
SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Enhancing approximation abilities of neural
networks by training derivatives

V.I. Avrutskiy

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—A method to increase the precision of feedforward
networks is proposed. It requires a prior knowledge of a target
function derivatives of several orders and uses this information
in gradient based training. Forward pass calculates not only the
values of the output layer of a network but also their derivatives.
The deviations of those derivatives from the target ones are used
in an extended cost function and then backward pass calculates
the gradient of the extended cost with respect to weights, which
can then be used by any weights update algorithm. Despite
a substantial increase in arithmetic operations per pattern (if
compared to the conventional training), the extended cost allows
to obtain 140–1000 times more accurate approximation for simple
cases if the total number of operations is equal. This precision
also happens to be out of reach for the regular cost function.
The method fits well into the procedure of solving differential
equations with neural networks. Unlike training a network to
match some target mapping, which requires an explicit use of the
target derivatives in the extended cost function, the cost function
for solving a differential equation is based on the deviation of
the equation’s residual from zero and thus can be extended by
differentiating the equation itself, which does not require any
prior knowledge. Solving an equation with such a cost resulted
in 13 times more accurate result and could be done with 3
times larger grid step. GPU-efficient algorithm for calculating
the gradient of the extended cost function is proposed.

Index Terms—Neural networks, high order derivatives, partial
differential equations, function approximation.

I. INTRODUCTION

NEURAL networks can be used as universal approxima-
tors [1]–[4] in a wide range of dimensions. In high-

dimensional cases they successfully overcome the curse of
dimensionality [5], [6], thus being an excellent remedy for
problems like voice recognition [7], [8] and pattern classi-
fication [9]–[11]. Low-dimensional applications are not that
famous since many alternatives are available. For example,
in solving differential equations [12] (usually 1D [13], [14]
or 2D [15], sometimes 3D [16]) neural networks inevitably
have to compete with other methods like finite differences,
where functions are described by their values on a set of points
and in each point, in theory, those values can be accurate
within machine precision. Such quality of approximation is
not readily achievable for neural networks. Widely developed
techniques for training them [17]–[21] are mostly focused on
problems like classification, which are not very sensitive to
the actual output since small disturbances can hardly produce
a shift in class. For the case of direct function approximation,
any deviation of an output decreases the accuracy.

V.I. Avrutskiy is with the Department of Aeromechanics and Flight Engi-
neering of Moscow Institute of Physics and Technology, Institutsky lane 9,
Dolgoprudny, Moscow region, 141700, e-mail: avrutsky@phystech.edu

This paper proposes a method of utilizing information about
target derivatives that increases the precision of neural net-
works. For some low-dimensional cases, it allows deviations
from targets to come close to the rounding error of single
precision used during the training, thus addressing the gap
between describing a function by an array of values and
by a neural network. The concept of using derivatives for
approximation [22] is quite common and was investigated
for neural networks in numerous studies [23]–[29], however,
the implementations of training in said papers included only
low order derivatives and used somewhat small architectures,
since the conditions of tests did not lead to precision gains
of few orders of magnitude. Even though requirements for
architectures of neural networks to approximate derivatives are
usually modest [4], extra layers are sometimes necessary [30].

Due to the necessity to train high order derivatives, which
are not popular in applications nor implementations, this paper
also includes an algorithm capable of an efficient high-order
forward and backward procedures for arbitrary feedforward
networks. It is derived directly from formulas for derivative
transformation under a change of coordinates that are created
by connections between layers, and wherever possible reduc-
tions are made. Somewhat similar algorithms can be found in
papers on solving differential equations with neural networks
[15], [25], [31], however, no papers on this subject contain a
universal algorithm for any order of derivatives and arbitrarily
deep networks. Essentially the presented procedure is an
equivalent to automatic differentiation [32], although software
with similar capabilities is currently not quite optimized and
fast research prototypes [33] are not yet available for GPUs. As
the parallel computations are crucial for neural networks, all
formulas are written in terms of matrix multiplications which
are implemented on GPUs with highly efficient routines and
element-wise operations which are parallelized most easily.

II. MOTIVATION

A particular approach [12], [15] to solving differential
equations was investigated: a single solution of one equation
corresponds to one neural network which is treated as a smooth
function. Its inputs are chosen as independent variables of
the equation and the output is supposed to be the solution’s
value. A simplified procedure of obtaining such a network
is as follows. At first, the weights are randomly initialized
as they would be for the regular training [34], [35]. Then,
the network is substituted into the equation in place of the
unknown function, which requires calculating the derivatives
of the output with respect to the input. Since the network is not

ar
X

iv
:1

71
2.

04
47

3v
3

 [
cs

.N
E

]
 1

5
Ju

l 2
01

9

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

TABLE I
THE PRECISION OF VARIOUS DERIVATIVES AFTER 1000 EPOCHS OF THE

EXTENDED TRAINING WITH ORDER 3

Derivative 0 1 2 3

rms 0.07% 0.16% 0.63% 1.72%

yet a solution, after substitution the residual exists. The next
step is weights tuning. It requires finding the gradient of the
residual with respect to the weights, which then can be used by
a weights update algorithm. Two previous steps alternate each
other until the residual becomes acceptable. The distinction
from the conventional network training thus lies in the cost
function which can contain the derivatives of the network.

Due to the lack of an algorithm that could handle cost func-
tions with arbitrary derivatives in the previous papers on this
subject, it was implemented and simple tests were conducted
on a network with two inputs x, y, one output z and a few
hidden layers1. It was found that any derivative D(z) of the
output with respect to the inputs at least up to the 5th order can
be trained to approximate the derivative D(f) of an analytical
expression f(x, y) using a cost function e = [D(z)−D(f)]2

(here and further per-pattern cost functions e will be used, the
actual training cost E is the sum of e over all input patterns).
The precision of approximation for this derivative did not
depend on the order or the type of the derivative, and after
1000 epochs, the square root of the average cost was about
2.5% of the standard deviation of D(f). For the next test,
a network was trained to fit the function and its derivatives
simultaneously, using a cost e =

∑
c2D[D(z) − D(f)]2. The

sum was running through all the 9 possible derivatives of
order ≤ 3 and the values themselves. Coefficients cD are
the inversed standard deviations of the corresponding targets
D(f). Training with this type of cost function will be referred
to as an extended one of the order 3. One could expect a lower
or similar precision for each derivative and thus the root of the
averaged cost to be

√
9 + 1 · 2.5% ' 8%. However, that was

not the case. After 1000 epochs it reached 3.7%, thus making
the deviation of each derivative lower. The gradient of the cost
with respect to the weights increased roughly as the number of
additional terms, but it still vanished with the same exponential
rate as it was propagated backward. The particular precisions
are presented in Table I: the root mean square of deviation for
each derivative is measured in the percentage of the standard
deviation of the corresponding target derivative and averaged
along the same orders. The observed increase of precision for
values (0th derivative) led to a further investigation on how
derivatives can be used to boost the precision most effectively.

