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Abstract—Sampling one or more effective solutions from large
search spaces is a recurring idea in machine learning, and sequen-
tial optimization has become a popular solution. Typical examples
include data summarization, sample mining for predictive model-
ing and hyper-parameter optimization. Existing solutions attempt
to adaptively trade-off between global exploration and local
exploitation, wherein the initial exploratory sample is critical
to their success. While discrepancy-based samples have become
the de facto approach for exploration, results from computer
graphics suggest that coverage-based designs, e.g. Poisson disk
sampling, can be a superior alternative. In order to successfully
adopt coverage-based sample designs to ML applications, which
were originally developed for 2 − d image analysis, we propose
fundamental advances by constructing a parameterized family
of designs with provably improved coverage characteristics, and
by developing algorithms for effective sample synthesis. Using
experiments in sample mining and hyper-parameter optimization
for supervised learning, we show that our approach consistently
outperforms existing exploratory sampling methods in both blind
exploration, and sequential search with Bayesian optimization.

Index Terms—Hyper-parameter optimization, coverage-based
sample design, Poisson disk sampling, predictive modeling, se-
quential optimization.

I. INTRODUCTION

A. Sampling in Machine Learning

Sample design has been a long-standing research area in
statistics [1], and has now become a crucial problem in
machine learning and AI, particularly with the emergence
of numerous data-driven learning paradigms. The notion of
sampling appears in a variety of contexts, ranging from
summarizing complex data [2], generating mini-batches for
effective neural network training [3], metric learning [4] to
hyper-parameter search [5], [6], reinforcement learning [7],
[8] and knowledge transfer [9]. A common goal in these
seemingly diverse applications is to identify one or more
effective solutions from a large search space, using the smallest
amount of resources. In principle, there are two competing
strategies while performing sampling [10]: exploitation, which
probes a limited region in the search space with the hope
of improving an already identified solution; and exploration,
which probes a larger part of the search space with the hope
of finding solutions that are yet to be refined. In practice,
sequential sampling methods that can trade-off between explo-
ration and exploitation strategies are preferred [11]. However,
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given the large volume of typical search spaces and restrictions
on resources (time and compute), the exploration step is
highly critical to reduce the uncertainties to an extent that
the exploitation step can be expected to succeed. Over the last
several decades, a large class of exploratory sampling tech-
niques have been developed [12]–[14]. Though the overarching
objective is to cover the search space uniformly, it is well
known that uniformity alone does not suffice. For example,
optimal sphere packings lead to highly uniform designs, yet
are prone to causing aliasing artifacts. Consequently, effective
exploration requires to balance uniformity and randomness
in the search space, often evaluated using heuristic measures
such as discrepancy [15]. More recently, the pair correlation
function (PCF) has been found to be a more useful statistic
for evaluating the quality of sample designs [16]–[19].

While discrepancy-based quasi-random designs have been
commonly utilized in several applications [5], [20], the com-
puter graphics community has had long-standing success with
coverage-based designs, in particular Poisson Disk Sampling
(PDS) [21], [22]. The works in [21], [22] were the first
to introduce PDS for turning regular aliasing patterns into
featureless noise, which makes them perceptually less visible.
Their works were inspired by the seminal work of Yellott
et.al. [23], who observed that the photo-receptors in the retina
of monkeys and humans are distributed according to a Poisson
disk distribution. For the first time in [17], PDS was formally
defined using the pair correlation function and used to obtain
theoretical bounds on achievable coverage properties. Despite
their well-established success in image/volume rendering [12],
[24], [25], coverage-based designs have not been adopted in
the machine learning community. Recently, in [19], Kailkhura
et al. developed a generic spectral sampling framework, that
encompasses several existing designs including PDS, blue
noise [25] and variants [18], by jointly analyzing the spa-
tial and spectral properties of sample distributions. Though
this framework enjoys several desirable properties in theory,
constructing an optimal design and actually synthesizing sam-
ples that match these characteristics are challenging. When
designed sub-optimally, a spectral sample can perform worse
than other random sampling strategies. In addition, the sam-
ple synthesis is based solely on PCF matching, which is a
summary 1−D statistic of high-dimensional point clouds, thus
making this optimization very challenging in practice.

