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Abstract—A spatial co-location pattern represents a subset 

of spatial features with instances that are prevalently located 

together in a geographic space. Although many algorithms for 

mining spatial co-location patterns have been proposed, the 

following selected problems remain: 1) these methods miss 

certain meaningful patterns (e.g., {Ganoderma_lucidumnew, 

maple_treedead} and {water_hyacinthnew(increase), 

algaedead(decrease)}) and obtain the wrong conclusion if the 

instances of two or more features increase/decrease (i.e., 

new/dead) in the same/approximate proportion, which has no 

effect on the prevalent patterns; 2) because the number of 

prevalent spatial co-location patterns is quite large, the 

efficiency of existing methods is low in mining prevalent spatial 

co-location patterns. Therefore, we first propose the concept of 

the dynamic spatial co-location pattern that can reflect the 

dynamic relationships among spatial features. Second, we mine 

a small number of prevalent maximal dynamic spatial co-

location patterns that can derive all prevalent dynamic spatial 

co-location patterns, which can improve the efficiency of 

obtaining all prevalent dynamic spatial co-location patterns. 

Third, we propose an algorithm for mining prevalent maximal 

dynamic spatial co-location patterns and two pruning 

strategies. Finally, the effectiveness and efficiency of the 

proposed method and the pruning strategies are verified by 

extensive experiments over real/synthetic datasets. 

 
Index Terms—Association rule mining, spatial co-location 

pattern, dynamic pattern, maximal pattern. 

 

I.  INTRODUCTION 

PATIAL co-location pattern mining is an important 

component of association rule mining [1,2] in machine 

learning [3,4,5,6]. A spatial co-location pattern 

represents a subset of spatial features whose instances 

are prevalently located together in a geographic space. 

Mining of the spatial co-location pattern is significant. For 

example, if a city planner cannot find the prevalent pattern 

{school, supermarket, restaurant} near the “school”, this 

indicates that we need to build a new “supermarket” or 

“restaurant” around the “school”. Other application domains 

include public health [7], public transportation [8,9], 

environmental management [10], social media services 

[11,12], location services [13,14], and multimedia 

[15,16,17,18,19], among others. 

Although many methods for mining spatial co-location 

patterns exist, they cannot find the dynamic relationships 

among spatial features. On the one hand, the existing 

methods miss certain meaningful patterns. Case 1: 

“Ganoderma_lucidum” grows on the “maple_tree”, which 

was dead. However, existing methods mine patterns from the 

set of coexisting plants such that the meaningful pattern 

{Ganoderma_lucidumnew, maple_treedead} was missed. Case 

2: For mutually inhibitory features such as “water_hyacinth” 

and “algae”, the instances of “algae” decrease with the 

increase in the instances of “water hyacinth” in the same 

zone. However, because the participation index is always 

unchanged for existing methods, these methods obtain the 

prevalent pattern {water_hyacinth, algae} regardless of the 

increase/decrease in instances of “water_hyacinth”/“algae”. 

On the other hand, existing methods obtain the wrong 

conclusion that the instances of two or more features 

increase/decrease (i.e., new/dead) in the same/approximate 

proportion, which has no effect on prevalent patterns. Case 

3: One application of the prevalent spatial co-location 

pattern judges whether the environment was polluted or not 

by comparing prevalent patterns at different time points. As 

shown in Fig. 1, the instances of two features were dead 

(black shadow) by an equivalent (or approximate) 

percentage because of environment disruption, but the 

existing methods determine that the environment has not 

been polluted because they obtain the same prevalent 

patterns with the same participation index at two-time points 

(i.e., t0 and t1). In conclusion, finding the dynamic 

relationships among spatial features (i.e., dynamic spatial 

co-location patterns) is a promising topic. 

 

(a) Time point t0                   (b) Time point t1 

Fig. 1. Sample of case 3 

In similar existing methods, the negative/sequential/strong-

symbiotic patterns with the above cases appear to be similar, 

but essential differences exist between them. Both the 

dynamic pattern and the negative pattern [34,35] can mine 

mutual exclusion relationship, but the features in the 

negative pattern  cannot coexist. Both the dynamic pattern 

and the sequential pattern [36,37] are all about time, but the 

latter is to look for prevalent subsequences from sequential 

databases. In contrast, the dynamic spatial co-location 

pattern represents a dynamic relationship between features, 

which exists in a symbiont circle. The strong-symbiotic 

pattern [38] belongs to a portion of the dynamic spatial co-

location pattern, so it can only mine a portion of the dynamic 

spatial co-location patterns (i.e., {Anew, Bnew}) and misses 

other dynamic spatial co-location patterns (i.e., {Anew, Bdead} 
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and {Adead, Bdead}). 

Moreover, because the amount of spatial data is always 

quite large, the number of prevalent dynamic spatial co-

location pattern is also large, and thus the efficiency of the 

existing methods is low in mining the prevalent spatial co-

location patterns. It is necessary to find certain representative 

patterns that can derive all prevalent patterns and whose 

number is small. The prevalent maximal pattern is a compact 

representation of the prevalent pattern, and the number of 

prevalent maximal patterns is far less than the number of all 

prevalent patterns. Therefore, mining the prevalent maximal 

spatial co-location patterns that can derive all prevalent 

spatial co-location patterns is more efficient than mining all 

prevalent spatial co-location patterns using the existing 

methods. Although selected methods [39,40,41,42,43,44] 

can mine the prevalent maximal spatial co-location patterns, 

they still require large numbers of calculations and 

connections for table instances as well as general methods of 

mining prevalent spatial co-location patterns. 

In summary, the existing methods cannot find the dynamic 

relationships among spatial features (i.e., dynamic spatial 

co-location pattern), and the efficiency of mining prevalent 

dynamic spatial co-location patterns by the existing methods 

is rather low. Therefore, in this paper, we propose a method 

for mining the prevalent maximal dynamic spatial co-

location pattern and make the following contributions: 

1. The existing methods cannot find the dynamic 

relationships among spatial features, and thus we 

propose the concept of the dynamic spatial co-location 

pattern (Dc for short) that can reflect the dynamic 

relationships among spatial features and can solve the 

problems in Case 1/Case 2/Case 3. 

2. The prevalent maximal patterns can be used to derive 

all prevalent patterns, and the number of prevalent 

maximal patterns is far less than the number of all 

prevalent patterns. Therefore, we mine the prevalent 

maximal dynamic spatial co-location patterns rather 

than all prevalent dynamic spatial co-location patterns, 

which is more efficient than mining all prevalent 

dynamic spatial co-location patterns using the existing 

methods. 

3. Because a large number of calculations and 

connections are necessary for table instances in the 

existing methods for mining maximal patterns, these 

methods have low efficiency. To improve the efficiency 

of mining maximal patterns, we propose an algorithm 

for mining the prevalent maximal dynamic spatial co-

location patterns, in which the calculation and 

connection for table instances are turned into the 

calculation and connection of dynamic features whose 

number is far less than that of the instances. Moreover, 

we propose two pruning strategies to further improve 

the efficiency. 