III. RESULTS

In all cases RProp [36] is used for weights updating with
parameters η+ = 1.2, η− = 0.5. Weights are forced to stay in
[−20, 20] interval, no min/max bonds for steps are imposed.
Initial steps ∆0 are set to 2 · 10−4 unless otherwise stated.
When the number of epochs is greater than 5000, steps ∆ that
were reduced to zero are set back to 10−6 after each 8% of
epochs. Weights matrices are initialized [34], [35] with random

1the network and training conditions are described in the next section

Fig. 1. The function generated by a piece of random 2D Fourier series

TABLE II
THE PRECISION OF VALUES AFTER 1000 EPOCHS OF THE EXTENDED

TRAINING OF ORDER d

d 0 1 2 3 4 5

rms 2.5% 0.8% 0.09% 0.07% 0.28% 0.5%

values from range ±2/
√
||κ||, where ||κ|| is the number of

senders. Thresholds are from ±0.1 range. All layers but the
input and output are nonlinear with a sigmoid function

σ(x) =
1

1 + exp(−x)
(1)

unless otherwise stated. All input patterns are processed in
one batch. Root mean square values are always divided by the
standard deviations of the corresponding functions.

A. 2D function approximation

The target function is generated by a Fourier series:

f(x, y) =

10∑
n=1

10∑
k=1

rnk
n · k

sinnx cos ky + . . .

Random coefficients rnk are uniformly distributed in [−1, 1].
Three similar terms with other combinations of sine and cosine
have separate coefficients and are omitted for brevity. The total
number of parameters is 400. The region for approximation is
a square [−1, 1]2. The particular realization is shown on Fig.
1. The input is generated as the vertices of a Cartesian grid
with the outer points lying on the boundary, and has 729 points
unless otherwise stated. In each point all derivatives are calcu-
lated analytically. After training the performance is measured
on a grid with 9025 points. The network is a fully connected
perceptron with the following configuration of layers (asterisks
denote linear activation functions): 2∗, 128, 128, 128, 128, 1∗.

Table II was created as an attempt to determine the optimal
order of the extended training. It varies the maximum order

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

of derivatives used in the cost e =
∑
c2D[D(z) − D(f)]2,

the training was run for 1000 epochs. The first and the
second derivatives boost the precision of values, however,
when the order becomes higher than 3, it starts to decrease.
Even inclusion of the third derivatives becomes ineffective if
one takes into account the additional computational burden.
Consider the 4th order training: the cost contains 15 terms, only
one of which is related to the precision of values. Moreover,
the relative magnitude of those terms is increasing with the
order, thus, it is understandable that the training is less focused
on the zero order term. By choosing smaller cD coefficients
for the 4th order terms, it is possible to increase the precision
of values, but no greater than it was for d = 3. However, it
was found that if during the training cD for higher orders are
abruptly set to zero, the precisions of lower orders quickly
increase. With further experiments, the following process was
constructed: the extended training is started with an order d.
After a certain number of epochs, it is terminated and re-
initialized with the order d−1 and so on, up until only values
alone (d = 0) are trained. An equal number of epochs was
chosen for all d + 1 steps of this procedure. The training set
remains the same throughout the process. This procedure will
be referred to as an exclusion training of the order d. The re-
initialization of RProp after turning off higher orders needs to
be made with ∆ = 10−5, otherwise networks are disturbed
too much. A gradual decrease of cD instead of an abrupt
drop worked a bit worse. Inclusion of new derivatives, on the
contrary, leads to the opposite effect: the precision degrades
heavily until new derivatives are properly trained, and then
slowly reaches its typical value for the new order.

Table III summarizes the results obtained by various orders
of the exclusion training. The median (denoted by tilde) of
the root mean square of deviations for values z − f(x, y) is
taken across 25 training attempts for each order d. Distribution
functions for precisions can be seen on fig. 2. Durations
in (kilo) epochs are chosen to equalize the total number of
arithmetic operations with the base level taken as 1750 epochs
for each step of the order 5 on a grid with 729 points. Due to an
overfitting encountered for lower orders, the number of points
had to be increased, however, the least favorable scenario for
higher order training was chosen: the number of samples was
compensated to prevent overfitting, but the number of epochs
(now marked by an asterisk) was chosen as if the number
of samples remained the same. As soon as the overfitting is
stopped, a further increase in number of points does not affect
the precision. Training with d = 4 and d = 5 demonstrated
no overfitting with 729 patterns even though the later steps of
the training completely discarded high-order terms (provided
the weights were not disturbed too much, ∆ = 10−5). The
complexity for various orders is discussed in section V.

B. Autoencoder for 3D curve

Targets are the points of 3D space located on 1D curve:

(cos t, sin t, t/π) ≡ (f1, f2, f3). (2)

It is possible to reconstruct their 1D representation using a
network with 1-neuron linear layer [37] inserted in the middle:

TABLE III
2D FUNCTION APPROXIMATION: THE PRECISION OF THE EXCLUSION

TRAINING OF ORDER d, THE GAIN OVER THE ONE OF d− 1. THE NUMBER
OF KILO EPOCHS (KE) EQUALIZES THE TOTAL AMOUNT OF OPERATIONS

d 0 1 2 3 4 5

r̃ms 2.3 · 10−3 2 · 10−4 3 · 10−5 1 · 10−5 5.2 · 10−6 2.2 · 10−6

gain – 11.5 6.6 3 1.9 2.4
KE 107* 26.5* 10.5* 5.2* 2.9 1.75

-6 -5 -4 -3 -2
0.0

0.2

0.4

0.6

0.8

1.0

5 4 3 2 1 0

Fig. 2. 2D Function approximation: cumulative distribution functions for
log10(rms(z − f(x, y))) for different orders of the exclusion training. The
best result of a lower order barely reaches the worst result of a higher order.