B. Proposed Work
In this work, we propose to develop novel coverage-

based designs for challenging machine learning problems,
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namely sample mining in predictive modeling and hyper-
parameter optimization. Building upon the theoretical foun-
dations from [19], we argue that larger coverage is critical
to improving the expected performance of sample designs in
ML tasks that require the exploration of complex optimization
surfaces. Further, we make the following key contributions to
produce highly effective samples in practice:
• We introduce a new parameterized family of coverage-

based designs using the pair correlation function, which
generalizes existing constructions such as [17], [19], for
machine learning applications;

• Using tools from spectral sampling theory, we show that
the proposed sample design achieves the largest coverage
so far;

• For the first time, we develop an efficient strategy to find
the “optimal” parameters of a design (i.e. with largest
coverage) for a given sample size and dimensionality;

• We design a scalable and effective sample synthesis
algorithm that consistently outperforms existing PCF
matching approaches such as [16] and [19].

• Using empirical studies on predictive modeling, we
demonstrate that the proposed sample design outperforms
existing discrepancy-based and coverage-based designs,
particularly under low sampling rates.

The proposed coverage-based design is based on systemati-
cally trading-off randomness characteristics of a point distri-
bution with coverage to enable improved performance. Such a
controlled random sampling is mathematically represented us-
ing the PCF and analyzed via the spectral sampling principles
from [19]. Surprisingly, we find that the achievable coverage of
the proposed design is significantly larger than a conventional
PDS design (∼ 25% − 40% increase for the same configura-
tion). Further, our synthesis algorithm consistently produces
high-quality samples and is highly robust, as evidenced by the
performance variance across multiple realizations.

In order to demonstrate the importance of coverage-based
designs in challenging applications, we consider the problem
of hyper-parameter tuning while building ML models. To this
end, we consider scenarios where we rely solely on exploration
(blind sampling), similar to [5], and where we use the ex-
ploratory samples to initialize a Bayesian optimization pipeline
with expected improvement as the acquisition function, as
carried out in [20]. We perform empirical studies with (a)
a standard feature extractor-classifier pipeline, and (b) deep
neural networks that perform end-to-end learning. Our results
show that the proposed sample design consistently outperforms
state-of-the art exploratory sampling methods including Latin
Hyper Cube (LHS), Quasi-Monte Carlo (QMC) designs [15]
and spectral samples in [19]. Interestingly, we observed signif-
icant improvements even in the Bayesian optimization cases,
which clearly emphasizes the importance of the initial explo-
ration step. In summary, the effectiveness of our approach even
with small sample sizes establishes it as a powerful exploratory
sampling technique for ML/AI applications.

II. COVERAGE-BASED SAMPLE DESIGNS

Though a variety of discrepancy measures are commonly
used for exploratory sampling, our focus is on coverage-based

designs. In this section, we briefly describe the mathematical
tools required for the design and analysis of coverage-based
sampling. Subsequently, we discuss two popular coverage-
based designs from [17] and [19] respectively.

Broadly speaking, a reasonable objective for exploratory
sampling is to ensure that the samples are random, thus
providing an equal chance of finding meaningful solutions
anywhere in the search space. However, in order to ensure
diversity, a second objective is often considered, which is
to cover the space uniformly. In this paper, we consider the
general class of coverage-based sample designs [19]:

Definition 1. (Coverage-based Design) A set of N random
samples {Xi}Ni=1 in a search space D can be characterized
as a coverage-based design, if {Xi = xi ∈ D; i = 1, · · ·N}
satisfy the following two objectives:

• ∀Xi, ∀4D ⊆ D : Pr(Xi = xi ∈ 4D) =
1
4D

∫
4D dx;

• ∀xi,xj : ||xi − xj|| ≥ rmin,

where rmin is referred to as the coverage radius (or disk size).
In this definition, the first objective states that the probability
of a random sample Xi falling inside a subset 4D of D
is equal to the hyper-volume of 4D. The second condition
enforces the disk constraint for improving coverage. Since,
there existed no quality metrics to jointly characterize the
coverage and randomness properties, several recent works have
adopted the pair correlation function [16] as a quality metric.

Definition 2. (Pair Correlation Function) Let us denote the
intensity of a point process X as λ(X ), i.e., the average
number of points in an infinitesimal volume around X . For
isotropic point processes, this is a constant. To define the
product density β, let {Bi} denote the set of infinitesimal
spheres around the points, and {dVi} indicate the volume
measures of Bi. Then, we have Pr(X1 = x1, · · · ,XN =
xN) = β(x1, · · · ,xN)dV1 · · · dVN which represents the prob-
ability of having points xi in {Bi}. In the isotropic case, for a
pair of points, β depends only on the distance between them,
and hence β(xi,xj) = β(||xi − xj||) = β(r) and Pr(r) =
β(r)dVidVj . The PCF is then defined as G(r) = β/λ2.