4. We verified the effectiveness of our algorithm (i.e., we 

can find the dynamic relationships among spatial 

features), the representativeness of the prevalent 

maximal Dc, the efficiency of our algorithm (i.e., 

comparison with the join-based method), and the 

efficiency of two pruning strategies over real/synthetic 

datasets. 

II. RELATED WORK 

Although many methods for mining spatial co-location 

pattern have been proposed, no method exists that can mine 

the dynamic spatial co-location patterns. S. Shekhar et al. 

[20,21] defined the spatial co-location pattern for the first 

time and proposed the join-based algorithm. Subsequently, 

certain methods focused on many other interesting research 

directions, such as high utility patterns [22,23,24], 

redundancy reduction [25], improved efficiency [26], causal 

rules [27], competitive pairs [28], fuzzy objects [29], 

uncertain data [30,31,32,33], etc. However, the existing 

methods miss certain meaningful patterns (e.g., 

{Ganoderma_lucidumnew, maple_treedead} and 

{water_hyacinthnew(increase), algaedead(decrease)}) and 

obtain the wrong conclusion that the instances of two or 

more features increase/decrease (i.e., new/dead) in the 

same/approximate proportion, which has no effect on the 

prevalent patterns. 

The dynamic spatial co-location pattern in this paper might 

appear to a negative pattern [34,35], sequential pattern 

[36,37] or strong symbiotic pattern [38], but their essences 

are different. The features in the negative pattern [34,35] 

cannot coexist, whereas the features in the dynamic spatial 

co-location pattern must coexist. Sequential patterns [36,37] 

represent prevalent repeated paths between items, which 

exist in the form of a sequence, whereas the dynamic spatial 

co-location pattern represents a dynamic relationship 

between features which exist in a symbiont circle. In a strong 

symbiosis pattern [38], at least one feature benefits from the 

pattern, so it belongs to a portion of the dynamic spatial co-

location pattern, and the method of mining strong symbiosis 

patterns can only mine a small portion of dynamic spatial co-

location patterns (i.e., {Anew, Bnew}), and other dynamic 

patterns (i.e., {Anew, Bdead} and {Adead, Bdead}) cannot be 

mined. In conclusion, the methods for mining a negative 

pattern, sequential pattern or strong symbiotic pattern cannot 

mine the dynamic spatial co-location pattern in this paper. 

 
TABLE I 

CATEGORY OF METHODS 

Categories Innovations Literatures 

Traditional 

co-location 

pattern 

Origin  [20,21] 

high utility patterns [22,23,24] 

redundancy reduction [25] 

improved efficiency [26] 

causal rules [27] 

competitive pairs [28] 

fuzzy objects [29] 

uncertain data [30,31,32,33] 

Similar 

methods 

Negative pattern [34,35] 

Sequential pattern [36,37] 

Strong-symbiotic [38] 

Related 

methods 

maximal pattern [39,40,41,42,43,44] 

 

Although certain methods can mine the prevalent maximal 

spatial co-location pattern, they still require a large number 

of calculations and connections for table instances as well as 

general methods of mining prevalent spatial co-location 

patterns. Wang et al. [39] proposed an order-clique-based 

approach for mining maximal co-location pattern, and based 

on this approach, Yao et al. [40,41] proposed an ordered-

instance-clique approach. Dai et al. [42] used an index 

structure similar to four binary trees to mine the maximal 

spatial co-location patterns. Bao et al. [43] mined the top-k 

longer size maximal co-location patterns. Wang et al. [44] 

mined the maximal sub-prevalent co-location patterns, 

which introduced star participation instances to measure the 

prevalence of co-location patterns, i.e., spatially correlated 
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instances that cannot form cliques were also properly 

considered. However, the above methods still require a large 

number of calculations and connections for table instances. 

In contrast, we propose an algorithm for mining prevalent 

maximal dynamic spatial co-location patterns, which is 

based on a degree-based approach for the maximum 

clique/maximal co-location patterns [45,46] and turns the 

calculation and connection for table instances into 

calculation and connection of dynamic features, the number 

of which is far less than that of instances. 

III. BASIC DEFINITIONS 

Definition 1. (Dynamic Feature/Instance) A dynamic 

feature represents the new/dead object in a certain area, 

denoted as Df[i], which is a new or dead object (e.g., Anew, 

Adead are two dynamic features in Fig. 2). A dynamic instance 

is an instance of a dynamic feature at a specific location, 

denoted as Df[i]. j (e.g., Anew.1 and Anew.2 are two instances of 

the dynamic feature Anew in Fig. 2). 

Definition 2. (Dynamic Distance Threshold, Dd) If the 

distance between two dynamic instances is less than Dd as 

designated by experts, it is considered that the two dynamic 

instances have a relationship, and otherwise, they have no 

relationship. 

Definition 3. (Time Span and Time Span Constraint) 

Time span is the time difference between two adjacent 

dynamic datasets and represents the time interval in which 

certain instances have changed, which is designated by 

experts. The time span constraint of a dynamic feature is the 

length of time in which the feature influences the 

surrounding dynamic features, denoted as span (Df[i]). 

Furthermore, if the time span constraint of Df[i] is equal to k 

time spans, it can be represented as span (Df[i]) = k (time 

spans).  

The effect of a new object Df[i] on the surrounding dynamic 

features is the life cycle of Df[i]. For example, we assume that 

the time span is 3 years and that the life cycle of Anew is 75 

years, and thus span (Anew) =25(time spans).  

The effect of a dead object Df[i] on the surrounding dynamic 

features is a one-time span because the dead object has little 

effect on the surrounding dynamic features, and the one-time 

span can sufficiently cover the time interval in which a dead 

object influences the surrounding instances. Thus span 

(Adead)=1(time span). 

Definition 4. (Dynamic Spatial Neighborhood 

Relationship, DR) For two dynamic instances, if the distance 

between them is less than Dd, which is designated by experts, 

and the time difference between them is less than the 

maximum of the time span constraints of all dynamic 

features, it is considered that the two dynamic instances 

satisfy the dynamic spatial neighborhood relationship DR. 

DR (Anew.1, Bdead.2)  

distance (Anew.1, Bdead.2) ≤Dd 

and 

△T (Anew.1, Bdead.2) < max (span (Anew), span (Bdead)) 

Definition 5. (Dynamic Spatial Co-Location Pattern, Dc) 

A dynamic spatial co-location pattern contains multiple 

new/dead features and can reflect the dynamic relationships 

among dynamic features, denoted as Dc. For example, Dc[i] 

= {Anew, Bdead} is a size-2 dynamic spatial co-location pattern. 