TABLE IV
3D AUTOENCODER: THE PRECISION OF THE EXCLUSION TRAINING OF
ORDER d, THE GAIN OVER THE ONE OF d− 1. THE NUMBER OF KILO

EPOCHS (KE) EQUALIZES THE TOTAL AMOUNT OF OPERATIONS

d 0 1 2 3 4 5

r̃ms 6.6 · 10−4 4.1 · 10−4 3.7 · 10−5 2.2 · 10−5 6.6 · 10−6 4.7 · 10−6

gain – 1.5 11 1.7 3.4 1.3
KE 29* 9.5* 4.6* 2.6* 1.7 1.2

3∗, 64, 64, 1∗, 64, 64, 3∗, provided it is trained to replicate the
input (other layers are smaller as this task is less demanding).
This network can be used to generate new points on the
curve [38], [39]. The training and test sets are generated
by formula (2) with 64 and 1184 equidistant values of t ∈
[−2π, 2π] respectively unless otherwise stated. The derivatives
of (f1, f2, f3) with respect to t are calculated analytically. The
network’s output is a vector zi so the cost includes two sums:

e =
∑
D,i

c2D,i[D(zi)−D(fi)]
2 =

d∑
j=1

3∑
i=1

c2ji[
∂j

∂tj
zi −

∂j

∂tj
fi]

2.

Table IV summarizes the results. The median (denoted by
tilde) of the root mean square of deviations for the values
of the first component: z1 − f1 is taken across 25 training
attempts for each order d. Two other components have similar
precisions and gains. Durations in (kilo) epochs equalize the
total number of arithmetic operations with the base level
taken as 1200 epochs for each step of the order 5 exclusion
training on 64 input vectors. The overfitting for orders ≤ 3 is
compensated by increasing the number of vectors to 128, but
similarly to the previous case the number of epochs was not
lowered. The complexity is discussed in section V.

C. Solving differential equations
Previous examples require a prior calculation of the target

derivatives in order to increase the precision. Usually this kind

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

of information is not obtained easily, especially for real world
applications. However, for solving differential equations this
technique can be used without any extra information. The
minimizing procedure is based on the equation itself which
can be differentiated as many times as necessary without any
prior knowledge about the solution.

Consider a generic boundary value problem inside a 2D
region Γ with a boundary ∂Γ for a function u(x, y):

U(x, y, u, ux, uy, ...) = 0, u|∂Γ = f.

There are different approaches, but the most accurate results
are obtained using the method from [15]. A new function v is
introduced with relation

u(x, y) = v(x, y) · φ(x, y) + f. (3)

Here φ is a smooth function carefully chosen to vanish on ∂Γ:

φ|∂Γ = 0

and not to vanish anywhere inside the region. Usually, it is the
simplest analytical expression that is zero on the boundary and
has the maximum value of the order of 1 somewhere inside
Γ. For trivial boundaries like the circle of radius 1, one can
choose φ = 1 − x2 − y2. After the substitution, the equation
is written for v:

V (x, y, v, vx, vy, ...) = 0.

And the boundary condition is

v|∂Γ <∞.

The function v can now be approximated with a neural
network with two inputs and one output. As long as its values
do not diverge during the training the boundary condition
is satisfied. A discrete grid in the region Γ is created and
according to [15] a cost function e = V 2 can be minimized
with respect to the weights for all the grid points. Here,
however, an additional derivatives of V up to a certain order
are included in the cost

e =
∑

[D(V)]2.

For example, up to the second order:

V 2+

(
∂V

∂x

)2

+

(
∂V

∂y

)2

+

(
∂2V

∂x2

)2

+

(
∂2V

∂x∂y

)2

+

(
∂2V

∂y2

)2

.

The method was tested on a boundary value problem inside
a circle Γ : x2+y2 ≤ 1 for Poisson’s equation with a nonlinear
source

uxx + uyy = u2 +
3

2
u3, u|∂Γ = −2.

Numerical results are compared against the analytical solution:

ua =
4

x2 + y2 − 3
.

A Cartesian grid inside [−1, 1]2 is created with spacing λ.
All points outside Γ are excluded and additional points from
the boundary with spacing λ are added. This task is similar to
the one from the subsection A, however, it is simpler and does
not require as many hidden neurons. For differential equations
deeper networks seem to perform better. The configuration

TABLE V
POISSON’S EQUATION: THE RMS OF RESIDUAL V FOR THE EXCLUSION

TRAINING OF ORDER d, THE GAIN OVER THE ONE OF d− 1, THE RMS OF
DEVIATION FROM THE ANALYTICAL SOLUTION uA . THE NUMBER OF KILO

EPOCHS (KE) EQUALIZES THE TOTAL AMOUNT OF OPERATIONS

d 0 1 2 3

r̃ms(V) 3 · 10−3 5.4 · 10−4 1.8 · 10−4 9.3 · 10−5

gain – 5.5 3 2
r̃ms(u− ua) 2.8 · 10−5 9 · 10−6 3.6 · 10−6 2.1 · 10−6

λ 0.052 0.1 0.125 0.15
grid size 1210 352 233 157

KE 1.4 1.6 1.2 1

was chosen as 2∗, 64, 64, 64, 64, 64, 64, 1∗. In this case, instead
of giving low-order training extra advantages whenever it
encounters overfitting, the total number of arithmetics is to be
equalized and the increase of sample points will be accounted
for. Since this results in a trade-off between the number of
epochs and the size of a grid, it was verified that in all cases
using grids that produce overfitting in order to increase the
number of epochs decreased the quality of the solution. Net-
works are verified against the analytical solution on a Cartesian
grid with about 8000 points. The results are presented in Table
V. One can see that the deviation from analytical solution for
d = 3 comes somewhat close to its minimum possible value
determined by the rounding error. If it was the only source,
rms would be around 0.36 · 10−6 = 10−6.44. The complexity
for various orders is discussed in section V.

IV. ALGORITHM

This section is focused on implementing a gradient algo-
rithm that can be used to minimize a more general form of a
cost function for a neural network. The named function now
depends not only on the network’s output, but also on the
derivatives of the output with respect to the input. It is valid
for feedforward networks with any number of hidden layers
and the derivatives of any order. Presented without thorough
derivation, which can be found in the author’s paper [40].

