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Shadow-Cuts Minimization/Maximization and
Complex Hopfield Neural Networks

Zekeriya Uykan , Senior Member, IEEE

Abstract— In this article, we continue our very recent work
by extending it to the complex case. Having been inspired by
the real Hopfield neural network (HNN) results, our investi-
gations here yield various novel results, some of which are
as follows. First, extending the “biased pseudo-cut” concept
to the complex HNN (CHNN) case, we introduce a “shadow-
cut” that is defined as the sum of intercluster phased edges.
Second, while the discrete-time real HNN strictly minimizes the
“biased pseudo-cut” in each neuron state change, the CHNN
“tends” to minimize the shadow-cut (as the CHNN energy
function is minimized). Third, these definitions pose a novel
L-phased graph clustering (partitioning) problem in which the
sum of the shadow-cuts is minimized (or maximized) for the
Hermitian complex and the directed graphs whose edges are
(possibly arbitrary positive/negative) complex numbers. Finally,
combining the CHNN and the pioneering algorithm GADIA of
Babadi and Tarokh and their modified versions, we propose
simple indirect algorithms to solve the defined shadow-cuts
minimization/maximization problem. The proposed algorithms
naturally include the CHNN as well as the GADIA as its special
cases. The computer simulations confirm the findings.

Index Terms— Associative memory, clustering, complex
Hopfield neural networks (CHNNs), GADIA, graphs with (posi-
tive and negative) complex edges, L-phased partitioning problem.

I. INTRODUCTION AND MOTIVATION

COMPLEX-VALUED neural networks are becoming an
emergent and rapidly developing field because they

recently widened the scope of their applications to machine
learning, imaging, remote sensing, optoelectronics, quantum
neural systems, physiological neural systems, and artificial
neural information processing [33], [34]. Complex-valued
neural networks are as follows.

1) They are highly suitable not only for representing
graphs with complex edges but also for processing the
amplitude and phase. This is one of the core concepts
in physical systems dealing with electromagnetic, light,
and ultrasonic waves, as well as quantum waves [33].

2) They utilize complex arithmetic, showing specific
dynamic characteristics in their learning, self-organizing,
and processing [33], [34].

These facts bring critical advantages to representing and
modeling complicated relations among the nodes in complex
graphs for solving various machine learning problems. In addi-
tion, they bring critical advantages in analyzing and processing
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complex signals in space, time, frequency, and phase domains
for practical applications in diverse fields of engineering [33].

The complex-valued Hopfield neural network (CHNN)
[6]–[8] is one of the most successful models of
complex-valued neural networks [35]. Various variants
of CHNN have been proposed, such as a symmetric
CHNN [22], a rotor Hopfield neural network (HNN) [36],
and an O(2)-valued Hopfield network [37]. For details
and applications of the CHNN, see [33]. A special case
of the CHNN, the real HNN [9], [10], has been one of
the most well-known and widely used neural networks
in optimization since the 1980s. Its applications varied
from associative memory system design problems (see
[6], [11]–[13]) to radio resource optimization in wireless
networks (see [15], [18]), from combinatorial optimization
(see [16]–[19]) to image restoration, from robotics to system
identification to analog-to-digital conversion (see [14]), and
so on.

In both a real HNN and a CHNN, the weight matrix
naturally represents a graph because of the full connectiv-
ity present among their neurons. For example, a real HNN
represents an undirected simple graph whose edges are real
numbers. A graph is simply a collection of vertices con-
nected by edges. An edge represents the similarity, interaction,
or relation between the corresponding two vertices in the
graph. For binary graphs, each edge is either 0 or 1. For
similarity graphs, the edges can be arbitrary real numbers.
The similarity of vertices (nodes and data points) can be
defined by different measures, such as the spatial distance
and correlation. The edges may be directed or undirected.
The graph is directed or undirected depending on whether
the edges have directions or no direction associated with the
vertices, respectively. The theory of such traditional graphs
with nonnegative real edges has been well established since
the 19th century. The associated applications from this theory
have extended to mathematics, physics, chemistry, linguistics,
biology, computer science, and social sciences. Furthermore,
the well-established graph partitioning theory has recently
broadened its areas of application to social network analysis,
big data networks, and biological (protein interaction and
gene coexpression) networks, among others. For the graph
partitioning theory literature, see [40].

Most of the graph partitioning and graph clustering prob-
lems assume that graph edges are nonnegative (see [26]).
For example, a wireless system can be represented by a
graph with nonnegative edges (see [38], [39]). However, when
graphs are allowed to have both negative and positive edges,
the problem becomes much more complicated (see [27], [28]).
For example, consider the standard minimum path problem
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for graphs with negative and positive edges: when this graph
is converted to a nonnegative graph by simply adding a
certain positive number to each edge, the originality of the
optimization problem is generally violated and the optimum
solution is eventually changed. For example, let the minimum
path from nodes X to Z be X → Y → Z . Adding a positive
value to each edge to satisfy the nonnegative condition yields
a smaller path X → Z if the difference between the paths
X → Y → Z and X → Z is smaller than the added positive
value. On the other hand, as the real HNN is applied to
optimization problems, the corresponding weights (edges) may
become (arbitrary) positive and negative numbers because its
weights are dictated by the parameters of the problem and its
constraints. In short, we need a well-established mathematical
theory that deals with graphs with positive and negative edges
as well as graphs with arbitrary complex edges.

However, the theory of weighted and/or directed graphs with
negative or complex edges is almost unavailable. Many results
obtained for traditional graphs do not apply to the directed
graphs with complex edges (see [3]). Yet, such complex graphs
are seen in various studies. For example, the graphs with
complex edges are needed to code arbitrary quantum states
in multipartite quantum systems [3]. However, Saif et al.
reported that a mathematical theory of such graphs is lacking.
In [4], the adjacency matrices of the graphs generated from
proteomics maps (the actual mass and charge of each protein)
are complex matrices, and Balasubramanian et al. [4] also
noted that the algorithms and techniques for graphs with
complex weights need to be generalized. A complex-valued
adjacency matrix is used to represent the distance and pro-
jection angles in a communication graph of a multiagent
control system in [5]. Recently, it has been reported that
the complex network and graph theory approach is becom-
ing the emergent field to detect various brain disorders and
abnormalities [30], [31].

In a recent article [32], the authors stated that to the best
of their knowledge, the construction of similarity graphs with
both positive and negative edges from feature vectors for
classification has not been studied in the graph-based classifier
literature ([32, pp. 716–717]). One unfortunate consequence
of negative edge weights is that the graph Laplacian matrix L
can be indefinite. Cheung et al. [32] presented a perturbation
matrix � so that L + � is positively semidefinite for their
algorithm.

In this article, we study the directed graphs whose edges
are possibly negative and/or positive complex numbers. Due
to the complexity of the problem, here, we focus on the
directed graphs whose edge matrix is a Hermitian complex
matrix (as in the CHNN case). To the best of our knowledge,
for example, even max-cut and min-cut of such graphs with
arbitrary complex edges have not been examined in the lit-
erature yet. How can we respond to such Hermitian complex
graphs?

