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Statistical Loss and Analysis for Deep Learning in
Hyperspectral Image Classification
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Abstract—Nowadays, deep learning methods, especially the
convolutional neural networks (CNNs), have shown impressive
performance on extracting abstract and high-level features from
the hyperspectral image. However, general training process
of CNNs mainly considers the pixel-wise information or the
samples’ correlation to formulate the penalization while ignores
the statistical properties especially the spectral variability of
each class in the hyperspectral image. These samples-based
penalizations would lead to the uncertainty of the training process
due to the imbalanced and limited number of training samples.
To overcome this problem, this work characterizes each class
from the hyperspectral image as a statistical distribution and
further develops a novel statistical loss with the distributions,
not directly with samples for deep learning. Based on the Fisher
discrimination criterion, the loss penalizes the sample variance of
each class distribution to decrease the intra-class variance of the
training samples. Moreover, an additional diversity-promoting
condition is added to enlarge the inter-class variance between
different class distributions and this could better discriminate
samples from different classes in hyperspectral image. Finally, the
statistical estimation form of the statistical loss is developed with
the training samples through multi-variant statistical analysis.
Experiments over the real-world hyperspectral images show the
effectiveness of the developed statistical loss for deep learning.

Index Terms—Statistical Loss, Deep Learning, Convolutional
Neural Networks (CNN), Diversity, Hyperspectral Image classi-
fication.

I. INTRODUCTION

With the development of the new and advanced space-
borne and aerial-borne sensors, large amounts of hyperspectral
images, which contain hundreds of spectral channels, are
available [10], [41]. The high-dimension spectral bands in the
image make it possible to obtain plentiful spectral information
to discriminate different objects [5], [35], [40]. However,
great similarity which occurs in the bands between different
objects makes the image processing task be a challenging
one. Besides, the increasing dimensionality in hyperspectral
image and the limited number of training samples multiply the
difficulties to obtain discriminative features from the image.
Therefore, faced with these circumstances, spatial features are
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usually incorporated into the representation [20], [7]. However,
modelling discriminative spatial and spectral features is not so
simple. There have been increasing efforts to explore effective
spectral-spatial methods for hyperspectral image classification.

Recently, deep models with multi-layers have demonstrated
their potentials in modelling both the spectral and spatial
features from the hyperspectral image [27], [29], [22], [39].
Especially, the CNNs, which can capture both the local and
the global information from the objects, have presented good
performance and been widely applied in hyperspectral image
processing tasks. More extended CNNs with the multi-scale
convolution [10], spectral and spatial residual block [42], have
also been developed to improve the representational ability of
the CNNs. Therefore, due to the good performance, this work
will take advantage of the CNN model to extract the deep
spectral-spatial features from the hyperspectral image.

The essential and key problem for the deep representation
is how to train a good model. Generally, a good training
process is guaranteed by a fine and proper definition of the
training loss. The common training loss is constructed with the
training samples directly and can be broadly divided into two
classes. The first class of losses mainly penalizes the predicted
and the real label of each sample for the training of the deep
model, such as the generally used softmax loss [23], [17].
However, these losses only take advantage of the pixel-wise
information from the hyperspectral image while ignore the
correlation between different samples. The other one focuses
on the penalization of the samples’ correlation [10], [9], [25].
These losses penalize the Euclidean distances [12], [6] or the
angular [34] between sample pairs [31], [36] or among sample
triplets [30] and usually provide a better performance than the
first one. In real-world applications, the CNN is usually trained
under the joint supervisory signals of the losses from the two
classes for an effective deep representation.

Even though these samples-based losses have been suc-
cessfully applied in the training of the deep models, there
exist two shortcomings using in the hyperspectral image
classification. First, these methods mainly consider the pixel-
wise information of each training sample or the pairwise
and triplet correlation between different samples which make
the training process be susceptible to the imbalanced and
limited number of training samples. This would increase the
randomness and uncertainty of the training process. Besides,
these methods do not take the statistical properties of the
hyperspectral image into consideration. Especially, there exist
the spectral variability within each class and the seriously
overlapped spectra between different classes in the image.
These intrinsic properties could play an important role in
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providing an effective training process for deep learning.
To overcome these problems, this work tries to model

each class from the image as a certain probabilistic model
and formulates the penalization with the class distributions
not directly with the samples. The distributions-based loss
can reduce the uncertainty caused by the imbalanced and
limited number of training samples and further improve the
performance of the learned model to extract discriminative
features from the image. Specifically, this work uses the multi-
variant normal distributions to model different classes in the
image.

Under the probabilistic models and multi-variant statistical
analysis, this work develops a novel statistical loss for deep
learning in the literature of hyperspectral image classifica-
tion. Based on the Fisher discrimination criterion [37], the
developed statistical loss penalizes the sample variance of
each class distribution to decrease the spectral variability of
each class. Moreover, a diversity-promoting condition [28] is
added in the statistical loss to enlarge the inter-class variance
between different class distributions. Finally, under the multi-
variant statistical analysis, the statistical estimation form of
the statistical loss is developed with the training samples. As
a result, the learned deep model can be more powerful to
extract discriminative features from the image. Overall, the
major contributions of this paper are listed as follows.

• This work models the hyperspectral image with the
probabilistic model and characterizes each class from
the image as a certain sampling distribution to take
advantage of the statistical properties of the image, so as
to formulate the penalization with the class distributions.

• Based on the multi-variant statistical analysis and the
Fisher discrimination criterion, we develop a novel sta-
tistical loss that decreases the spectral variability of each
class while enlarges the variance between different class
distributions.

• Extensive experiments over the real-world hyperspectral
image data sets demonstrate the effectiveness and practi-
cability of the developed method and its superiority when
compared with other recent samples-based methods.

II. MOTIVATION

A. Statistical Properties of the Hyperspectral Image

Hyperspectral remote sensing measures the radiance of the
materials within each pixel area at a very large number of
contiguous spectral wavelength bands [26]. The space-borne
or aerial-borne sensors gather these spectral information and
provide hyperspectral images with hundreds of spectral bands.
Since each pixel describes the energy reflected by surface
materials and presents the intensity of the energy in different
parts of the spectrum, each pixel contains a high-resolution
spectrum, which can be used to identify the materials in the
pixel by the analysis of reflectance or emissivity.

Unfortunately, a theoretically perfect fixed spectrum for any
given material does not exist [28]. Due to the variations in the
material surface, the spectra observed from samples of the
same class are generally not identical. The measured spectra

corresponding to pixels with the same class presents an in-
herent spectral variability that prevents the characterization of
homogeneous surface materials by unique spectral signatures.
Just as the spectral curves shown in Fig. 1, each class in usual
hyperspectral image exhibits remarkable spectral variability
and different classes show serious overlapping of the set of
spectra. Besides, most spectra appearing in real applications
are random. Therefore, their statistical variability is better
described using the probabilistic models f(x).

The learned features from the objects in the image presents
the similar characteristics. Since the CNNs have demonstrated
their potential in extracting discriminative features from the
image [10], [24], this work will use the CNN model to extract
deep features from the image. The features extracted from the
CNNs can be seen as the linear or nonlinear mapping of the
objects. Therefore, the features from the same class also show
obvious variability and can be described by the probabilistic
models.

For the task at hand, the probabilistic models are with
respect to the high dimensional features. Therefore, multi-
variant statistical analysis, which concerns with analyzing and
understanding data in high dimensions, is necessary and just
fit for the image processing task we face with [18]. Then,
based on the Fisher discrimination criterion and multi-variant
statistical analysis, this work will focus on modelling each
class from the hyperspectral image as a specific probabilistic
model and further develop a novel statistical loss to extract
discriminative features from the image.

Even though the hyperspectral image possesses good statis-
tical properties, to the best of our knowledge, this work first
takes the statistical properties of the hyperspectral image into
consideration and develops the loss with the distributions, not
directly with the samples for deep learning. In the following,
we will provide a deep comparison between the developed
distributions-based loss and the samples-based loss.

B. Distributions-based Loss v.s. Samples-based Loss

The samples-based losses mainly consider the pixel-wise
information or penalize the correlation between the sample
pairs [12] or triplets [30] for the deep learning. These
losses attempt to obtain good representations of the image by
decreasing the distances between samples from the same class
and increasing the distances between samples from different
classes. However, the performance of these samples-based loss
is seriously influenced by the imbalanced and limited training
samples, which leads to the uncertainty and randomness of
the training process. Fig. 1 shows the flowchart of training
process by these samples-based loss. Just as the figure shows,
there may exists the overlapping between the obtained features
from different classes. Besides, the variability of the learned
features from each class would still be too large.

Different from these samples-based losses, the distributions-
based loss characterizes each class from the image as a certain
probabilistic model and considers the class relationship with
the distributions under the Fisher discrimination criterion.
Since we model the correlation based on the class distributions,
the problems caused by the imbalance and limitation of the
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Fig. 1. Comparison of statistical loss and samples-based loss. The visualization of spectra curves describes the meadows and bare soil in Pavia University.

training samples can be solved. This shows positive effects
on obtaining discriminative features from the image. Just as
presented in Fig. 1, with the statistical loss by the multi-variant
statistical analysis, the spectral variability of the learned fea-
tures in each class would be decreased and different class
distributions can be better separated. This makes the learned
features be discriminative enough and thus the classification
performance can be significantly improved. In the following,
we will introduce the construction of the statistical loss for
deep learning in detail.