A. Notation

The quantity that each neuron obtains from the previous
layer before applying its nonlinear sigmoid mapping will be
referred to as the neuron activity. All neuron activities of a
layer are gathered in a matrix with the letter z like zκα.
The index α runs through the number of patterns and κ
through the neurons of that layer. The norm of indices such
as ||α|| and ||κ|| denotes the total number of enumerated
objects. Here it refers to the number of input patterns and the
number of neurons in the layer respectively. Different layers
are denoted by different Greek letters which also appear in
weights matrices connecting those layers: W θκ would be a
matrix that is used to pass from the layer with neurons denoted
by κ to the layer with those denoted by θ. The input layer
is denoted by β and the output layer by ω. In addition to
neurons activities zκα, each layer has the derivatives of those
activities with respect to certain variables. Those derivatives
are matrices of the same size ||κ|| × ||α||. When variables are

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

known explicitly, they are denoted by Latin letters a, b, c, d.
The corresponding derivatives of zκα are denoted by lower
indices:

∂

∂a
zκα = zκαa ,

∂2

∂a2
zκα = zκαaa

and so on. For formulas that allow an arbitrary number of
variables, multi-index notation [41] is used. Namely, if the
order of variables is fixed: (a, b, c, d, . . .), any derivative can
be written using a multi-index s = (s1, s2, . . .), which is a
tuple of integers each component of which is the order of the
derivative with respect to the corresponding variable. Thus,

∂s ≡ ∂|s|

∂as1∂bs2 . . .
.

The absolute value of a multi-index is the sum of its com-
ponents |s| =

∑
i

si. The difference of two multi-indices is

defined element-wisely.

B. Forward pass

The first step is to initialize zβα, zβαa , zβαaa , zβαb , . . . at
the input layer of the network. zβα is simply the matrix of
||α|| input vectors of length ||β||. Let us say a is the first
component of the input, then for any α: za = (1, 0, 0, . . .)
and the input matrix is zβαa = δβ−1 (the Kronecker delta).
All higher derivatives that include a like zβαab , zβαaa are zero.
Therefore, initializing derivatives with respect to the input of a
neural network is trivial. If b is a variable that all components
of the input vector depend on, for example, let ||β|| = 2 and
α be fixed: z = (sin b, cos b), then zb = (cos b,− sin b). If b
depends on α (see section III.B) this derivative varies for other
input vectors. Higher derivatives are non zero and should be
calculated accordingly.

After the input layer matrix is generated and its derivatives
are calculated, they are to be propagated forward. Consider
two generic successive layers with indices κ and θ. The values
themselves are propagated by a nonlinear sigmoid and a matrix
multiplication (denoted by ×):

zθα = tθ +W θκ × σ(zκα). (4)

Here tθ is a threshold vector added to each column of the
matrix product to the right of it. The scalar function σ is
applied independently to each element of zκα. Due to linearity
of (4) and weights with thresholds being constant, one can
apply a differential operator to both sides to establish the rule
for derivative propagation from κ to θ:

∂szθα = W θκ × [∂sσ(zκα)] . (5)

The term ∂sσ(zκα) is to be obtained using the chain rule. For
example, the first order derivative with respect to a is

zθαa = W θκ × ∂

∂a
σ(zκα) = W θκ × [σ′(zκα) · zκαa] . (6)

The expression in square brackets is an element-wise product.
In similar formulas the sigmoid argument as well as “·” sign
will be omitted, so it is written as σ′zκαa . The chain rule
expresses the derivative of the next layer zθαa in terms of

the derivative of the previous layer zκαa . The second order
derivative propagation:

zθαab = W θκ × ∂2

∂a∂b
σ(zκα) =

= W θκ × [σ′′zκαa zκαb + σ′zκαab] . (7)

For non-mixed second derivatives like ∂2/∂a2, one can sim-
plify the square brackets to σ′′ [zκαa]

2
+ σ′zκαaa (the second

power of square brackets is also an element-wise operation).
The same holds for further formulas: all Latin variables are
considered distinct, and in case they are not, it is useful to sim-
plify expressions first to avoid unnecessary arithmetic and/or
memory operations. Any mixed second derivative depends on
three terms of a previous layer: said second derivative plus
both first order ones. Non-mixed second derivatives depend
only on two terms: the first and the second derivatives with
respect to that variable. The third order:

zθαabc = W θκ ×
[
σ′′′zκαa zκαb zκαc

+ σ′′ · (zκαab zκαc + zκαac z
κα
b + zκαbc z

κα
a) + σ′zκαabc

]
. (8)

The forth order:

zθαabcd =W θκ ×
[
σIV zκαa zκαb zκαc zκαd

+ σ′′′(zκαab z
κα
c zκαd + zκαac z

κα
b zκαd + zκαad z

κα
b zκαc

+ zκαbc z
κα
a zκαd + zκαbd z

κα
a zκαc + zκαcd z

κα
a zκαb)

+ σ′′(zκαa zκαbcd + zκαb zκαacd + zκαc zκαabd + zκαd zκαabc

+ zκαab z
κα
cd + zκαac z

κα
bd + zκαad z

κα
bc) + σ′zκαabcd

]
. (9)

The fifth order simplified for the cases considered in this paper:

zθαaaaaa =W θκ ×
[
σV [zκαa]5 + σIV 10[zκαa]3zκαaa

+ σ′′′(15zκαa [zκαaa]2 + 10[zκαa]2zκαaaa)

+ σ′′(10zκαaa z
κα
aaa + 5zκαa zκαaaaa) + σ′zκαaaaaa

]
, (10)

zθαaaaab =W θκ ×
[
σV [zκαa]4zκαb + σIV (4[zκαa]3zκαab

+ 6[zκαa]2zκαaa z
κα
b) + σ′′′(6[zκαa]2zκαaab + 3[zκαaa]2zκαb

+ 12zκαa zκαaa z
κα
ab + 4zκαa zκαb zκαaaa) + σ′′(4zκαa zκαaaab

+ 6zκαaa z
κα
aab + 4zκαab z

κα
aaa + zκαb zκαaaaa) + σ′zκαaaaab

]
,

zθαaaabb =W θκ ×
[
σV [zκαa]3[zκαb]2 + σIV (3zκαa zκαaa [zκαb]2

+ 6[zκαa]2zκαab z
κα
b + [zκαa]3zκαbb) + σ′′′(3zκαa zκαaa z

κα
bb

+ 3[zκαa]2zκαabb + 6zκαa zκαaabz
κα
b + 6zκαaa z

κα
ab z

κα
b

+ zκαaaa[zκαb]2 + 6zκαa [zκαab]2) + σ′′(zκαbb z
κα
aaa

+ 6zκαab z
κα
aab + 3zκαaa z

κα
abb + 2zκαb zκαaaab + 3zκαa zκαaabb)

+ σ′zκαaaabb

]
.