Given an N × N Hermitian weight matrix W, the CHNN
maximizes the following Lyapunov (energy) function:

L(t) = xT Wx =
N�

j=1

N�
k=1

w jk x j(t)xk(t) (1)

where x j , xk ∈ �
e−iφ1 , e−iφ2 , . . . , e−iφL

�
, and x j is the

complex conjugate of x j and w jk = wk j . In our very
recent article [1], we shed light on the working princi-
ple of a real HNN showing that every neuron in the
discrete real HNN with positive/negative weights strictly
decreases a “Biased Pseudo-Cut” as the HNN minimizes
its energy (Lyapunov) function to solve an optimization
problem.

On the other hand, the GADIA proposed by Babadi and
Tarokh [2] has been a pioneering algorithm in the inter-
ference avoidance literature on wireless communications.
Representing the N transmit–receive pairs as a graph, the orig-
inal basic GADIA addresses the channel allocation problem
in the power domain, and thus, all channel power gains
(i.e., edges) are modeled as positive real numbers. In this
article, our graph represents the same N transmit-receive pairs
but in the magnitude domain so that each channel magnitude
gain (i.e., edge) is an arbitrary negative/positive complex
number. This implies that the proposed simple algorithms
extend the original basic GADIA of Babadi and Tarokh [2],
which is only in the positive real domain, to the complex
case.

A. Contributions of This Article

This article is a continuation of our very recent work in [1],
and here, we extend the work in [1] to the complex case. Our
contributions can be summarized as follows.

1) Extending the “biased pseudo-cut” concept in [1] to
the CHNN case, we introduce a “shadow-cut” con-
cept that is defined as the sum of intercluster phased
edges.

2) We show that while the discrete-time real HNN strictly
minimizes the “biased pseudo-cut” in each neuron state
change, the CHNN “tends” to minimize the shadow-cut
(as the CHNN energy function is minimized).

3) These definitions pose a novel L-phased graph clus-
tering (partitioning) problem in which the sum of the
shadow-cuts is minimized for the Hermitian complex
and directed graphs whose edges are (possibly arbitrary
positive/negative) complex numbers.

4) We propose simple indirect algorithms to solve the
defined shadow-cuts minimization/maximization prob-
lem by combining the CHNN and the GADIA of Babadi
and Tarokh [2] and their modified versions. Eventually,
the proposed algorithms include the CHNN as well as
the GADIA of Babadi and Tarokh [2] as their special
cases.

5) The GADIA proposed by Babadi and Tarokh [2] has
been a pioneering algorithm in the wireless communi-
cations interference avoidance literature. A modification
in the presented simple algorithm extends the original
GADIA [2] to the complex case.

This article is arranged as follows. In Section II, we pose a
pseudo max-cut and pseudo min-cut problem and shadow-cuts
minimization problem (i.e., L-phased clustering problem) for
the Hermitian complex and directed graphs. We also summa-
rize the related main finding of our very recent article [1]. The
simple algorithms solving the posed shadow-cuts minimization
problem are presented in Section III, followed by computer
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simulation results in Section IV. The conclusions are given
in Section V.

II. SHADOW-CUTS MINIMIZATION/MAXIMIZATION

PROBLEM: L-PHASED-CLUSTERING PROBLEM OF

HERMITIAN COMPLEX GRAPHS

First, we state some definitions from graph theory [20] as
follows.

Definition (Undirected Graph): If the edges have no direc-
tion associated with the vertices, then the graph is called an
undirected graph.

Definition (Directed Graph): If the edges have directions
associated with the vertices, then the graph is called a directed
graph. A directed graph, sometimes called a digraph, allows
two edges to join the same vertex, but they must go in opposite
directions. However, more than one edge cannot go in the
same direction between the vertices. If w jk represents the
complex edge from vertex k to vertex j , then wk j represents
the complex edge from vertex j to vertex k.

Definition (Inbound/Outbound Edges): Given a directed
graph, inbound edges of vertex j are those edges that end
at vertex j , i.e., {w jk}N

j=1and outbound edges of vertex j are
those edges that originate from vertex j , i.e., {wk j}N

j=1.
Definition (Simple Graph): An undirected graph whose

edges are real numbers is called a simple graph.
Definition (Cut of a Simple Graph): A cut means a partition

of the vertices of the graph into two sets.
Definition (Size of a Cut): The size of a cut is the sum of

the edges cutting the graph into two parts.
Definition (Max-cut of a Graph): A maximum cut is a cut

whose size is not smaller than the size of any other cut.
Definition (Complex Graph): A directed graph with arbitrary

complex edges is defined as a complex graph in this article.
Definition (Hermitian Complex Graph): A complex graph

whose edge matrix is Hermitian is called a Hermitian complex
graph. A Hermitian matrix is a complex square matrix that is
equal to its own conjugate transpose, i.e., w jk = wk j , where
wk j is the conjugate of wk j , for every j and k.

Definition [State or Phase of Each Vertex (x j )]: Let the
number of vertices (nodes, data points) of the graph be N and
the number of classes or phases be L (where N � L). Let us
evenly divide the complex unit circle into L regions that are
represented by the complex set P = {e−iφ1 , e−iφ2 , . . . , e−iφL }.
Each and every vertex (nodes, neurons, and data points) is
assigned to only one of these states (phases) at any given
time. The state or phase of vertex j at time t is repre-
sented by x j(t) = e−iφs( j ) , where j ∈ {1, 2, . . . , N } and
s( j) ∈ {1, 2, . . . , L}. The time dependence of s( j) is omitted
in this article for simplifying the notation.

Definition: The sum of intracluster edges, denoted as
�intra

sum (t), is defined as

�intra
sum (t) =

L�
s=1

⎛
⎝ �

j∈ CS (t)

�
k∈ CS (t)

w jk x j xk

⎞
⎠

=
L�

s=1

⎛
⎝ �

j∈ CS (t)

�
k∈ CS (t)

w jk

⎞
⎠. (2)

In (2), j, k ∈ Cs(t), i.e., both vertices (nodes) are in the
same cluster Cs at time t , therefore, s( j) = s(k), and thus,
x j xk = e−iφs( j )eiφs(k) = 1.

Definition: The sum of shadow-cuts is defined as the sum of
intercluster phased edges. Given a Hermitian complex graph
whose edges are w jk = r jkeiα j k , let the cluster set (i.e., phase
set) be P = {e−iφ1 , e−iφ2 , . . . , e−iφL }. Then, let us assign N
vertices to L clusters (phases), and let the sets {Cs}L

s=1 =
{C1, C2, . . . , CL } represent the cluster sets, i.e., the indices of
vertices in each cluster. Therefore, the sum of shadow-cuts is
given by

JSC
	{Cs(t)}L

s=1


 =
L�

s=1

⎛
⎝ �

j∈ CS

�
k∈ C S

w jkx j xk

⎞
⎠

=
L�

s=1

⎛
⎝ �

j∈ CS

�
k∈ C S

r jkei(α j k+φs(k)−φs( j ))

⎞
⎠ (3)

where set C S represents the indices of all other vertices
except cluster s and s( j) and s(k) represent the clus-
ter (phase) index of vertex j and vertex k, respectively,
and s( j), s(k) ∈ {1, 2, . . . , L}. Each of the L clusters is
represented by its unique phase. The phase set is defined as
P = {e−iφ1 , e−iφ2 , . . . , e−iφL }.