III. STATISTICAL LOSS AND ANALYSIS FOR DEEP
LEARNING

Let us denote X0 = {x1,x2, · · · ,xN} as the set of training
samples of the hyperspectral image where N is the number
of training samples and yi as the corresponding label of the
sample xi. yi ∈ Y0 = {ym1

, ym2
, · · · , ymΛ

} where Λ is the
number of the sample classes.

A. Characterizing the Hyperspectral Image with Probabilistic
Model

A reasonable and mostly used probabilistic model for such
spectral data in hyperspectral image is generally provided
by multivariate normal distribution. It has already presented
impressive performance in modelling target and background
as random vectors with multivariate normal distributions for
hyperspectral target detection [46] and hyperspectral anomaly
detection [38]. For the task at hand, the extracted features from
the CNN model of different classes will also be modelled with
the multivariate normal distributions.

Given a p-dimensional random variable Z =
(Z1, Z2, · · · , Zp) which follows a certain multi-variant
distribution. The random variable Z is multi-variant normal
if its probability density function (pdf) fZ(z) has the form

fZ(z) =
1

(2π)
p
2 |Σ| 12

exp[−1

2
(z− µ)TΣ−1(z− µ)], (1)

where z = (z1, z2, · · · , zp), −∞ < zi < ∞(i = 1, 2, · · · , p),
µ describes the mean of the distribution and Σ which is
a positive function represents the covariance matrix of the
distribution. Generally, the multi-variant normal distribution
can be described as Np(µ,Σ).

In this work, each class k(k = 1, 2, · · · ,Λ) is modelled by
a certain multi-variant normal distribution with a mean of µk

and a covariance of Σk , which can be written as Np(µk,Σk).
p represents the dimension of the obtained features from
the CNN model and Λ denotes the number of classes in
the hyperspectral image. Obviously, the sampling distributions
corresponding to different classes in the hyperspectral image
are independent to each other.

B. Construction of The Statistical Loss

As Fig. 2 shows, this work formulates the loss function
based on the Fisher discrimination criterion [37]. Under the
criterion, we penalize the sample variance of each class dis-
tribution to decrease the intra-class variance, then the problem
can be formulated as the following optimization,

min
θ

Λ∑
k=1

tr(Σk), (2)

where tr(·) means the trace of the matrix and θ denotes the
set of the parameters in the CNN model.

Moreover, to further improve the performance, this work
add additional diversity-promoting condition to repulse dif-
ferent class distributions from each other. The diversity-
promoting term can be formulated as

|µk − µt| > m, 1 ≤ k 6= t ≤ Λ, (3)

where m is a positive value. k and t represents different classes
from the image.

Therefore, from the statistical view, we characterize the
feature correlation of the hyperspectral image with the proba-
bilistic model and develop the statistical loss as follows,

min
θ

1

Λ

Λ∑
k=1

tr(Σk)

s.t.|µk − µt| > m, 1 ≤ k 6= t ≤ Λ.

(4)

Under the optimization in Eq. 4, the intra-class variance of
the obtained features is decreased. Besides, the diversity-
promoting condition increases the variance between different
class distributions. Thus, the learned features can be more
discriminative to separate different samples.

To solve the optimization in Eq. 4 with the training samples,
this work statistically estimates the optimization with the
multi-variant statistical analysis and develops the estimated
statistical loss for hyperspectral image classification.
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Fig. 2. Flowchart of the construction of the developed statistical loss.

C. Statistical Estimation for The Statistical Loss

Generally, in the training process of CNNs, the training
batches are usually constructed to accurately estimate the CNN
model. A training batch consists of a batch of randomly
selected training samples, which can realize the parallelization
of the training process [9]. Obviously, a training batch can
be looked as a sampling from the class distributions in the
hyperspectral image.

Given a training batch B. Denote zi as the feature of xi
extracted from the deep model. XB

k = {xs1 ,xs2 , · · · ,xsnk
}

represents the samples of the k-th class in the batch. Then,
CBk = {zs1 , zs2 , · · · , zsnk

} denotes the extracted features of
the k-th class where nk is the number of the samples in
the class. Therefore, the features in CBk follows the class
distribution Np(µk,Σk).

1) Estimate
1

Λ

Λ∑
k=1

tr(Σk): The unbasied estimate Ck of

the distribution mean µk of the k-th class in B can be
calculated as

Ck =
1

nk

nk∑
i=1

zsi . (5)

Define the scatter matrix Sk of the k-th class as

Sk ,
nk∑
j=1

(zj − Ck)(zj − Ck)T . (6)

Then, for the k-th class, the unbiased estimate Σ̂k of the
covariance matrix Σk can be formulated as

Σ̂k =
1

nk − 1
Sk =

1

nk − 1

nk∑
j=1

(zj − Ck)(zj − Ck)T . (7)

We use Σ̂k to estimate the covariance matrix Σk. Then,

tr(Σ̂k) =
1

nk − 1

nk∑
j=1

(zj − Ck)T (zj − Ck). (8)

Besides,
1

Λ

Λ∑
k=1

tr(Σk) can be estimated by
1

Λ

Λ∑
k=1

tr(Σ̂k).

Therefore,
1

Λ

Λ∑
k=1

tr(Σk) is estimated by

1

Λ

Λ∑
k=1

tr(Σ̂k) =
1

Λ

Λ∑
k=1

[
1

nk − 1

nk∑
j=1

(zj − Ck)T (zj − Ck)].

(9)
2) Estimate |µk − µt| > m: Given the k-th and the

t-th class. The k-th class follows the multi-variant normal
distribution as CBk ∼ Np(µk,Σk) and the t-th class follows
CBt ∼ Np(µt,Σt). Obviously, the two class distributions are
independent from each other. This work will use the statistical
hypothesis to estimate the condition |µk − µt| > m.

To estimate |µk − µt| > m, two famous multi-variant
distributions, namely the Wishart − distribution and the
Hotelling T 2 − distribution are necessary.

The Wishart − distribution plays a prominent role
in the analysis of estimated covariance matrices. Assume
u1, u2, · · · , un as independent distributions which follows
the same p-dimensional multi-variant normal distribution
Np(0,Σ). Denote u = (u1, u2, · · · , un). Then the random
matrix W = uuT =

∑n
i=1 uiu

T
i follows the p-dimensional

Wishart − distribution with n degrees of freedom, which
can be written as

W =

n∑
i=1

uiu
T
i ∼Wp(n,Σ). (10)

It should be noted that the Wishart− distribution satisfies
the following property. If statistics Wi ∼ Wp(ni,Σ), i =
1, 2, · · · , k, and the statistics Wi(i = 1, 2, · · · , k) are inde-
pendent from each other, then,

W =

k∑
i=1

Wi ∼Wp(

k∑
i=1

ni,Σ). (11)

The Hotelling T 2−distribution is essential to the hypoth-
esis testing in multi-variant statistical analysis. Suppose that
X ∼ Np(µ,Σ) is independent to W ∼Wp(n,Σ). Denote the
statistic T 2 = n(X − µ)TW−1(X − µ), then the statistic T 2

is defined as the Hotelling T 2 − distribution with n degree
of freedom, which can be formulated as

T 2 = n(X − µ)TW−1(X − µ) ∼ T 2(p, n). (12)

It should be noted that the former Wishart−distribution and
Hotelling T 2 − distribution are certain distributions where
the probability distribution is fixed under a certain degrees of
freedom. In the following, the two distributions will play an
important role in the following estimation.

Traditionally, a statistical hypothesis is an assertion or
conjecture concerning one or more populations. It should be
noted that the rejection of a hypothesis implies that the sample
evidence refutes it. That is to say, rejection means that there
is a small probability of obtaining the sample information
observed when, in fact, the hypothesis is true [33]. The
structure of hypothesis testing will be formulated with the use
of the null hypothesis H0 and the alternative hypothesis H1.
Generally, the rejection of H0 leads to the acceptance of the
alternative hypothesis H1.
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For simplicity, this work would set the m in Eq. 4 to 0.
Therefore, from the statistical hypothesis view, we may then
re-state the condition |µk − µt| > m as the following two
competing hypotheses:

H0 : µk = µt, (13)
H1 : µk 6= µt. (14)

The scatter matrices Sk and St of the k-th and the t-th class
are defined as Eq. 6 shows. As the definition of Wishart −
distribution, it can be noted that

Sk ∼Wp(nk − 1,Σk), (15)
St ∼Wp(nt − 1,Σt). (16)

Since all the samples of different classes are from the same
hyperspectral image, just as processed in many hyperspectral
target recognition task [26], different class distributions are
supposed to have the same covariance matrix, namely Σk =
Σt = Σ. Therefore, based on the properties of Wishart −
distribution as Eq. 11, the statistic Sk + St follows

Sk + St ∼Wp(nk + nt − 2,Σ). (17)

Moreover, depending on the definition of the multi-variant
normal distribution, we can find that the statistic Mk,t which
is defined as Mk,t = Ck −Ct − (µk − µt) follows the multi-
variant normal distribution,

Mk,t = Ck − Ct − (µk − µt) ∼ Np(0, (
1

nk
+

1

nt
)Σ). (18)

Furthermore, denote the statistic T 2

T 2 =
nk + nt − 2

1
nk

+ 1
nt

MT
k,t(Sk + St)

−1Mk,t. (19)

Then, according to the definition of Hotelling T 2 −
distribution, it can be noted that the statistic T 2 in Eq. 19
follows the T 2 − distribution as

T 2 ∼ T 2(p, nk + nt − 2). (20)

Therefore, at the α level of confidence, if T 2 ≤
T 2
p,nk+nt−2(α), accept the null hypothesis H0, reject the

alternative hypothesis H1; otherwise, if T 2 > T 2
p,nk+nt−2(α),

accept the alternative hypothesis H1, reject the null hypothesis
H0.

