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Correlated Parameters to Accurately Measure
Uncertainty in Deep Neural Networks

Konstantin Posch and Juergen Pilz

Abstract— In this article, a novel approach for training deep
neural networks using Bayesian techniques is presented. The
Bayesian methodology allows for an easy evaluation of model
uncertainty and, additionally, is robust to overfitting. These
are commonly the two main problems classical, i.e., non-
Bayesian architectures have to struggle with. The proposed
approach applies variational inference in order to approximate
the intractable posterior distribution. In particular, the varia-
tional distribution is defined as the product of multiple multivari-
ate normal distributions with tridiagonal covariance matrices.
Every single normal distribution belongs either to the weights
or to the biases corresponding to one network layer. The
layerwise a posteriori variances are defined based on the cor-
responding expectation values, and furthermore, the correlations
are assumed to be identical. Therefore, only a few additional
parameters need to be optimized compared with non-Bayesian
settings. The performance of the new approach is evaluated and
compared with other recently developed Bayesian methods. Basis
of the performance evaluations are the popular benchmark data
sets MNIST and CIFAR-10. Among the considered approaches,
the proposed one shows the best predictive accuracy. Moreover,
extensive evaluations of the provided prediction uncertainty
information indicate that the new approach often yields more
useful uncertainty estimates than the comparison methods.

Index Terms— Bayesian statistics, convolutional neural net-
works (CNNs), deep learning, model uncertainty, parameter
correlations, variational inference.

I. INTRODUCTION

NOWADAYS, due to excellent results obtained in many
fields of applied machine learning, including computer

vision and natural language processing [1], the popularity
of deep learning is increasing rapidly. One of the reasons
can surely be found in the fact that Krizhevsky et al. [2]
outperformed the competitors in the ImageNet Large Scale
Visual Recognition Challenge 2012 by proposing a convolu-
tional neural network (CNN) named AlexNet. While AlexNet
includes eight layers, more recent architectures for image
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classification go even deeper [3], [4]. It is well known
that a feedforward network with merely one hidden layer
can approximate a broad class of functions arbitrarily well.
A mathematical more profound formulation of this state-
ment, i.e., the so-called universal approximation theorem, was
proven by Hornik et al. [5]. However, Liang and Srikant [6]
have proven that deep nets often require exponential fewer
parameters than shallow ones in order to achieve a given
degree of approximation. Possible applications of deep nets
for computer vision include medical imaging, psychology,
automotive industry, finance, and life sciences [7]–[12].

Deep learning has a large number of real-world use cases.
Nevertheless, there are two restrictions that still limit its areas
of application. The first restriction is that deep networks
require a large amount of training data; otherwise, they are
prone to overfitting. The reason for this is the huge amount of
parameters neural nets hold. Although deep nets often require
exponential fewer parameters than shallow ones in order to
approximate a given function well, the remaining number is
still very high. Thus, in many potential fields of application,
where such an amount cannot be provided, deep learning is
of limited use or often even cannot be used. To counteract
this problem, commonly diverse regularization techniques are
applied. Besides classical approaches, such as the penalization
of the L2-norm or the L1-norm, stochastic regularization
methods gain increasing attention. For instance, dropout [13]
and dropconnect [14] count to these stochastic techniques. The
first one randomly sets the activation of nonoutput neurons to
zero during network training, and the second one randomly
sets network weights to zero. While dropout is classically
interpreted as an efficient way of performing model aver-
aging with neural networks, Gal and Ghahramani [15] and
Gal [16] as well as Kingma et al. [17] recently showed
that it can also be considered as an application of Bayesian
statistics. The second restriction classical deep networks strug-
gle with is that model uncertainty cannot be measured.
Considering that the model uncertainty can directly be trans-
lated to prediction uncertainty, this is a critical aspect for
many applications. Especially, in the medical field or for self-
driving vehicles, it is essential that the prediction uncertainty
can be determined [18]. In these areas of application, a model
that predicts, on average, quite well is not good enough. One
has to know if the model is certain in its predictions or not,
such that in the case of high uncertainty, a human can decide
instead of the machine. In [19], a literature survey on neural
network-based methods for uncertainty quantification using
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prediction intervals is given. Please be aware of the fact that
the probabilities obtained when running a conventional deep
net for a classification task should not be interpreted as the
confidence of the model. As a matter of fact, a neural net can
guess randomly while returning a high-class probability [20].

The consideration of uncertainties in models for real-life
problems is receiving increasing attention and, by far, not
only of interest in deep learning. For instance, in game theory,
taking into account uncertainty is quite common. In this field,
studies often use fuzzy and vague sets in their discussions of
the game problems [21]–[23].

A possible strategy to overcome the restrictions classical
deep learning has to deal with is applying Bayesian statistics.
In so-called Bayesian deep learning, the network parameters
are treated as random variables and are not considered to be
fixed deterministic values. In particular, an a priori distribu-
tion is assigned to them, and updating the prior knowledge
after observing training data results in the so-called posterior
distribution. The uncertainty regarding the network parameters
can be directly translated in uncertainty about predictions. Fur-
thermore, Bayesian methods are robust to overfitting because
of the built-in regularization due to the prior. It should be
mentioned that besides the Bayesian methodology, there are
also some other notable approaches to measure prediction
uncertainty. In particular, ensemble learning and adversarial
training gain increasing attention [24], [25].

Buntine and Weigend [26] were among the first who pre-
sented approximate Bayesian methods for neural nets. Two
years later, Hinton and van Camp [27] proposed the first
variational methods. Variational methods try to approximate
the true posterior distribution with another parametric distribu-
tion, the so-called variational distribution. The approximation
takes place due to an optimization of the parameters of the
variational distribution. They followed the idea that there
should be much less information in the weights than in the
output vectors of the training cases in order to allow for a good
generalization of neural networks. Denker and Lecun [28]
as well as MacKay [29] used the Laplace approximation
in order to investigate the posterior distributions of neural
nets. Neal [30] proposed and investigated hybrid Monte Carlo
training for neural networks as a less limited alternative to the
Laplace approximation. However, the approaches mentioned
up until now are often not scalable for modern applications
that go along with highly parameterized networks. Graves [31]
was the first to show how variational inference can be applied
to modern deep neural networks due to the application of
Monte Carlo integration. He used a Gaussian distribution
with a diagonal covariance matrix as variational distribution.
Blundell et al. [32] extended and improved the work of
Graves [31] and also used a diagonal Gaussian to approximate
the posterior. As mentioned earlier, Gal and Ghahramani [15]
and Gal [16] as well as Kingma et al. [17] showed that using
the regularization technique dropout can also be considered as
variational inference.

The independence assumptions going along with variational
inference via diagonal Gaussians (complete independence of
network parameters) or also going along with variational
inference according to dropout (independence within neurons)

are restrictive. Permitting an exchange of information between
different parts of neural network architectures should lead to
more accurate uncertainty estimates. Louizos and Welling [33]
used a distribution over random matrices in order to define the
variational distribution. Thus, they could reduce the amount
of variance-related parameters that have to be estimated and
further allow for information sharing between the network
weights. Note that in the diagonal Gaussian approach, assign-
ing one variance term to each random weight and one variance
term to each random bias doubles the number of parame-
ters to optimize in comparison to frequentist deep learning.
Consequently, network training becomes more complicated
and computationally expensive [20].