Alternatively, Fourier analysis can be utilized for under-
standing the qualitative properties of sampling patterns. For
isotropic samples, a metric of interest is the radially-averaged
power spectral density (PSD), which describes how the signal
power is distributed over spatial frequencies.

Definition 3. (Radially-averaged PSD) For a finite set of N
points, {xj}Nj=1, in a region with unit volume, the PSD of the
sampling function

∑N
j=1 δ(x− xj) is defined as

P (k) =
1

N
|S(k)|2 =

1

N

∑
j,`

e−2πik.(x`−xj), (1)

where |.| denotes the `2-norm and S(k) denotes the Fourier
transform of the sampling function.
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Figure 1: Illustration of 2-d patterns obtained using Poisson
and Poisson disk sampling. We show the point distribution
(top) and the power spectral density (bottom) for each case.

Interestingly, there is a well-defined connection between the
PCF of a sample design and its radially-averaged PSD, and
this connection is central to the proposed work.

Definition 4. (Linking PCF and PSD) For an isotropic sample
design with N points, {xj}Nj=1, in a d-dimensional region, the
radially averaged power spectral density P (k) and the pair
correlation function G(r) are related as follows:

P (k) = 1 +
N

V
(2π)

d
2 k1−

d
2H d

2−1

[
r

d
2−1G(r)− 1

]
, (2)

where k is the frequency index, V is the volume of the
sampling region and Hd[.] denotes the Hankel transform,

Hd(f(r))(k) =

∫ ∞
0

rJd(kr)f(r)dr,

with Jd(.) denoting the Bessel function of order d.

Finally, it is important to note that, not every PCF construc-
tion is physically realizable by a sample design. In fact, there
are two necessary mathematical conditions 1 that a design must
satisfy to be realizable.

Definition 5. (Realizability) A PCF can be considered to be
potentially realizable through a sample design, if it satisfies:
• the PCF must be non-negative, i.e., G(r) ≥ 0, ∀r, and
• the corresponding PSD must be non-negative, i.e.,
P (k) ≥ 0, ∀k.

A. Poisson Disk Sampling

The well-known Poisson design (Figure 1(a)) enforces only
the first condition from Definition 1, in which case the number
of samples that fall inside any subset 4D ⊆ D obeys
a discrete Poisson distribution. Consequently, Poisson disk
sampling [17] (Figure 1(b)) that explicitly enforces the disk
constraint is considered to be optimal in this context. Several

1Whether or not these two conditions are not only necessary but also
sufficient is still an open question (however, no counterexamples are known).

widely adopted strategies for generating Poisson disk samples
rely on the heuristic idea of dart throwing [12], [13], [21], [22],
which uses as many darts as required to cover the search space,
while not violating the disk criterion. Despite its effectiveness,
its primary shortcoming is the choice of termination condition,
since it is not easy to quantify the coverage and randomness
properties. This motivated the use of pair correlation function
(PCF) [16] to summarize spatial characteristics of a sampling
pattern, using which Kailkhura et al. [17] formally defined
Poisson disk sampling for the first time (Figure 2(a)).

Definition 6. (Poisson disk sampling) [17] Given the desired
disk size rmin, PDS is defined using the PCF as

G(r − rmin) =

{
0 if r < rmin
1 if r ≥ rmin.

(3)

Note that, the disk radius rmin is referred as the coverage.

B. Space-Filling Spectral Design

While Poisson disk sampling was preferred in computer
graphics applications for turning regular aliasing patterns into
featureless noise, it is not directly suitable for conventional
predictive modeling problems. Consequently, in [19], the au-
thors studied the impact of coverage on supervised regression
problems, and provided empirical evidence that larger cover-
age in the sample design was critical to improving the expected
performance of the models designed using them. Motivated
by this observation, they developed the space-filling spectral
design (SFSD), which is defined as:

Definition 7. (Space-Filling Spectral Design) [19]

G(r; rmin, r1, P0) = f(r − r1) + P0 (f(r − rmin)− f(r − r1)) ,

(4)

with f(r − rmin) =

{
0 if r ≤ rmin
1 if r > rmin

}
,

where rmin ≤ r1 and P0 ≥ 1.

This represents a parameterized stair function (Figure 2(b))
that introduces a peak in the quest of increasing the coverage.