Definition 6. (Dynamic Row Instance and Dynamic 

Table Instance) For a dynamic spatial co-location pattern 

Dc and a set of dynamic instances DI, if a one-to-one match 

exists between each dynamic instance in DI and each 

dynamic feature in Dc and any two dynamic instances in DI 

satisfy the dynamic spatial neighborhood relationship, we 

say that DI is a dynamic row-instance of Dc, denoted as 

dynamic row-instance (Dc). The dynamic table-instance of 

Dc consists of all distinct dynamic row-instances of Dc, 

denoted as dynamic table-instance (Dc). 

Example 1. For Dc[i]={Anew, Bnew}, if both (Anew.1, Bnew.2) 

and (Anew.2, Bnew.2) satisfy the dynamic spatial neighborhood 

relationship, they are the dynamic row-instance of Dc[i], and 

{{Anew.1, Bnew.2 },{ Anew.2, Bnew.2 }} is the dynamic table-

instance of Dc[i], denoted as dynamic table-instance(Dc[i]) 

={{Anew.1, Bnew.2 },{ Anew.2, Bnew.2 }}. 

Definition 7. (Dynamic Participation Ratio (DPR)/ Index 

(DPI)) The dynamic participation ratio DPR (Dc, Df[i]) of 

dynamic feature Df[i] in a size-k dynamic spatial co-location 

pattern Dc= {Df[1], Df[2] … Df[k]} is defined as follows:  

𝐷𝑃𝑅(𝐷𝑐, 𝐷𝑓[𝑖]) =
𝜋𝐷𝑓[𝑖]

(𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑡𝑎𝑏𝑙𝑒_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑐 ))

𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑡𝑎𝑏𝑙𝑒_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒({𝐷𝑓[𝑖]})
, 

where π is the relational projection operation with a 

duplication elimination. DPI(Dc) of Dc is defined as shown: 

𝐷𝑃𝐼(𝐷𝑐) = 𝑚𝑖𝑛𝑖=1
𝑘 {𝐷𝑃𝑅(𝐷𝑐,  𝐷𝑓[𝑖])}, 

 If DPI(Dc) is greater than a given minimum prevalence 

threshold min_prev that is designated by experts and is used 

to judge whether the pattern occurs prevalently or not, we 

say that Dc is a prevalent dynamic spatial co-location pattern.  

Example 2. For Dc[i] = {Anew, Bnew}, dynamic table-

instance(Dc[i]) = {{Anew.1, Bnew.2}, {Anew.2, Bnew.2}}. In Dc[i], 

the number of dynamic instances of Anew and Bnew are 2 and 

1, respectively. In contrast, from Fig. 2, the total number of 

dynamic instances of Anew and Bnew are 4 and 2, respectively. 

Therefore, DPR (Dc[i], Anew) =2/4=0.5, DPR(Dc[i], Bnew) =1/2 

=0.5 and thus DPI(Dc[i]) = min{DPR(Dc[i], Anew), DPR(Dc[i], 

Bnew)}=0.5. If min_prev=0.3, Dc[i]={Anew,Bnew} is a size-2 

prevalent dynamic spatial co-location pattern. 

Definition 8. (Prevalent Maximal Dynamic Spatial Co-

Location Pattern) Given a prevalent dynamic spatial co-

location pattern Dc ={Df[l]，......， Df[v]}, for any Df[i]∈Df and 

Adead.1 

Bnew.1 

Cdead.1 

Bdead.3 

Adead.2

Cnew.4 

Anew.1 

Bdead.1 

Cnew.1 

Cdead.2 

Anew.3 

Bnew.2 
Anew.2 

Cnew.2 

Bdead.2 

Cnew.3 

Anew.4 

Adead.3 

Cnew.5 

(a) T1                           (b)T2                         (c)T3                         (d)T4 

Fig. 2. Sample distribution datasets of new/dead instance  
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Df[i] ∉ Dc, if any Dc∪Df[i] is not a prevalent dynamic spatial 

co-location pattern, then Dc is a prevalent maximal dynamic 

spatial co-location pattern. 

Definition 9. (Dynamic Spatial Feature Clique, Dfc) 

Given a dynamic spatial feature set Dfc ={Df[l]，......， Df[v]}, if 

any size-2 pattern Dc[i]={Df[j], Df[k]} (Df[j], Df[k]∈Dfc and 

j≠k) is prevalent, then Dfc is a dynamic spatial feature clique. 

Definition 10. (Maximal Dynamic Spatial Feature 

Clique) Given a dynamic spatial feature set Dfc ={Df[l]，......， 

Df[v]}, for any Df[i]∈Df and Df[i] ∉ Dfc, if Dfc∪Df[i] is not a 

dynamic spatial feature clique, then Dfc is a maximal 

dynamic spatial feature clique. 

IV. MINING PREVALENT MAXIMAL DC (ALGORITHM MDC)  

We propose an algorithm for mining the prevalent maximal 

dynamic spatial co-location pattern (i.e., Algorithm MDC), 

which is divided into three sub algorithms (i.e., Algorithm 1, 

Algorithm 2, Algorithm 3). For convenience of description, 

the dynamic spatial co-location pattern is abbreviated as Dc 

in this paper. 

Because a large number of calculations and connections 

exist for table instances in the existing methods, these 

methods have low efficiency. To improve the efficiency of 

mining patterns, after obtaining the size-2 prevalent dynamic 

spatial co-location patterns, we convert them to a dynamic 

feature graph DG by Algorithm 1 such that the calculation 

and connection for the table instances are turned into the 

calculation and connection of the dynamic features. 

Subsequently, we obtain the set of maximal dynamic feature 

clique Dfc from the dynamic feature graph DG by Algorithm 

2. Finally, each maximal dynamic feature clique Dfc as a 

candidate maximal Dc is verified by Algorithm 3, and thus 

we can obtain prevalent maximal Dc. 

A. First Sub-Algorithm 

First, we generate the distribution dataset of dynamic 

instances (i.e., new/dead instances) from the distribution 

dataset of spatial instances at different time points (step 1 

and Example 3). Second, with Dd, time span and time span 

constraint (i.e., life cycle) of each dynamic feature, we can 

confirm whether any two dynamic instances have a dynamic 

spatial neighborhood relationship or not and obtain a set of 

all dynamic neighborhood relationships (step 2 and Example 

4). Second, we obtain the dynamic table-instance of all size-

2 Dc by arranging all dynamic neighborhood relationships, 

and thus we obtain the size-2 prevalent Dc by definition 8 

and min_prev (step 3/step 4 and Example 5). Finally, we 

transform all size-2 prevalent Dc to dynamic feature graph 

DG (step 5 and Example 6).  

 
Algorithm 1: Generating Dynamic Feature Graph DG 

Input: (1) Df = {Df [1], Df [2] …, Df[n]}:a set of dynamic spatial 

features;(2) St = {St [1], St [2] …, St[n]}:the distribution dataset of spatial 
instances at different time points;(3) Lc = {Lc [1], Lc [2], …, Lc [n]}:a set 

of life cycle of all dynamic features;(4)Dd:a dynamic distance 

threshold;(5)min_prev:a minimum DPI threshold. 