Definition: Biased pseudo-cut for graphs/matrices with neg-
ative and positive edges/weights is defined in [1]

JPC(k) =
�

i∈ C1(k)

�
j∈ C2(k)

wi j +
�

j∈ C1(k)

b j . (4)

In this article, graph clustering means finding sets of
“related” vertices in graphs [40]. It is the task of grouping
the vertices of the graph into clusters in such a way that
the vertices in the same cluster are more “similar” to each
other than to those in other clusters. Different metrics for
graph clustering are proposed for graph clustering. For details,
see [40].

A. Working Principle of the Real Discrete HNN

In this section, we summarize the working principle of
the discrete-time real HNN. Bruck [41] shed light on the
behavior of any neuron in the discrete HNN when proving the
convergence of the discrete HNN in his paper. A very recent
paper [1] has further investigated the behavior of any neuron
in not only the discrete-time HNN but also the continuous-time
HNN when the corresponding energy function is minimized
during an optimization process. For the sake of consistency
and brevity, here, we use the notation in [1] when explaining
the discrete HNN’s working principle in [41]. Let us assume
that a given constrained or unconstrained optimization function
has already been written in the form of the Lyapunov function
of the discrete real HNN. From [1, Propositions 1–3], any
neuron in the real discrete-HNN with weight matrix W and
bias vector b changes its state if and only if it negatively
contributes to the defined biased pseudo-cut JPC(k) in (4);
in other words, if and only if the neuron decreases biased
pseudo-cut JPC(k) = �

i∈ C1(k)

�
j∈ C2(k) wi j + �

j∈ C1(k) b j

in (4), in each step when the HNN energy function is decreased



UYKAN: SHADOW-CUTS MINIMIZATION/MAXIMIZATION AND COMPLEX HOPFIELD NEURAL NETWORKS 1099

Fig. 1. Illustration of the discrete HNN working principle in [1], [41] for
an arbitrary neuron j at an arbitrary time k.

during an optimization process. To be precise, let �
j
1(k) =�

k∈ C1
w jk + b j and �

j
2(k) = �

k∈ C2
w jk represent the

contribution of neuron j to its current class and its potential
contribution to the other class (depending on the neuron state)
at time k. Neuron j changes its state (phase) if and only if
it decreases the biased pseudo-cut JPC(k) in (4) in step k.
On the other hand, for an HNN with (−W) and (−b), any
neuron changes its state if and only if it further increases the
biased pseudo-cut JPC(k) in (4). The working principle of the
discrete HNN is shown in Fig. 1 for an arbitrary neuron j at
time k (Algorithm L N , step 3 [42, p. 1581]).

The article [1] also shows that the discrete HNN with (−W)
and (−b) is equivalent to the GADIA [2] with (W) and (b)
([1, Preposition 5]), which implies that the discrete HNN is
actually a special case of the GADIA in optimization. These
results imply that the “information” of a real HNN with W
and an HNN with −W is always stored in the local minima
and maxima of the biased pseudo-cut, respectively, JPC(k) =�

i∈ C1(k)

�
j∈ C2(k) wi j + �

j∈ C1(k) b j in (4) regardless of the
type of optimization problem.

B. Pseudo Max-Cut and Pseudo Min-Cut Problem of a
Directed Complex Graph (Case L = 2)

Definition: The pseudo min-cut problem of a Hermitian
complex graph. Let W ∈ C N×N be a Hermitian matrix
consisting of positive and negative complex edges of a
directed complex graph. If L = 2 and {φ1 = 0, φ1 = π},
i.e., x j ∈ {+1, − 1}, then the pseudo min-cut problem
of a Hermitian complex graph is defined as minimizing the
shadow-cut JSC(·) (i.e., minimizing the sum of intercluster
phased edges) in (3) for L = 2. Therefore, we are to determine
the two cluster sets C1 and C2 that minimize JSC(·) in (3)

pseudo min cut(W) = min
{C1,C2}

JSC(C1, C2)

= max{C1,C2}

⎛
⎝�

j∈ C1

�
k∈ C2

w jk +
�
j∈ C2

�
k∈ C1

w jk

⎞
⎠.

(5)

If L = 2, then x j xk = −1 when x j and xk are from different
clusters. This provides the second row in (5).

Definition: The pseudo max-cut problem of a Hermitian
complex graph is defined as follows. From (3) and (5)

pseudo max cut(W) = max{C1,C2} JSC(C1, C2)

= min{C1,C2}

⎛
⎝�

j∈ C1

�
k∈ C2

w jk +
�
j∈ C2

�
k∈ C1

w jk

⎞
⎠.

(6)

From (3) and (4), JSC(C1, C2) = −JPC(C1, C2).
Proposition 1: Let W ∈ C be a Hermitian

matrix that consists of positive and negative complex
edges of a directed graph. If L = 2 and {φ1 =
0, φ1 = π}, i.e., x j ∈ {+1,−1}, then 1) the
CHNN with W maximizes the shadow cut JSC(C1, C2)
in (3) and 2) the CHNN with (−W) minimizes the shadow cut
JSC(C1, C2) in (3) for the Hermitian directed complex graphs.

Proof:

1) CHNN With W: To simplify the notation, we write
I intra
sum (t) = I intra

sum (C1(t), C2(t)) and JSC(t) = JSC

(C1(t), C2(t)). If x j , xk ∈ {-1, + 1}, then (x j − xk)
2 =

2(1 − x j xk) and

N�
j=1

N�
k=1

w jk
	
x j(t) − xk(t)


2 = 2
N�

j=1

N�
k=1

w jk − 2L(t)

(7)

where L(t) is the Lyapunov (energy) function of the
CHNN. On the other hand, from (3)

N�
j=1

N�
k=1

w jk
	
x j(t) − xk(t)


2 = −4JSC(t). (8)

From (7) and (8)

L(t) = V + 2JSC(t) (9)

where V = �N
j=1

�N
k=1 w jk is a constant. From (9),

we conclude that maximizing the energy function
L(t) in (1) by the CHNN is equivalent to maximiz-
ing JSC(t) in (3). In other words, because the energy
function L(t) in (1) is further increased in each cluster
(phase) update of the CHNN, the shadow-cut JSC(t)
in (3) is further increased (i.e., the pseudo-cut JPC(t)
in (4) is further decreased) in the same way. Therefore,
the CHNN with W maximizes the shadow-cut JSC(t)
in (3) for the two-cluster case.

