
a rational T > 0 and a function fT ∈ LSET with rational
parameters such that (8) holds. Moreover, T may be chosen
of the form 1/p where p is a positive integer.

Proof. First, inspecting the proof of Theorem 2 in [7], one
obtains that φ can be approximated uniformly by a map fT ∈
LSET , for all T > 0 small enough, hence we can always
assume that T is of the form 1/p for some positive integer
p. It then remains to be proved that the approximation result
still holds if also α(1), . . . ,α(K) and β1, . . . , βK are rational.
To this end, let us study the effect of a perturbation of these
parameters on the map fT . Observe that the map ϕ : RK → R,
ξ = (ξ1, . . . , ξK) 7→ T log(

∑K
k=1 exp(ξk/T )) satisfies

|ϕ(ξ)− ϕ(ξ′)| 6 ‖ξ − ξ′‖∞ (9)

for all ξ ∈ RK , where ‖ · ‖∞ is the sup-norm. This follows
from the fact that ϕ is order preserving and commutes with
the addition of a constant, see e.g. [18] and Section 2 of [19].
It follows from (9) that if fT is as in (3), and if

gT (x) = T log

(
K∑
k=1

exp
(
〈γ(k),x/T 〉+ δk/T

))
,

then, letting R
.
= maxx∈K ‖x‖, −→γ = (γ(1), . . . ,γ(K)), and

δ = (δ1, . . . , δK), we get

|fT (x)− gT (x)| 6 κ((−→α ,β), (−→γ , δ))
.
= max

16k6K
‖α(k) − γ(k)‖R+ max

16k6K
|βk − δk|,

for all x ∈ K. Hence, choosing (−→γ , δ) to be a rational
approximation of (−→α ,β) such that κ((−→α ,β), (−→γ , δ)) 6 ε,
and supposing that fT is a ε-approximation of φ on K, we
deduce that gT is a 2ε-approximation of φ on K, from which
the statement of the corollary follows.

B. Approximation of general continuous functions

This section contains our main result on universal approx-
imation of continuous functions. To this end, we first define
the class of functions that can be expressed as the difference
of two functions in LSET .

Definition 2 (DLSET functions). We say that a function φ :
Rn → R belongs to the DLSET class, if φ = gT − hT , for
some gT , hT ∈ LSET . Further, we say that φ has rational
parameters, if gT and hT have rational parameters.

The following result shows that any continuous function can
be approximated uniformly by a function in a DLSET class.

Theorem 2 (Universal approximation property of DLSET ).
Let φ be a real-valued continuous function defined on a
compact, convex subset K ⊂ Rn. Then, for any ε > 0
there exist a function fT ∈ DLSET with rational parameters,
for some T = 1/p where p is a positive integer, such that
|fT (x)− φ(x)| 6 ε, ∀x ∈ K.

Proof. A classical result of convex analysis states that any
continuous function φ defined on a compact convex subset
K of Rn can be written as the difference g − h where g, h
are continuous, convex functions defined on K, see, e.g.,
Proposition 2.2 of [20]. Then, by Corollary 1, for all ε > 0,
we can find a rational T ′ > 0 and a function gT ′ ∈ LSET ′

with rational parameters such that |g(x)−gT ′(x)| 6 ε/2 holds
for all x ∈ K. Similarly, we can find a rational T ′′ > 0 and
a function hT ′′ ∈ LSET ′′ with rational parameters such that
|h(x)−hT ′′(x)| 6 ε/2 holds for all x ∈ K. Hence, by taking
any rational T > 0 such that T ′ and T ′′ are integer multiples
of T , it follows from the nesting property in Lemma 1 of [7]
that gT ′ and hT ′′ both belong to LSET . Thus, there exist a
rational T > 0 and gT , hT ∈ LSET such that, for all x ∈ K,

|g(x)− gT (x)| 6 ε/2 |hT (x)− h(x)| 6 ε/2.

Summing these conditions we obtain that |(g(x) − h(x)) −
(gT (x)− hT (x))| 6 ε, for all x ∈ K. The claim then imme-
diately follows by recalling that g(x) − h(x) = φ(x) for all
x ∈ K, and letting fT

.
= gT −hT , whence fT ∈ DLSET .