Output: DG: dynamic feature graph. 
Variables: ST:the distribution dataset of dynamic instances at different 

time points. 

1: ST=Gen_dynamic_instance_distribution(St) 

2: δDR = Gen_dynamic_neighborhood (Df, ST, Dd, Lc, time_span) 

3: 𝛿dynamic table_instance = Gen_dynamic_table_instance (Df, δDR) 

4: δdynamic_size2=Gen_size2_prevalent_Dc (Df, δdynamic table_instance, min_prev) 

5: DG = Gen_dynamic_feature_graph (δdynamic_size 2) 

 

Example 3. Given the distribution dataset of spatial 

instances at different time points (i.e., t1, t2, ……, tn), because 

this paper studies the dynamic relationship among features, 

we obtain n-1 dynamic datasets that contain only new/dead 

instances by comparing two datasets at ti and ti+1. For 

instance, we can obtain a dynamic dataset in Fig. 2(a) by 

comparing the two datasets at t1 and t2. The new/dead 

(green/red in Fig. 2) categorizations of the same object are 

denoted by two dynamic features (i.e., Anew/Adead), 

respectively. One instance of feature A exists in t1 and 

disappears at t2, and it is used as a dead instance in T1, 

denoted by Adead.1. Similarly, if one instance of feature A 

appears at t2 for the first time, it is used as a new instance in 

T1, denoted by Anew.1. As shown in Fig. 2, the distribution 

datasets of new/dead instances are obtained by comparing 

the datasets at 5 time points. 

Example 4. Suppose Dd =k and span(Anew)=3(time spans) 

(the time difference between T1 and T2 is one time span). To 

obtain the neighborhood instances of Anew.1 in Fig. 2(a), we 

should confirm whether Anew.1 and all other dynamic 

instances in Fig. 2(a)(b)(c)(d) (according to definition 3 and 

span(Anew)=3(time spans)) satisfy the dynamic spatial 

neighborhood relationship or not by definition 4. 

Subsequently, we determine that Bnew.2 and Cnew.3 are the 

neighborhood instances of Anew.1. Similarly, to obtain the 

neighborhood instances of Adead.1 in Fig. 2(a), we should 

confirm whether Adead.1 and all other dynamic instances in 

Fig. 2(a)(b) (according to definition 3, and thus span 

(Adead)=1 (time span)) satisfy the dynamic spatial 

neighborhood relationship or not by definition 4. Finally, we 

find that Bnew.1 and Cdead.2 are the neighborhood instances of 

Adead.1.  

Example 5. By arranging all neighborhood dynamic 

instance pairs of Anew and Bnew (i.e., Anew.1 and Anew.2 are the 

neighborhood dynamic instances of Bnew.2), we obtain the 

dynamic table-instances {{Anew.1, Bnew.2}, {Anew.2, Bnew.2}} 

of Dc[i] = {Anew, Bnew}. Suppose min_prev=0.3 according to 

definition 7, because DPI(Dc[i]) = 0.5>0.3, and thus Dc[i] = 

{Anew, Bnew} is a size-2 prevalent Dc.  

Example 6. Suppose certain size-2 prevalent dynamic 

spatial co-location patterns exist such as {Anew, Bnew}, {Anew, 

Cnew}, {Adead, Bnew}, {Adead, Bdead}, {Adead, Cdead} and {Bnew, 

Cdead}. In Fig. 3, each dynamic feature in all size-2 prevalent 

Dc and each size-2 prevalent Dc are treated as a vertex and 

an edge, respectively. For instance, because {Anew, Bnew} is a 

size-2 prevalent Dc, we should connect Anew and Bnew. In 

contrast, Anew does not connect to Cdead because {Anew, Cdead} 

is not a prevalent Dc. Finally, we obtain a dynamic feature 

graph DG, as shown in Fig. 3.  

 

Fig. 3. Sample dynamic feature graph 

B. Second Sub-Algorithm 

The maximal Dfc (dynamic feature clique) is treated as the 

candidate prevalent maximal Dc and can be obtained from 

DG by Algorithm2, which is proposed based on the degree-

based approach for the maximum clique/maximal co-

location patterns [45,46]. 

Anew 

Cnew 

Bnew 

Adead Cdead 

Bdead 
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The core idea of Algorithm2 is described as follows. First, 

the vertex with maximum degree in DG is selected as Vmax, 

and other vertices are divided into two categories (adjacent 
and non-adjacent vertices). Second, Vmax is treated as a node 

in one candidate Dfc, and all of the adjacent vertices of Vmax 

form a subgraph (i.e., sub_DG[1]). This process is applied 

recursively for sub_DG[1]. Third, the non-adjacent vertices 

of Vmax are treated successively as Vmax′, which is the same 

as Vmax. For i-th Vmax′, the adjacent vertices of Vmax′ form a 

subgraph (i.e., sub_DG[2i]), and sub_DG[2i] is subjected to a 

recursive process similar to that of sub_DG[1]. 

In the recursive process, starting from the vertex with 

maximum degree (Vmax) can accelerate the speed of finding 

all maximal Dfc. Because each vertex in the maximal Dfc 

must connect to all other vertices in the maximal Dfc, Vmax is 

always located in a maximal Dfc that contains many vertices. 

On the one hand, starting from Vmax can quickly reduce the 

edges in sub_DG[1], and thus it accelerates the process of 

finding the maximal Dfc in sub_DG[1]. On the other hand, 

starting from Vmax always first finds the maximal Dfc that 

contains many vertices such that sub-DG [2] is far less than 

original DG, and therefore, it can accelerate the process of 

finding the maximal Dfc in sub_DG[2]. 

 

 

 Example 7. For DG in Fig. 3, Vmax [1] =Bnew, and other 

vertices can be divided into adjacent/non-adjacent vertices. 

For the adjacent portion of Bnew, Bnew is treated as one node 

in the candidate maximal Dfc (i.e., can_Dfc={Bnew}), and the 

adjacent vertices form a subgraph (i.e., sub_DG[1]={Anew, 

Adead, Cdead}). Algorithm2 executes a recursion process for 

sub_DG[1], Vmax[11]=Adead, and for the adjacent portion of 

Adead, Adead is treated as one node in candidate maximal Dfc 

(i.e., can_Dfc={Bnew, Adead}, and the adjacent vertices form a 

subgraph (i.e., sub_DG[11]={Cdead}). Because no edge exists 

in sub_DG[11], Algorithm2 adds the remaining nodes to the 

candidate maximal Dfc and obtains the first maximal Dfc 

(i.e., Dfc[1]={Bnew, Adead, Cdead}. For the non-adjacent portion 

of Adead, the candidate maximal Dfc is {Bnew}, and no edge 

exists in sub_DG[12]={Anew}. Similarly, we obtain the second 

maximal Dfc (i.e., Dfc[2]={Bnew, Anew}). For the non-adjacent 

vertices (i.e., Cnew and Bdead) of Bnew, the candidate maximal 

Dfc is {}, Cnew and Bdead are successively treated as Vmax′, and 

their adjacent vertices form subgraphs sub_DG[21]={Anew} 

and sub_DG[22]={Adead}, respectively. Thus, we can obtain 

Dfc[3]={Cnew, Anew} and Dfc[4]={Bdead, Adead}. Finally, we can 

obtain all maximal Dfc (i.e., {Bnew, Adead, Cdead}, {Bnew, Anew}, 

{Cnew, Anew} and {Bdead, Adead}). 