Since the alternative hypothesis H1 is what we seek, |µk−
µt| > m can be transformed to the following one,

nk + nt − 2
1
nk

+ 1
nt

(Ck−Ct)T (Sk+St)
−1(Ck−Ct) > T 2

p,nk+nt−2(α).

(21)
3) Formulate the Statistical Loss: Denote Γk,t = Ck−Ct.

Then, based on the Eq. 9 and Eq. 21, the optimization problem
in Eq. 4 can be transformed as

min
1

Λ

Λ∑
k=1

(
1

nk − 1

nk∑
j=1

(zj − Ck)T (zj − Ck))

s.t.
nk + nt − 2

1
nk

+ 1
nt

ΓTk,t(Sk + St)
−1Γk,t > T 2

p,nk+nt−2(α),

1 ≤ k 6= t ≤ Λ.
(22)

By Lagrange multiplier, the statistical loss for the hyperspec-
tral image can be formulated from Eq. 22 as

L =
1

Λ

Λ∑
k=1

(
1

nk − 1

nk∑
j=1

(zj − Ck)T (zj − Ck))+

λ

Λ∑
k 6=t

(T 2
p,nk+nt−2(α)− nk + nt − 2

1
nk

+ 1
nt

ΓTk,t(Sk + St)
−1Γk,t),

(23)
where λ is the tradeoff parameter.

Besides, T 2
p,nk+nt−2(α) is a constant value that is irrelevant

to the training samples, therefore, we set T 2
p,nk+nt−2(α) as a

constant positive value. Then, Eq. 23 can be re-formulated as

L =
1

Λ

Λ∑
k=1

(
1

nk − 1

nk∑
j=1

(zj − Ck)T (zj − Ck))+

λ

Λ∑
k 6=t

(∆− nk + nt − 2
1
nk

+ 1
nt

ΓTk,t(Sk + St)
−1Γk,t),

(24)

where ∆ represents a positive value. Therefore, Eq. 24 defines
the statistical loss for deep learning in this work. Fig. 2 shows
the detailed process to formulate the statistical loss. Under the
statistical loss, the learned model can be more discriminative
for the hyperspectral image.

IV. TRAINING

Generally, the deep model is trained with the stochastic
gradient descent method and back propagation is used for
the training process of the model [13]. Therefore, the main
problem for the implementation of the developed statistical
loss in hyperspectral image classification task is to compute
the derivation of the statistical loss w.r.t. the extracted features
from the training samples.

As defined in section III-C, the statistical loss can be
formulated as

L = L0 + λLdiv, (25)

where

L0 =
1

Λ

Λ∑
k=1

(
1

nk − 1

nk∑
j=1

(zj − Ck)T (zj − Ck)), (26)

Ldiv =

Λ∑
k 6=t

(∆− nk + nt − 2
1
nk

+ 1
nt

ΓTk,t(Sk + St)
−1Γk,t). (27)

According to the chain rule, gradients of the statistical loss
w.r.t. zi can be formulated as

∂L

∂zi
=
∂L0

∂zi
+ λ

∂Ldiv
∂zi

. (28)

The partial of L0 w.r.t. zi can be easily computed by

∂L0

∂zi
=

2

Λ

Λ∑
k=1

1

nk
I(zi ∈ CBk )(zi − Ck), (29)

where zi is the learned features of training sample xi from
the CNN model. I(·) denotes the indicative function.
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Besides, the partial of Ldiv w.r.t. zi can be calculated by

∂Ldiv
∂zi

= −
Λ∑
k 6=t

nk + nt − 2
1
nk

+ 1
nt

∂ΓTk,t(Sk + St)
−1Γk,t

∂zi
. (30)

Therefore, the key process is to calculate the following
derivation:

∂ΓTk,t(Sk + St)
−1Γk,t

∂zi
=
∂ΓTk,t(Sk + St)

−1

∂zi
Γk,t

+
∂ΓTk,t
∂zi

(Sk + St)
−1Γk,t.

(31)

The
∂ΓTk,t
∂zi

can be computed as

∂ΓTk,t
∂zi

=
∂(Ck − Ct)T

∂zi
=

1

nk
I(zi ∈ Ck)I0, (32)

where I0 represents the identity matrix. In addition,

∂[ΓTk,t(Sk + St)
−1]

∂zi
=
∂ΓTk,t
∂zi

(Sk + St)
−1

− nk − 1

nk
I(zi ∈ CBk )[(Ck − Ct)T (Sk + St)

−1zi](Sk + St)
−1

− nk − 1

nk
I(zi ∈ CBk )(Sk + St)

−1(Ck − Ct)zTi (Sk + St)
−1.

(33)
Based on Eqs. 30, 31, 32 and 33, the partial of Ldiv w.r.t.

zi can be calculated by1

∂Ldiv
∂zi

=
nk + nt − 2

1
nk

+ 1
nt

[− 2

nk
I(zi ∈ CBk )(Sk + St)

−1(Ck − Ct)

+
nk − 1

nk
I(zi ∈ CBk )[(Ck − Ct)T (Sk + St)

−1zi](Sk + St)
−1

+
nk − 1

nk
I(zi ∈ CBk )(Sk + St)

−1(Ck − Ct)zTi (Sk + St)
−1].

(34)
Through back propagation with the former equations, the
CNN model can be trained with the training samples and
discriminative features can be learned from the hyperspectral
image. The detailed training process of the developed method
is shown in Algorithm 1. It should also be noted that the whole
CNN is trained under joint supervisory signals of softmax loss
and our statistical loss.

V. EXPERIMENTAL RESULTS

A. Experimental Datasets and Experimental Setups

To further validate the effectiveness of the developed sta-
tistical loss, this work conducts experiments over the real-
world hyperspectral image data sets, namely Pavia University
and Indian Pines2. We also compare the experimental results
with other state-of-the-art methods including the most recent
samples-based loss to show the advantage of the proposed
method. In addition, overall average (OA), average accuracy
(AA), and Kappa are chosen as the measurements to evaluate
the classification performance. All the results in this work

1Detailed computations of gradients are shown in the supplemental mate-
rials.

2More results can be seen in the supplemental materials.

Algorithm 1 Training process of the developed method
Input: xi(i = 1, 2, · · · , N), λ, β,∆, θk = {Wk,bk} as the

parameters of k-th layer, θ0 = {W0,b0} as the parameters
in Softmax layer, learning rate lr.

Output: θk, W0,b0

1: Initialize θk in k-th convolutional layer where Wk is ini-
tialized from Gaussian distribution with standard deriva-
tion of 0.01 and bk is set to 0.

2: while not converge do
3: t← t+ 1.
4: Construct the training batch Bt randomly.
5: Obtain the deep features zti from the sample xti ∈ Bt

with the CNN model specified by θtk.
6: Compute the penalization of Lt0 using Eq. 26.
7: Compute the penalization of the diversity-promoting

term Ltdiv using Eq. 27.
8: Compute the statistical loss by Lt = Lt0 + λLtdiv .
9: Compute the joint loss by Ltjoint = Lts + βLt where

Lts is the penalization from the softmax loss and β is
the tradeoff parameter.

10: Compute the derivation of Lt0 w.r.t. zti in Bt using Eq.
29.

11: Compute the derivation of Ltdiv w.r.t. zti in Bt as Eq.
34 shows.

12: Update the parameters θ0 by
θt+1

0 = θt0 − lr ×
∂Lt

joint

∂θt0
= θt0 − lr ×

∂Lt
s

∂θt0
.

13: Update the parameters θk by
θt+1
k = θtk − lr ×

∂Lt
joint

∂θtk
= θtk − lr ×

∂Lt
joint

∂zt
i
× ∂zt

i

∂θtk
.

14: end while
15: return θk, θ0 = {W0,b0}

come from the average value and standard deviation of ten
runs of training and testing. For each of the ten experiments,
the training and testing sets are randomly selected.

Pavia University data [4] was gathered by the reflective
optics system imaging spectrometer (ROSIS-3) sensor with
a spatial resolution of 1.3m per pixel. It consists of 610×340
pixels of which a total of 42, 776 labelled samples divided into
nine classes have been chosen for experiments. Each pixel
denotes a sample and consists of 115 bands with a spectral
coverage ranging from 0.43 to 0.86 µm. 12 spectral bands are
abandoned due to the noise and the remaining 103 channels
are used for experiments.

Indian Pines data [1] was collected by the 224-band AVIRIS
sensor ranging from 0.4 to 2.5 µm over the Indian Pines
test site in north-western Indiana. It consists of 145 × 145
pixels and the corrected data of Indian Pines remains 200
bands where 24 bands covering the region of water absorption
are removed. Sixteen land-cover classes with a total of 10249
labelled samples are selected from the data for experiments.

Caffe is chosen as the deep learning framework to im-
plement the proposed method [16]. Since this work mainly
test the effectiveness of the developed statistical loss, we
will use the CNN model just as Fig. 3 shows for all the
experiments in this work. The learning rate, epoch iteration,
training batch are set to 0.001, 60000, 84, respectively. As
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Fig. 3. The deep structure adopted in this work to implement the proposed method for hyperspectral image Classification. The whole CNN is trained under
the joint supervisory signals of softmax loss and our statistical loss.