The following explicit example illustrates the approximation
of a non-convex and nondifferentiable function by a function
in LSET .

Example 1. Consider

φ(x) = max(0,min(x, 1)).

Observe that φ(x) = max(0, x) − max(0, x − 1), which is
indeed a difference of two nonsmooth convex functions. By
using (5), we can approximate each term of this difference by
a function in LSE as

max(0, x) 6 T log(1 + exp(x/T ))

6 T log 2 + max(0, x),

max(0, x− 1) 6 T log(1 + exp((x− 1)/T ))

6 T log 2 + max(0, x− 1).

It follows that the map

fT
.
= T (log(1 + exp(x/T )

)
− log

(
1 + exp((x− 1)/T )))

is in DLSET and satisfies the following uniform approxima-
tion property of φ:

−T log 2 + fT (x) 6 φ(x) 6 T log 2 + fT (x), ∀x ∈ Rn.
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Example 2. The previous explicit approximation carries over
to a continuous piecewise affine function φ of a single real
variable, as follows. By piecewise affine, we mean that R can
be covered by finitely many intervals in such a way that φ is
affine over each of these intervals. Then, φ can be written in
a unique way as

φ(x) = ax+ b+
∑

16i6K

αi max(0, x− γi) (10)

where a, b are real parameters, γ1 < · · · < γK are the
nondifferentiability points of φ, and αi = φ′(γ+i ) − φ′(γ−i )
is the jump of the derivative of φ at point γi. Another way to
get insight of (10) is to make the following observation: the
function φ has a second derivative in the distribution sense,
φ′′ =

∑
16i6K αiδγi ; then (10) is gotten by integrating twice

the latter expression of φ′′. Possibly after subtracting to φ an
affine function, we will always assume that a = b = 0.

Then, setting

I+
.
= {1 6 i 6 k | αi > 0},

I−
.
= {1 6 i 6 k | αi < 0},

and
φ±(x) =

∑
i∈I±
|αi|max(0, x− γi)

we write
φ(x) = φ+(x)− φ−(x).

Let

ai =
∑

j∈I±,j6i
|αj |,

bi =
∑

j∈I±,j6i
|αj |γj ,

and note that
φ±(x) = max

i∈I±
(aix− bi).

Then, setting fT
.
= f+T − f−T where

f±T (x) = T log

(∑
i∈I±

exp((aix− bi)/T )

)
and using (5), we get

fT − T log |I−| 6 f 6 fT + T log |I+|.

C. Data approximation

Consider a collection D of m data-points,

D = {(xi, yi)}mi=1 (11)

where yi = φ(xi), i = 1, . . . ,m, and φ is an unknown
function. The following universal data approximation result
holds.

Corollary 2 (Universal data approximation). Given a collec-
tion of data D as in (11), for any ε > 0 there exists T > 0
and a function dT ∈ DLSET with rational coefficients such
that

|dT (xi)− yi| 6 ε, i = 1, . . . ,m.

Proof. Let K .
= co{xi, . . . ,xm} be the convex hull of the

input data points. Consider a triangulation of the input points
xi: recall that such a triangulation consists of a finite collection
of simplices (∆r)r∈R, satisfying the following properties: (i)
the vertices of these simplices are taken among the points
x1, . . . ,xm; (ii) each point xi is the vertex of at least one
simplex; (iii) the interiors of theses simplices have pairwise
empty intersections, and (iv) the union of these simplices is
precisely K. Then, there is a unique continuous function, f ,
affine on each simplex ∆r, and such that f(xi) = yi for 1 6
i 6 m. Observe that K is convex and compact by construction.
Now, a direct application of Theorem 2 shows that for any
ε > 0 there exists T > 0 and a function dT ∈ DLSET with
rational coefficients such that

|dT (xi)− f(xi)| = |dT (xi)− yi| 6 ε, i = 1, . . . ,m,

which concludes the proof.