It should be mentioned that variational Bayes is just a
specific case of local α-divergence minimization. According
to Amari [34], the α-divergence between two densities
p(w) and q(w) is given by Dα(p(w)||q(w)) =
1/(α(1 − α))

�
1 − �

p(w)αq(w)(1−α) dw
�
. Thus, the α-

divergence converges for α → 0 to the KL divergence [35],
which is typically used in variational Bayes. It has been
shown [36], [37] that an optimal choice of α is task specific
and that nonstandard settings, i.e., settings with α �= 0 can
lead to better prediction results and uncertainty estimates.

However, in this article, we do not propose an optimal
choice of α. Rather, for the classical case α = 0, we propose
a good and easy to interpret variational distribution. For this
task, recent work from Posch et al. [38] is extended. They
used a product of Gaussian distributions with specific diagonal
covariance matrices in order to define the variational distribu-
tion. In particular, the a posteriori uncertainty of the network
parameters is represented per network layer and depending on
the estimated parameter expectation values. Therefore, only
a few additional parameters have to be optimized compared
with classical deep learning, and the parameter uncertainty
itself can easily be analyzed per network layer. We extend this
distribution by allowing network parameters to be correlated
with each other. In particular, the diagonal covariance matrices
are replaced by tridiagonal ones. Each tridiagonal matrix is
defined in such a way that the correlations between neighbored
parameters are identical. This way of treating network layers
as units in terms of dependence allows for easy analysis of
the dependence between network parameters. Moreover, again
only a few additional parameters compared with classical
deep learning need to be optimized, which guarantees that
the difficulty of the network optimization does not increase
significantly. Note that our extension allows for an exchange
of information between different parts of the network and,
therefore, should lead to more reliable uncertainty estimates.
We have evaluated our approach on the basis of the popular
benchmark data sets MNIST [39] and CIFAR-10 [40]. The
results can be found in Section IV.

Finally, we want to mention that prediction uncertainty
can be decomposed into two types of uncertainty, namely,
epistemic and aleatoric uncertainties. Epistemic uncertainty
accounts for uncertainty in model parameters and, thus, is also
called model uncertainty as it has been done up until now.
This type of uncertainty is covered by the variational posterior
distribution. Aleatoric uncertainty, on the other hand, captures
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noise inherent in the observations (for instance, sensor noise).
This type of uncertainty is covered by the distribution used
to define the likelihood function. Clearly, an accurate method
to measure prediction uncertainty would use sophisticated
distributions for the epistemic and for the aleatoric uncertainty.
Nevertheless, in this article, we restrict ourselves to propose
a good and easy to estimate variational distribution. We use
the likelihood function commonly considered in deep learning
approaches. More flexible alternatives are proposed in [41].
An extension of our approach including nonstandard likelihood
functions will be considered in future work.

II. VARIATIONAL INFERENCE FOR DEEP LEARNING

In this section, based on the previous work [20], [27], [31],
[38], [42], we briefly discuss how variational inference can be
applied in deep learning. Since we are particularly interested
in image classification, the focus will be on networks designed
for classification tasks. Note that the methodology also holds
for regression models after some slight modifications.

Let W denote the random vector covering all parameters
(weights and biases) of a given neural net f . Furthermore,
let p(w) denote the density used to define a priori knowledge
regarding W. According to the Bayesian theorem, the posterior
distribution of W is given by the density

p(w|y, X) = p(y|w, X)p(w)�
p(y|w, X)p(w) dw

(1)

where X = {x1, . . . , xβ} denotes a set of training examples
and y = (y1, . . . , yβ)T holds the corresponding class labels.
Note that the probability p(y|w, X) is given by the product�β

i=1 f(xi; w)yi in accordance with the classical assumptions
on stochastic independence and modeling in deep learning for
classification. The integral in the abovementioned represen-
tation of p(w|y, X) is commonly intractable due to its high
dimension β. Variational inference aims at approximating the
posterior with another parametric distribution, the so-called
variational distribution Qφ(w). To this end, the so-called
variational parameters φ are optimized by minimizing the
Kullback–Leibler divergence (KL divergence)

DK L(qφ(w)||p(w|y, X)) = Eqφ(w)

�
ln

qφ(w)

p(w|y, X)

�
(2)

between the variational distribution and the posterior.
Although the KL divergence is no formal distance mea-
sure (does not satisfy some of the requested axioms), it is
a common choice to measure the similarity of probability
distributions.

Since the posterior distribution is unknown, the diver-
gence DK L(qφ(w)||p(w|y, X)) cannot be minimized directly.
Anyway, the minimization of DK L(qφ(w)||p(w|y, X)) is
equivalent to the minimization of the so-called negative log
evidence lower bound

LV I = −Eqφ(w)

�
ln p(y|w, X)

	+ DK L(qφ(w)||p(w))

= −
β


i=1

�
Eqφ(w)

�
ln f(xi; w)yi

	�+DK L(qφ(w)||p(w)).

(3)

Thus, the optimization problem reduces to the minimization
of the sum of the expected negative log likelihood and the
KL divergence between the variational distribution and the
prior with respect to φ. Inspired by stochastic gradient descent,
it is not unusual to approximate the expected values in LV I

via Monte Carlo integration with one sample during network
training. Note that the resampling in each training iteration
guarantees that a sufficient amount of samples is drawn
overall. Commonly, minibatch gradient descent is used for
optimization in deep learning. To take account of the resulting
reduction of the number of training examples used in each
iteration of the optimization, the objective function has to be
rescaled. Thus, in the kth iteration, the function to minimize
is given by

LV I = − 1

m

m

i=1

�
ln f(x̃i; wk) ỹi ]

�+ 1

β
DK L(qφ(w)||p(w)) (4)

where wk denotes a sample from qφ(w), m denotes the mini-
batch size, and x̃1, . . . , x̃m, ỹ1, . . . , ỹm denote the minibatch
itself.

Summing up, optimizing a Bayesian neural net is quite sim-
ilar to the optimization of a classical one. However, contrary
to frequentist deep learning, where it is common practice to
penalize the Euclidean norm of the network parameters for
model regularization, Bayesian deep learning penalizes devia-
tions of the variational distribution from the prior. In principle,
the same loss function L (cross-entropy loss) is minimized but
with the crucial difference that network parameters have to be
sampled since they are random.