In general, a derivative ∂s uses those and only those derivatives
∂r from the previous layer, for which s − r has no negative
components. For example, if a cost function would use only
∂5/∂a5, one still needs to calculate ∂4/∂a4, ∂3/∂a3, ∂2/∂a2,
∂/∂a and the values themselves for all layers, as seen from
formula (10).

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

C. Backward pass

After obtaining the final layer matrices zωα, zωαa , zωαaa , . . .,
one can calculate a net cost function E, usually as the sum of
a per-pattern cost function e:

E =
∑
α

e(zωα, zωαa , zωαaa , . . .),

and more importantly, its derivatives with respect to the
elements of all used matrices

∂E

∂zωα
,
∂E

∂zωαa
,
∂E

∂zωαaa
, . . . ,

which can also be written with a multi-index
∂E

∂(∂rzωα)
.

Those derivatives have indices ω and α, which means they are
matrices of the same size as the matrices with respect to which
the derivative of E is calculated, in this case ||ω||×||α||. They
are propagated backwards using the following relation (now
one moves from θ to κ):

∂E

∂(∂rzκα)
=
∑
s

(
s

r

)
·∂s−rσ′(zκα) ·

(
[W θκ]T × ∂E

∂(∂szθα)

)
(11)

where sum is taken through all s that were used for the forward
propagation and for which s− r has no negative components.
Operator ∂s−r is applied only to σ′(zκα). Following the
notation of [41], the binomial coefficient is:(

s

r

)
=
∏
i

si!

ri!(si − ri)!
.

Expression (11) is essentially a formula for a derivative upon
the transformation of arguments. Consider a simplified sce-
nario with only two derivatives ∂/∂a, ∂2/∂a2. Let ||α|| = 1
and κ be fixed, θ ∈ [θ1 . . . θn]. E can be considered as the
function of values and their derivatives on either of two layers
θ or κ. For a change of variables

E(zθ1 , zθ1a , z
θ1
aa, . . . , z

θn , zθna , zθnaa)→ E(zκ, zκa , z
κ
aa),

the following holds:

∂E

∂zκa
=

θn∑
θ=θ1

∂E

∂zθ
∂zθ

∂zκa
+
∂E

∂zθa

∂zθa
∂zκa

+
∂E

∂zθaa

∂zθaa
∂zκa

. (12)

The derivatives of E with respect to zθ, zθa and zθaa were
calculated on the previous backward step (or initialized at
the output layer). The remaining terms can be calculated by
differentiating forward pass formulas. Namely, according to
(4) ∂zθ/∂zκa is zero, since the values of the next layer zθ do
not depend on the derivatives of the previous one. The term
∂zθa/∂z

κ
a is obtained by applying ∂/∂zκa to (6) (and ∂zθaa/∂z

κ
a

is obtained by applying it to (7) with a = b):

∂

∂zκa
zθa =

∂

∂zκa

∑
κ̃

W θκ̃σ′(zκ̃)zκ̃a = W θκσ′(zκ). (13)

The matrix multiplication written as a sum over κ̃ vanishes
as the derivative of a summand is non zero only if κ̃ = κ.
Terms like σ′(zκ) are the derivatives of ∂sσ(zκ) (the square

brackets in expressions like (9)) with respect to one of their
terms ∂rzκ. Their general form is

(
s
r

)
∂s−rσ′(zκ). It is derived

in [40] by the analysis of Faà di Bruno’s formula [42]. The
sum over θ in (12) can be written as a vector-matrix product
(the pattern index α turns it into a matrix-matrix product) so
its second term is ∂E/∂zθa×

[
W θκ · σ′(zκ)

]
. The term σ′(zκ)

has no θ and can be taken out. A transpose and rearrangement
to match the dimensions lead to expression (11). The gradients
of E with respect to weights and thresholds are as follows:

∂E

∂W θκ
=
∑
s

∂E

∂(∂szθα)
× [∂sσ(zκα)]T , (14)

∂E

∂tk
=
∑
α

∂E

∂zκα
. (15)

The sum in (14) runs through all used derivatives. The expres-
sion for the gradient of E with respect to the weights W θκ

between layers κ and θ includes matrices like zκαa which are
calculated during the forward pass for layer κ. They emerge
from the term ∂sσ(zκα). Matrices ∂E/∂(∂szθα) are obtained
for layer θ during the backward pass. The expression (14) is
also a consequence of a variable change. Let ||α|| = 1 and
W θκ be fixed, θ ∈ [θ1 . . . θn], s ∈ [s1 . . . sm]. The change is

E(∂s1zθ1 , ∂s1zθ2 , . . . , ∂smzθn)→ E(W θκ).

The derivative of E is transformed as

∂E

∂W θκ
=

sm∑
s=s1

θn∑
θ̃=θ1

∂E

∂(∂szθ̃)

∂(∂szθ̃)

∂W θκ
.

According to the forward pass formula (5) the latter term is

∂(∂szθ̃)

∂W θκ
= δθθ̃ · ∂

sσ(zκ).

Upon substitution, the Kronecker delta removes the sum over
θ̃. Pattern index α creates a matrix multiplication and transpose
matches the dimensions, which leads to expression (14).

V. COMPLEXITY

A. Forward pass

Propagation of the derivative ∂s from layer κ with ||κ||
neurons to layer θ with ||θ|| neurons, according to (5), requires
an element-wise calculation of the term ∂sσ(zκα) spawned by
the chain rule and one matrix multiplication. The number of
operations for the latter is (2||κ||−1) · ||θ|| · ||α||, and the total
number of element-wise operations is ρ||κ|| · ||α||, where ρ is
the amount of arithmetics per pattern per neuron of layer κ.