III. PROPOSED SAMPLE DESIGN METHODOLOGY

In order to enable the effective use of coverage-based
designs in ML applications, we need to confront the following
challenges: (i) most existing methods are designed specifically
for 2-d, and a trivial extension of such constructions provide
poor coverage, even in d > 3; (ii) current sample synthesis
algorithms based on PCF matching require extensive manual
tuning, and perform poorly as the dimension increases – in
many cases, the synthesis quality is no better than random
sampling; and (iii) the superior performance of coverage-based
designs has been established mostly on graphics tasks, such
as image/volume rendering, and similar gains are yet to be
achieved in ML applications.

In this section, we first propose a new parameterized PCF
construction for coverage-based designs, which achieves larger
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(a) Poisson Disk Sampling [17] (b) Space Filling Spectral Design [19] (c) Proposed Design

Figure 2: Pair correlation functions of coverage-based sample designs. Each design leads to a different coverage size rmin.

coverage compared to existing approaches. Next, we develop a
practical strategy for finding an “optimal” PCF configuration.
Finally, in the next section, we present an effective sample
synthesis algorithm for coverage-based sampling, that consis-
tently leads to high-quality samples across different sample
sizes and dimensionality.

A. A New Parameterized Family

Following notations in the previous section, our parame-
terized PCF construction for coverage-based sampling can be
expressed as follows:

G(r; rmin, r1, P0, A,B,C,D) = P0 (f(r − rmin)− f(r − r1))

+

(
1 +

A

r
exp(−Br) sin(2πCr +D)

)
∗ f(r − r1), (5)

where f(r − rmin) =

{
0 if r ≤ rmin
1 if r > rmin

}
,

rmin ≤ r1 and P0 ≥ 1.

The intuition behind this construction is to enable trade-off
between randomness and uniformity/coverage properties of a
sample design. This construction (see Figure 2(c)) has three
crucial properties:

1) The PCF is zero from 0 ≤ r ≤ rmin, corresponding to
the coverage size similar to other designs;

2) The PCF has a peak from rmin < r ≤ r1 and damped
oscillations from r > r1 characterizing randomness;

3) The peak height P0, width δ = r1−rmin, and oscillations
can be adjusted to control the randomness property of a
design, which in turn can maximize the coverage rmin.

The radially-averaged power spectral density of the PCF in
(5) can be obtained using the relation in (2). As we will show
later, this connection is central for designing and optimizing
the proposed design in a computationally efficient manner.

B. Quantifying Coverage Gain

Next, we evaluate the coverage gain in our proposed design
with respect to other coverage-based approaches from the
computer graphics and surrogate modeling literature. For this
analysis, we varied the parameter P0 in the range [1.00, 2.5]
and performed a brute-force search on the parameter r1 ∈
[rmin, 2rmin], A ∈ [0.1, 0.9], B ∈ [2, 6], C ∈ [50, 600], D ∈
[−π, π], such that rmin is maximized, while also ensuring that
the realizability conditions from Definition 5 are met.
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Figure 3: Maximum achievable relative radius using different
coverage-based designs. The proposed design consistently
outperforms PDS and SFSD approaches.

We compare the coverage characteristics of the proposed
approach to existing coverage-based designs, namely PDS and
SFSD. More specifically, we compare different coverage-based
designs using the relative radius [26] ρ = rmin/rmax, where
rmax is the maximum possible radius for N samples in d
dimensions. For a given N and d, rmax can be computed as

rmax =
d

√
γd
V Γ

(
d
2 + 1

)
π

d
2N

,

where the maximum packing density γd for d = {2, · · · , 8}
can be found in [27].

In Figure 3(a), we first fixed the the sample size at N =
1000. Subsequently, we measured the maximum achievable
relative radius using different coverage-based designs of size
N in dimensions d = {2, · · · , 8} respectively. The first strik-
ing observation is that by incorporating controlled randomness,
both SFSD and the proposed design produce significantly
larger relative radius when compared to the conventional
PDS. Further, in all cases, the proposed approach provides
improved coverage over SFSD and as we will demonstrate
in our results, this seemingly marginal improvement leads to
significant performance gains in practice. Another interesting
observation is that as the dimensionality increases, the relative
radius decreases rapidly and all coverage-based design behave
similarly. In other words, due to the curse of dimensionality,
when the search space is comprised of tens of dimensions, the
proposed approach will become similar to PDS (unless the
sample size grows exponentially), while still being superior to
discrepancy-based designs.
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Algorithm 1 Automatic selection of PDS parameters

1: Input: Number of samples N , dimension d, parameter P0,
step size λ, V = 1.