2) CHNN With −W: Let (Ŵ = −W), ĴSC(t) = −JSC(t),
and L̂(t) = −L(t). Following (7) to (9), we have L̂(t) =
−V + 2 ĴSC(t). So

−V = L̂(t) + 2JSC(t). (10)

From (6) and (10), because the energy function L(t)
in (1) is further decreased in each cluster (phase) update
of the CHNN, the shadow-cut JSC(t) in (3) is further
decreased (i.e., the pseudo-cut JPC(t) in (4) is further
increased) in the same way. Therefore, the CHNN with
−W minimizes the shadow-cut JSC(t) in (3), which
completes the proof.
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C. Minimization of the Sum of Shadow-Cuts: L-Phased
Clustering (Partitioning) Problem for Hermitian
Complex Graphs (Case L ≥ 3)

In Section II-B, the number of clusters was 2,
i.e., L = 2. In what follows, we first pose a complex
graph clustering (partitioning) problem for L ≥ 3, and then,
in Section III, we propose simple indirect algorithms to
solve it.

Definition [Sum of Shadow-Cuts Maximization Problems (or
L-Phased Clustering (Partitioning) Problem for Hermitian
Complex Graphs)(L ≥ 3)]: Given a directed complex
graph whose edge matrix is an N × N Hermitian com-
plex matrix, the L-phased clustering (partitioning) problem is
defined as determining the optimum cluster sets {Cs}L

s=1 =
{C1, C2, . . . , CL}, which maximizes shadow-cut JSC(t) in (3),
i.e., maximizes the sum of intercluster phased edges

max{C1,C2 ,...,CL } JSC
	{Cs}L

s=1




= max{C1,C2 ,...,CL }

L�
s=1

⎛
⎜⎜⎜⎜⎜⎝

�
j∈ CS

�
k∈ C S

w jke

i

⎛
⎜⎜⎝

t−phase���
φs(k) −

r−phase���
φs( j)

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

(11)

where φs(k) and φs( j) are the transmit phase (t-phase), which is
of vertex k, and receive phase (r -phase), which is of vertex j ,
respectively, with respect to the directed edge w jk . The last
equation in (11) is due to the fact that the edge matrix is
Hermitian, i.e., w jk = wk j for every j and k.

Our motivation for maximizing the sum of intercluster
phased edges [i.e., the shadow-cut JSC(t) in (3)] comes
from the results in [1], from Proposition 1, which shows
that the shadow-cut JSC(t) is maximized when energy is
maximized for the L = 2 case, and from the notion of
the clustering. The common understanding of a clustering
process is that the vertices (neurons and data points) from
different clusters are expected to be as “far” or “different” as
possible.

Referring to the shadow-cut maximization problem that we
pose by (11), we note the following.

1) It is well known that the graph clustering problem
for even simple undirected graphs whose edges are
nonnegative real numbers is an NP-complete problem.
The phased graph clustering problem in (11) is a much
more challenging problem because a new optimization
dimension, vertex-specific phase dimension, is added on
top of the original undirected graph clustering prob-
lem and the edges are (positive and negative) complex
numbers in (11), while the edges are only nonnegative
real numbers in the original undirected simple graph
clustering problem.

2) Any vertex j is allocated to only one cluster denoted
as s( j) at a given time. Each cluster is represented
and distinguished by its unique phase φs in the phase
domain, and therefore, all the vertices that are in the
same cluster have the same unique phase.

TABLE I

COMPARISON OF THE SUM OF SHADOW CUTS JSC(t) WITH THE
STANDARD CUT, THE PSEUDO-CUT IN [1], AND THE GADIA

3) For a given real graph/HNN with nonnegative real
edges/weights, if L = 2, then we have only two
clusters (phases), say, P = {ei0, eiπ }, equivalently
x j ∈ {−1,+1}, and then, the following holds.

a) The shadow maximization/minimization problem
in (11) is reduced to the standard min-cut/max-cut
problem in the literature (see Table I).

b) These observations, the results in [41], and Propo-
sition 1 imply that what the discrete HNN in this
case really does (as its energy function is min-
imized) is actually to realize the well-known
“min-cut max-flow” within the HNN.

4) As mentioned in Section I, the theory of weighted
and directed graphs with possibly negative and posi-
tive complex edges is almost unavailable. To the best
of our knowledge, the shadow-cut concept as well as
the shadow-cuts maximization/minimization problem for
such Hermitian complex graphs is defined for the first
time in this article. The pseudo-cut concept for (undi-
rected simple) graphs with negative and positive real
edges has very recently been proposed in [1] for the
first time, to the best of our knowledge.

5) In correlation clustering [24], [25], [29], we also have
positive and negative real edge weights. The positive
edge and negative edge indicate that the corresponding
vertices are similar or dissimilar, respectively, and the
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goal is to either maximize agreements (the sum of posi-
tive edge weights within a cluster plus the absolute value
of the sum of negative edge weights between clusters)
or minimize disagreements (the absolute value of the
sum of negative edge weights within a cluster plus the
sum of positive edge weights across clusters). Denoting
positive and negative edges as w+

jk and w−
jk , respectively,

the correlation clustering problem is defined as

max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L�
s=1

⎛
⎝ �

j∈ CS

�
k∈ CS

w+
jk

⎞
⎠

� � �
sum of positive edges
within the same cluster

+
L�

s=1

⎛
⎝ �

j∈ CS

�
k∈ C S

���w−
jk

���
⎞
⎠

� � �
absolute sum of negative edges
between different clusters

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

or

min

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L�
s=1

⎛
⎝ �

j∈ CS

�
k∈ CS

���w−
jk

���
⎞
⎠

� � �
absolute sum of negative edges
within the same cluster

+
L�

s=1

⎛
⎝ �

j∈ CS

�
k∈ C S

w+
jk

⎞
⎠

� � �
sum of positive edges
between different clusters

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(13)

Comparing (3) with (12) and (13), we see that the main dif-
ferences between the proposed shadow-cuts minimization and
the standard correlation clustering are as follows: 1) the
absolute values of the negative weights are taken into the
maximization of the correlation clustering, while the phased
weights (without any absolute value operation) are considered
in the shadow-cuts minimization and 2) the weights are only
real numbers in the correlation clustering, but the weights
are complex in the proposed shadow-cuts minimization prob-
lem. As mentioned earlier, to the best of our knowledge,
the shadow-cut concept as well as the shadow-cuts maxi-
mization/minimization problem for complex graphs is defined
for the first time in this article. Therefore, we cannot take
any correlation clustering algorithm as a reference algorithm
in this article. The algorithms from the well-established graph
partitioning literature cannot be used as reference algorithms
either simply because they deal with graphs with real edges
only and there is no “phase” concept in standard graph
partitioning problems, i.e., the edges are not “phased.” Having
been inspired by the recent results in [1] and Proposition 1,
the CHNN seems to be the only reference algorithm for our
proposed shadow-cuts minimization/maximization algorithms
so far.

III. SIMPLE INDIRECT ALGORITHMS FOR SOLVING THE

L-PHASED CLUSTERING PROBLEM FOR

HERMITIAN COMPLEX GRAPHS

For a given Hermitian directed complex graph, first let us
define the sum of cluster-specific edges for vertex (node) n,

denoted as �s
n at time t

�s
n(t) =

�
k∈ CS

wnk

� � �
sum of “inbound” edges (from the
vertices in cluster s to vertex n)

+
�

k∈ CS

wkn

� � �
sum of “outbound” edges (from
vertex n to the vertices in cluster s)

(14)

where s = 1, 2, . . . , L and wnk = rnkeiαnk . Therefore, for
vertex (node, neuron) n, we have {�1

n,�
2
n, . . . ,�

L
n }.