IV. POSITIVE FUNCTIONS ON THE POSITIVE ORTHANT

In this section we discuss approximation results for func-
tions taking positive values on the open positive orthant. A
particular case of this class of functions is given by log-log-
convex functions, whose uniform approximation by means of
GPOST functions was discussed in Corollary 1 of [7]. We
shall first extend this result to functions with rational param-
eters, and then provide a universal approximation result for
continuous positive functions over the open positive orthant.

A. Uniform approximation results

The following preliminary definitions are instrumental for
our purposes: a subset R ⊂ Rn>0 will be said to be log-convex
if its image by the map that takes the logarithm entry-wise
is convex. We shall say that a function ψT ∈ GPOST has
rational parameters if it can be written as in (7) with ψ given
by (6), in such a way that T , the entries of the vectors α(1), . . . ,
α(K), and the scalars log c1, . . . , log cK are rational numbers.
The following corollary extends Corollary 1 of [7].

Corollary 3 (Universal approximators of log-log-convex func-
tions). Let ` be a log-log-convex function defined on a com-
pact, log-convex subset R of Rn>0. Then, for all ε̃ > 0 there
exist a function ψT ∈ GPOST with rational parameters, for
some T = 1/p where p is a positive integer, such that, for all
x ∈ R, ∣∣∣∣ `(x)− ψT (x)

min(`(x), ψT (x))

∣∣∣∣ 6 ε̃. (12)

Proof. By using the log-log transformation, define ˜̀(q)
.
=

log(`(exp(q))). Since `(x) is log-log-convex in x, ˜̀(q) is
convex in q = logx. Furthermore, the set K .

= log(R) is
convex and compact since the set R is log-convex and com-
pact. Thus, by Corollary 1, for all ε > 0, there exist T = 1/p
where p is a positive integer, and a function fT ∈ LSET with
rational coefficients such that |fT (q)− ˜̀(q)| 6 ε for all q ∈ K.
From this point on, the proof follows the very same lines as
the proof of Corollary 1 of [7].

We next state an approximation result for functions on the
positive orthant. The derivation of Theorem 3 from Corollary 3
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is similar to the derivation of Theorem 2 from Corollary 1 and
thus we omit its proof.

Theorem 3 (Universal approximators of functions on the open
orthant). Let ` be a continous positive function defined on
a compact log-convex subset R ⊂ Rn>0. Then, for all ε̃ >
0 there exist two functions ψT , ψ′T ∈ GPOST with rational
parameters, for some T = 1/p where p is a positive integer,
such that, for all x ∈ R,∣∣∣∣ `(x)− ψT (x)/ψ′T (x)

min(`(x), ψT (x)/ψ′T (x))

∣∣∣∣ 6 ε̃. (13)

B. Universal approximation by subtraction-free expressions

We next derive from Theorem 3 an approximation result
by subtraction-free expressions. The latter are an important
subclass of rational expressions, studied in [8]. Subtraction-
free expressions are well formed expressions in several com-
mutative variables x1, . . . , xn, defined using the operations
+,×, / and using positive constants, but not using subtrac-
tion. Formally, a subtraction-free expression in the variables
x1, . . . , xn is a term produced by the context-free grammar
rule

E → E + E,E × E,E/E,C, x1, . . . , xn

where C can take the value of any positive constant. For
instance, E1

.
= (x1 + x32)/(2x1 + 3x2/(x1 + x2)) is a

subtraction-free expression, whereas E2
.
= x21 − x1x2 + x22

is not a subtraction-free expression, owing to the presence
of the − sign. Note that E2, thought of as a formal rational
fraction, coincides with E3

.
= (x31 + x32)/(x1 + x2) which is

subtraction free, i.e., an expression which is not subtraction-
free may well have an equivalent subtraction-free expression.
However, there are rational fractions, and even polynomials,
like E4

.
= (x1 − x2)2, without subtraction equivalent free

expressions, because any subtraction-free expression must take
positive values on the interior of the positive cone, whereas
E4 vanishes on the line x1 = x2. Important examples of
subtraction-free expressions arise from series-parallel compo-
sition rules for resistances. More advanced examples, coming
from algebraic combinatorics, are discussed in [8].