TABLE I
CLASSIFICATION ACCURACIES (Mean± SD) (OA, AA, AND KAPPA) OF
DIFFERENT METHODS ACHIEVED ON THE PAVIA UNIVERSITY DATA. THE

RESULTS FROM CNN IS TRAINED WITH THE SOFTMAX LOSS. |Fij |
REPRESENTS THE VALUE OF MCNEMAR’S TEST.

Methods SVM-POLY CNN Proposed Method

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
ie

s
(%

)

C1 83.01± 1.30 98.50± 0.49 99.59± 0.30
C2 86.61± 1.80 99.02± 0.59 99.72± 0.11
C3 85.96± 1.04 95.92± 2.84 96.84± 1.38
C4 96.36± 0.92 98.78± 0.55 99.39± 0.48
C5 99.62± 0.18 100.0± 0.00 100.0± 0.00
C6 90.96± 1.57 99.36± 1.00 99.70± 0.33
C7 93.92± 0.80 99.56± 0.36 99.96± 0.06
C8 87.27± 1.56 95.90± 3.31 99.13± 0.62
C9 99.93± 0.13 100.0± 0.00 100.0± 0.00

OA (%) 88.07± 0.82 98.61± 0.35 99.51± 0.09
AA (%) 91.52± 0.26 98.56± 0.36 99.37± 0.13

KAPPA (%) 84.35± 1.01 98.14± 0.47 99.34± 0.12
|Fij | 49.28 15.50 −

Fig. 3 shows, this work uses the 5 × 5 neighborhoods to
incorporate the spatial information. In the experiments, we
choose 200 samples per class for training and the remainder
for testing over Pavia University while over Indian Pines data,
we select 20% of samples per class for training. The code for
the implementation of the proposed method will be released
soon at http://github.com/shendu-sw/statistical-loss.

B. General Performance

At first, we present a brief overview of the merits of the
developed statistical loss for hyperspectral image classifica-
tion. In this set of experiments, the diversity weight λ is
fixed as constant 0.01. General machine with a 4.00GHz Intel
r Core (IM) i7-6700K CPU, 64 GB memory, and GeForce
GTX 1080 GPU is chosen to perform the proposed method.
The proposed method implemented through caffe took about
1146s over Pavia University and 1610s over Indian Pines data.
It should be noted that this work implements the developed
statistical loss by CPU and the computational performance
can be remarkably improved by modifying the codes to run
the developed method on GPUs.

Tables I and II show the classification results over the
two datasets separately. For Pavia University data, C1, C2,
· · · , C9 represent the asphalt, meadows, gravel, trees, metal
sheet, bare soil, bitumen, brick, shadow, respectively. For
Indian Pines data, C1, C2, · · · , C16 stand for the alfalfa,
corn-no-till, corn-min-till, corn, grass pasture, grass trees,
grass pasture-mowed, hay-windrowed, oats, soybeans-no till,
soybeans-min till, soybeans-clean, wheat, woods, buildings-
grass-trees-drives, stone-steel towers, separately. It can be

TABLE II
CLASSIFICATION ACCURACIES (OA, AA, AND KAPPA) OF DIFFERENT

METHODS ACHIEVED ON THE INDIAN PINES DATA.

Methods SVM-POLY CNN Proposed Method

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
ie

s
(%

)

C1 82.78± 6.11 96.11± 3.26 96.11± 2.68
C2 82.65± 1.89 99.27± 0.37 99.43± 0.41
C3 77.15± 2.22 98.86± 1.13 99.68± 0.34
C4 74.29± 5.65 98.68± 1.50 97.72± 2.80
C5 91.79± 2.15 98.47± 1.12 99.53± 0.56
C6 97.50± 1.31 99.69± 0.28 100.0± 0.00
C7 85.45± 7.67 99.09± 1.92 95.91± 7.56
C8 99.63± 0.31 99.87± 0.41 100.0± 0.00
C9 55.00± 12.4 99.38± 1.98 91.88± 8.86
C10 84.52± 1.60 98.69± 0.75 99.60± 0.53
C11 90.73± 0.78 99.04± 0.51 99.61± 0.35
C12 88.25± 2.55 98.78± 0.84 99.43± 0.32
C13 97.99± 2.05 99.57± 0.58 99.21± 0.50
C14 96.50± 0.56 99.66± 0.33 99.77± 0.21
C15 67.66± 3.75 96.07± 2.95 98.47± 1.75
C16 88.92± 6.07 99.32± 0.96 98.11± 3.20

OA (%) 88.20± 0.51 99.03± 0.28 99.49± 0.13
AA (%) 85.05± 1.26 98.79± 0.45 98.40± 0.93

KAPPA (%) 86.49± 0.58 98.89± 0.32 99.42± 0.15
|Fij | 30.10 4.48 −

noted that the developed method obtains a better performance
than that by SVM. More importantly, the learned CNN by the
statistical loss achieves an accuracy of 99.51% ± 0.09% over
Pavia University which is much higher than that by general
softmax loss (98.61% ± 0.35%). Besides, for Indian Pines,
the proposed method can decrease the error rate by 47.42%
when compared with that by general softmax loss. The
statistical loss can take advantage of the statistical property of
the hyperspectral image and embed the information of class
distributions of the hyperspectral image in the deep learning
process. Thus, the learned deep model can better represent the
hyperspectral image and further provide a better classification
performance.

Furthermore, we use the McNemar’s test, which is based
upon the standardized normal test statistics [11], as the sta-
tistical analysis method to demonstrate whether the developed
statistical loss method improve the classification performance
in the statistic sense. The statistic is computed by

Fij =
fij − fji√
fij + fji

, (35)

where Fij measures the pairwise statistical significance of
difference between the accuracies of the ith and jth methods,
and fij denotes the number of samples which is classified
correctly by ith method but wrongly by jth method. At the

http://github.com/shendu-sw/statistical-loss
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Fig. 4. Classification performance with different number of training samples
per class over (a) Pavia University; (b) Indian pines.

95% level of confidence, the difference of accuracies between
different methods is statistically significant if |Fij | > 1.96.

From tables I and II, we can find that |Fij | obtains 15.50
and 4.48 over Pavia University and Indian Pines, respectively,
which means that the improvement of the performance by the
developed statistical loss is statistically significant.

C. Effects of Different Number of Training Samples

The former subsection has demonstrated the effectiveness of
the developed statistical loss for hypersperctral image at the
given experimental setups as section V-A shows. This subsec-
tion will further evaluate the performance of the developed
method under different number of training samples. For Pavia
University data, we choose the number of training samples per
class from the set of {10, 20, 40, 80, 120, 160, 200}. While for
Indian Pines data, we select 1%, 2%, 5%, 10%, and 20% of
training samples per class from the whole data. It should be
noted that in these experiments, the diversity weight λ is set
to 0.01. Fig. 4 presents the classification performance of the
developed method with different number of training samples
over the two data. Furthermore, we have presented the value
of McNemar’s test with different number of training samples
between the CNN trained with general softmax loss and the
statistical loss in Fig. 5. Inspect the tendencies in Figs. 4 and
5 and we can note that the following hold.

Firstly, the accuracies obtained by CNN with proposed
method can be remarkably improved when compared with
CNN by general softmax loss only. From Fig. 5, we can find
that all the improvement by the developed method is statis-
tically significant when compared with general softmax loss.
Particularly, the accuracy is increased from 74.62% to 86.97%
under 10 training samples per class over Pavia University and
from 67.50% to 79.60% under 1% of training samples per class
over Indian Pines. Secondly, the classification performance of
the learned model is significantly improved with the increase
of the training samples. Finally, it can be noted that the
developed statistical loss shows a definite improvement of the
learned model with limited number of training samples. As
showed in Fig. 5, the value of MeNemar’s test is significantly
improved when decreasing the training samples. The |Fij | can
even rank 59.74 under 10 training samples per class over Pavia
University and 28.03 under 1% training samples per class
over Indian Pines. The statistical loss is constructed with the
class distributions, not directly with the samples. Therefore,
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Fig. 5. The Mcnemar’s test between the general softmax loss and the proposed
method under different number of training samples over (a) Pavia University;
(b) Indian pines.

even under limited training samples, the statistical loss can
learn more class information with the class distributions and
provide a deeply improvement of classification performance.
This indicates that the proposed method provides another way
to train an effective CNN model with limited training samples.

Furthermore, we show the classification maps from different
methods under 200 training samples per class over Pavia
University data and 20% of training samples per class over
Indian Pines in Figs. 6 and 7, respectively. Compare Fig.
6(c) with 6(f), and 15(c) with 15(f). We can find that with
the statistical loss, the classification errors can be remarkably
decreased over both the datasets. Besides, when compare Fig.
14(b) with 6(f), and 15(b) with 15(f), it can be noted that, the
developed method can learn the model that is more fit for the
image than general handcrafted features.

D. Effects of Diversity Weight λ

As mentioned in Section III-C, λ represents the tradeoff
parameter between the optimization term and the diversity
term. The value of λ can also affect the performance of the
developed statistical loss. In this set of experiments, we eval-
uate the performance of the proposed method with different
values of λ. Fig. 8 shows the classification performance with
different λ over the Pavia University and Indian Pines data,
respectively.