Definition: The sum of phased-inbound-edges for vertex n,
denoted as I sum

n , is defined as

I sum
n (t) =

N�
k=1

wnk xk(t) = ��I sum
n

��eiθsum . (15)

A. Indirect Greedy and Nongreedy Algorithms for L ≥ 3

In Section II-A, the number of clusters was 2, i.e., L = 2.
In this section, we analyze the same problem for an arbitrary
number of clusters, i.e., for L ≥ 3. In what follows, we present
a simple indirect greedy asynchronous algorithm (SIGA)
and its nongreedy version, called the simple indirect non-
greedy asynchronous algorithm (SINA), in order to solve the
shadow-cuts maximization problem, i.e., L-phased complex
graph partitioning problem that we pose by (11).

1) Simple Indirect Greedy Algorithm (SIGA): Let the state
(i.e., cluster, phase, and color) of vertex n at time t be s(n)prev .
The SIGA is presented in Table II.

Proposition 2: Let W ∈ C N×N be an arbitrary Hermitian
matrix consisting of the edges of a complex directed graph.
The proposed algorithm SIGA in (16)–(18) maximizes the sum
of shadow-cuts JSC(t), i.e., sum of intercluster phased edges,
in (3).

Proof: The first part is called “Complex GADIA” because
it is a straightforward extension of the basic GADIA in [2]
to the complex case. In order to differentiate between the real
matrix case and the complex matrix case, let us refer to the
latter case as “Complex GADIA.” Otherwise, the algorithm is
the same as the basic GADIA in [2]: In other words, the fol-
lowing “Complex GADIA” extends the pioneering algorithm
GADIA proposed by Babadi and Tarokh [2], which was only
for positive edge matrices, to a complex case where the edges
are positive and negative complex numbers:

To simplify the notation, we write I intra
sum (t) = I intra

sum
({Cs(t)}L

s=1) and JSC(t) = JSC({Cs(t)}L
s=1). Taking the sum

of cluster-specific edges for vertex (node) n, denoted as �s
n

in (14), into account, we put the sum of intracluster edges
�intra

sum (t) in (2) into two parts from the perspective of vertex n
as follows: From (2) and (14)

�intra
sum (t) = �s(n)

n (t) + �intra
others(t) (19)

where �s(n)
n (t) = �

k∈ Cs(n)
(wnk + wkn) from (14) and

�intra
others(t) show the sum of all other terms in �intra

sum (t).



1102 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 3, MARCH 2021

TABLE II

SIGA

Therefore, �s(n)
n (t) represents the “contribution” of ver-

tex/node/neuron n to its cluster s(n) and �intra
others represents all

the terms that do not include xn according to the cluster sets
{Cs(t)}L

s=1. From (16), for the first winning cluster w1 at time
(t + 1)

�w1
n (t + 1) = min

�
�1

n(t),�
2
n(t), . . . ,�

L
n (t)

�
. (20)

Thus, at time (t+1)

�intra
sum (t + 1) = �w1

n (t + 1) + �intra
others(t + 1). (21)

Because I intra
others(t) does not include xn , �intra

others(t + 1) =
�intra

others(t). Therefore, from (19)–(21)

�intra
sum (t + 1) ≤ �intra

sum (t). (22)

On the other hand, it is well known that the CHNN maximizes
the Lyapunov (energy) function L(t) in (1). Using (1)–(3) and
(15), we obtain

L(t) = 2
��I sum

n

�� cos
	
θsum − φn(s)



� � �

related to xn

+ Lothers
n (t)� � �

without xn

(23)

where Lothers
n = �N

j = 1
( j �= n)

�N
k = 1
(k �= n)

w jk x j (t)xk(t) includes all

terms that do not contain xn. Furthermore, note that I sum
n does

not include xn either because edge matrix W is zero-diagonal.
From (17)��θsum − φw2

�� ≤ {|θsum − φ1|, |θsum − φ2|, . . . , |θsum − φL |}.
(24)

For the second winning cluster w2 at time (t + 1)

L(t + 1) = 2
��I sum

n

�� cos
	
θsum − φw2


 + Lothers
n (t + 1). (25)

In (23) and (25), Lothers
n (t + 1) = Lothers

n (t) because they do
not include any terms with xn . From (23)–(25)

L(t + 1) ≥ L(t). (26)

Using (1)–(3), at any time t

JSC(t) = L(t) − �intra
sum (t). (27)

From (22), (26), and (27), we conclude that

JSC(t + 1) ≥ JSC(t) (28)

and whenever a vertex is assigned from its current cluster to
a different cluster by (18), JSC(t) in (3) is strictly increased.
Because the maximum of JSC(t) in (3) is finite, the SIGA
in (16)–(18) converges to a local maximum after a finite
number of steps, which completes the proof.

Corollary 1: Let W be an arbitrary Hermitian matrix con-
sisting of the edges of a complex directed graph. The proposed
algorithm in (16)–(18) for (−W) minimizes the sum of
shadow cuts JSC(t), i.e., the sum of intercluster phased edges,
in (3).

Corollary 2: If all edges are positive real and symmetrical,
i.e., matrix W ∈ �N×N

+ , and if the second winner w2 is
omitted above, i.e., if

s(n) = w1 (29)

in (18), then the proposed SIGA is reduced to the basic
GADIA algorithm of Babadi and Tarokh [2]. The basic
GADIA is for a simple undirected graph whose edge matrix
W is a positive real symmetric only and thus minimizes the
sum of intracluster edges �intra

sum (t) in (2).
Corollary 3: Let W ∈ C N×N be an arbitrary Hermitian

matrix consisting of the edges of a complex directed graph.
If the first winner w1 is omitted in step 2 above, i.e., if

s(n) = w2 (30)

in (18), then the proposed SIGA is reduced to the well-known
CHNN, which maximizes the Lyapunov (energy) function L(t)
in (1).