Corollary 4 (Approximation by subtraction-free expressions).
Let ` be a continous positive function defined on a compact
log-convex subset R ⊂ Rn>0. Then, for all ε̃ > 0 there exist
positive integers p, q and a subtraction-free expression E in n
variables y1, . . . , yn such that the function

f(x) = E(x
1/q
1 , . . . , x1/qn )1/p

in which x
1/q
i is substituted to the variable yi, satisfies, for

all x ∈ R, ∣∣∣∣ `(x)− f(x)

min(`(x), f(x))

∣∣∣∣ 6 ε̃. (14)

Proof. Theorem 3 shows that (14) holds with f = ψT /ψ
′
T

where T = 1/p for some positive integer p, and ψT , ψ
′
T are

functions in GPOST with rational parameters, i.e.,

ψT (x) =

(
K∑
k=1

ckx
α(k)p

)1/p

,

ψ′T (x) =

 K′∑
k=1

c′kx
(α′)(k)p

1/p

,

where the vectors α(k) and (α′)(k) have rational entries.
Denoting by q the least common multiple of the denominators
of the entries of the vectors α(k)p and (α′)(k)p, we see that
ψT (x)/ψT (x) is precisely of the form E(x

1/q
1 , . . . , x

1/q
n )1/p

where E is a subtraction-free rational expression.

C. Approximation of positive data

Consider a collection L of m data pairs,

L = {(zi, wi)}mi=1,

where zi ∈ Rn>0, wi ∈ R>0, i = 1, . . . ,m, with wi = `(zi),
i = 1, . . . ,m, where ` : Rn>0 → R>0 is an unknown function.
The data in L is referred to as positive data. The following
proposition is now an immediate consequence of Theorem 3,
where R can be taken as the log-convex hull of the input data
points2.

Proposition 1. Given positive data L .
= {(zi, wi)}mi=1, for

any ε̃ > 0 there exist a rational T > 0 and two functions
ψT , ψ

′
T ∈ GPOST with rational parameters such that∣∣∣∣ wi − ψT (zi)/ψ

′
T (zi)

min(wi, ψT (zi)/ψ′T zi))

∣∣∣∣ 6 ε̃, i = 1, . . . ,m. (15)

V. DLSET NETWORKS

Functions in DLSET can be modeled through a feedforward
neural network (FFNN) architecture, composed of two LSET
networks in parallel, whose outputs are fused via an output
difference node, see Fig. 1.

It may sometimes be convenient to highlight the full param-
eterization of the input-output function dT (·) synthesized by
the DLSET network, in which case we shall write

d
(−→α ,−→γ ,β,δ)
T (x) = f

(−→α ,β)
T (x)− f (

−→γ ,δ)
T (x)

where −→α = (α(1), . . . ,α(K)), −→γ = (γ(1), . . . ,γ(K)), β =
(β1, . . . , βK), and δ = (δ1, . . . , δk) are the parameter vectors
of the two LSET components.

Each LSET component has n input nodes, one hidden layer
with K nodes, and one output node. The activation function of
the hidden nodes is s 7→ (exp(s/T )), and the activation of the
output node of each LSET component is s 7→ T log(s). Each
node in the hidden layer of the first LSET component network
computes a term of the form sk = 〈α(k),x〉+ βk, where the
i-th entry α(k)

i of α(k) represents the weight between node k

2For given z1, . . . , zm ∈ Rn>0, we define their log-convex hull as the set of
vectors z =

∏m
i=1 z

ξi
i , where ξi ∈ [0, 1], i = 1, . . . ,m, and

∑m
i=1 ξi = 1.
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LSET

x1

x2

...

xn

1

...
...

f
(−→α ,β)
T (x)

LSET

x1

x2

...

xn

1

...
...

f
(−→γ ,δ)
T (x)

+

− d
(−→α ,−→γ ,β,δ)
T (x)

Fig. 1. A DLSET network is composed of two LSET networks in parallel,
with a difference output node.

and input xi, and βk is the bias term of node k. Each node k
of the first LSET network thus generates activations

ak = exp(〈α(k),x/T 〉+ βk/T ).