C. Third Sub-Algorithm 

Each maximal Dfc is treated as a candidate maximal Dc (i.e., 

Dc[i]); therefore, we need to verify whether it is prevalent or 

not. First, we obtain the dynamic table instance of the 

candidate maximal Dc[i], which can be obtained by the 

dynamic table-instance of the size-2 prevalent Dc (Example 

8). Second, we calculate the DPI of the candidate maximal 

Dc[i] and compare it with min_prev. Third, if the Dc[i] is 

prevalent, we add it to the set of prevalent maximal Dc; 

otherwise, it is decomposed into a size-k-1 pattern (Dc[i] is a 

size-k pattern) (Example 9), and each size-k-1 pattern is 

treated as a candidate maximal Dc and passes through a 

verification process (except the one that already exists in the 

set of prevalent maximal Dc). 

 

 

 Example 8. Given the maximal Dfc, which is also a 

candidate maximal Dc (i.e., Dc[i]={Adead, Bnew, Cdead}), we 

first obtain the common instances from the dynamic table 

instances of selected size-2 prevalent subpatterns (i.e., 

Dc[i1]={Adead, Bnew} and Dc[i2]={Adead, Cdead}). For example, 

from the dynamic table-instance(Dc[i1])={{Adead.1, Bnew.1}, 

{Adead.1, Bnew.2}, {Adead.2, Bnew.1}} and the dynamic table-

instance(Dc[i2])={{Adead.1, Cdead.2}}, we can obtain the 

common instances (i.e., Adead.1) of Dc[i1] and Dc[i2]. Second, 

with the common dynamic instances, we select the dynamic 

row-instances of the size-2 prevalent subpatterns to 

construct the candidate dynamic row-instances of Dc[i]. For 

example, with Adead.1, we select the dynamic row-instances 

set {{Adead.1, Bnew.1}, {Adead.1, Bnew.2}} and {{Adead.1, 

Cdead.2}} and subsequently construct the dynamic row-

instances of Dc[i] (i.e., {Adead.1, Bnew.1, Cdead.2} and {Adead.1, 

Bnew.2, Cdead.2}. Third, we verify the dynamic row-instances 

by the other size-2 prevalent subpattern (i.e., Dc[i3]={ Bnew, 

Cdead}. For example, because only the dynamic row-instance 

{Bnew.1, Cdead.2} exists in the dynamic table-instance of Dc[i3] 

while another dynamic row-instance {Bnew.2, Cdead.2} does 

not exist, only {Adead.1, Bnew.1, Cdead.2} is a real dynamic 

Algorithm 2: Generating Maximal Dynamic Feature Clique 

Input: DG: dynamic feature graph. 

Output: δmaximal_dynamic_clique: the set of maximal Dfc. 

Variables:(1)Df: a set of dynamic spatial features;(2)can_ Dfc: a set of 
candidate vertices in dynamic feature cliques;(3)Vmax: a vertex with max 

degree;(4)link_ Df: a set of adjacent vertices of Vmax;(5)not_link_ Df: a 

set of non-adjacent vertices of Vmax;(6)Vmax′: vertex in not_link_Df is 
regarded as Vmax′ successively, which is the same as Vmax;(7) second_ Df: 

a set of adjacent vertices of Vmax′. 

Clique (Df, can_ Dfc, DG) 
1: Vmax = Get_maxdegree_ Df (Df, DG) 

2: link_ Df, not_link_ Df =Get_link_or_unlink_Vmax (Df, DG) 

3: If (Exist_side (link_ Df))  
 Clique (link_ Df, can_ Dfc + Vmax, DG) 

Else  

δmaximal_dynamic_ clique + (can_ Dfc + Vmax + link_ Df) 
4: While (Exist_dynamic_feature (not_link_ Df, DG)) 

      Vmax′ = Get_and_delete_first_ Df (not_link_ Df, DG) 

      second_ Df = Get_link_Vmax′ (not_link_ Df, link_ Df, DG) 
      If (Exist_side(second_ Df, DG))  

Clique (second_ Df, can_ Dfc + Vmax′, DG) 

      Else  
δmaximal_dynamic_ clique + (can_ Dfc + Vmax′ + second_ Df) 

Algorithm 3: Verifying Prevalent Maximal Spatial Co-Location Pattern 

Input: (1)δmaximal_ Dfc: the set of maximal Dfc which is regarded as 

candidate prevalent maximal Dc;(2)min_prev: minimum prevalent 
threshold;(3)δsize 2_prevalent: size-2 prevalent Dc. 

Output: 𝛿prevalent_dynamic_maximal_Dc:the set of prevalent Dc. 

Variables: (1)clique: one maximal Dfc;(2)Df[n]: a set of dynamic features 

in clique;(3)δclique_size 2_prevalent: a set of dynamic table instances of size-2 
prevalent Dc which contains Df[0];(4)common_instance: common 

instances of Df[0] in size-2 prevalent Dc which contains Df[0];(5)δcci: 

validated dynamic table instance of Dfc;(6)δsize_k – 1: a set of size-k-1 
subpatterns of Dfc. 

While (not_empty(δmaximal_Dfc )) 

1: clique = Get_one_clique(δmaximal_Dfc ) 
2: Df [n] = Get_dynamic_feature(clique) 

3: for (i = 1; i < n; i + +)        

δclique_size2_prevalent=Get_dynamic_table_instance(Df[0],Df[i],δsize2_prevalent) 
4: common_instance = Get_common_instance_Df[0] (δclique_size2_prevalent) 

5: δcci=Get_clique_dynamic_instance(common_instance,δclique_size2_prevalent) 

6: for (i = 1; i < n - 1; i + +) 
    for (j = i + 1; j < n; j + +) 

       δcci = Verifying(δcci, δclique_dynamic_size 2, Df[i], Df[ j]) 

7:   If (prevalently(δcci))  

δprevalent_dynamic_maximal_Dc = 𝛿prevalent_dynamic_maximal_Dc + clique 

8:   Else if (size (clique) > 3) 

       δsize_k-1 = Split (clique) 

       δsize_k-1=Non_prevalent(δsize_k-1,δprevalent_dynamic_maximal_Dc,δmaximal_Dfc ) 
       δmaximal_Dfc =δmaximal_Dfc +

 δsize_k – 1 
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row-instance of Dc[i], and thus we obtain the dynamic table-

instance(Dc[i])={{Adead.1, Bnew.1, Cdead.2}}. 