Comparison of SIGA With the Basic GADIA in [2]: The
GADIA proposed by Babadi and Tarokh [2] has been a
pioneering algorithm in the interference avoidance literature
on wireless communications. The original basic GADIA is
designed in the power domain, and thus, all channel power
gains (edges) are modeled as positive numbers. Channel power
gains correspond to edges. Therefore, the basic GADIA solves
the simple undirected graph clustering problem with positive
edges only. However, the abovementioned SIGA addresses
the complex and phased graph clustering problem. The edges
of SIGA may represent the amplitude channel gains that are
arbitrary complex numbers in the context of wireless systems.
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2) Simple Indirect Nongreedy Algorithm (SINA): In this
section, we shed light on the working principle of the SIGA
in (16)–(18) and present its “nongreedy” version to solve the
same L-phased complex graph partitioning problem in (11):
The proposed simple algorithm in (16)–(18) is a greedy
one in the sense that for vertex n, it determines the cluster
index w1 that decreases the sum of intracluster edges �intra

sum (t)
in (2) the most and the cluster index w2 that increases the
Lyapunov function L(t) in (1) the most at time t . However,
most of the time, there are multiple other clusters that also
decrease the same �intra

sum (t) in (2) (although they reduce it less
than the cluster w1 does). Similarly, most of the time, there are
multiple other clusters that also increase the same Lyapunov
function L(t) in (1) (although these clusters increase it less
than the cluster w1 does). How can we find all the cluster
indices decreasing �intra

sum (t) in (2) and all the cluster indices
increasing the Lyapunov function L(t) in (1)? In what follows,
we first examine this question and then present our nongreedy
algorithm:

First, we suggest that we put the sum of phased-inbound-
edges I sum

n in (15) into two parts as follows:
I sum
n = ��I sum

n

��eiθsum = I w
n���

intra-cluster

+ I o
n���

inter-cluster

(31)

where

I w
n���

intra-cluster

=
�

k∈ Cw

wnkeiφw

� � �
phased “inbound” weights only from
the vertices in cluster w to vertex n

= ��I w
n

��eiθnw (32)

and

I o
n���

inter-cluster

=
�

k∈ Cw

wnkeiφs(k)

� � �
phased “inbound” weights from all the
vertices in clusters other than w to vertex n

= ��I o
n

��eiθno .

(33)

From (14) and (32) and the fact that w jk = wk j ,
we obtain �w

n (t) = 2|I w
n | cos(θnw − φw). In (31)–(33), the

superscript “w” stands for the “winner or winning cluster”
and the superscript “o” stands for “other clusters.” Therefore,
I w
n belongs to the intracluster term �intra

sum (t) in (2) and I o
n

belongs to the sum of the shadow-cut JSC({Cs}L
s=1), i.e., sum

of intercluster phased-edges, in (3). Note that in (32) and (33),
I w
n and I o

n depend on set Cw , and therefore, both magnitudes
|I w

n | and |I o
n | as well as both angles θnw and θno also depend on

set CS . Whenever set CS is updated, all magnitudes and angles
change accordingly. To shed light on the working principle of
the proposed simple algorithm, we examine Fig. 2 illustrating
I sum
n , I w

n , and I o
n for vertex n in two random snapshots.

Fig. 2 shows the vector projections of I sum
n , I O

n , and I w
n onto

the cluster vector xw for vertex n. Let vertex n be assigned to
cluster w. We conclude from Fig. 2 that the following holds.

1) The projection of I sum
n , I w

n , and I o
n onto its cluster

vector xs(n) belongs to the Lyapunov function L(t)
in (1), the sum of intracluster edges �intra

sum (t) in (2), and

Fig. 2. Illustration of vector projections of I sum
n , I 0

n , and Iw
n onto the cluster

vector xw for node n at two random snapshots in (a) and (b). (a) Random
snapshot. (b) Another random snapshot.

the shadow cuts JSC({Cs}L
s=1), i.e., sum of intercluster

phased edges, in (3), respectively.
2) All the clusters that strictly increase/decrease L(t) in (1),

�intra
sum (t) in (2), and J ({Cs}L

s=1) in (3) can independently
and computationally easily be determined from these
three projections. The greater the projection of I sum

n
onto cluster vector xsum, the greater L(t) is. Similarly,
the smaller the projection of I w

n onto cluster vector xw,
the smaller �intra

sum (t) is. For the details, see proof of
Proposition 3.

The proposed SINA when L ≥ 3 is summarized in Table III,
where the cluster (i.e., state, phase) index of vertex n at time t
is represented by s(n).

Whenever the cluster of vertex n is changed from s(n)prev

to a new cluster w, then the corresponding two cluster sets
Cs(n)prev(t + 1) and Cs(n)(t + 1) are updated accordingly.

In step (1), the set Sw1 in (35) consists of all the cluster
indices decreasing �intra

sum (t) in (2). The set Sw2 in (36) consists
of all the cluster indices increasing the Lyapunov function L(t)
in (1).

Proposition 3: Let W ∈ C N×N be an arbitrary Hermitian
matrix consisting of the edges of a complex directed graph.
The proposed asynchronous and nongreedy algorithm, SINA,
in (35)–(38) maximizes the sum of shadow-cuts JSC(t), i.e.,
sum of intercluster phased edges, in (3).
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TABLE III

SINA

Proof: Let us assume that the vertex n is moved from
cluster s(n)prev to the cluster w at time (t +1) by the proposed
SINA in (35)–(38). Using (23) and (31)–(33) and w jk = wk j

for cluster w at time (t + 1) gives��I sum
n

�� cos(θsum − φw) = ��I w
n

�� cos(θnw − φw)

+��I o
n

�� cos(θno − φw). (39)

Equation (39) can also be verified easily by the projection
vectors in Fig. 2. Using (23), (27), and (39), we obtain the
sum of shadow-cuts JSC(t + 1), i.e., the sum of intercluster
phased edges, as follows:
JSC(t + 1) = 2

��I sum
n

�� cos(θsum − φw) + Lothers
n (t + 1)

−2
��I w

n

�� cos(θnw − φw) − �intra
others(t + 1) (40)

where Lothers
n (t + 1) and �intra

others(t + 1) do not include xn.
On the other hand, from (14) and (32), we obtain

�w
n (t + 1) =

�
k∈ Cw(t+1)

	
w jk + wk j




= e−iφw

�
k∈ Cw(t+1)

	
w jk + wk j



eiφw

= 2
��I w

n

�� cos
	
θn,w − φw



. (41)

Similarly, for the same vertex n in cluster s(n) at time t, we
obtain the sum of shadow-cuts JSC(t) in (3) using (27) and (39)
as follows:
JSC(t) = 2

��I sum
n

�� cos
	
θsum − φs(n)


 + Lothers
n (t)

−2
��I s(n)

n

�� cos
	
θn,s(n) − φw


 − �intra
others(t) (42)

where Lothers
n (t) and �intra

others(t) do not include xn. Furthermore,
from (14), (32), and (35)–(38), we obtain

2
��I w

n

�� cos(θnw − φw) = �w
n (t + 1). (43)

From (40)–(43) and using the fact that Lothers
n (t), Lothers

n (t + 1),
�intra

others(t), and �intra
others(t + 1) do not include xn, we obtain

JSC(t + 1) − JSC(t)

= 2
��I sum

n

���cos(θsum − φw) − cos
	
θsum − φs(n)


�
− �w

n (t) + �s(n)
n (t). (44)

Because �w
n (t) < �s(n)

n (t) from (35) and cos(θsum − φw) >
cos(θsum − φs(n)) from (36), we obtain from (44) that

JSC(t + 1) ≥ JSC(t) (45)

and therefore, whenever a vertex is assigned from its current
cluster to a different cluster by the SINA in (35)–(38), the sum
of shadow cuts JSC(t) in (3) is strictly increased. Because
the maximum of the shadow cuts JSC(t) is finite, the SINA
converges to a local maximum after a finite number of steps,
which completes the proof.