In Bayesian deep learning, predictions are based on the
posterior predictive distribution, i.e., the distribution of a class
label y∗ for a given example x∗ conditioned on the observed
data y, X. The distribution can be approximated via Monte
Carlo integration

p(y∗|x∗, y, X) =
�

p(y∗|w, x∗)p(w|y, X) dw

≈
�

p(y∗|w, x∗)qφ(w) dw

≈ 1

N

N

i=1

f(x∗; wi)y∗ (5)

where w1, . . . , wN denote samples from qφ(w). Therefore,
the class of an object x∗ is predicted by computing multiple
network outputs with parameters sampled from the variational
distribution. Averaging the output vectors results in an estimate
of the posterior predictive distribution, such that the a poste-
riori most probable class finally serves as prediction.

The a posteriori uncertainty in the network parameters
W directly translates to uncertainty about the random net-
work output f(x∗; W) and, thus, the posterior probability
of an object x∗ belonging to class y∗. While the posterior
predictive distribution incorporates parameter uncertainty by
averaging over the respective posterior of the network para-
meters, credible intervals for the probability that an instance
corresponds to a given class can be estimated. Therefore, at
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first, multiple samples w1, . . . , wN are drawn from the vari-
ational distribution Qφ(w). Then, the corresponding network
outputs f(x∗; w1)y∗, . . . , f(x∗; wN )y∗ are determined. Finally,
the empirical (1 − α)/2 and (1 + α)/2 quantiles of these
outputs provide an estimate of the α credible interval for the
probability p(y∗|x∗, y, X).

III. METHODOLOGY

In this section, we describe our approach. At first, we give
a formal definition of the variational distribution, we use to
approximate the posterior, and, additionally, we propose a nor-
mal prior. Moreover, we report the derivatives of the approx-
imation LV I of the negative log evidence lower bound (see
Section II) with respect to the variational parameters, i.e., the
learnable parameters. Finally, we present the pseudocode that
is the basis of our implementation of the proposed method.

A. Variational Distribution and Prior

Let W j = (W j1, . . . , W j K j )
T denote the random weights

of layer j ( j = 1, . . . , d). Furthermore, let B j =
(B j1, . . . , B jk j )

T denote the corresponding random bias terms.
The integers K j and k j denote the number of weights and the
number of biases in layer j , respectively.

As mentioned in Section I, we define the variational distri-
bution as a product of multivariate normal distributions with
tridiagonal covariance matrices. Applying variational inference
to Bayesian deep learning presupposes that samples from the
variational distribution can be drawn during network training
as well as at the stage in which new samples are used for
prediction. Especially, at the training phase, it is essential that
the random sampling can be reduced to the sampling from
a (multivariate) standard normal distribution and appropriate
affine-linear transformation of the drawn samples based on the
learnable parameters. A direct sampling from the nontrivial
normal distributions would mask the variational parameters
and, thus, make it impossible to optimize them by gradi-
ent descent. Provided that a covariance matrix is positive
definite (in general, covariance matrices are only positive
semidefinite), there exists a unique Cholesky decomposition
of the matrix that can be used for this task. Note that for
each real-valued symmetric positive-definite square matrix,
a unique decomposition (Cholesky decomposition) of the form
� = LLT exists, where L is a lower triangular matrix with
real and positive diagonal entries. Thus, we are interested
in symmetric tridiagonal matrices that always stay positive
definite no matter how the corresponding learnable parameters
are adjusted during network training. The first thing required
is a criterion for the positive definiteness of for our purposes
appropriate tridiagonal matrices. Andelić and Fonseca [43]
gave the following sufficient condition for positive definiteness
of tridiagonal matrices: Let

� =

⎛⎜⎜⎜⎜⎜⎜⎝

a1 c1

c1 a2 c2

c2 a3
. . .

. . .
. . . cn−1

cn−1 an

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R
n×n

a symmetric tridiagonal matrix with positive diagonal
entries. If

c2
i <

1

4
ai ai+1

1

cos2
�

π
n+1

� , i = 1, . . . , n − 1 (6)

then � is positive definite. Consider now a matrix � ∈ R
n×n

defined as follows:
� := LLT

=

⎛⎜⎜⎜⎜⎜⎝
a1

c1 a2

c2 a3

. . .
. . .

cn−1 an

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

a1 c1

a2 c2

a3
. . .

. . . cn−1

an

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a2
1 c1a1

c1a1 c2
1 + a2

2 c2a2

c2a2 c2
2 + a2

3 c3a3
...

cn−2an−2 c2
n−2 + a2

n−1 cn−1an−1

cn−1an−1 c2
n−1 + a2

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(7)

If � satisfies condition (6) and L has positive diagonal
entries, the matrix L defines the Cholesky decomposition
of �, and furthermore, � is a valid covariance matrix
since every real, symmetric, and positive semidefinite square
matrix defines a valid covariance matrix. As in the work of
Posch et al. [38], we define the variances as multiples of
the corresponding squared expectation values, denoted by
m2

1, . . . , m2
n

c2
i−1 + a2

i := τ 2m2
i , i = 1, . . . , n (8)

c0 := 0 (9)

where τ ∈ R
+ and m1, . . . , mn ∈ R \ {0}. Defining the

variances proportional to the squared expectation values
allows for a useful specification of them. This specification
requires, besides the expectation values, only one additional
variational parameter. Moreover, we want the correlations to
be identical, which leads to the following covariances ci ai :

ρ = ci ai�
τ 2m2

i

�
τ 2m2

i+1

= ci ai

τ 2|mi ||mi+1| (10)

⇔ ci ai = ρτ 2|mi ||mi+1| (11)

for i = 1, . . . , n −1. By rearranging (8) and (11), one obtains
a recursive formula for the elements of the matrix L

(11) ⇔ ai = ρτ 2|mi ||mi+1|
ci

(12)

(8) ⇔ c2
i−1 + ρ2τ 4m2

i m2
i+1

c2
i

= τ 2m2
i (13)

⇔ c2
i = ρ2τ 4m2

i m2
i+1

τ 2m2
i − c2

i−1

. (14)

Note that (14), for instance, is satisfied for

ci = ρτ 2mi mi+1�
τ 2m2

i − c2
i−1

. (15)
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By defining ci this way, one does not end up by the Cholesky
decomposition that assumes the diagonal elements ai of L to
be positive and, thus by (12), also assumes the product ρci

to be positive. Replacing the product mi mi+1 by its absolute
value in (15) would result in the Cholesky decomposition but
is not necessary for our purposes and, therefore, not done.
Thus, the elements of L are recursively defined as

c0 := 0 (16)

ci := ρτ 2mi mi+1�
τ 2m2

i − c2
i−1

, i = 1, . . . , n − 1 (17)

ai := ρτ 2|mi ||mi+1|
ci

, i = 1, . . . , n − 1 (18)

an :=
�

τ 2m2
n − c2

n−1. (19)

Note that the matrix � defined by (16)–(19) satisfies
condition (6) iff

(ρτ 2|mi ||mi+1|)2

<
1

4
τ 2m2

i τ
2m2

i+1
1

cos2
�

π
n+1

� (20)

⇔ ρ2 <
1

4

1

cos2
�

π
n+1

� (21)

⇔ ρ ∈
⎛⎝−1

2

1�
cos2

�
π

n+1

� , 1

2

1�
cos2

�
π

n+1

�
⎞⎠

� �� �
≈

for large n
(− 1

2 , 1
2 )

. (22)

Thus, provided that condition (22) holds, there exists a unique
Cholesky decomposition of � which again guarantees that
the ci according to (17) are well defined and, furthermore,
also that an , according to (19), is well defined.