We can find that the statistical loss can provide a better
performance with a larger λ. However, an extensively large λ
shows negatively effects on the performance of the statistical
loss. Generally, increasing the λ can encourage different
class distributions to repulse from each other, and therefore,
the learned features can be more discriminative to separate
different objects. However, an excessively large λ focuses too
much attention on the diversity among different classes while
ignores the variance of each class distribution. This could
make the increase the intra-class variance of each class and
show negative effects on the classification performance. More
importantly, From Fig. 8, it can be noted that the proposed
method performs the best (99.51%) when λ is set to 0.01
over the Pavia University data. While for Indian Pines data,
the accuracy ranks 99.49% when λ = 0.01 which performs
the best. In practice, cross validation can be used to select
a proper λ to satisfy specific requirements of the developed
statistical loss over different datasets.
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Fig. 6. Pavia University classification maps by different methods with 200 samples per class for training (overall accuracies). (a) groundtruth; (b) SVM
(89.2%); (c) CNN with softmax loss (98.25%); (d) CNN with center loss (99.44%) ; (e) CNN with structured loss (99.25%); (f) CNN with developed
statistical loss (99.64%); (g) map color.
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Fig. 7. Indian Pines classification maps by different methods with 20% of samples per class for training (overall accuracies). (a) groundtruth; (b) SVM
(88.15%); (c) CNN with softmax loss (98.87%); (d) CNN with center loss (98.91%); (e) CNN with structured loss (99.31%); (f) CNN with developed
statistical loss (99.48%); (g) map color.
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Fig. 8. Classification performance of the proposed method with different
diversity weight λ over (a) Pavia University; (b) Indian pines. ’−’ represents
the results obtained with general softmax loss only.

E. Comparisons with other Samples-based Loss

This work also compares the developed statistical loss with
other recent samples-based loss. This work selects the center
loss [36] and the structured loss [31] as the benchmarks to
characterize the pair-wise correlation between the training
samples. Table III shows the comparison results over the Pavia
University and the Indian Pines data, respectively.

From the table, we can find that the developed statistical
loss which formulates the penalization with the class distri-
butions can be more fit for the classification task than the
center loss and the structured loss. Using 200 samples per
class for training, for Pavia Unviersity data, the statistical

loss achieves 99.51% ± 0.09% OA outperforms that by the
center loss (99.28% ± 0.11% OA) and the structured loss
(99.27% ± 0.12% OA). While for the Indian Pines data, it
can obtain 99.49% ± 0.13% OA with 20% training samples
which is higher than 99.23%± 0.21% OA by the center loss
and 99.23%± 0.25% OA by the structured loss. Moreover, it
can also be noted that the |Fij | also achieves 5.52 and 5.68
when compared with the center loss and structured loss over
the Pavia University. Besides, the |Fij | also obtains 2.64 and
3.56 over the Indian Pines. This means that by Mcnemar’s test,
the developed statistical loss is statistically significant than
other samples-based loss.

Besides, compare the statistical loss with these samples-
based losses under limited number of training samples and
we can also find that the deep model can obtain a significant
improvement with the developed method. The reason is that
the statistical loss is constructed with the class distributions
and can use more class information in the training process
while the samples-based losses are constructed directly with
the training samples. In conclusion, the developed statistical
loss which is formulated with the class distributions can
achieve superior performance when compared with other
samples-based loss in the literature of hyperspectral image
classification.

The classification maps from CNN model learned with the
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center loss, the structured loss over the two datasets are shown
in Figs. 6 and 7, separately. Compare Fig. 6(d) with Fig. 6(f)
and Fig. 15(d) with Fig. 15(f), and it can be easily found that
the CNN model with the statistical loss can better model the
hyperspectral image than that with the center loss. Besides,
compare Fig. 6(e) with Fig. 6(f) and Fig. 15(e) with Fig. 15(f)
and we can obtain that the statistical loss can significantly
decrease the classification errors than that by the structured
loss.

F. Comparisons with the Most Recent Methods

To further validate the effectiveness of the developed statis-
tical loss for hyperspectral image classification, we compare
the developed statistical loss with the state-of-the-art methods.
Tables III and IV show the comparisons over the two datasets,
respectively. The experimental results in each table are with
the same experimental setups and we use the results from the
literature where the method is first developed directly.

From table IV, we can obtain that the proposed method
which can obtain 99.51% ± 0.09% OA outperforms the D-
DBN-PF (93.11% ± 0.06% OA) [40], CNN-PPF (96.48%)
[23], Contextual DCNN (97.31% ± 0.26% OA) [20], SSN
(99.36% ± 0.11% OA) [45], ML-based Spec-Spat (99.34%
OA) [8], and DPP-DML-MS-CNN (99.46% ± 0.03% OA)
[10] over Pavia University. As listed in table V, for Indian
Pines data, when using 10% of samples per class for training,
the proposed method which can obtain 98.72% ± 0.40% OA
outperforms the R-ELM (97.62% OA) [24], DEFN (98.52%
± 0.23% OA) [32], DRN (98.36% ± 0.42% OA) [14], and
MCMs+2DCNN (98.61% ± 0.30%) [15]. Moreover, when
using 20% of samples per class for training, the accuracy can
achieve 99.49% ± 0.13% OA by the proposed method which
is higher than 99.19% ± 0.26% OA by SSRN [42] and 99.07%
± 0.25% OA by MCMs+2DCNN [15] over Indian Pines data.
Overall, the proposed method which takes advantage of the
statistical properties of the hyperspectral image and formulates
the penalization with the class distributions can obtain a
comparable or even better performance when compared with
other state-of-the-art methods over the hyperspectral image
classification.

VI. CONCLUSIONS

In this work, based on the statistical properties of the
hyperspectral image and multi-variant statistical analysis, we
develop a novel statistical loss for hyperspectral image clas-
sification. First, we characterize each class from the image as
a specific probabilistic model. Then, according to the Fisher
discrimination criterion, we develop the statistical loss with
distributions for deep learning. The experimental results have
shown the effectiveness of the proposed method when com-
pared with other most recent samples-based loss as well as the
state-of-the-art methods in hyperspectral image classification.

In future works, it would be interesting to investigate the
performance of the developed statistical loss on other CNN
model. Besides, investigating the effects of the proposed
statistical loss on the applications of other computer vision
tasks is an important future topic.

APPENDIX
SUPPLEMENTAL MATERIALS

This part includes supplementary material to “Statistical
Loss and Analysis for Deep Learning in Hyperspectral Image
Classification”. Included are detailed versions of the algo-
rithms and other more results.

A. Some Formulations about the Gradients of the Matrix

Gradients of the product of Matrix. The gradients of the
product of vectors satisfy the chain rule. Denote a,b,x as
p× 1 vectors, then

∂aTb

∂x
=
∂bT

∂x
a +

∂aT

∂x
b. (36)

Denote A,B as matrices and y as a scalar, then
∂AB

∂y
=
∂A

∂y
B +A

∂B

∂y
. (37)

Gradients of the inverse of a certain matrix. Denote A
as a certain matrix and y as a scalar, then

∂A−1

∂y
= −A−1 ∂A

∂y
A−1 (38)

Proof.
AA−1 = I0,

where I0 denotes the identity matrix. Then

∂AA−1

∂y
= 0,

Based on the chain rule,

∂A

∂y
A−1 +A

∂A−1

∂y
= 0

Therefore,
∂A−1

∂y
= −A−1 ∂A

∂y
A−1

B. Gradients of the Statistical Loss

The final objective functions of the proposed statistical loss
for hyperspectral image classification can be finally written as
follows:

L = L0 + λLdiv (39)

where

L0 =
1

Λ

Λ∑
k=1

(
1

nk − 1

nk∑
j=1

(zj − Ck)T (zj − Ck)) (40)

Ldiv =

Λ∑
k 6=t

(∆− nk + nt − 2
1
nk

+ 1
nt

ΓTk,t(Sk + St)
−1Γk,t) (41)

The computations of the gradients of the terms are provided
below.

Computing
∂L0

∂zi
. Based on Eq. 36, the gradients can be

easily computed by

∂L0

∂zi
=

2

Λ

Λ∑
k=1

1

nk
I(zi ∈ CBk )(zi − Ck) (42)
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TABLE III
COMPARISONS WITH OTHER SAMPLE-WISE LOSS. THIS WORK SELECTS THE GENERALLY USED SOFTMAX LOSS. FURTHERMORE, THIS WORK COMPARES

THE DEVELOPED STATISTICAL LOSS WITH OTHER MOST RECENT SAMPLE-BASED LOSS, NAMELY THE CENTER LOSS [36] AND THE STRUCTURED LOSS
[31]. PU REPRESENTS THE PAVIA UNIVERSITY AND IP REPRESENTS THE INDIAN PINES DATA.