Comparison of the SINA with the N-GAIR in [21]: The
first step of the SINA includes the N-GAIR in [21]. However,
the N-GAIR in [21], a variant of GADIA [2], solves the simple
undirected graph clustering problem for positive edges only.
However, the abovementioned SINA addresses the complex
directed graph clustering problem.

3) SIGA2 and SINA2: In the abovementioned SIGA and
SINA, L(t) is increased and �intra

sum (t) is decreased simultane-
ously, and that is why J (t) is indirectly increased and both
SIGA and SINA are called indirect algorithms. Note that
L(t) = �intra

sum (t) + JSC(t) from (27). However, both SIGA
and SINA have strict restrictions: A cluster update takes place
in SIGA if and only if the cluster that increases the L(t) the
most coincides with the cluster that decreases the �intra

sum (t)
the most. In addition, there is no correlation between L(t)
and �intra

sum (t) due to the randomness of the edges. Similar
restriction is available for the SINA as well. Thus, in what
follows, in light of the mathematical analysis of the SINA
mentioned earlier, we conclude that it is computationally
easy to determine the change in L(t) as well as in �intra

sum (t)
for each candidate cluster using only the local information
that is readily available at each vertex (neuron, node) and
relax the strict conditions and allow the cluster update to
occur whenever the change in L(t) is greater than the change
in �intra

sum (t).
These two conclusions are the main points of the following

versions, called SIGA2 and SINA2.
SIGA2: The steps of SIGA2 are given in Table IV.
Corollary 4: Let W ∈ C N×N be an arbitrary Hermitian

matrix consisting of the edges of a complex directed graph.
The proposed simple indirect algorithm SIGA2 in (46)–(48)
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TABLE IV

SIGA2

locally maximizes the sum of shadow-cuts JSC(t), i.e., sum of
intercluster phased edges, in (3).

Proof: Writing (46)–(48) in the steps in (19)–(25) results
in JSC(t + 1) > JSC(t) whenever there is a cluster update by
the SIGA2. Because JSC(t) is upper bound, JSC(t) converges
to a local maximum after a finite number of steps, which
completes the proof.

SINA2: The steps of SINA2 are given in Table V.
Corollary 5: Let W ∈ C N×N be an arbitrary Hermitian

matrix consisting of the edges of a complex directed graph.
The proposed simple indirect algorithm SINA2 in (49)–(51)
locally maximizes the sum of shadow-cuts JSC(t), i.e., sum of
intercluster phased edges, in (3).

Proof: Writing (49)–(51) in the steps in (39)–(45) results
in JSC(t + 1) > JSC(t) whenever there is a cluster update by
the SINA2. Because JSC(t) is upper bounded, JSC(t) converges
to a local maximum after a finite number of steps, which
completes the proof.

IV. SIMULATION RESULTS

In this section, we design three different examples in order
to examine mainly the evolution and characteristics of the
defined sum of shadow cuts [i.e., sum of inter cluster phased
edges JSC(t)] (3) for the CHNN and the proposed algorithms.

A. Example 1: Random Complex Matrix Case

In order to shed light on the working principles of the
proposed algorithms, first, we examine their behaviors in the
cases where the edges are random complex numbers normally
distributed. Therefore, the real and/or imaginary parts of about
half of the edges are negative. The number of vertices is 25,
and thus, the dimension of the Hermitian matrix is 5 × 5. The
number of clusters is eight, i.e., L = 8. Therefore, the complex
unit circle is evenly divided into eight parts, and

xi ∈ P =
�

e−i0, e−i π
4 , ei π

4 , e−i π
2 , ei π

2 , e−i 3π
4 , ei 3π

4 , eiπ
�

(52)

TABLE V

SINA2

where i = 1, 2, . . . , N . First, let us investigate the traditional
CHNN. As the CHNN evolves by time from its initial condi-
tion until it converges, we calculate the percentages of changes
and the normalized sum of changes in the Lyapunov (energy)
function L(t) in (1), the sum of intracluster edges �intra

sum (t)
in (2), and the shadow-cuts JSC(t), (i.e., sum of intercluster
phased edges) in (3) and plot all of them in Fig. 3. We observe
the following from Fig. 3(a) and (b): for most of the cluster
updates, roughly, around 80% of the cluster updates, JSC(t)
in (3) also increases, and; �intra

sum (t) in (2), on the other hand,
at roughly half of the cluster updates, increases/decreases.

In other words, Fig. 3(a) and (b) shows that while L(t) in (1)
is maximized, the traditional CHNN has a tendency that most
of the cluster updates (roughly 80% for this specific example)
also increase JSC(t) in (3) for a normally distributed random
Hermitian matrix realization.

We run all the proposed algorithms and the traditional
CHNN for the same Hermitian matrix and the same initial
condition and plot the evolution of the sum of intercluster
phased edges (i.e., the sum of shadow-cuts) JSC(t) in (3)
for each algorithm in Fig. 4(a). A zoom into the sum of the
shadow cuts JSC(t) after step 25 is given in Fig. 4(b). As seen
from Fig. 4(b), the traditional CHNN does not mathematically
guarantee that JSC(t) increases or decreases for a cluster
update though the complete plot Fig. 4(a) suggests that the
traditional CHNN seems to have “a tendency” to increase
JSC(t) as well. Fig. 4 also confirms that all the proposed
algorithms strictly increase JSC(t) for each cluster update.

The number of cluster updates for all the proposed algo-
rithms is given in Fig. 5. We see from Fig. 5 that the following
holds.

1) The SIGA has only a few cluster updates as expected
due to the strict cluster restrictions on both L(t) and
�intra

sum (t).
2) About the Proposed Algorithms: The SINA has more

cluster updates compared to the SIGA as expected;
similarly, SINA2 has more cluster updates compared
to the SIGA2 due to the SINA’s and SINA2’s non-
greedy features. On the other hand, SIGA2 has (always)
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Fig. 3. (a) Percentages of changes and (b) normalized sum of changes
in Lyapunov function L(t) in (1), the sum of intracluster edges �intra

sum in (2),
and the sum of intercluster phased edges JSC(t) in (3) in Example 1.

more cluster updates than SIGA; similarly, SINA2 has
(always) more cluster updates than SINA because the
cluster candidate sets of SIGA and SINA are (always)
subsets of the candidate sets of SIGA2 and SINA2,
respectively. This yields additional cluster (phase) can-
didates in the cases of SIGA2 and SINA2 as compared
to the SIGA and SINA, respectively.

In order to gain insight into the evolution of L(t), �intra
sum (t)

and JSC(t) for the same algorithm, we plot the results of
SIGA2 in Fig. 6, where there are 30 cluster updates. Fig. 6
confirms that as the sum of shadow cuts JSC(t) is maximized,
L(t) also strictly increases in each cluster update by the
SIGA2, as explained in Section III.

On the other hand, in order to gain insight into the evolution
of the sum of the intracluster edges �intra

sum (t) in (2) for all algo-
rithms, we plot them in Fig. 7. While �intra

sum (t) for the SIGA
and the SINA strictly decreases (as expected), it fluctuates for
the SIGA2, the SINA2, and the CHNN.