Using the abovementioned considerations, the variational
distribution can finally be defined as follows. In the first step,
lower bidiagonal matrices L j are specified for j = 1, . . . , d

L j :=

⎛⎜⎜⎜⎜⎜⎝
a j1

c j1 a j2

c j2 a j3

. . .
. . .

c j,K j −1 a j K j

⎞⎟⎟⎟⎟⎟⎠ (23)

c j0 := 0 (24)

c ji := ρ jτ
2
j m jim j,i+1�

τ 2
j m2

j i − c2
j,i−1

, i = 1, . . . , K j − 1 (25)

a ji := ρ jτ
2
j |m ji ||m j,i+1|

c ji
, i = 1, . . . , K j − 1 (26)

a j K j :=
�

τ 2
j m2

j K j
− c2

j,K j −1. (27)

The variational distribution of the weights of the j th layer is
then defined as a multivariate normal distribution

Qφ j
(w j) = N (w j ; m j ,� j ) (28)

with expected value m j and a tridiagonal covariance matrix
� j = L j LT

j . According to the abovementioned consider-
ations, the variances of the normal distribution are given

by τ 2
j m2

j i (i = 1, . . . , K j ), and the covariances are given by
ρ jτ

2
j |m ji ||m j,i+1| (i = 1, . . . , K j − 1). This again implies

that the correlations are all the same and given by the
parameter ρ j . Since the parameter τ j regulates the variances
of the distribution, it should not take negative values during
optimization. To guarantee this, it is reparameterized with help
of the softplus function

τ j = ln(1 + exp(δ j)) > 0. (29)

Moreover, the parameter ρ j should lie in the interval
(−1/2, 1/2) to ensure that the matrix � j is positive definite.
In deep learning, dimensions are commonly high, such that
the approximation in (22) can be considered as valid. The
following reparameterization ensures that the desired property
holds:

ρ j = 1

1 + exp(−γ j)
− 1

2
∈
�

−1

2
,

1

2

�
. (30)

In addition, the diagonal entries of � j have to be nonzero
to ensure positive definiteness, which again implies that each
component of m j has to be nonzero. We decide to set values
that are not significantly different from zero to small random
numbers in our implementation instead of introducing another
reparameterization. Finally, m j ∈ R

K j \ {0}, δ j ∈ R, and
γ j ∈ R can be summarized as the variational parameters φ j

corresponding to the weights of the j th network layer.
One can easily sample from a random vector W j belonging

to this distribution using samples from a standard normal
distribution N (0, 1) since it can be written as

W j = m j + L j X j with X j ∼ N (0K j , IK j ). (31)

Note that (31) can also be written as

W j1 = m j1 + a j1 X j1 (32)
...

W ji = m ji + c j,i−1 X j,i−1 + a ji X ji (33)
...

W j K j = m j K j + c j,K j−1 X j,K j −1 + a j K j X j K j . (34)

The layerwise variational distributions of the bias terms
denoted by qφbj

(b j ) are defined completely analogous to
those of the weights. Assuming independence of the layers as
well as independence between weights and biases, the overall
variational distribution is given by

qφ(w) =
d�

j=1

qφ j
(w j)qφbj

(b j ) (35)

where φ j = {m j , δ j , γ j},φbj = {mbj , δbj , γbj }, qφ j
(w j)

denotes the density of N (m j ,� j ), qφbj
(b j ) denotes the density

of N (mbj ,�bj ), and w is a vector, including all weights and
all biases.

We define the a priori distribution completely analogous to
Posch et al. [38]. In particular, its density is given by

p(w) =
d�

j=1

p(w j )p(b j ) (36)

where p(w j ) denotes the density of N(μ j , ζ
2
j IK j ) and p(b j )

denotes the density of N(μbj , ζ
2
bj Ik j ).
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B. Kullback–Leibler Divergence

The fact that the variational distribution as well as the
prior factorize simplify the computation of the KL divergence.
Indeed, the overall divergence is given by the sum of the
layerwise divergences (for further details, refer to [38])

DK L(qφ(w)||p(w)) =
d


j=1

�
DK L(qφ j

(w j )||p(w j))
�

+
d


j=1

�
DK L(qφbj

(b j )||p(b j))
�
. (37)

Thus, computing the overall divergence can be reduced to
compute DK L(qφ j

(w j)||p(w j)) for fixed j ∈ {1, . . . , K j }
since the remaining divergences compute completely analo-
gously (only the indices differ). According to Hershey and
Olsen [44], the KL divergence between two p-dimensional
normal distributions, given by H (x) = N (x; μh,�h) and
G(x) = N (x; μg,�g), computes as

DK L(H ||G) = 1

2

�
ln

|�g|
|�h | + tr(�−1

g �h) − p

+ (μh − μg)
T �−1

g (μh − μg)

�
. (38)

Thus, the determinant of the covariance matrix � j is required
for the computation of the KL divergence DK L(qφ j

(w j )||
p(w j)). Using basic properties of determinants |� j | computes
as follows for fixed j :

|� j | = ��L j LT
j

�� = |L j |
��LT

j

�� = |L|2 =
K j�

i=1

a2
j i . (39)

Using (38) and (39) DK L(qφ j
(w j)||p(w j)) then reads

DK L(qφ j
(w j)||p(w j))

= 1

2

⎡⎣ln

���ζ 2
j IK j

���
|� j | + tr

�
(ζ 2

j IK j )
−1� j

�
− K j + (m j − μ j)

T
�
ζ 2

j IK j

�−1
(m j − μ j)

"

= 1

2

⎡⎣− ln

⎛⎝ K j�
i=1

a2
j i

⎞⎠+ τ 2
j

ζ 2
j

||m j ||22 + 1

ζ 2
j

||m j − μ j ||22 + c

⎤⎦
= 1

2

⎡⎣−
K j


i=1

�
ln a2

j i

�+ τ 2
j

ζ 2
j

||m j ||22 + 1

ζ 2
j

||m j − μ j ||22 + c

⎤⎦
(40)

where c always denotes an additive constant.