To find ρ, that is the number of operations required to
calculate the square brackets in expressions like (8) and (9)
without taking into account the upper indexes, one may notice
that each term is a product of the sigmoid derivative with
the order from 1 to |s| and some expression in parentheses.
Arithmetics required for the first derivative of the sigmoid (1)
can be found by writing it as a polynomial of the σ itself:

σ′(x) =
e−x

(1 + e−x)2
=

1

1 + e−x
− 1

(1 + e−x)2
= σ − σ2.

By differentiating this further, one can obtain all required
expressions as polynomials of σ. Since higher orders are

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

TABLE VI
THE NUMBER OF OPERATIONS #OP PER PATTERN PER NEURON FOR ALL

PARENTHESES OF THE DERIVATIVE ∂s

s #op s #op s #op s #op

(0) 0 (1,1) 1 (4) 11 (5) 20

(1) 0 (3) 4 (3,1) 19 (4,1) 38

(2) 1 (2,1) 6 (2,2) 22 (3,2) 54

used only together with lower ones, their polynomials can be
simplified and expressed in terms of lower order derivatives
to decrease the number of operations. Namely, up to the sixth
order:

σ′ = σ(1− σ) σ′′ = σ′(1− 2σ)

σ′′′ = σ′(1− 6σ′) σIV = σ′′(1− 12σ′)

σV = σ′ − 30(σ′′)2 σV I = σ′′ + (σIV − σ′′)(5− 30σ′).

The total number of products in the square brackets is equal
to the order |s|. This, together with the operations required to
calculate the derivatives of σ, but without taking into account
the arithmetic of the expressions in parentheses, leads to the
following number of extra2 operations per pattern per neuron
for |s| from 1 through 6: 3, 8, 13, 18, 23, 30. To evaluate the
number of operations required to calculate the parentheses, one
can notice the following: the parentheses that are multiplied
by the kth derivative of the sigmoid are the sum of products of
z with lower indices which from all possible unique partitions
of s into k parts. If some partitions are not unique (if two
or more Latin variables are the same), one should multiply
the corresponding product by the number of occurrences.
Expressions like (8) and (9) are the worst-case scenario since
all the variables are distinct, therefore, any partition is unique.
Since partitions are symmetrical with respect to a permutation
of variables, Table VI is sufficient for evaluating the number
of operations for each derivative used in this paper.

B. Weights gradient

Expression (14) for the weights gradient is a sum of matrix
products of two terms, one of which was calculated during the
backward pass and another is an element-wise part of (5) that
can be cached during the forward pass. The number of opera-
tions for each matrix multiplication is ||κ|| · ||θ|| · (2||α|| − 1).

C. Backward pass

Formula (11) contains a sum for each backpropagated
derivative r. However, for different r, calculations for the
summands overlap significantly. Except for the combinatorial
coefficient, each summand is an element-wise product of two
terms, one of which is a matrix product and another one
is very similar to expression ∂sσ(zκα) encountered in the
forward pass (5). The only difference is the presence of σ′

instead of σ. One can notice that for r = 0 multi-index s− r
has no negative components for any s, therefore, all possible
derivatives of σ′(zκα) have to be calculated for r = 0 but

2the evaluation of σ itself is required for any order. The inclusion of
the corresponding number of operations very slightly advantages high-order
training and therefore can be ignored in the scope of this paper

TABLE VII
THE AMOUNT OF ELEMENT-WISE ARITHMETICS FOR THE EXTENDED

TRAINING OF ORDER d AS THE PERCENTAGE OF MATRIX ARITHMETICS
FOR THE EXAMPLES FROM SECTION III

d 0 1 2 3 4 5

2D Function 1% 2% 4% 6% 10% 17%

3D Autoencoder 2% 4% 10% 15% 22% 30%

Poisson’s equation 7% 12% 19% 31% - -

TABLE VIII
THE RELATIVE COMPLEXITY OF ONE EPOCH OF THE EXTENDED TRAINING

OF ORDER d FOR A NETWORK WITH LAYER CONFIGURATION
n∗, n, n, n, n, n∗ FOR ONE AND TWO VARIABLES FOR DIFFERENTIATION

order 0 1 2 3 4 5

a 1 2 + 2
5n

3 + 6
n

4 + 15
n

5 + 28
n

6 + 48
n

a, b 1 3 + 2
5n

6 + 13
n

10 + 45
n

15 + 120
n

21 + 280
n

then can be reused for higher r. In fact, all of those terms can
be evaluated during the forward pass when the parentheses of
expressions like (8) and (9) are already calculated and only
need to be multiplied by higher derivatives of σ. Thus, the
number of an additional operations per pattern per neuron for
|s − r| from 0 through 5 is 0, 1, 3, 4, 7, 9 plus from 2 to 5
operations to increase the maximum order of the derivative
of σ by one, but only once for the whole bundle of the
propagated derivatives. As for the matrix multiplication on
the right of (11), all unique products have to be calculated for
r = 0. For higher r, those computationally expensive products
should be reused. The only unaccounted part of operations
left for ∂E/∂(∂rzκα) is the multiplications by the binomial
coefficients and the summation over all s for which s− r has
no negative components. For example, the maximum number
of summands is equal to the number of propagated derivatives,
which in this paper ≤ 21. One can roughly estimate the ratio
between the element-wise and matrix operations as ρ

6θ . For the
cases considered in Section III this value never exceeds 0.1,
however, caching zκα, ∂sσ(zκα) and ∂sσ′(zκα) is required.
Since this would triple the memory complexity, and the portion
of element-wise operations is relatively low, only the neuron
activities zκα are cached. Terms ∂sσ(zκα) and ∂sσ′(zκα)
are calculated on demand. Table VII shows the portion of
the element-wise operations measured in the percentage of
matrix operations provided only the neuron activities zκα

are cached. To calculate the equalizing number of epochs
for different order training one can simply compare the total
amount of matrix operations and then slightly correct it using
this table. Note that the exclusion training consists of steps
that are the extended training. Table VIII generalizes the
relative complexity of the extended training for one and two
variables derivatives with respect to which are propagated. The
first summand is the total number of derivatives. The second
summand reflects the element-wise portion of operations. For
simplicity, all values were rounded to the nearest integer.