We consider the weights from the inner nodes to the output
node to be unitary, whence the output node of the first LSET
network computes s =

∑K
k=1 ak and then, according to the

output activation function, the output layer returns the value

T log(s) = T log

(
K∑
k=1

ak

)
.

An identical reasoning applies to the output of the second com-
ponent LSET network. The overall output realizes a DLSET
function which, by Theorem 2, allows us to approximate any
continuous function over a compact convex domain. Similarly,
by Corollary 2, we can approximate data D = {(xi, yi)}mi=1

via a DLSET network, to any given precision.

Theorem 4. Given a collection of data D .
= {(xi, yi)}mi=1,

for each ε > 0 there exists a DLSET neural network such
that

|dT (xi)− yi| 6 ε, i = 1, . . . ,m,

where dT is the input-output function of the network.

A. Training DLSET networks

By using the scaling property (4) of LSET functions, it can
be noticed that a simpler LSE network structure can be used
to implement a DLSET neural network, as shown in Fig. 2.

LSE

x1

x2

...

xn

1

1
T

1
T

...

1
T

1
T

...
...

f (
−→α ,β/T )(x/T )

LSE

x1

x2

...

xn

1

1
T

1
T

...

1
T

1
T

...
...

f (
−→γ ,δ/T )(x/T )

+

− T d
(−→α ,−→γ ,β,δ)
T (x)

Fig. 2. The same DLSET network as in Fig. 1 can be obtained by suitably
pre-scaling the input and outputs of the two component LSE networks.

As a matter of fact, given the parameter vectors −→α , −→γ , β,
δ, it can be easily derived that

d
(−→α ,−→γ ,β,δ)
T (x) = f

(−→α ,β)
T (x)− f (

−→γ ,δ)
T (x)

= T
(
f
(−→α ,β/T )
1 (x/T )− f (

−→γ ,δ/T )
1 (x/T )

)
= Td

(−→α ,−→γ ,β/T,δ/T )
1 (x/T ),

and hence dealing with a DLSET neural network corresponds
to deal with a DLSE neural network whose input and output
have been rescaled. Each of the two LSE components of the
network realizes an input-output map of the form

f (
−→α ,β/T )(x/T ) = log

(
K∑
k=1

exp(〈α(k),x/T 〉+ βk/T )

)
.

The gradients of this function with respect to its parameters
α(i), βi are, for i = 1, . . . ,K,

∇α(i)f (
−→α ,β/T )(x/T ) =

exp(〈α(i),x/T 〉+ βi/T )x

T
∑K
k=1 exp(〈α(k),x/T 〉+ βk/T )

,

∇βi
f (
−→α ,β/T )(x/T ) =

exp(〈α(i),x/T 〉+ βi/T )

T
∑K
k=1 exp(〈α(k),x/T 〉+ βk/T )

.

Thus, by using the chain rule, we have that

∇α(i)d
(−→α ,−→γ ,β,δ)
T (x) =

exp(〈α(i),x/T 〉+ βi/T )x∑K
k=1 exp(〈α(k),x/T 〉+ βk/T )

,

∇βi
d
(−→α ,−→γ ,β,δ)
T (x) =

exp(〈α(i),x/T 〉+ βi/T )∑K
k=1 exp(〈α(k),x/T 〉+ βk/T )

,

∇γ(i)d
(−→α ,−→γ ,β,δ)
T (x) = − exp(〈γ(i),x/T 〉+ δi/T )x∑K

k=1 exp(〈γ(k),x/T 〉+ δk/T )
,

∇δid(
−→α ,−→γ ,β,δ)
T (x) = − exp(〈γ(i),x/T 〉+ δi/T )∑K

k=1 exp(〈γ(k),x/T 〉+ δk/T )
.