Example 9. Supposing that a size-4 candidate Dc (i.e., 

Dc[i]={Adead,Bnew,Cdead,Dnew}) is not prevalent, we divide the 

Dc into size-3 candidate Dc (i.e., {Adead, Bnew, Cdead}, {Adead, 

Bnew, Dnew}, {Adead, Cdead, Dnew} and {Bnew, Cdead, Dnew}). If 

candidate pattern {Adead, Bnew, Cdead} already exists in the set 

of prevalent maximal Dc, then it is deleted from the set of 

subpatterns. We add the size-3 candidate patterns {Adead, Bnew, 

Dnew}, {Adead, Cdead, Dnew} and {Bnew, Cdead, Dnew}} to the set 

of candidate Dc. 

V. PRUNING STRATEGIES 

Theorem 1. For a dynamic feature Df[j] in the candidate 

prevalent maximal Dc[i], if DPR(Dc[i], Df[j])<min_prev, then 

Dc[i] is non-prevalent. 

Proof. From definition 7, DPI(Dc[i]) is the minimum value 

among dynamic participation ratios of all dynamic features 

in Dc[i]. Therefore, if DPR(Dc[i], Df[j]) <min_prev, then 

DPI(Dc[i])≤  DPR(Dc[i], Df[j]) ≤ min_prev, namely, Dc[i] is 

non-prevalent. 

Pruning Strategy 1. During verification of a candidate 

prevalent maximal Dc, if the dynamic participation ratio of 

any dynamic feature is smaller than min_prev, then we can 

stop verification and confirm that the candidate maximal Dc 

is nonprevalent. 

Example 10. During verification of the size-4 candidate 

prevalent maximal Dc (i.e., Dc[i]={Adead, Bnew, Cdead, Dnew}), 

we can calculate the dynamic participation ratio of any 

dynamic feature in the process of obtaining the common 

instances of Adead and verifying the dynamic row-instance of 

Dc[i]. If DPR(Dc[i], Adead) <min_prev, then we can stop 

verification and confirm that Dc[i] is non-prevalent. 

Theorem 2. Given a candidate prevalent maximal Dc[i] and 

its superpattern Dc[i]′ (i.e., Dc[i] ⊆Dc[i]′ and Dc[i]≠Dc[i]′), if 

Dc[i] is non-prevalent, then Dc[i]′ is also non-prevalent.  

Proof. Pattern Dc[i] is non-prevalent, and we know that a 

dynamic feature Df[j]∈Dc[i] exists and DPR(Dc[i],Df[j])< 

min_prev. Therefore, for its superpattern Dc[i]′ (i.e., Dc[i] 

⊆Dc[i]′ and Dc[i]≠Dc[i]′), the existence of inheritance leads to 

DPR(Dc[i]′, Df[i])≤DPR(Dc[i],Df[i])<min_prev, and thus Dc[i]′ 

is non-prevalent.  

Pruning Strategy 2. If multiple candidate prevalent 

maximal dynamic spatial co-location patterns have a 

common subpattern, we can first verify their common 

subpattern, and if the common subpattern is non-prevalent, 

all candidate prevalent maximal spatial co-location patterns 

are non-prevalent. 

Example 11. Given a candidate prevalent maximal 

dynamic spatial co-location patterns Dc[i]={Adead, Bnew, Cdead, 

Dnew} and Dc[j]={Adead, Bnew, Cdead, Edead}, we can first verify 

the common subpattern Dc[ij]={Adead, Bnew, Cdead}，and if Dc[ij] 

is non-prevalent, then both Dc[i] and Dc[j] are non-prevalent. 

If Dc[ij] is prevalent, then we verify the other portions of Dc[i] 

and Dc[j]. 

VI.  COMPLEXITY ANALYSIS 

To analyze the complexity, the upper limits of certain 

parameters will need to be determined. For the original 

datasets (i.e., n time points), the number of instances at each 

time point is no more than I. For the dynamic datasets (i.e., 

n-1 time points), the number of dynamic instances in each 

dynamic dataset is I', and there are 2*F dynamic features 

(new/dead). For any dynamic feature, its dynamic instances 

and time span constraint are no more than i and n, 

respectively. 

A. Time Complexity 

In Algorithm1, from step 1 to step 5, the corresponding 

complexities are O(I*I*(n-1))，O(I'2*(n-1)2)，O(I'2*(n-1)2/2)，
O(F*F) and O(F*F), and thus the time complexity of 

Algorithm1 is O(I2*n)+O(I'2*n2), where F is much less than 

I, so selected portions have been omitted. In Algorithm2, for 

any dynamic feature Df[j], the number of dynamic feature 

cliques that are related to Df[j] is no more than F, and there 

are 2*F dynamic features. Therefore, the number of dynamic 

feature cliques is no more than F*2*F. Moreover, from the 

literature [45], the time complexity of obtaining a maximum 

clique is O(1.442F), and thus the time complexity of 

Algorithm2 is O(1.442F*F2). In Algorithm3, the number of 

dynamic feature cliques is F*2*F (from Algorithm2), any 

dynamic feature clique is decomposed once (on average), 

and therefore, its number is no more than F*2*F*F after 

decomposition. Moreover, for one dynamic feature clique, 

the time complexity of verification is O(F2), so the time 

complexity of Algorithm3 is O(F5). Therefore, the time 

complexity of Algorithm MDC is O(I2*n) +O(I'2*n2) + 

O(1.442F*F2) +O(F5). 

B. Space Complexity 

The space complexity values of the storing instances, 

dynamic features, dynamic instances, adjacent instance set, 

dynamic table-instances, dynamic feature graph, dynamic 

feature cliques, common code and decomposed maximal 

cliques are O(I*n), O(2*F), O(I'*(n-1)), O(I'2*(n-1)2/2), 

O(I'2*(n-1)2/2), O(F*F), O(F*2*F), O(i) and O(F), 

respectively. Moreover, during searching of the dynamic 

feature clique, the space complexity is O(F2). Therefore, the 

space complexity of Algorithm MDC is O(I*n) +O(I'2*n2) 

+O(F*2*F), where I', I and F are much less than I, I'*n and 

I, respectively, and thus certain portions have been omitted. 

VII.  EXPERIMENTAL EVALUATION 

Various experiments over both real and synthetic datasets 

were conducted to verify the effectiveness of Algorithm 

MDC (i.e., we can find the dynamic relationships among 

spatial features), the representativeness of the prevalent 

maximal Dc, the efficiency of Algorithm MDC (i.e., 

comparison with the join-based algorithm), and the 

efficiency of the two pruning strategies. 