D. Hardware efficiency.

Some technical details are required to get the maximum
hardware efficiency. This study uses CUDA with cuBLAS

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

[43], that is, a GPU-accelerated implementation of the standard
basic linear algebra subroutines (BLAS). Its function cublasS-
gemm is used to compute matrix multiplications. The rest of
the operations are element-wise and can be implemented by
a C-like code that describes the computations on one element
which are then parallelized automatically across the whole
matrix. The code should be written in such a way that delays
between the calls of cublasSgemm and other functions are
minimal, and matrices which they operate on are as large
as possible. The heights of matrices are obviously fixed by
the network’s configuration, so they can only be as long as
possible, i.e. it is preferably to process all input patterns
in one batch. An efficient method to make matrices longer
is to use pattern index α to stack the matrices of different
derivatives together. In the forward pass formula (5), the matrix
multiplication W θκ× [∂sσ(zκα)] is supposed to be called for
each s separately. But if one first evaluates all (let us say
n) different terms ∂sσ(zκα) and stores them in the memory
as a single matrix with a new index α̃ ∈ [1 . . . n||α||] then
cublasSgemm can be called only once and will result in a
similarly stacked ∂szθα̃ matrix. This requires the column-wise
storage of matrices and an explicit memory allocation but,
for example, made the calculations of the 5th order for 2D
function approximation few times more efficient. Backward
pass formula (11) allows a similar enhancement.

As for the delay between the functions calls, two options are
available: either memory for the matrices of all derivatives of
all layers is permanently allocated on the GPU or intermediate
data saves/loads occur in the background while some matrices
are propagated from one layer to another. The first option is
suitable for systems with enough GPU memory. The second
option can be implemented in any system with fast enough
communications between the device and the host. If the time
for a matrix ||α|| × ||κ|| to load is less than the time required
to multiply it from the right by a matrix ||κ|| × ||θ|| then one
can hide all memory operations behind the computations.

A trick to reduce the memory complexity of formula (11)
is worth mentioning. Instead of calculating matrix products
[W θκ]T×∂E/∂(∂szθα) and storing them in the cache one
can put them in the memory dedicated for ∂E/∂(∂rzκα)
with r = s and then calculate ∂E/∂(∂rzκα) in a proper
order. Namely, as soon as the evaluation is started for any
r, one has to multiply a matrix product residing in that
memory by σ′(zκα), thus, it cannot be reused. To tackle this
issue, one should start with r = (0, 0, 0, 0) and, thus, spoil
s = (0, 0, 0, 0), which is not used for any other r since the
components of s− r can not be negative. Then one can pick
any first order derivative, for example, r = (1, 0, 0, 0) and spoil
s = (1, 0, 0, 0), which is not a problem, since the only other
case when (1, 0, 0, 0)−r has no negative components is when
r = (0, 0, 0, 0), but that term has already been calculated. All
the first order derivatives are calculated, then all the second
order ones and so on, and no conflicts are encountered.

E. Performance test

CUDA C code was written using the proposed suggestions.
It was tested on fully connected perceptrons with 7 layers

TABLE IX
RUNNING TIMES FOR THE REGULAR TRAINING

n Theano TensorFlow CUDA C

128 17.4 10 3.1

256 19.9 11.8 5.7

512 27.6 22.2 14.9

of the same width n. RProp with the regular cost was run
for 1000 epochs with 2048 input patterns processed in one
batch. It is compared against Keras 2.0.8 with backends theano
[44] 0.9.0 and TensorFlow [45] 1.3.0, default settings are
used. The system is Deep Learning AMI for Amazon Linux,
version 3.3 run on EC2 p2.xlarge instance with one GK210
core of Tesla K80 available. The driver version is 375.66,
CUDA version is 8.0. The results are gathered in Table IX.
This paper uses neural networks with n equal to 64 and 128.
Provided TensorFlow can scale its performance for cases when
many derivatives are being propagated, the gain is around
300%. Even for the regular training where standard neural
network libraries should be quite efficient, the proposed code
is about 3 times faster for the networks used in this paper.
For cases where many derivatives are to be calculated, naive
implementations of automatic differentiation would probably
be much slower.

VI. CONCLUSION

A training process that enhances the approximation abilities
of fully connected feedforward neural networks was presented.
It is based on calculating extra derivatives of the network
and comparing them with the target ones to evaluate the
weights gradient. It was demonstrated to work well for low-
dimensional cases. Using derivatives up to the 5th order, the
precision of approximation for 2D analytical function was
increased 1000 times. Among all derivatives, the first and the
second contributed the most to the relative increase of ac-
curacy. Computational costs per pattern increase significantly
(see table VIII), however, it seems that there are no conditions
under which the conventional training could catch up with the
proposed one provided a network capacity is sufficient. High-
order training was found to be more demanding in this regard.
For 2D approximation lowering the number of neurons in all
hidden layers from 128 to 64 and then to 32 increased the
root mean square of the deviation of values for the 5th order
extended training from 2.2 · 10−6 to 2.4 · 10−5 and then to
2.4 · 10−4, for the 2nd order from 3.7 · 10−5 to 1 · 10−4 and
then to 5 · 10−4 and for the regular training from 2.3 · 10−3

to 3.0 · 10−3 and then to 5.3 · 10−3. Increasing the number of
neurons higher than 128 was not beneficial for any order.

For real neural network applications like classification one
can imagine hard times calculating high-order derivatives.
From this point of view, solving partial differential equations
can benefit much more from the proposed enhancements, as all
information about extra derivatives can be obtained via simple
differentiation of the equation itself. In the presented example
of solving partial differential equation, the precision of the
regular method was quite acceptable, however, it required
a grid with three times smaller spacing. Even though the

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

extended training achieved 13 times smaller error for the same
computational cost, the increase of a spacing λ might be more
important. As the number N of dimensions increases, the grid
size grows as (1/λ)N . If a similar increase of the grid spacing
persists for high-dimensional partial differential equations, the
extended training could be even more advantageous.

ACKNOWLEDGMENT

Author owes a great debt of gratitude to his scientific advi-
sor E.A. Dorotheyev. Special thanks for invaluable support are
due to Y.N. Sviridenko, A.M. Gaifullin, I.A. Avrutskaya and
I.V. Avrutskiy without whom this work would be impossible.
Sincere gratitude is extended to Neural Networks and Deep
Learning lab, MIPT and M.S. Burtsev personally.

REFERENCES

[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[2] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and Systems (MCSS), vol. 2, no. 4, pp.
303–314, 1989.