Given a dataset D as in (11), these gradients can be used
to train a DLSET network by using classical algorithms
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such as the Levenberg-Marquardt algorithm [21], the Fletcher-
Powell conjugate gradient [22], or the stochastic gradient
descent algorithm [23]. In numerical practice, one may fix
the parameter T and K and train the network with respect
to the parameters −→α , β, −→γ and δ by using one of the
methods mentioned above, until a satisfactory cross-validated
fit is found. A suitable initial value for the T parameter
may be set, for instance, to the inverse mid output range
2/|max(yi)−min(yi)|. Alternatively, T can be considered
as a trainable variable as well, and computed by the training
algorithm alongside with the other parameters.

The following example illustrates the application of the
Levenberg-Marquardt algorithm to a simple case.

Example 3. Consider the function φ : [−2, 2]→ R,

φ(x) = x2 + sin(2π x). (16)

Such a function, which is clearly nonconvex, has been used
to generate the dataset D = {(xi, yi)}100i=1, where each xi has
been taken uniformly at random in [−2, 2] and yi = φ(xi), i =
1, . . . , 100. The Levenberg-Marquardt algorithm has been used
to train a DLSET network fitting such data with K = 10 and
T = 2/|max(yi)−min(yi)|. Fig. 3 depicts the output of the
DLSET network and of its two LSET components f (

−→α ,β)
T (x)

and f (
−→γ ,δ)
T (x).

−2

0

2

4

6

x

φ(x)
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dT (x)
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80
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,β
)
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−2 −1 0 1 2
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60

80

x

f
(−→ γ

,δ
)

T

Fig. 3. Output of the trained DLSET network.

As shown in Fig. 3, although the function φ is nonconvex, it
is well approximated by a DLSET network. Indeed, the data
represented in Fig. 3 are approximated by the trained DLSET
network with a mean square error of 4.4 · 10−5.

VI. NON-CONVEX OPTIMIZATION VIA DLSET NETWORKS

In view of the results established in Sections III and V,
DLSET networks can be efficiently used to compute a dif-
ference of convex (DC) approximate decomposition of any
continuous function over a compact set. Indeed, by using the
tools described in Section V, given any continuous function

φ(·) defined on a convex compact set K ⊂ Rn (or, more
generally, a dataset generated through any function φ) and
ε ∈ R>0, we can determine gT , hT ∈ LSET such that

|φ(x)− gT (x) + hT (x)| 6 ε, ∀x ∈ K. (17)

Once functions gT (x) and hT (x) are determined via training
on available data, we have a surrogate model dT = gT −hT '
φ that we can use for solving approximately design problems
of the form minx∈K φ(x), by substituting the surrogate func-
tion dT in place of the (possibly unknown) function φ. The
resulting surrogate design problem

min
x∈K

d
(−→α ,−→γ ,β,δ)
T (x) (18)

involves the minimization of the difference of two convex
LSET functions. An approximate solution to this problem can
be computed by means of a specific and effective algorithm
named Difference-of-Convex Algorithm (DCA), which is de-
scribed in [24], [25], [26], [27]. We next tailor the DCA to
our specific context in the following Algorithm 1, denoted by
DLSEA.

Algorithm 1 Difference of LSET algorithm (DLSEA)

Input: functions gT = f
(−→α ,β)
T and hT = f

(−→γ ,δ)
T in LSET

and a convex compact set K.
Output: a candidate optimal solution x̂? to the problem

min
x∈K

(gT (x)− hT (x)). (19)

1: pick initial point χ(0) ∈ K
2: for κ ∈ N do
3: let v(κ) =

∑K
k=1 exp(〈γ(k),χ(κ)/T 〉+δk/T )γ(k)∑K

k=1 exp(〈γ(k),χ(κ)/T 〉+δk/T )

4: let χ(κ+1) = arg minx∈K{gT (x)− 〈x,v(κ)〉}
5: if ‖χ

(κ+1)−χ(κ)‖
1+‖χ(κ)‖ is smaller than a tolerance then

6: return x̂? = χ(κ+1)

The DLSEA returns a candidate optimal solution to prob-
lem (19), see [27]. In words, this algorithm starts from a
given initial point χ(0) ∈ K and iterates until convergence
Step 3, in which the gradient of hT = f

(−→γ ,δ)
T is computed

as v(κ) = ∇hT (χ(κ)), and Step 4, in which a local ap-
proximation of problem (19) is solved. We observe that the
function gT (x) − 〈x,v(κ)〉 minimized in Step 4 is (except
for a constant term that does not affect the minimization)
equal to the difference between the convex function gT (x)
and the linearization of hT around the current solution χ(κ).
Therefore, the problem to be solved in Step 4 is a convex
minimization problem, which can be solved globally and
efficiently via standard tools.