A. Experiments on Real Dataset 

In this section, we verify the effectiveness of the Algorithm 

MDC, namely, whether the Algorithm MDC can mine the 

dynamic relationships among spatial features (i.e., Dc) from 

the real datasets.  

The real dataset is sourced from the Wuhua district of 

Kunming, Yunnan province, China, in the most recent 30 

years. Specifically, Df= {“School”, “Park”, “Hospital”, 

“Hotel”, “Supermarket”, “KTV”, “Bank”}, where “Bank” 

includes bank business halls and ATMs, and “Hospital” 

includes clinics, pharmacies, etc. The life cycle of all 

dynamic feature is {30,30,15,9,6,6,6}, the number of 

new/dead instances is approximately 1500, and the time span 

is 3 years. If Dd is 1 km and min_prev is 0.4, we can obtain 

all prevalent Dc as shown in Table II, which can be derived 

from the prevalent maximal Dc. 
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Traditional methods can obtain the prevalent pattern 

{“School”, “Park”, “Hospital”, “Hotel”, “Supermarket”, 

“KTV”, “Bank”} at each time point (i.e., t0，t1，t2……tn) when 

Dd=1 km and min_prev=0.4, namely, all features are always 

coexistent at each time point, and the result is not meaningful. 

In contrast, from the experimental results of Algorithm MDC 

in Table II, we can obtain the following meaningful 

information:  

1) The instances of “Bank” increase (or decrease) with the 

increase (or decrease) of the instances of “School”, 

“Hotel”, “Hospital” and “KTV”, which means that 

Algorithm MDC can find the dynamic relationships 

among spatial features such as 

{water_hyacinthnew(increase), algaedead (decrease)}. 

2) Life service (e.g., “Hospital” and “Supermarket”) 

has a mutual exclusion relationship with entertainment 

(e.g., “KTV”), namely, the instances of “Hospital” and 

“Supermarket” increase (or decrease) with the decrease 

(or increase) of the instances of “KTV”, which 

represents the adjustment of an urban regional structure. 

This result means that Algorithm MDC can find the 

dynamic relationships among spatial features such as 

{Ganoderma_lucidumnew, maple_treedead}.  

3) The instances of “Hotel”, “KTV” and “Bank” always 

appear/disappear simultaneously, which indicates that 

they have strong symbiotic relationships, and they 

reflect the economic prosperity/recession in this region 

because they denote the level of regional economic 

development. This result means that Algorithm MDC 

can effectively avoid the wrong conclusion that the 

instances of two or more features increase/decrease (i.e., 

new/dead) in the same/approximate proportion, which 

has no effect on prevalent patterns. 

In conclusion, Algorithm MDC can obtain certain 

meaningful patterns such as {water_hyacinthnew(increase), 

algaedead(decrease)} and {Ganoderma_lucidumnew, 

maple_treedead}, and avoid the wrong conclusion that the 

instances of two or more features increase/decrease (i.e., 

new/dead) in the same/approximate proportion, which has 

no effect on prevalent patterns.” 

B. Experiments on Synthetic Datasets 

In this section, we examine the representation of the 

prevalent maximal Dc for all prevalent Dc, the efficiency of 

Algorithm MDC, and the performance of the pruning 

strategies. 

We randomly generate synthetic datasets, where the time 

span is 3, there are 11 time points, and the distribution area 

of spatial instances is 1000*1000. By default, the number of 

dynamic instances and dynamic features are 10000 and 10, 

respectively; the life cycle of all dynamic features is 

{9,3,30,15,27,24,30,3,24,18}; and min_prev and Dd are 0.1 

and 35, respectively.  
1) Change Trend of Maximal Dc and Dc 

We analyze the change trend of the number of size-k 

(k∈[1,10]) patterns (i.e., the pattern of each size) and the 

sum of the number of patterns from size-1 to size-k (i.e., sum 

of patterns), as shown in Fig. 4. 

Furthermore, the change trend of the number of maximal 

Dc and that of Dc are approximate to the blue line (the 

pattern of each size) and red line (i.e., sum of patterns), 

respectively. Suppose both of the size-k patterns and its low-

size patterns are prevalent, and the size-k+1 patterns are non-

prevalent. On the one hand, the subsets of the size-k patterns 

are prevalent and its superset are non-prevalent at this time, 

and by the definition of the maximal Dc, the size-k patterns 

are maximal prevalent patterns, which leads to the 

observation that the change trend of the number of prevalent 

maximal Dc is approximate to that of the size-k patterns (i.e., 

the pattern of each size (blue line)). On the other hand, all 

prevalent patterns include patterns from size-1 to size-k, 

which leads to the observation that the change trend of the 

number of prevalent Dc is approximate to the red line (i.e., 

sum of patterns). Finally, although the analysis of change 

trend starts from the supposed premise, its real change trend 

is actually approximate to the lines shown in Fig. 4. 

 

Fig. 4. Change trend of pattern with different size 
In Fig. 4, the blue line first increases and subsequently 

decreases, which represents the change trend of the number 

of prevalent maximal Dc mined by our method. The red line 

continues to increase, which represents the change trend of 

the number of prevalent Dc mined by traditional methods. 

First, with the increase of size-k, the gap between the number 

of prevalent maximal Dc and that of prevalent Dc becomes 

larger, which means that mining the prevalent maximal Dc 

is more efficient than mining the prevalent Dc. Moreover, 

with the increase of size-k, the number of prevalent Dc 

significantly increases, which leads to the observation that 

the execution time of the traditional method is unacceptable, 

    Anew, Bnew    Adead, Bdead Anew, Bdead 

size-2 {schoolnew, supermarketnew}  

{schoolnew, banknew} 
{schoolnew, KTVnew} 

{KTVnew, banknew} 

{hospitalnew, banknew} 
{hospitalnew, supermarketnew} 

{hotelnew, banknew} 

{hotelnew, KTVnew} 
{partnew, hotelnew} 

{schooldead, bankdead} 

{hospitaldead, supermarketdead} 
{hoteldead, bankdead} 

{hoteldead, KTVdead} 

{KTVdead, bankdead} 

{hoteldead, supermarketnew} 

{supermarketnew, KTVdead} 
{hospitalnew, KTVdead} 

{schoolnew, KTVdead} 

size-3 {hotelnew, KTVnew, banknew} {hoteldead, KTVdead, bankdead} {hoteldead, supermarketnew, KTVdead} 

TABLE II  

PREVALENT DYNAMIC SPATIAL CO-LOCATION PATTERNS  
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and thus we only display the complete trend (i.e., the 

prevalent maximal Dc first increases and subsequently 

decreases) in Fig. 5(a), which is treated as a sample example 

and partial trend (i.e., the prevalent maximal Dc increases) 

in other comparison experiments. 