C. Derivatives

Commonly, neural networks are optimized via minibatch
gradient descent. Thus, in order to train a neural net f(·, w),
according to our approach, the partial derivatives of the
approximation LV I of the negative log evidence lower bound
described in Section II with respect to the variational para-
meters φ j = {m j , δ j , γ j },φbj = {mbj , δbj , γbj } are required.
In particular, the partial derivatives of the loss function L

typically used in deep learning and the partial derivatives of
the KL divergence between prior and variational distribution
have to be computed. Note that the loss function equals the
negative log likelihood of the data and is given by the cross-
entropy loss in the case of classification and by the Euclidean
loss in the case of regression. Thus, L depends on the
network f itself, with parameters sampled from the variational
distribution qφ(w). With the help of the multivariate chain rule,
the required partial derivatives of L can be computed based on
the classical derivatives used in non-Bayesian deep learning

∂L

∂m j
=
�

∂w j

∂m j

�T ∂L

∂w j
⇒ ∂L

∂m ji
=



l

∂L

∂w j l

∂w jl

∂m ji
(41)

∂L

∂δ j
=
�

∂w j

∂δ j

�T ∂L

∂w j
⇒ ∂L

∂δ j
=



l

∂L

∂w jl

∂w jl

∂δ j
(42)

∂L

∂γ j
=
�

∂w j

∂γ j

�T ∂L

∂w j
⇒ ∂L

∂γ j
=



l

∂L

∂w jl

∂w jl

∂γ j
. (43)

Equations (41)–(43) only deal with the derivatives of L with
respect to the variational parameters belonging to the network
weights. Completely analogous equations hold for the bias
terms. In the sequel, we focus on the derivatives of the weights
since the derivatives for the biases are obviously of the same
form. Note that for a given sample w from the variational
distribution, the layerwise derivatives (∂L/∂w j), (∂L/∂b j )
( j = 1, . . . , d) are computed as in non-Bayesian deep learn-
ing. Thus, the problem of finding closed form expressions for
the required derivatives of L reduces to the problem of finding
these expressions for the w j ’s and the b j ’s. Taking account
of (32)–(34), the needed derivatives of the weights can be
expressed in terms of the corresponding derivatives of the c ji

and the a ji

∂w j i

∂m jk
=

⎧⎪⎨⎪⎩
∂c j,i−1

∂m jk
x j,i−1 + ∂a ji

∂m jk
x ji , k �= i

1 + ∂c j,i−1

∂m ji
x j,i−1 + ∂a ji

∂m ji
x ji, k = i

(44)

∂w j i

∂δ j
= ∂c j,i−1

∂δ j
x j,i−1 + ∂a ji

∂δ j
x j i (45)

∂w j i

∂γ j
= ∂c j,i−1

∂γ j
x j,i−1 + ∂a ji

∂γ j
x j i (46)

where the index j lies in the set {1, . . . , d}, while for a given j ,
the indices i and k lie in the set {1, . . . , K j }. The derivatives
of the c ji (i = 1, . . . , K j − 1) with respect to the variational
parameters are given by

∂c ji

∂m jk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
ρ jτ

2
j m ji m j,i+1

�
u− 3

2 c j,i−1
∂c j,i−1

∂m jk
, k < i

v
�√

u − m ji u− 1
2

)
τ 2

j m ji − c j,i−1
∂c j,i−1

m j i

*�
u

, k = i

ρ jτ
2
j m ji√
u

, k = i + 1

0, k > i + 1

(47)
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∂c ji

∂δ j

= wδ

vm ji

�
2
√

u − τ j u− 1
2

)
τ j m2

j i − c j,i−1
∂c j,i−1

∂τ j

*�
τ j u

(48)

∂c ji

∂γ j

= wγ

τ 2
j m ji m j,i+1

�√
u − ρ j u− 1

2

)
−c j,i−1

∂c j,i−1

∂ρ j

*�
u

(49)

where u := τ 2
j m2

j i − c2
j,i−1, v := ρ jτ

2
j m j,i+1, wδ :=

exp(δ j)/[1 + exp(δ j)], and wγ := exp(−γ j)/[1 + exp(−γ j)]2,
and obviously, each derivative of c j0 equals zero. Moreover,
the derivatives of the a ji (i = 1, . . . , K j − 1) with respect to
the variational parameters are given by

∂a ji

∂m jk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�ρ jτ
2
j |m ji ||m j,i+1|

�
c−2

j i

∂c ji

∂m jk
, k < i

ρ jτ
2
j |m j,i+1|

�
sign(m ji)c ji − |m ji | ∂c j i

∂m j i

�
c2

j i

, k = i

ρ jτ
2
j |m j,i |

�
sign(m j,i+1)c ji − |m j,i+1| ∂c j i

∂m j,i+1

�
c2

j i

, k = i +1

0, k > i +1
(50)

∂a ji

∂δ j

= wδ

ρ jτ j |m ji ||m j,i+1|
�
2c ji − τ j

∂c j i

∂τ j

�
c2

j i

(51)

∂a ji

∂γ j

= wγ

τ 2
j |m ji ||m j,i+1|

�
c ji − ρ j

∂c j i

∂ρ j

�
c2

j i

. (52)

In addition, the derivatives of a j K j with respect to the
variational parameters are given by

∂a j K j

∂m jk
=

⎧⎪⎪⎨⎪⎪⎩
−y− 1

2 c j,K j−1
∂c j,K j−1

∂m jk
, k < K j

y− 1
2

�
τ 2

j m j K j − c j,K j−1
∂c j,K j−1

∂m j K j

�
, k = K j

(53)
∂a j K j

∂δ j
= wδ y− 1

2

�
τ j m

2
j K j

− c j,K j −1
∂c j,K j−1

∂τ j

�
(54)

∂a j K j

∂γ j
= wγ y− 1

2

�
−c j,K j−1

∂c j,K j −1

∂ρ j

�
(55)

where y := τ 2
j m2

j K j
− c2

j,K j−1.
Finally, the partial derivatives of the KL divergence

DK L(qφ(w)||p(w)) (abbreviated with DK L ) with respect to
the variational parameters are given by

∂

∂m jk
DK L = −

K j

i=1

�
1

a ji

∂a ji

∂m jk

�
+ τ 2

j

ζ 2
j

m jk + 1

ζ 2
j

(m jk − μ jk)

(56)

∂

∂δ j
DK L = −

K j

i=1

�
1

a ji

∂a ji

∂δ j

�
+ exp(δ j)

1+exp(δ j )

τ j

ζ 2
j

||m j ||22 (57)

∂

∂γ j
DK L = −

K j

i=1

�
1

a ji

∂a ji

∂γ j

�
. (58)

For reasons of brevity, the calculation process corresponding
to the derivatives presented is not reported.

D. Implementation and Pseudocode

We have implemented the proposed approach by modi-
fying and extending the popular open-source deep learning
framework Caffe (see [45]). In particular, our implementation
includes a Bayesian version of the classical inner product
layer as well as the convolutional layer. This allows for
the training of (deep) multilayer perceptrons (MLPs) and,
moreover, CNNs according to our approach. Up until now,
we have not parallelized our code such that it can run on GPU.
This is left for future research and will enable the training of
state-of-the-art CNNs for image classification in a reasonable
amount of time. The pseudocode that was the starting point
of our implementation is presented in the following. The
code shows how a classical, i.e., frequentist, inner product,
or convolutional layer can be extended in order to fit with the
methodology presented.