Example 4. The DLSEA has been used to find the global
minimum of the function φ given in (16) on the compact con-
vex set K = [−2, 2]. Namely, by exploiting the approximate
DC decomposition of φ determined in Example 3 and letting
χ(0) = 0, we obtained, with 4 iterations of the DLSEA, the
approximate solution x̂? = −0.2381 to problem (19), that is
close to the actual solution x? = −0.2379.
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VII. APPLICATION: DIET DESIGN FOR TYPE 2 DIABETES

Type 2 diabetes mellitus is a chronic disease that affects the
way the human body processes glucose. It is characterized by
reduced sensitivity of tissues to insulin, a hormone produced
by pancreatic beta cells that promotes the absorption of glu-
cose from blood into liver, fat and skeletal muscle cells [28].

The main objective of this section is to show how DLSET
networks and the DLSEA can be used to design a diet based
on 5 meals for a patient with type 2 diabetes, with the
aim of minimizing the maximal concentration of glucose in
blood, while guaranteeing that a sufficient amount of glucose
is administrated (namely, exactly 185 g). In order to pursue
this objective, the meal model for the glucose-insulin system
given in [29] has been used to simulate the time-behavior
of plasma glucose concentration with breakfast at 8 a.m.
(containing x1 g of glucose), mid-morning snack at 11 a.m.
(containing x2 g of glucose), lunch at 1 p.m. (containing
x3 g of glucose), mid-afternoon snack at 5 p.m. (containing
x4 g of glucose), and dinner at 8 p.m. (containing x5 g of
glucose). This model has been used to generate synthetic data:
103 points x(i) = [ x

(i)
1 · · · x

(i)
5

]> have been picked
uniformly at random from the set

K =

x ∈ R5 : xj > 0, j = 1, . . . , 5,

5∑
j=1

xj = 185

 ,

and the meal model has been used to determine the cor-
responding maximum of glucose concentration y(i). Thus,
the training dataset Dtrain = {(x(i), y(i))}1000i=1 has been
used to train a DLSET network with temperature parameter
T = 12.98 · 10−3 (that is 2/|max(yi)−min(yi)|) and with
K = 30 nodes in each of its two LSET components. In
order to evaluate the prediction capabilities of this network,
after the training, we generated, by using the same method
as above, a validation dataset Dvalid = {(x̌(i), y̌(i))}100i=1, and
we compared the outputs of the DLSET model dT (x̌(i)) with
y̌(i), i = 1, . . . , 100. For comparison purposes, a classical
FFNN with symmetric sigmoid activation function for the
hidden layer (with 60 nodes) and linear activation function for
the output layer has been trained on the same dataset Dtrain

and its prediction performance has been evaluated over Dvalid.
Table I summarizes the prediction errors of the two models.

TABLE I
PREDICTION ERRORS OVER Dvalid

Method
Mean Sq. Mean Rel. Max Abs. Max Rel. r2

[mg/dL] [−] [mg/dL] [−] [−]
DLSE 0.0624 0.0006 1.1043 0.0043 0.9999

FFNN 2.3145 0.0041 7.9480 0.0311 0.9959

As shown by Table I, the DLSET model has the best
performance with respect to all the error metrics. Furthermore,
differently form classical FFNN, it is readily amenable to
efficient optimization via the DLSEA. Indeed, we applied
such an algorithm to the DLSET model and we obtained
the optimal diet that minimizes the maximal concentration of
glucose in blood, while guaranteeing that 185 g of glucose
are administrated. Fig. 4 depicts the optimal diet and the

corresponding time-behavior of the plasma glucose concentra-
tion. The optimal diet is such that the corresponding maximal
plasma glucose concentration in 24 h is 253.06 mg/dL.
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Fig. 4. Simulation of the time-behavior of the plasma glucose concentration
with the optimal diet determined via the DLSEA.