[3] V. Kurkova, “Kolmogorov’s theorem and multilayer neural networks,”
Neural networks, vol. 5, no. 3, pp. 501–506, 1992.

[4] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[5] A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” IEEE Transactions on Information theory, vol. 39,
no. 3, pp. 930–945, 1993.

[6] ——, “Approximation and estimation bounds for artificial neural net-
works,” Machine Learning, vol. 14, no. 1, pp. 115–133, 1994.

[7] L. Deng and X. Li, “Machine learning paradigms for speech recognition:
An overview,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 5, pp. 1060–1089, 2013.

[8] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning. ACM, 2006, pp. 369–376.

[9] C. M. Bishop, Neural networks for pattern recognition. Oxford
university press, 1995.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[11] G. P. Zhang, “Neural networks for classification: a survey,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 30, no. 4, pp. 451–462, 2000.

[12] M. Kumar and N. Yadav, “Multilayer perceptrons and radial basis func-
tion neural network methods for the solution of differential equations: a
survey,” Computers & Mathematics with Applications, vol. 62, no. 10,
pp. 3796–3811, 2011.

[13] A. Meade and A. A. Fernandez, “The numerical solution of linear
ordinary differential equations by feedforward neural networks,” Math-
ematical and Computer Modelling, vol. 19, no. 12, pp. 1–25, 1994.

[14] A. Malek and R. S. Beidokhti, “Numerical solution for high order dif-
ferential equations using a hybrid neural network optimization method,”
Applied Mathematics and Computation, vol. 183, no. 1, pp. 260–271,
2006.

[15] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for
solving ordinary and partial differential equations,” IEEE Transactions
on Neural Networks, vol. 9, no. 5, pp. 987–1000, 1998.

[16] I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural network methods
in quantum mechanics,” Computer Physics Communications, vol. 104,
no. 1-3, pp. 1–14, 1997.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[18] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in International Conference on
Machine Learning, 2013, pp. 1058–1066.

[19] J.-R. Chang and Y.-S. Chen, “Batch-normalized maxout network in
network,” arXiv preprint arXiv:1511.02583, 2015.

[20] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-
gio, “Maxout networks,” arXiv preprint arXiv:1302.4389, 2013.

[21] D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint
arXiv:1511.06422, 2015.

[22] R. Murray-Smith and B. A. Pearlmutter, “Transformations of gaussian
process priors,” in Deterministic and Statistical Methods in Machine
Learning. Springer, 2005, pp. 110–123.

[23] P. Simard, Y. LeCun, J. Denker, and B. Victorri, “Transformation invari-
ance in pattern recognitiontangent distance and tangent propagation,”
Neural networks: tricks of the trade, pp. 549–550, 1998.

[24] H. Drucker and Y. Le Cun, “Improving generalization performance
using double backpropagation,” IEEE Transactions on Neural Networks,
vol. 3, no. 6, pp. 991–997, 1992.

[25] S. He, K. Reif, and R. Unbehauen, “Multilayer neural networks for
solving a class of partial differential equations,” Neural networks,
vol. 13, no. 3, pp. 385–396, 2000.

[26] G. W. Flake and B. A. Pearlmutter, “Differentiating functions of the
jacobian with respect to the weights,” in Advances in Neural Information
Processing Systems, 2000, pp. 435–441.

[27] P. Cardaliaguet and G. Euvrard, “Approximation of a function and its
derivative with a neural network,” Neural Networks, vol. 5, no. 2, pp.
207–220, 1992.

[28] A. Pukrittayakamee, M. Hagan, L. Raff, S. T. Bukkapatnam, and
R. Komanduri, “Practical training framework for fitting a function and
its derivatives,” IEEE transactions on neural networks, vol. 22, no. 6,
pp. 936–947, 2011.

[29] E. Basson and A. P. Engelbrecht, “Approximation of a function and
its derivatives in feedforward neural networks,” in IJCNN’99. Inter-
national Joint Conference on Neural Networks. Proceedings (Cat. No.
99CH36339), vol. 1. IEEE, 1999, pp. 419–421.

[30] E. D. Sontag, “Feedback stabilization using two-hidden-layer nets,”
IEEE Transactions on neural networks, vol. 3, no. 6, pp. 981–990, 1992.

[31] J. Berg and K. Nyström, “A unified deep artificial neural network
approach to partial differential equations in complex geometries,” Neu-
rocomputing, vol. 317, pp. 28–41, 2018.

[32] A. Griewank and A. Walther, Evaluating derivatives: principles and
techniques of algorithmic differentiation. SIAM, 2008.

[33] J. M. Siskind and B. A. Pearlmutter, “Efficient implementa-
tion of a higher-order language with built-in ad,” arXiv preprint
arXiv:1611.03416, 2016.

[34] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 2010,
pp. 249–256.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[36] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The rprop algorithm,” in Neural Networks,
1993., IEEE International Conference on. IEEE, 1993, pp. 586–591.

[37] S. Petridis and M. Pantic, “Deep complementary bottleneck features for
visual speech recognition,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp.
2304–2308.

[38] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons
and singular value decomposition,” Biological cybernetics, vol. 59, no. 4,
pp. 291–294, 1988.

[39] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[40] V. Avrutskiy, “Backpropagation generalized for output derivatives,”
arXiv preprint arXiv:1712.04185, 2017.

[41] X. Saint Raymond, Elementary introduction to the theory of pseudodif-
ferential operators. Routledge, 2018.

[42] M. Hardy, “Combinatorics of partial derivatives,” the electronic journal
of combinatorics, vol. 13, no. 1, p. 1, 2006.

[43] C. Nvidia, “Cublas library,” NVIDIA Corporation, Santa Clara, Califor-
nia, vol. 15, no. 27, p. 31, 2008.

[44] J. Bergstra, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Des-
jardins, I. Goodfellow, A. Bergeron, Y. Bengio, and P. Kaelbling,
“Theano: Deep learning on gpus with python,” 2011.

[45] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

	I Introduction
	II Motivation
	III Results
	III-A 2D function approximation
	III-B Autoencoder for 3D curve
	III-C Solving differential equations

	IV Algorithm
	IV-A Notation
	IV-B Forward pass
	IV-C Backward pass

	V Complexity
	V-A Forward pass
	V-B Weights gradient
	V-C Backward pass
	V-D Hardware efficiency.
	V-E Performance test

	VI Conclusion
	References