Besides parameters, for which obviously initial values are
required, the presented pseudocode also asks for the two
additional parameters ν and κ . Empirically, we discovered
that in practical applications, it can be helpful to use another
penalization strength of the KL divergence than the fixed one
proposed in Section II. In particular, the derivatives of the KL
divergence do not suffer from the vanishing gradients problem
in contrast to the derivatives of the loss function. For this
reason, reducing the penalization strength of the divergence by
a fixed factor, which is equivalent to reducing the learning rate
of the divergence, might be a good decision. Moreover, again,
empirically, we discovered that the derivatives with respect to
the γ j are quite small, which slows down the learning process.
To overcome this problem, the learning rate multiplier κ can
be used.

In the forward pass, at first, variational parameters that hold
“critical” values are assigned similar but less “critical” ones.
This way of proceeding guarantees that no numerical issues
occur during the training process. Thus, very small expec-
tation values, variances (smaller than 0.01 times the absolute
value of the corresponding expectation value), and correlations
(smaller than 0.01 in absolute values) are replaced, as well as
correlations that are nearly given by 0.5 or −0.5. Recall that
the correlations have to stay in the interval (−1/2, 1/2) in
order for the covariance matrices to be positive definite. After
checking for numerical stability, the weights and the biases of
the network are sampled from the variational distribution. The
sampled parameters are then used in place of the deterministic
ones in non-Bayesian deep learning in order to perform the
classical forward pass.

In the backward pass, at first, the derivatives of the loss
function with respect to the sampled weights and biases are
computed. This is done completely analogously as in classical
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deep learning, but the sampled parameters are used in place
of the deterministic ones. In the next steps, the derivatives
of the sampled network parameters with respect to the vari-
ational parameters are computed, and the derivatives of the
KL divergence with respect to the variational parameters are
calculated. Finally, an appropriate merging of all the computed
derivatives results in the derivatives of the approximation LV I

of the negative log evidence lower bound. These derivatives are
used to update the variational parameters according to some
learning schedule.

Due to the tridiagonal covariance structure, the proposed
variational distribution (see Section III-A) only correlates
neighbored parameters. Thus, the order of the components
within the layerwise weight vectors is a critical aspect of the
definition of this distribution. In our implementation, the order
is given as follows. In the case of an inner product layer,
the first vector element is given by the first weight of the first
neuron, followed by the second weight of the first neuron
and so on until the last weight of the last neuron defines the
last vector element. For the convolutional layers, the weight
vectors are filled by rowwise going through the channels of
the kernels (one channel to the next, and one kernel to the
next).

IV. PERFORMANCE EVALUATION

This section investigates how well the proposed approach
(Gauss cor.) performs on real-world data sets compared with
other methods. In particular, the performance comparison
includes the frequentist approach, the proposed approach but
without correlations (Gauss ind.) [38], and, finally, the popular
approach that applies dropout before every weight layer in
terms of a Bernoulli variational distribution (Bernoulli) [15].
On the one hand, the prediction accuracy and, on the other
hand, the usefulness and quality of the uncertainty information
provided are of particular interest. The popular benchmark
data sets MNIST [39] and CIFAR-10 [40] form basis of the
evaluations.

A. MNIST

In this section, the performance of the proposed method
is evaluated based on the MNIST data set. This data set
contains 70 000 grayscale images of handwritten digits (0–9).
The complete data set is partitioned in a training data set that
counts 60 000 images and a test set of 10 000 examples. Each
image is of size 28 × 28.

The architecture chosen for the performance evaluation is
the popular LeNet proposed by Lecun et al. [46]. This CNN
mainly consists of two convolutional layers and, furthermore,
two fully connected layers. The special version of LeNet
used in this article has the following additional specifications.
The ReLU activation function is assigned to the first fully
connected layer, while the other layers simply use the identity
function as the activation function. Moreover, the first convo-
lutional layer includes 20, and the second one includes 50,
5 × 5 kernels. Max-pooling with kernel size 2 × 2 and stride
of 2 is applied after both convolutional layers. The number
of neurons of the second fully connected layer is determined

Pseudocode Bayes Deep Learning Layer
Require:
1: - Initial variational parameters m j , δ j , γ j , b j , δbj

and γbj

- Factor ν for penalization strength of DK L

- Learning rate multiplier κ for γ j

- Parameters μ j , ζ j ,μbj and ζbj for the prior
- Number of training iterations Niter

2: for r in 1 : Niter do
3:

4: Forward pass:
5:

6: Guarantee numerical stability:
7: if γ j ∈ (−0.04000533, 0.04000533) then
8: Set γ j to 0.04000533 with probability 1

2 and to
9: −0.04000533 otherwise

10: end if
11: if γ j > 10 then
12: Set γ j = 10
13: end if
14: if γ j < −10 then
15: Set γ j = −10
16: end if
17: if δ j < −4.600166 then
18: Set δ j = −4.600166
19: end if
20: for k in 1 : K j do
21: if m jk ∈ (−0.000001, 0.000001) then
22: Set m jk to 0.000001 with probability 1

2 and to
23: −0.000001 otherwise
24: end if
25: end for
26:

27: Sample from the variational distribution:
28: Draw K j independent samples from N (0, 1) and

thus a sample x j from N (0K j , IK j )
29: Compute L j according to Equations (23-27, 29-30)
30: Set w j = m j + L j x j

31:

32: Repeat lines (6 − 30), but now for the biases
33: Use the the sampled weights and biases in place of

the classical weights and biases in non-Bayesian
deep learning and proceed as in the classical case

34:

35: Backward pass
36:

37: Treat the sampled weights as the classical ones in
non-Bayesian deep learning in order to compute the
derivatives of the loss function L with respect to
them

by the number of possible classes and, thus, given by 10.
In contrast to the second fully connected layer, the number
of neurons in the first fully connected layer can be freely
specified. In our experiments, we set this number once to 100
and once to 250.
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Pseudocode (Continued.) Bayes Deep Learning Layer

38: Compute the derivatives of LV I with respect to m j :
39: Define: aDeriv = 0, cNewDeriv = 0, cOld Deriv = 0
40: Declare a variable wDeriv
41: Declare a K j dimensional array diffm j , which will

hold the derivative ∂LV I
∂m j k

as k-th entry
42: Initialize diffm j with zeros
43: for k in 1 : K j do
44: for l in 1 : K j − 1 do
45: Assign the derivative ∂c jl

∂m j k
according to

Equation (47) to cNewDeriv (note: cOld Deriv

holds ∂c j,l−1

∂m j k
)

46: Assign the derivative ∂a jl

∂m j k
given by

Equation (50) to aDeriv

47: Assign the derivative ∂w j l

∂m j k
according to

Equation (44) to wDeriv

48: In compliance with Equation (41) add ∂L
∂w j l

wDeriv

to diffm j [k]
49: In accordance with Equation (56) subtract ν aDeriv

a jl

from diffm j [k]
50: Set cOld Deriv = cNewDeriv

51: end for
52: Set l = K j

53: Assign the derivative ∂a jl

∂m j k
according to

Equation (53) to aDeriv

54: Assign the derivative ∂w j l

∂m j k
given by

Equation (44) to wDeriv

55: In compliance with (41) add ∂L
∂w j l

wDeriv to
diffm j [k]