Data Training set Methods OA(%) AA(%) KAPPA(%) Fij

PU

10 per class

Softmax Loss 74.62± 6.79 81.81± 3.38 67.98± 7.90 59.74
Center Loss 83.18± 3.26 88.36± 2.28 79.34± 4.72 27.17

Structured Loss 81.03± 5.05 87.03± 2.31 75.99± 5.80 37.84
Statistical Loss 86.97± 3.34 91.25± 0.77 83.29± 3.98 −

20 per class

Softmax Loss 86.93± 2.41 89.82± 1.29 83.11± 2.84 43.92
Center Loss 92.32± 2.85 94.08± 0.67 89.99± 3.55 21.81

Structured Loss 89.80± 3.39 93.20± 0.88 86.84± 4.18 31.28
Statistical Loss 93.98± 1.86 95.38± 0.73 92.12± 2.37 −

200 per class

Softmax Loss 98.61± 0.35 98.56± 0.36 98.14± 0.47 15.50
Center Loss 99.28± 0.11 99.13± 0.17 99.03± 0.14 5.52

Structured Loss 99.27± 0.12 99.12± 0.22 99.02± 0.17 5.68
Statistical Loss 99.51± 0.09 99.37± 0.13 99.34± 0.12 −

IP

1%

Softmax Loss 67.50± 2.12 57.36± 2.45 62.63± 2.44 28.03
Center Loss 73.25± 2.84 64.20± 4.69 69.37± 3.26 16.97

Structured Loss 71.44± 1.93 61.81± 3.43 67.31± 2.27 20.93
Statistical Loss 79.60± 1.57 68.95± 3.25 76.61± 1.88 −

2%

Softmax Loss 82.32± 2.10 72.83± 4.65 79.77± 2.41 21.54
Center Loss 85.83± 1.49 77.18± 2.68 83.82± 1.71 12.98

Structured Loss 84.63± 1.66 76.35± 2.46 82.46± 1.88 16.27
Statistical Loss 89.65± 1.28 79.08± 3.42 88.16± 1.48 −

20%

Softmax Loss 99.03± 0.28 98.79± 0.45 98.89± 0.32 4.48
Center Loss 99.23± 0.21 98.97± 0.42 99.12± 0.23 2.64

Structured Loss 99.13± 0.25 98.75± 0.35 99.01± 0.29 3.56
Statistical Loss 99.49± 0.13 98.40± 0.93 99.42± 0.15 −

TABLE IV
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS OVER PAVIA UNVIERSITY DATA IN THE MOST RECENT LITERATURE (200 TRAINING SAMPLES

PER CLASS FOR TRAINING).

Methods OA(%) AA(%) KAPPA(%)
SVM-POLY 88.07± 0.82 91.53± 0.26 84.35± 1.01

D-DBN-PF [40] 93.11± 0.06 93.92± 0.07 90.82± 0.10
CNN-PPF [23] 96.48 − −

Contextual DCNN [20] 97.31± 0.26 − −
SSN [45] 99.36± 0.11 − −

ML-based Spec-Spat [8] 99.34 99.40 99.11
DPP-DML-MS-CNN [10] 99.46± 0.03 99.39± 0.05 99.27± 0.04

Proposed Method 99.51± 0.09 99.37± 0.13 99.34± 0.12

TABLE V
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS OVER INDIAN PINES DATA IN THE MOST RECENT LITERATURE. IN THE TABLE, THE RESULTS

OF [14] COME FROM THE LITERATURE [32]. THE PERCENT IN THE BRACKETS DEMONSTRATES THE TRAINING SAMPLES PER CLASS.

Methods OA(%) AA(%) KAPPA(%)
R-ELM [24] 97.62 97.26 97.29
DEFN [32] 98.52± 0.23 98.32± 0.26 97.69± 0.74
DRN [14] 98.36± 0.42 98.13± 0.48 97.62± 0.79

MCMs+2DCNN [15] 98.61± 0.30 96.94± 0.78 98.42± 0.34
Proposed Method (10%) 98.72± 0.40 95.17± 2.01 98.54± 0.43

SVM-POLY 88.20± 0.51 85.05± 1.26 86.49± 0.58
SSRN [42] 99.19± 0.26 98.93± 0.59 99.07± 0.30

MCMs+2DCNN [15] 99.07± 0.25 99.04± 0.27 98.94± 0.29
Proposed Method (20%) 99.49± 0.13 98.40± 0.93 99.42± 0.15

where I(condition) denotes the indicative function. I(·) = 1
if the condition is true and I(·) = 0 if not.

Computing
∂Ldiv
∂zi

. The partial of Ldiv w.r.t. zi can be

calculated by

∂Ldiv
∂zi

= −
Λ∑
k 6=t

nk + nt − 2
1
nk

+ 1
nt

∂ΓTk,t(Sk + St)
−1Γk,t

∂zi
(43)

Therefore, the main problem is to calculate the derivation of
∂ΓTk,t(Sk + St)

−1Γk,t

∂zi
. Based on Eq. 36, it can be reformu-

lated as

∂ΓTk,t(Sk + St)
−1Γk,t

∂zi
=
∂ΓTk,t(Sk + St)

−1

∂zi
Γk,t

+
∂ΓTk,t
∂zi

(Sk + St)
−1Γk,t

(44)

By the definition of the derivation of a vector w.r.t. a certain
vector, it can easily obtain that

∂ΓTk,t
∂zi

=
∂(Ck − Ct)T

∂zi
=

1

nk
I(zi ∈ Ck)I0 (45)
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where I0 represents the identity matrix.
Furthermore, define zi = [zi1, zi2, · · · , zip]T where p is the

dimension of the features zi, and then depending on Eq. 37,
∂ΓTk,t(Sk + St)

−1

∂zi
can be formulated as

∂ΓTk,t(Sk + St)
−1

∂zi
=



∂ΓTk,t(Sk + St)
−1

∂zi1
∂ΓTk,t(Sk + St)

−1

∂zi2
...

∂ΓTk,t(Sk + St)
−1

∂zip



=



∂ΓTk,t
∂zi1

(Sk + St)
−1 + ΓTk,t

∂(Sk + St)
−1

∂zi1
∂ΓTk,t
∂zi2

(Sk + St)
−1 + ΓTk,t

∂(Sk + St)
−1

∂zi2
...

∂ΓTk,t
∂zip

(Sk + St)
−1 + ΓTk,t

∂(Sk + St)
−1

∂zip



=



∂ΓTk,t
∂zi1

(Sk + St)
−1

∂ΓTk,t
∂zi2

(Sk + St)
−1

...
∂ΓTk,t
∂zip

(Sk + St)
−1


+



ΓTk,t
∂(Sk + St)

−1

∂zi1

ΓTk,t
∂(Sk + St)

−1

∂zi2
...

ΓTk,t
∂(Sk + St)

−1

∂zip



(46)

Based on Eq. 38,
∂ΓTk,t(Sk + St)

−1

∂zi
can be reformulated

as

∂ΓTk,t(Sk + St)
−1

∂zi
=
∂ΓTk,t
∂zi

(Sk + St)
−1

+



ΓTk,t
∂(Sk + St)

−1

∂zi1

ΓTk,t
∂(Sk + St)

−1

∂zi2
...

ΓTk,t
∂(Sk + St)

−1

∂zip


=
∂ΓTk,t
∂zi

(Sk + St)
−1

−



ΓTk,t(Sk + St)
−1 ∂(Sk + St)

∂zi1

ΓTk,t(Sk + St)
−1 ∂(Sk + St)

∂zi2
...

ΓTk,t(Sk + St)
−1 ∂(Sk + St)

∂zip


(Sk + St)

−1

(47)

Besides, Sk =
∑nk

j=1(zj − Ck)(zj − Ck)T . Therefore,

∂ΓTk,t(Sk + St)
−1

∂zi
=
∂ΓTk,t
∂zi

(Sk + St)
−1

− I(zi ∈ CBk )



ΓTk,t(Sk + St)
−1 ∂Sk
∂zi1

ΓTk,t(Sk + St)
−1 ∂Sk
∂zi2

...

ΓTk,t(Sk + St)
−1 ∂Sk
∂zip


(Sk + St)

−1

(48)

Then,

∂ΓTk,t(Sk + St)
−1

∂zi
=
∂ΓTk,t
∂zi

(Sk + St)
−1

− nk − 1

nk
I(zi ∈ CBk )[(Ck − Ct)T (Sk + St)

−1zi](Sk + St)
−1

− nk − 1

nk
I(zi ∈ CBk )(Sk + St)

−1(Ck − Ct)zTi (Sk + St)
−1

(49)
According to Eqs. 44, 45, and 49, we can obtain the

gradients of
∂Ldiv
∂zi

as

∂Ldiv
∂zi

=
nk + nt − 2

1
nk

+ 1
nt

[− 2

nk
I(zi ∈ CBk )(Sk + St)

−1(Ck − Ct)

+
nk − 1

nk
I(zi ∈ CBk )[(Ck − (C)t)

T (Sk + St)
−1zi](Sk + St)

−1

+
nk − 1

nk
I(zi ∈ CBk )(Sk + St)

−1(Ck − (C)t)z
T
i (Sk + St)

−1]

(50)
The final gradients. Using Eqs. 42 and 50, the final

gradient of the objective for the developed statistical loss can
be formulated as

∂L

∂zi
=
∂L0

∂zi
+ λ

∂Ldiv
∂zi

=
2

Λ

Λ∑
k=1

1

nk
I(zi ∈ CBk )(zi − Ck)

+
nk + nt − 2

1
nk

+ 1
nt

[− 2

nk
I(zi ∈ CBk )(Sk + St)

−1(Ck − Ct)

+
nk − 1

nk
I(zi ∈ CBk )[(Ck − Ct)T (Sk + St)

−1zi](Sk + St)
−1

+
nk − 1

nk
I(zi ∈ CBk )(Sk + St)

−1(Ck − Ct)zTi (Sk + St)
−1]

(51)
All the additional experiments in the document use the same

CNN architecture as that in the manuscript.

C. Results on Salinas Scene Dataset

Experimental data set. The Salinas Scene hyperspectral
data set [3] collected over Salinas Valley in California was
used to test the performance of the proposed method. The col-
lected hyperspectral image has 217×512 pixels with 224 bands
and spatial resolution of 3.7m. 20 water absorption bands are
abandoned and the remainder are used for experiments. A total
of 54129 samples are selected from the image which can be
divided into 16 classes. The false color composite and the
ground truth can be seen in Fig. 9. Since a large amount of
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TABLE VI
CLASSIFICATION ACCURACIES (Mean± SD) (OA, AA, AND KAPPA) OF

DIFFERENT METHODS ACHIEVED ON THE SALINAS SCENE DATA. THE
RESULTS FROM CNN IS TRAINED WITH THE SOFTMAX LOSS. |Fij |

REPRESENTS THE VALUE OF MCNEMAR’S TEST.