2) Representativeness of Prevalent Maximal Dc 

We compare the number of prevalent maximal Dc with the 

number of prevalent Dc over the change in number of 

dynamic instances, Dd, min_prev, and number of dynamic 

features, as shown in Table III, Table IV, Table V and Table 

VI (Comparisons in Fig. 5 is more intuitive). With the 

increase in number of dynamic instances, the numbers of 

prevalent maximal Dc and prevalent Dc increase, which lead 

to the increase of size-k of the prevalent maximal Dc and 

prevalent Dc such that the number of prevalent maximal Dc 

first increases and subsequently decreases and that of the 

prevalent Dc continues to increase, as shown in Fig. 5(a) (or 

Table III) and Fig. 4. 

 
TABLE III 

REPRESENTATIVENESS OF VARIED NUMBER OF DYNAMIC INSTANCES 

dynamic instances 5k 6k 7k 8k 9k 10k 11l 

prevalent maximal Dc 99 131 154 191 162 142 99 

prevalent Dc 193 270 414 580 670 720 870 

 
TABLE IV 

REPRESENTATIVENESS OF VARIED Dd 

Dd 15 20 25 30 35 

prevalent maximal Dc 44 73 115 153 170 

prevalent Dc 44 101 214 376 583 

 
TABLE V 

REPRESENTATIVENESS OF VARIED min_prev 

min_prev  0.25 0.20 0.15 0.10 0.05 

prevalent maximal Dc 93 104 116 126 139 

prevalent Dc 306 376 460 583 767 

 
TABLE VI 

REPRESENTATIVENESS OF VARIED NUMBER OF DYNAMIC FEATURES 

dynamic features 9 10 11 12 13 

prevalent maximal Dc 67 152 316 658 1096 

prevalent Dc 416 752 1070 2059 3349 

 

Because the execution time of the traditional method is 

unacceptable, we only display a partial trend (i.e., the 

prevalent maximal Dc increases) in other comparison 

experiments (more detailed information is given in the 

previous section). From Fig. 5(b)(c)(d) (or Table IV, Table V 

and Table VI), on the one hand, the number of prevalent 

maximal Dc is far less than the number of all prevalent Dc, 

which means that mining the prevalent maximal Dc by our 

method is more efficient than mining the prevalent Dc by 

traditional methods. On the other hand, with the change of 

Dd, min_prev and number of dynamic features, the gap 

between the number of prevalent maximal Dc and that of 

prevalent Dc becomes larger, and the difference in efficiency 

between mining the prevalent maximal Dc by our method 

and mining the prevalent Dc by the traditional method is 

increasingly obvious. 

3) Efficiency of Algorithm MDC 

We compare the running times for mining the prevalent 

Dc by Algorithm MDC and the join-based algorithm [15,16] 

over the change in number of dynamic instances, Dd, 

min_prev and number of dynamic features, as shown in Fig. 

6. Because the number of prevalent Dc is small on the 

original parameters, the advantage of Algorithm MDC is not 

obvious compared with traditional method. Moreover, with 

the change in these parameters, the number of prevalent Dc 

increases, and the difference in efficiency between mining 

the prevalent maximal Dc by our method and mining the 

prevalent Dc by the traditional method is becomes more 

obvious. 

4) Performance of Pruning Strategies 

We compare the efficiency before and after pruning via 

pruning strategies 1 and 2, which can effectively accelerate 

the process of mining the prevalent maximal Dc by 

Algorithm MDC, as shown in Fig. 7. 

VIII. CONCLUSION 

Because the existing methods cannot mine the dynamic 

relationships among spatial features, and the number of 

prevalent patterns is too large, this paper proposes 1) the 

definition of a dynamic spatial co-location pattern, 2) the 

idea of mining the prevalent maximal patterns instead of all 

prevalent patterns (the former can be used to derive the 

latter), and 3) an algorithm for mining the maximal dynamic 

spatial co-location patterns (i.e., Algorithm MDC) based on 

the maximal dynamic feature clique. 

Mining the dynamic spatial co-location pattern can 

remedy the defects of the existing methods. The existing 

methods miss certain meaningful patterns, such as 

{Ganoderma_lucidumnew, maple_treedead} and 

{water_hyacinthnew(increase), algaedead(decrease)}, and 

obtain the wrong conclusion that the instances of two or 

more features increase/decrease (i.e., new/dead) in the 

same/approximate proportion, which has no effect on 

prevalent patterns. Therefore, we propose the dynamic 

spatial co-location pattern Dc, which can reflect the dynamic 

relationships among spatial features similar to the above 

three types of dynamic changes. 

Compared with mining the prevalent Dc, mining the 

prevalent maximal Dc that can derive all prevalent Dc is 

more efficient. The number of prevalent patterns is large, 

which makes the efficiency of the existing methods low. 

Therefore, we introduce the prevalent maximal pattern into 

the process of mining the prevalent Dc because the prevalent 

maximal patterns are compact representations of all 

(a) Number of dynamic instances (b) Dd                                   (c) Min_prev             (d) Number of dynamic features 

Fig. 5. Representativeness of prevalent maximal Dc 
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prevalent patterns and can be used to derive all prevalent 

patterns. The gap between the number of prevalent maximal 

Dc and that of the prevalent Dc is large, and thus the 

difference in efficiency between mining the prevalent 

maximal Dc by our method and mining the prevalent Dc by 

the traditional method is obvious. 

We propose an algorithm (i.e., Algorithm MDC) for 

mining the prevalent maximal Dc to avoid the many 

connections and computations in the existing methods. We 

convert the size-2 prevalent patterns into a dynamic feature 

graph (DG) by Algorithm1 such that the calculation and 

connection for the table instances are turned into the 

calculation and connection of the dynamic features. We 

obtain the set of maximal dynamic feature clique Dfc from 

the dynamic feature graph DG by Algorithm2. Finally, the 

maximal dynamic feature cliques as candidate maximal 

dynamic spatial co-location patterns are verified by 

Algorithm3, and we can obtain the prevalent maximal Dc. 

Moreover, we propose two pruning strategies to improve the 

efficiency of Algorithm MDC. 

The experimental results from a real dataset and a 

synthetic dataset show that our algorithm can effectively 

mine the prevalent maximal Dc, that the number of prevalent 

maximal Dc is much less than the number of all prevalent Dc 

and that the performance of Algorithm MDC is better than 

the join-based [15,16]. 

The biggest limitation of our method is that parameters are 

designated by domain experts, such as Dd, min_prev, 

time_span, which is the common problem of mining spatial 

co-location pattern and is also the future research directions: 

1) parameters might be learned from the dataset that can 

reduce the subjectively of the parameter designated by 

experts as much as possible; 2) methods for how to set a 

more reasonable time_span can be considered to maximize 

the value/meaning of the dynamic spatial co-location 

patterns; 3) more efficient approaches to mining the 

prevalent maximal dynamic spatial co-location patterns can 

be designed. Our study also opens the door to exploring the 

dynamic relationships among spatial features. 
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