56: In accordance with Equation (56) subtract ν aDeriv
a jl

from diffm j [k] and add the term

ν
�

τ 2
j

ζ 2
j
m jk + 1

ζ 2
j
(m jk − μ jk)

�
57: end for
58:

59: Compute the derivatives of LV I with respect to δ j :
60: Calculate the derivatives ∂c j i

∂δ j
(i = 1, . . . , K j − 1)

according to Equation (48)
61: Determine the derivatives ∂a j i

∂δ j
(i = 1, . . . , K j )

given by the Equations (51) and (54)
62: Evaluate the derivatives ∂w j i

∂δ j
(i = 1, . . . , K j )

in accordance with Equation (45)
63: Find out the derivative ∂L

∂δ j
according to Equation

(42)
64: In order to finally obtain ∂LV I

∂δ j
add ν ∂

∂δ j
DK L

in compliance with Equation (57) to ∂L
∂δ j

Minibatch gradient descent with a batch size of 64 is
chosen for optimization. Furthermore, a decreasing learning
rate policy is selected. In particular, the learning rate in the
kth iteration is specified as 0.01·(1+0.0001·i)−0.75. Moreover,
momentum is applied with a value of 0.9. The total amount
of iterations is set to 100 000. In terms of regularization in the
frequentist approach a penalization of the Euclidean norm with

Pseudocode (Continued.) Bayes Deep Learning Layer

65: Compute the derivatives of LV I with respect to γ j :
66: Calculate the derivatives ∂c j i

∂γ j
(i = 1, . . . , K j − 1)

according to Equation (49)
67: Determine the derivatives ∂a j i

∂γ j
(i = 1, . . . , K j )

given by the Equations (52) and (55)
68: Evaluate the derivatives ∂w j i

∂γ j
(i = 1, . . . , K j )

in accordance with Equation (46)
69: Find out the derivative ∂L

∂γ j
according to Equation

(43)
70: In order to finally obtain ∂LV I

∂γ j
add ν ∂

∂γ j
DK L

in compliance with Equation (58) to ∂L
∂γ j

71: Multiply ∂LV I
∂γ j

with κ
72:

73: Determine the gradient with respect to bottom data
as it is done in frequentist deep learning, but use
the sampled weights w j in place of the deterministic
ones

74: Repeat lines (38 − 73), but now for the biases
75: Use the computed derivatives of LV I with respect

to the variational parameters in order to update
them according to some chosen learning schedule

76:

77: end for

a penalization strength of 0.0005 takes place. Furthermore,
dropout is applied after the first fully connected layer with a
dropping rate given by 0.5. These regularization techniques
are not applied in the proposed Bayesian approach that is
naturally regularized due to the sampling from the variational
distribution and the penalization of the KL divergence dur-
ing network training. However, in Bayesian deep learning,
the parameters of the prior have to be specified. We set the
expectation values of all network parameters to 0 and the
variances to 1. There is no a priori knowledge available such
that the prior can merely be used to guarantee that the network
parameters do not diverge. Moreover, for each network layer,
we set the parameters ν and κ described in Section III-D to
1/(60 000 · 100) and 50, respectively. Thus, the penalization
strength of the KL divergence is reduced by a factor of 100
due to the reasons described in Section III-D. For the Bayesian
method without correlations (Gauss ind.), the prior and also the
specification of ν are chosen identically to the specifications
for the proposed approach (Gauss cor.). Within the Bernoulli
variational distribution, a hand-tuned dropping rate of 0.2 is
used.

For the model with 100 neurons in the first fully con-
nected layer, the frequentist training process and, furthermore,
the training process corresponding to the proposed Bayesian
approach (Gauss cor.) are visualized in Figs. 1 and 2. One
can see that the loss decreases in a quite similar way in both
processes. This is an interesting result since in the work of
Posch et al. (Gauss ind.) [38], the Bayesian loss fluctuates
heavily compared with the classical one. Thus, the learning
of correlations between network parameters (which is our
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Fig. 1. Training visualization of frequentist LeNet with 100 neurons in the
first fully connected layer. The horizontal line marks the achieved test error.

TABLE I

TEST ERRORS OF THE TRAINED MODELS

extension of their work) enables smoother network training.
Note that the test error plotted in Fig. 2 is just a rough
approximation of the true one, which is based on one sam-
ple from the variational distribution per test image. Usually,
the corresponding true errors are significantly lower. However,
the rough approximation suffices to monitor network training.
A more accurate and, thus, also computationally more expen-
sive approximation based on multiple samples can be made at
the end of the training process.

For all considered models, the finally achieved test errors
are given in Table I. Note that the predictions of the Bayesian
models are based on 200 samples from the corresponding
variational distributions per test image. One can see that our
approach (Gauss cor.) performs slightly better than the other
ones. Especially, the significant improvement compared with
the Gaussian approach without correlations (Gauss ind.) shows
that allowing for dependencies between parameters pays off.

In Table II, the correlations ρ j and the variance determin-
ing parameters τ j of the two models corresponding to our
approach can be found ( j = 1, . . . , 4). One can see that there
is a low a posteriori uncertainty about the bias terms and,

Fig. 2. Training visualization of the proposed approach (Gauss cor.)
with 100 neurons in the first fully connected layer. For the computation of
the approximate test error, only one sample is drawn from the variational
distribution per image.

TABLE II

VARIATIONAL PARAMETERS ρ j AND τ j ( j = 1, . . . , 4)

furthermore, that they are nearly uncorrelated. This is a plau-
sible result since the number of bias terms is small compared
with the number of weights. The a posteriori uncertainty of
the weights differs significantly from layer to layer. While
the first convolutional layer and the second fully connected
layer go along with a low a posteriori uncertainty about the
network weights, the other layers show a high uncertainty. For
the network with 250 neurons in the first fully connected layer,
the standard deviation of the posterior distribution of a weight
is given by two times the corresponding expectation value
(in absolute values). Note that layers with low uncertainty are
exactly the ones that directly act on the network input and
the network output. The correlations of the weights are all
negative.

As already mentioned in Section II, the uncertainties about
the network parameters of the Bayesian nets can directly
be translated to uncertainty about the predictions. While the
posterior predictive distribution incorporates parameter uncer-
tainty by averaging over the respective posterior, credible
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Fig. 3. Boxplots of 200 random network outputs for a representative correct
classification result. Model with 100 neurons in the first fully connected layer.

Fig. 4. Boxplots of 200 random network outputs for a representative incorrect
classification result. Model with 100 neurons in the first fully connected layer.