B. Example 2: Pattern Restoration (Deterministic Case)

This example is related to the complex-valued associative
memory systems for pattern restoration. The desired patterns
are shown in Fig. 8, where there are 25 pixels. The patterns
can be represented by a graph where each pixel corresponds
to a vertex. Each pixel (vertex) has a color (phase or clus-
ter). The number of gray colors (clusters or phases) is 8,
i.e., L = 8 as in Example 1, xi ∈ P in (52), where
i = 1, 2, . . . , 25. As an example, the pattern 2 is defined by the
matrix in (53). Concatenating the rows of the matrix in (53)

Fig. 4. (a) Evolution of the sum of intercluster phased edges JSC(t) in (3)
for the algorithms in Example 1. (b) A closer look after step 25.

Fig. 5. Number of cluster updates in Example 1.

into one column vector gives the desired pattern vector 2,
called d2 ⎡

⎢⎢⎢⎢⎣

eiπ eiπ ei π
2 ei π

2 ei0

ei0 ei0 ei0 ei 3π
4 ei0

e−i 3π
4 e−i 3π

4 ei π
2 ei π

2 ei0

ei π
4 ei0 ei0 ei0 ei0

eiπ eiπ e−i π
4 e−i π

4 ei0

⎤
⎥⎥⎥⎥⎦. (53)

Various learning algorithms can be used to determine the
complex edge matrix W like the Hebbian rule, the energy
based methods in [12] or in [13], symmetric complex matrix
in [22], or the projection rule in [23]. For the sake of brevity,
here, we use the Hebbian rule [19]

W =
3�

k=1

dkd∗
k (54)
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Fig. 6. Evolution of L(t), �intra
sum (t), and JSC(t) by the SIGA2 in Example 1.

Fig. 7. Evolution of the sum of intracluster edges �intra
sum (t) in (2) for all

algorithms in Example 1.

Fig. 8. Desired patterns for Example 2.

where dk is the desired complex vectors representing the
patterns in Fig. 8 and d∗

k is the transpose conjugate of dk .
The complex edge matrix Wby the Hebbian learning in (54)
is already a Hermitian.

We have carried out various simulation campaigns for a
Hamming distance (HD) of 3. As a typical example, a distorted
pattern with HD of 3 is shown in Fig. 9, for pattern 3.
The evolution of L(t), �intra

sum (t), and JSC(t) for the SIGA2 is
shown in Fig. 10, where there are three cluster updates at
steps 1–3 (step 0 is the initial condition). The figure shows
while JSC(t) is maximized, the energy function L(t) also
increases but the sum of intracluster weights �intra

sum (t) fluctuates
(i.e., increases and decreases) for this particular example

Fig. 9. Desired and a distorted pattern (with HD = 3) for pattern 3 and the
results of SIGA2 and SINA2.

Fig. 10. Evolution of L(t), �intra
sum (t), and JSC(t) by the SIGA2 for pattern 3

in Example 2.

Fig. 11. 3-bit gray-scale versions of two well-known test images, namely,
Lenna and peppers.

during the optimization process. The results of the proposed
SIGA2 and SINA2 are shown in the second row of Fig. 9,
which shows that both the SIGA2 and the SINA2 manage to
restore pattern 3.

C. Example 3: Image Restoration

We examine a 3-bit image restoration problem where each
pixel is represented by 3 bits, i.e., by eight different phases.
Without the loss of generality, we use 3-bit gray-scale versions
of two well-known test images, namely, Lenna and peppers
test images as shown in Fig. 11.

Similar to what the authors did in, e.g., [12], after seg-
menting each image and distorting them by salt-and-pepper
noise (where the noise intensity is 0.35), we test to restore
the images by the CHNN, the SIGA2, and the SINA2. The
same weight matrix obtained by the Hebbian learning rule
is used for all CHNN, SIGA2, and SINA2. As an example,
a distorted image (with salt-and-pepper noise) and the restored
images by the CHNN, the SIGA2, and the SINA2 are shown
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Fig. 12. Distorted 3-bit Lenna image with pepper noise (noise density 0.35)
and their reconstructions by the CHNN, SIGA2, and SINA2.

Fig. 13. Typical evolution of L(t), �intra
sum (t), and JSC(t) of the CHNN,

SIGA2, and SINA2 during a segment processing of the test image.

in Fig. 12. As seen in Fig. 12, all three methods manage
to restore the original image to an acceptable extent. Here,
we note that the results presented in Fig. 12 are obtained
straightforwardly by the Hebbian rule without any further
tuning or optimization, whatsoever. For example, even 3-bit
gray-scale level optimization is not considered here, etc.

To give an idea about the evolution of L(t), �intra
sum (t), and

JSC(t) of the CHNN, the SIGA2, and the SINA2 during
segment processing, we plot them in Fig. 13. Referring to
our simulation results and conclusions in Examples 1 and 2,
Fig. 13 confirms the findings presented in Sections II and III.

V. CONCLUSION AND FUTURE WORK

In this article, we extend the work in [1] to the complex
case. Being inspired by the real HNN results in [1], our
investigations here yield various novel results.

1) Extending the “biased pseudo-cut” concept in [1] to the
Complex HNN (CHNN) case, we introduce a “shadow-
cut” concept that is defined as the sum of intercluster
phased edges.

2) While the discrete-time real HNN strictly minimizes
the “biased pseudo-cut” in each neuron state change,
the CHNN “tends” to minimize the “shadow-cut” (as the
HNN energy function is minimized).

3) These definitions pose a novel L-phased graph clus-
tering (partitioning) problem in which the sum of the
shadow-cuts is minimized for the Hermitian complex
and directed graphs whose edges are (possibly arbitrary
positive/negative) complex numbers.

4) We propose simple indirect algorithms to solve the
defined shadow-cut minimization problem via combin-
ing the CHNN and the GADIA of Babadi and Tarokh [2]
and their modified versions. Therefore, the proposed
algorithms include the CHNN as well as the GADIA
of Babadi and Tarokh [2] as its special cases.

5) The theory of weighted and directed graphs with
possibly negative and positive complex edges is
almost unavailable, and to the best of our knowledge,
the shadow-cut concept as well as the shadow-cut maxi-
mization/ minimization problem for Hermitian complex
graphs is defined for the first time in this article.

6) The computer simulations confirm the findings.
7) The results in this article imply that the “informa-

tion” of the proposed algorithms (the SINA, the SIGA,
the SINA2, and the SIGA2) is always stored in the local
minima (or local maxima) of the defined sum of the
shadow-cuts in (3) and (11) regardless of the type of
optimization problem.

We think that due to the multidisciplinary nature of the
research topic (touching complex-valued neural networks,
real HNN, Ising model, Complex HNN, graph theory, graph
clustering with negative/positive edges, and machine learning
and optimization), the presented results could be extended to
quite a few other interesting dimensions. Our current and near
future research subjects include developing novel effective
methods for designing CHNN weight matrices as applied to
various associative memory or optimization problems using
the “deeper understanding” developed in this article. The
limitation of this study is that the optimization problem should
be formulated as the (standard CHNN) energy function in (1)
where the complex matrix W is Hermitian.
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