2: r̄min =
d

√
V Γ (d/2 + 1)/(π

d
2N) . Conventional PDS

3: Initialize: rmin = r̄min, r1 = 2rmin
4: G(r)← G(r; rmin, r1, P0) . Initialize PCF

5: P (k)← 1 +
N

V
(2π)

d
2 k1−

d
2H d

2−1

[
r

d
2−1G(r)− 1

]
.

from (2)
6: k∗ ← arg min

k
P (k)

7: While (P (k∗) ≥ 0) . Constraint for realizable PCF
8: Update rmin

9: rmin ← rmin + λ

(
rmin

∂

∂rmin
P (k∗) + P (k∗)

)
10: Update r1

11: r1 ← r1 − λ
(
rmin

∂

∂r1
P (k∗)

)
12: Return rmin, r1 . Optimal PCF settings

In practice, with applications such as hyper-parameter op-
timization, unless the intrinsic dimension of the optimization
surface is low, exploratory sampling will be ineffective (even
with million samples) as the volume of spaces grows exponen-
tially with dimension. In the literature, it has been observed
that the intrinsic dimension of search spaces is often between
3 − 6 over different datasets [5]. Similarly, in Figure 3(b),
we show the relative radius ρ at different sample sizes for a
given dimension d = 5. As it can be seen, for all coverage-
based designs, the best achievable relative radius is nearly
a constant at all sample sizes. Furthermore, the proposed
design consistently produces larger coverage compared to
other designs in all cases.

C. A Practical Strategy for Parameter Selection

A typical approach to find parameters that achieve the
largest coverage gain is a brute-force search [19]. However,
the search space of realizable parameters is complex – non-
monotonic, coupled with the need to satisfy realizability con-
ditions. To overcome this challenge, we develop an efficient
gradient based parameter selection strategy for optimal PCF
construction. Specifically, we are interested in solving the
following parameter search problem2:

maximize : rmin

subject to : P (k) ≥ 0,∀k
r1 > rmin (6)

Since the goal is to achieve maximal coverage, we maximize
rmin such that the resulting PCF is realizable, which is verified
by ensuring that the power spectral density P (k) ≥ 0,∀k. In
our experiments, we found that the lagrangian relaxation of
(6) is hard to optimize. Instead, we maximize an alternative
objective function rmin × P (k∗) where k∗ = arg minP (k),

2We found that the maximum achievable coverage, rmin, for a given d and
N , depends primarily on the choice of r1 and P0, while the choices for other
parameters A,B,C,D are not particularly sensitive. Thus, we only optimize
over r1 and P0 in this paper.

Algorithm 2 Sample Design using GD-ALR Algorithm

1: Input: Number of samples N , dimension d, target PCF
Ĝ∗(rj), learning rate λ

2: X← Random(N, d) . Initial random sample design
3: G← PCF(X) . Calculate initial PCF using Eq. (8)
4: for t = 1 to T do . Total T gradient descent iterations
5: for i = 1 to N do . Update each sample at a time

6: ∆p
i ←

∂

∂xpi

M∑
j=1

(Gt(rj)−G∗(rj))
2 for p ∈

{1, · · · , d} . Calculate gradients
7: λ← 0.1e−0.1

√
t . Adapting learning rate

8: xpi (t+ 1)← xpi (t)− λ
∆p
i

|∆p
i |
. Update the samples

position
9: Gt ← PCF(X) . Update the PCF

10: return X . Optimized Samples

(i.e., consider only the minimum value of P (k)) is found to
work better. In Algorithm 1, we present our approach to solve
this modified optimization problem.

IV. PROPOSED SYNTHESIS ALGORITHM

We develop an approach that iteratively transforms an initial
random sample design such that its PCF matches the PCF
of the optimal coverage-based design. More specifically, we
consider a non-linear least squares formulation similar to [16],
[19]. Despite being computationally efficient, due to the high
non-convexity of the PCF matching problem, conventional
gradient descent based approaches perform poorly as the
dimension increases. In fact, due to the small effective rmin,
the synthesis quality is no better than random sampling. Here,
we adopt a different approach to alleviate this limitation, and
make PCF matching-based synthesis a viable solution.