Fig. 5. Boxplots of 200 random network outputs for a representative incorrect
classification result. Model with 100 neurons in the first fully connected layer.

intervals for the probability that an image shows an object of
a given class can be estimated by computing multiple neural
network outputs with weights sampled from the variational dis-
tribution. Figs. 3–5 show boxplots of, respectively, 200 random
network outputs corresponding to three representative images

Fig. 6. Test image where the model corresponding to the proposed approach
was certain about its wrong prediction according to criterion (ii) (100 neurons
in the first fully connected layer, α = 99.999%).

from the test data set. The network that was used to produce
Figs. 3–5 is the one corresponding to our approach (Gauss cor.)
with 100 neurons in the first fully connected layer. In Fig. 3,
there are no boxes at all since the network is very sure about
its correct prediction. This is the case for most of the correctly
classified images. Figs. 4 and 5 reflect the common behavior of
the net in the case of incorrect classification results. Either the
network has difficulties to decide between two classes where
one of the two is the true one or it is completely uncertain what
class to predict. To quantify the usefulness of the prediction
uncertainty of the Bayesian models, we consider two ways
of measuring uncertainty. On the one hand, we estimate α
credible intervals of the componentwise network outputs for
all test images, and on the other hand, we estimate the posterior
predictive distribution. The estimates are based on 200 random
network outputs, respectively. For given α, a prediction result
is considered as certain according to criterion (i) if the credible
interval of the predicted class does not overlap with the
intervals of the other classes and, moreover, a prediction is
considered as certain according to criterion (ii) if its posterior
probability is greater than or equal to α. Prediction results
that are not classified as certain are considered as uncertain.
Table III gives an overview of certain and uncertain prediction
results, for different specifications of α. One can see that
the models are, most of the time, certain about correct pre-
diction results, while they are often uncertain about incor-
rect prediction results. As a consequence, the uncertainty
information provided by each of the considered models can
be viewed as useful. However, the models corresponding
to the Gaussian approach without correlations (Gauss ind.)
show, independent of the choice of α, always the highest
number of certain but incorrect predictions. Also, specify-
ing α near 100% does not allow for a shrinkage of this
number to zero. In addition, the number of certain and
correct prediction results is, most of the time, compara-
ble to those of the other two methods. Thus, among the
three considered approaches, this one appears to have the
least useful uncertainty information if misclassifications with
high confidence are critical. The other two approaches (Gauss.
cor., Bernoulli) show similar fractions of certain and correct,
or uncertain and incorrect classification results, but for differ-
ent confidence levels. However, the Gaussian approach seems
to reflect the specified confidence level α more reliable than
the other one. According to criterion (ii), none of the certain
prediction results is incorrect for α = 99% in the case of
the Bernoulli approach. However, since there are 8296 certain
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TABLE III

OVERVIEW OF CERTAIN AND UNCERTAIN PREDICTION RESULTS

TABLE IV

LOG-LIKELIHOOD AND BRIER SCORE OF THE TESTING DATA SET

classifications, at least, some of them should be incorrect for
α = 99%. Therefore, we consider the uncertainty information
provided by our approach as the most useful. In Fig. 6, the test
image can be found where the model corresponding to the
proposed approach was certain about its wrong prediction
according to criterion (ii) (100 neurons in the first fully
connected layer, α = 99.999%). Finally, we evaluate
the overall quality of the uncertainty information provided
by the different approaches based on two measures. One the

TABLE V

TEST ERRORS OF THE TRAINED MODELS

TABLE VI

VARIATIONAL PARAMETERS ρ j AND τ j ( j = 1, . . . , 4)

one hand, the log-likelihood and, on the other hand, the Brier
score [47] are determined for the testing data set. The lower
the Brier score is for a set of predictions, the better the
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TABLE VII

OVERVIEW OF CERTAIN AND UNCERTAIN PREDICTION RESULTS

predictions are calibrated. For the calculation of these quan-
tities, the already computed approximation of the posterior
predictive distribution is used. The results can be found
in Table IV. The proposed method achieves the best results.

B. CIFAR-10

In this section, based on the CIFAR-10 data set, the per-
formance of the proposed method is evaluated and compared
with other approaches (Frequentist, Gauss ind., Bernoulli).
This data set consists of 60 000 RGB images in ten classes
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck). The complete data set is partitioned into a train-
ing data set that counts 50 000 images and a test set of
10 000 examples. Each image is of size 32×32. The architec-
ture chosen for the performance evaluation is the one included
under the name CIFAR10_full in the Caffe framework [45].
This CNN mainly consists of three convolutional layers fol-
lowed by one fully connected layer. For further details, take a
look at the model definition available in the Caffe framework.

Minibatch gradient descent with a batch size of 100 is cho-
sen for optimization. Furthermore, a fixed learning rate policy
with a learning rate of 0.001 is selected. The total amount
of training iterations is given by 100 000 for the frequentist
approach and by 40 000 for the Bayesian approaches. Penal-
ization of the Euclidean norm with a penalization strength of
0.004 for the convolutional layers and a penalization strength
of 1 for the fully connected layer is used for the regular-
ization of the frequentist net. In our approach (Gauss cor.),
we assign independent normal distributions with zero mean
(see Section III-A) to the network parameters. The standard
deviations of these distributions are specified as 1 for the con-
volutional layers and specified as 0.05 for the fully connected
layer. Thus, the fully connected layer gets stronger regularized
than the other ones, as in the frequentist case. Moreover, for
each network layer, we set the parameters ν and κ described

TABLE VIII

LOG-LIKELIHOOD AND BRIER SCORE OF THE TESTING DATA SET

in Section III-D to 1/(50 000 · 10) and 50, respectively. Thus,
the penalization strength of the KL divergence is reduced by
a factor of 10 due to the reasons described in Section III-D.
For the Bayesian method without correlations (Gauss ind.),
the prior and also the specification of ν are chosen identically
to the specifications for the proposed approach (Gauss cor.).
In the Bernoulli variational distribution, a hand-tuned dropping
rate of 0.1 is used.

The test errors obtained from the trained models are given
in Table V. Note that the predictions of the Bayesian models
are based on 200 samples from the corresponding variational
distributions per test image. Our approach achieves the lowest
test error. In Table VI, the correlations ρ j and the variance
determining parameters τ j of our Bayesian model can be found
( j = 1, . . . , 4). The parameters can be interpreted, as in
Section IV-A. The usefulness and quality of the prediction
uncertainty information are evaluated, as in Section IV-A.
A summary of the results is given by Tables VII and VIII.
The new approach provides the most reliable uncertainty
information overall.

V. CONCLUSION

We presented a Bayesian approach to deep learning that
allows to learn correlations between network parameters while
introducing only a few additional parameters to be optimized.
In particular, we approximated the intractable posterior of the
network parameters with a product of Gaussian distributions
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with tridiagonal covariance matrices. These distributions are
defined in such a way that the variances are multiples of the
squared expectation values and the correlations belonging to a
given distribution are identical. The novel approach was eval-
uated on the basis of the popular benchmark data sets MNIST
and CIFAR-10. Superior prediction accuracies compared with
well-regularized frequentist models and also recent Bayesian
approaches were obtained. Furthermore, we showed that useful
uncertainty information about network predictions can be
computed. Often the usefulness and quality of the provided
uncertainty information were higher than the ones obtained
from the comparison methods. Finally, network parameter
uncertainties and dependencies could readily be interpreted
per layer due to the fact that only a few additional parameters
are required by our method.
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