Methods SVM-POLY CNN Proposed Method

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
ie

s
(%

)

C1 99.65± 0.15 99.89± 0.15 100.0± 0.00
C2 99.87± 0.09 99.91± 0.09 100.0± 0.01
C3 99.61± 0.17 99.98± 0.07 100.0± 0.00
C4 99.53± 0.16 99.69± 0.27 99.91± 0.14
C5 98.37± 0.51 99.53± 0.35 99.68± 0.19
C6 99.77± 0.24 100.0± 0.00 100.0± 0.00
C7 99.62± 0.23 99.86± 0.15 99.99± 0.02
C8 79.13± 2.73 92.76± 1.85 95.23± 1.74
C9 99.47± 0.39 99.90± 0.10 99.97± 0.05

C10 93.25± 0.70 98.54± 0.66 99.05± 0.47
C11 98.65± 0.80 99.38± 0.49 99.99± 0.04
C12 99.93± 0.05 99.91± 0.15 100.0± 0.00
C13 99.05± 0.45 99.92± 0.19 99.92± 0.07
C14 97.06± 0.74 99.75± 0.37 99.82± 0.20
C15 73.77± 1.96 91.10± 2.70 91.92± 1.83
C16 99.09± 0.33 99.52± 0.48 99.79± 0.22

OA (%) 91.07± 0.42 97.01± 0.22 97.75± 0.20
AA (%) 95.99± 0.13 98.73± 0.12 99.08± 0.07

KAPPA (%) 90.01± 0.46 96.65± 0.25 97.48± 0.22
|Fij | 51.86 11.23 −

samples are available in each class for experiments, if not
specified, we select 200 samples per class for training and the
remainder for testing.

General Performance. In this set of experiments, the
diversity weight is set to 0.01. We set the iteration of the
training process to 60000 and the learning rate is set to
0.001. Then, the proposed method took about 2182s over the
Salinas Scene dataset. Table VI shows the results of the SVM-
POLY, the CNN with general softmax loss and the proposed
statistical loss over the data. From the table, it can be noted
that the CNN model by the proposed method can obtain an
accuracy of 97.75% ± 0.20% which is remarkably improved
than 97.01% ± 0.22% obtained by the CNN with general
softmax loss. Moreover, compare the |Fij | in the McNemar’s
test, and we can also find that the |Fij | can achieve 11.23
which is much larger than 1.96. This means the improvement
of the proposed method for the performance of hyperspectral
image classification is statistically significant.

Effects of Different Number of Training Samples. In
this set of experiments, the diversity weight is also set to
0.01. The number of training samples is selected from the
set of {10, 20, 40, 80, 120, 160, 200}. Fig. 10(a) shows the
classification performance of the proposed method and the
CNN with general softmax loss under different number of
training samples. Fig. 10(b) shows the corresponding value of
McNemar’s test between the proposed method and the CNN
with general softmax loss. We can find that the developed
method can significantly improve the representational ability
of the learned model for the hyperspectral image. When the
number of training samples is set to 200, the classification
error can be decreased by 24.75%. Besides, the classification
error can be decreased from 12.35% to 7.88% under 10
training samples per class. Moreover, from Fig. 10(b), we can
also find that the value |Fij | is remarkably increased when

reducing the number of training samples which demonstrates
that the proposed method can also be effective for the task
with limited training samples. Especially, when the number of
training samples is set to 10, the value of |Fij | achieves 36.09.

Furthermore, Fig. 11 presents the classification maps of the
Salinas Scene data from different methods. Compare Fig. 11(b)
with 11(f), and 11(c) with 11(f) and we can find that the
proposed method can remarkably decrease the classification
errors of the handcrafted method as well as the CNN with
general softmax loss.

Effects of Diversity Weight λ. The classification perfor-
mance with different diversity weight λ is shown in Fig.
12. In the experiments, the value of λ is chosen from
{0, 10−5, 10−4, 10−3, 10−2, 10−1}. From the figure, we can
find that the performance of the proposed method increases
with the increase of λ. However, an extensively large λ also
negatively affects the performance of the proposed method.
Especially, when λ is set to 0.001, the proposed method can
obtain an accuracy of 97.77% ± 0.23% which performs the
best over the Salinas Scene data.

Comparisons with Other Samples-based Methods. This
work compares the performance of the developed statistical
loss with the center loss [36] and the structured loss [31]
which are selected as representative methods to model the
correlation between the samples. Table VII shows the com-
parison results over the salinas data. It can be noted from
the table that the developed method which can obtain an
accuracy of 97.75% ± 0.20% outperforms the center loss
(97.43%± 0.27%) and the structured loss (97.40%± 0.23%).
Besides, the |Fij | achieves 5.35 when compare the CNN
learned by the statistical loss with the CNN by the center
loss and 5.62 when compare with that by the structured loss.
This means that the improvement of the developed statistical
loss over the center loss and the structured loss is statistically
significant. Furthermore, Fig. 11(d), 11(e) and 11(f) shows the
classification maps of the CNN model by the center loss, the
structured loss, and the statistical loss, respectively. It can be
also noted that the developed statistical loss can better model
the hyperspectral image than these samples-based methods.

Comparisons with the Most Recent Methods. For Sali-
nas Scene data, the results from the developed method are
compared with that from the most recent methods: CNN-PPF
[23], Contextual DCNN [20], DPP-DML-MS-CNN [10], and
Spec-Spat [44]. Table VIII lists the comparison results from
different methods. All the results in the table are with the same
experimental setups. We can find that the proposed method
which can obtain an accuracy of 97.75% ± 0.20% outperforms
these state-of-the-art methods. Moreover, we choose the NFE
method in [19] which focus on the task of limited training sam-
ples as baseline to validate the effectiveness of the proposed
method with limited training samples. We can find the NFE
can obtain 87.69% OA, 93.93% AA, and 86% KAPPA with
15 training samples per class while the proposed method can
obtain 92.12% OA, 96.27% AA and 91.24% KAPPA with only
10 training samples per class. This indicates that the proposed
method can also be applied for the training of the CNN model
with limited training samples.
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Fig. 9. Salinas scene dataset. (a) False color composite (band 40, 120, 180); (b) ground truth; (c) map color.
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Fig. 10. Classification performance of the proposed method over Salinas Scene data with different number of training samples. (a) Classification performance
of the proposed method and CNN with general softmax loss; (b) McNemar’s test between the proposed method and the general softmax loss.

D. Results on Kennedy Space Center (KSC)

Experimental Data Set. The KSC hyperspectral image
[2] was obtained with the NASA Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) over the Kennedy Space
Center (KSC), Florida, on March 23, 1996. It consists of
614 × 512 pixels which have a resolution of 18m with 224
bands ranging from 0.4 to 2.5 µm. Due to the water absorption
and low SNR, 176 bands are remained for the analysis. For
classification purposes, 5211 labeled samples divided into 13
classes are selected for experiments in this paper. Fig. 13
shows the false color composite and the ground truth of the

dataset.

The Experimental Results. First, we set the diversity
weight, the iteration of the training process, and the learning
rate to 0.01, 60000, and 0.001, respectively. We train the CNN
model with 10% of samples and the remainder for test. We
present the general performance of the proposed method over
the KSC data. The proposed method took about 1789s over
the KSC data. Table IX shows the classification accuracy of
each class of the SVM, the CNN with general softmax loss
as well as the proposed method. The developed method can
make statistically significant improvement over the learned
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(a) (b) (c) (d) (e) (f)

Fig. 11. Salinas scene classification maps of different methods with 200 samples per class for training (overall accuracies). (a) ground truth; (b) SVM
(91.16%); (c) CNN with softmax loss (97.19%); (d) CNN with center loss (97.54%); (e) CNN with structured loss (97.53%); (f) CNN with the developed
statistical loss (97.97%).

TABLE VII
COMPARISONS OF THE DEVELOPED STATISTICAL LOSS WITH OTHER SAMPLES-BASED METHODS ON THE SALINAS SCENE DATA. THE CENTER LOSS [36]

AND THE STRUCTURED LOSS [31] ARE CHOSEN AS BASELINES. IT SHOULD BE NOTED THAT THE CENTER LOSS AND THE STRUCTURED LOSS ARE
CONDUCTED WITH THE JOINT LEARNING OF SOFTMAX LOSS.