VIII. CONCLUSIONS

In this paper, we showed that a neural network whose output
is the difference of the outputs of two feedforward neural
networks with exponential activation function in the hidden
layer and logarithmic activation function in the output node
is an universal approximator of continuous functions over
compact convex sets. By using a logarithmic transformation,
such networks maps to a class of subtraction free ratios of
generalized posynomials, which we showed to be universal
approximators of positive functions over the positive orthant.

The main advantage of DLSET networks with respect to
classical FFNN is that they are readily amenable to effective
optimization-based design. In particular, by adapting the DCA
given in [27] to our context, we derived an ad-hoc algorithm
for optimizing DLSET models which has proved to be effi-
cient in the considered test cases.
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[20] M. Bačák and J. M. Borwein, “On difference convexity of locally
Lipschitz functions,” Optimization, vol. 60, no. 8-9, pp. 961–978, 2011.

[21] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.

[22] W. C. Davidon, “Variable metric method for minimization,” SIAM J.
Optim., vol. 1, no. 1, pp. 1–17, 1991.

[23] D. P. Bertsekas, Nonlinear programming. Athena scientific, 1999.
[24] T. Pham Dinh, “The DC (difference of convex functions) programming

and DCA revisited with DC models of real world nonconvex optimiza-
tion problems,” Ann. Oper. Res., vol. 133, no. 1-4, pp. 23–46, 2005.

[25] H. A. Le Thi, H. M. Le, and T. Pham Dinh, “A DC programming
approach for feature selection in support vector machines learning,” Adv.
Data Anal. Classification, vol. 2, no. 3, pp. 259–278, 2008.

[26] T. Pham Dinh and H. A. Le Thi, “Recent advances in DC programming
and DCA,” in Trans. Comput. Int. XIII, pp. 1–37, Springer, 2014.

[27] H. A. Le Thi and T. Pham Dinh, “DC programming and DCA: thirty
years of developments,” Math. Prog., vol. 169, no. 1, pp. 5–68, 2018.

[28] C. M. Ripsin, H. Kang, and R. J. Urban, “Management of blood glucose
in type 2 diabetes mellitus,” Am. Fam. Physician, vol. 79, no. 1, pp. 29–
36, 2009.

[29] C. Dalla Man, R. A. Rizza, and C. Cobelli, “Meal simulation model of
the glucose-insulin system,” IEEE Trans. Biomed. Eng., vol. 54, no. 10,
pp. 1740–1749, 2007.

Giuseppe C. Calafiore (S ’14, F ’18) received
the “Laurea” degree in Electrical Engineering from
Politecnico di Torino in 1993, and the Ph.D. degree
in Information and System Theory from Politec-
nico di Torino, in 1997. He is with the faculty of
Dipartimento di Electronica e Telecommunicazioni,
Politecnico di Torino, where he currently serves as
a full professor and coordinator of the Systems and
Data Science lab. He is associated with the Italian
National Research Council (CNR). Dr. Calafiore
held several visiting positions at international insti-

tutions: at the Information Systems Laboratory (ISL), Stanford University,
California, in 1995; at the Ecole Nationale Supérieure de Techniques Avanceés
(ENSTA), Paris, in 1998; and at the University of California at Berkeley, in
1999, 2003 and 2007. He had an appointment as a Senior Fellow at the
Institute of Pure and Applied Mathematics (IPAM), University of California
at Los Angeles, in 2010. He had appointments as a Visiting Professor at
EECS UC Berkeley in 2017 and at the Haas Business School in 2018 and
2019. Dr. Calafiore is the author of more than 180 journal and conference
proceedings papers, and of eight books. He is a fellow member of the IEEE
since 2018. He received the IEEE Control System Society “George S. Axelby”
Outstanding Paper Award in 2008. His research interests are in the fields of
convex optimization, randomized algorithms, machine learning, computational
finance, and identification and control of uncertain systems.

Stephane Gaubert (M ’18) obtained the Engi-
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