Methods Softmax Loss Center Loss Structured Loss Proposed Method

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
ie

s
(%

)

C1 99.89± 0.15 99.94± 0.12 99.96± 0.06 100.0± 0.00
C2 99.91± 0.09 99.95± 0.06 99.96± 0.07 100.0± 0.01
C3 99.98± 0.07 100.0± 0.00 100.0± 0.00 100.0± 0.00
C4 99.69± 0.27 99.74± 0.21 99.81± 0.20 99.91± 0.14
C5 99.53± 0.35 99.70± 0.26 99.60± 0.30 99.68± 0.19
C6 100.0± 0.00 100.0± 0.01 100.0± 0.00 100.0± 0.00
C7 99.86± 0.15 99.89± 0.06 99.92± 0.06 99.99± 0.02
C8 92.76± 1.85 93.97± 1.83 93.58± 1.83 95.23± 1.74
C9 99.90± 0.10 99.84± 0.26 99.85± 0.29 99.97± 0.05
C10 98.54± 0.66 99.24± 0.38 98.77± 0.59 99.05± 0.47
C11 99.38± 0.49 99.76± 0.26 99.62± 0.27 99.99± 0.04
C12 99.91± 0.15 99.98± 0.04 99.99± 0.02 100.0± 0.00
C13 99.92± 0.19 99.96± 0.09 99.96± 0.13 99.92± 0.07
C14 99.75± 0.37 99.89± 0.15 99.79± 0.32 99.82± 0.20
C15 91.10± 2.70 91.77± 2.61 92.41± 2.32 91.92± 1.83
C16 99.52± 0.48 99.55± 0.49 99.64± 0.38 99.79± 0.22

OA (%) 97.01± 0.22 97.43± 0.27 97.40± 0.23 97.75± 0.20
AA (%) 98.73± 0.12 98.95± 0.12 98.93± 0.10 99.08± 0.07

KAPPA (%) 96.65± 0.25 97.12± 0.30 97.09± 0.25 97.48± 0.22
|Fij | 11.23 5.35 5.62 −

model for hyperspectral image. Besides, Fig. 14(a) shows the
classification performance of the proposed method and the
CNN with general softmax loss and Fig. 14(b) presents the
corresponding McNemar’s test. In this set of experiments,
the diversity weight λ is set to 0.01. From Fig. 14, we
can find that it presents the similar tendencies as Salinas
Scene data. Especially, the proposed method can improve the
classification accuracy from 74.30% to 87.00% under 1% of
samples for training over the KSC data. This also demonstrates
the effectiveness of the proposed method over the task with
limited training samples. Furthermore, Fig. 15 presents the
classification maps of different methods over the KSC data.
The comparisons of the maps from different methods in Fig.
15 further indicate the effectiveness of the proposed method.

Besides, Fig. 16 shows the classification performance of the
proposed method with different diversity weight λ over the
KSC data. The performance of the proposed method also
increases with the increase of the diversity weight. Similar to
the tendencies on other datasets, an extensively large λ shows
negative effects on the performance of the proposed method.
It should be noted from the Fig. 16 that when λ = 0.0001, the
proposed method performs the best which can achieve 98.67%
± 0.56% OA over the KSC data.

Comparisons with Other Samples-based Methods. We
also compare the developed statistical loss with other recent
methods which model the feature correlation between the
samples. The recently developed center loss [36] and struc-
tured loss [31] are chosen as the baselines. The comparison
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TABLE VIII
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS WITH SPECTRAL-SPATIAL INFORMATION OF SALINAS SCENE DATA IN THE MOST RECENT

LITERATURE(200 TRAINING SAMPLES PER CLASS FOR TRAINING).

Methods OA(%) AA(%) KAPPA(%)
SVM-POLY 91.07± 0.42 95.99± 0.13 90.01± 0.46

CNN-PPF [23] 94.80 − −
Contextual DCNN [20] 95.07± 0.23 − −

Spec-Spat [44] 96.07 97.56 96.78
DPP-DML-MS-CNN [10] 97.51± 0.18 98.85± 0.05 97.88± 0.23

Proposed Method 97.75± 0.20 99.08± 0.07 97.48± 0.22
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Fig. 12. Classification performance of the proposed method with different
diversity weight λ over Salinas Scene data. ’-’ represents the results obtained
with general softmax loss only.

TABLE IX
CLASSIFICATION ACCURACIES (Mean± SD) (OA, AA, AND KAPPA) OF

DIFFERENT METHODS ACHIEVED ON THE KSC DATA (WITH 10% OF
SAMPLES FOR TRAINING).

Methods SVM-POLY CNN Proposed Method

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
ie

s
(%

)

C1 89.75± 2.65 97.46± 0.89 98.80± 0.82
C2 86.14± 2.83 95.00± 2.74 97.86± 3.23
C3 90.60± 3.59 94.01± 1.93 96.98± 2.84
C4 64.96± 4.78 81.36± 8.80 93.55± 3.02
C5 61.16± 9.05 81.44± 6.75 85.96± 6.39
C6 62.66± 5.04 91.84± 4.83 95.22± 4.52
C7 85.21± 4.83 99.06± 1.04 97.08± 4.65
C8 86.36± 3.25 98.75± 1.06 99.36± 0.69
C9 94.16± 3.00 99.91± 0.21 100.0± 0.00
C10 90.08± 3.20 99.37± 1.90 100.0± 0.00
C11 95.34± 1.58 98.73± 2.75 99.95± 0.11
C12 91.78± 2.04 99.53± 0.73 99.89± 0.24
C13 99.87± 0.19 100.0± 0.00 100.0± 0.00

OA (%) 88.89± 0.49 96.94± 0.66 98.49± 0.45
AA (%) 84.47± 0.54 95.11± 1.21 97.28± 0.88

KAPPA (%) 87.62± 0.54 96.59± 0.73 98.32± 0.51
|Fij | 20.50 6.69 −

results are shown in Table X. From the table, we can find
that the developed statistical loss which is formulated with
the class distributions outperforms the recent samples-based
losses, such as the center loss and the structured loss.

Comparisons with the Most Recent Methods. For KSC
data, we compare the proposed method with other state-of-the-
art methods under 10%, 20% training samples, respectively.

The comparison results are listed in Table XI. When using
10% training samples, the proposed method can obtain 98.49%
± 0.45% OA (Actually, the proposed method obtains 98.67%
± 0.56% OA when λ = 0.0001) which is better than the
most recent methods, such as DPP-DML-MS-CNN (97.51%
± 0.18% OA) [10], FDA-SVM (93.68% OA) [21]. Besides,
when using 20% training samples, the proposed method can
obtain 99.43% ± 0.21% OA which is comparable or better
than SSRN (5 × 5) (96.99% ± 0.55% OA) [43] and DPP-
DML-MS-CNN (99.42% ± 0.18% OA) [10]. It should be
noted that the proposed method can also obtain a comparable
performance with only 5× 5 neighborhoods than SSRN with
11×11 neighborhoods (99.61%± 0.22% OA). The SSRN with
11 × 11 neighborhoods requires more computational source
(2466s) than the proposed method.
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CNN with softmax loss (96.86%); (d) CNN with center loss (98.30%); (e) CNN with structured loss (97.14%); (f) proposed method (99.01%).
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TABLE X
COMPARISONS OF THE DEVELOPED STATISTICAL LOSS WITH OTHER SAMPLES-BASED METHODS ON THE KSC DATA. THE CENTER LOSS [36] AND THE

STRUCTURED LOSS [31] ARE CHOSEN AS BASELINES.

Methods Softmax Loss Center Loss Structured Loss Statistical Loss

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
ie

s
(%

)

C1 97.46± 0.89 98.10± 0.76 97.23± 1.32 98.80± 0.82
C2 95.00± 2.74 96.59± 3.48 95.15± 2.95 97.86± 3.23
C3 94.01± 1.93 98.02± 1.67 94.40± 2.40 96.98± 2.84
C4 81.36± 8.80 90.18± 7.00 81.82± 7.71 93.55± 3.02
C5 81.44± 6.75 84.66± 6.49 80.97± 8.40 85.96± 6.39
C6 91.84± 4.83 93.09± 6.98 91.30± 7.25 95.22± 4.52
C7 99.06± 1.04 97.60± 3.26 97.80± 3.43 97.08± 4.65
C8 98.75± 1.06 99.39± 0.75 98.87± 0.88 99.36± 0.69
C9 99.91± 0.21 99.98± 0.07 99.98± 0.07 100.0± 0.00
C10 99.37± 1.90 99.95± 0.17 99.36± 1.92 100.0± 0.00
C11 98.73± 2.75 99.34± 1.22 98.68± 2.34 99.95± 0.11
C12 99.53± 0.73 99.47± 0.84 99.19± 1.45 99.89± 0.24
C13 100.0± 0.00 100.0± 0.00 100.0± 0.00 100.0± 0.00

OA (%) 96.94± 0.66 98.00± 0.51 96.87± 0.75 98.49± 0.45
AA (%) 95.11± 1.21 96.64± 0.93 94.98± 1.44 97.28± 0.88

KAPPA (%) 96.59± 0.73 97.77± 0.57 96.51± 0.83 98.32± 0.51
|Fij | 6.69 2.59 7.23 −

TABLE XI
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS WITH SPECTRAL-SPATIAL INFORMATION OF KSC DATA IN THE MOST RECENT LITERATURE.
THE METHODS UPWARDS THE DOUBLE LINE PRESENT THE RESULTS WITH 10% SAMPLES FOR TRAINING AND THE RESULTS UNDER THE DOUBLE LINE

PRESENT THE RESULTS WITH 20% SAMPLES FOR TRAINING.

Methods OA(%) AA(%) KAPPA(%)
SVM-POLY 88.89± 0.49 84.47± 0.54 87.62± 0.54

FDA-SVM [21] 93.68 − −
DPP-DML-MS-CNN [10] 97.51± 0.18 98.85± 0.05 97.88± 0.23

Proposed Method 98.49± 0.45 97.28± 0.88 98.32± 0.51

DPP-DML-MS-CNN [10] 99.42± 0.18 98.91± 0.41 99.32± 0.23
SSRN (5× 5) [43] 96.99± 0.55 − −

SSRN (11× 11) [43] 99.61± 0.22 99.33± 0.57 99.56± 0.25
Proposed Method 99.43± 0.21 98.80± 0.55 99.37± 0.24
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