Denoting the desired PCF for an optimal design by G∗(r),
we discretize the radius r into M points {rj}Mj=1, and min-
imize the sum of the weighted squares of errors between
the target PCF G∗(rj) and the curve-fit function (explained
next) G(rj). Consequently, sample synthesis is posed as the
following non-linear least squares problem:

min

M∑
j=1

(G(rj)−G∗(rj))2 . (7)

A. PCF Matching Algorithm

Intuitively, the proposed PCF matching algorithm is com-
prised of two phases: achieving coverage and matching os-
cillations. In the first phase, the initial design of uniform
random samples is optimized to achieve coverage by shifting
the positions of the N samples, such that no two samples are
closer than rmin. In the second phase, samples are optimized
to match oscillations in the target PCF. Before presenting
the proposed algorithm, we first describe the PCF estimator
employed in our optimization.
PCF Estimator: To estimate the PCF of point samples, we
employ a kernel density estimator [16], defined as
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Figure 4: Coverage-based Sample Synthesis. (a) PCF matching
performance of GD-ALR versus GD-CLR, while obtaining
maximal coverage (rmin) for N = 200, d = 4, P0 = 1.3. (b)
Mean square error of PCF matching obtained using GD-ALR
and GD-CLR, across different gradient descent iterations, for
a fixed dimension d = 4.

Ĝ(r) =
VW
γW

VW
N

1

SE(N − 1)

N∑
i=1

N∑
j=1

i 6=j

k (r − |xi − xj |) (8)

where k(.) denotes the Gaussian kernel function, k(z) =
(1/
√
πσ) exp(−z2/2σ2). In this expression, VW indicates the

volume of the search space and SE denotes the area of hyper-
sphere. Finally, γW is an isotropic set covariance function
which can be approximated as γW = VW − (SW /π)r, where
SW denotes the surface area of the sampling region. The term
VW

γW
accounts for edge correction for the unboundedness of the

estimator.
Algorithm: Given the PCF estimate, the matching problem
can be solved using gradient descent. However, due to the
highly non-convex nature of this problem, gradient decent with
constant learning rate (GD-CLR) [19] perform very poorly.
Instead, we propose to employ gradient descent with adaptive
learning rate, GD-ALR (Algorithm 2), with the learning rate
update rule: λ = 0.1e−0.1

√
t, for iteration t. More importantly,

we find that, in order to achieve the maximal coverage,
it is important to first optimize for coverage (updates with
larger values of λ) and, then for oscillations (updates with
smaller value of λ), instead of joint optimization as done in
existing approaches [19], [25]. This behavior is illustrated in
Fig. 4(a). Separately optimizing for coverage/oscillations using
an adaptive learning rate profile, solves a major bottleneck in
synthesizing coverage-based designs. In particular, we found
that many other variants of gradient descent (e.g. Leven-
bergMarquardt) failed to achieve the desired performance.

From Fig. 4(b), it can be seen that the proposed GD-
ALR demonstrates superior convergence characteristics when
compared to GD-CLR. We also conducted experiments with
other optimization approaches, such as, momentum gradient
descent optimizer. We observed that in all settings of N
and d, GD-ALR outperformed other optimizers with faster
convergence and significantly lesser PCF matching error. In
summary, the proposed improvements to sample synthesis
enables unprecedented capabilities in exploratory sampling.

We demonstrate that using experiments in predictive modeling
and hyper-parameter optimization.

V. EMPIRICAL STUDY: SAMPLING FOR PREDICTIVE
MODELING

In this section, we study the qualitative performance of
the proposed coverage-based design in predictive modeling,
where one needs to recover unknown regression functions
using a given set of sample observations. The goal of this
study is to understand the impact of the improved cover-
age properties in the proposed design and the effectiveness
of our sample synthesis algorithm. We consider both blind
exploration, where the model is constructed only using one-
shot exploratory samples, and sequential sampling, where the
exploration samples are used to initialize a Bayesian optimiza-
tion (Bayes-Opt) pipeline. Bayes-Opt [29] is a widely adopted
sequential design framework typically employed for global
optimization of complex functions. These methods begin by
constructing a surrogate for the unknown function based on
an initial sample, and then sequentially allocate the remaining
design budget to quantify uncertainties of the surrogate, and
utilize an acquisition function (e.g. expected improvement) to
choose the next sample. We present comparisons to popular
sampling methods, namely uniform random, Latin Hypercube
sampling (LHS), Sobol (QMC) sequences, and SFSD, which
is a state-of-the-art coverage-based design technique [19]. We
show that the proposed approach produces superior recovery
performance, thus establishing coverage-based designs as an
effective solution for exploratory sampling.
Setup: We use the following benchmark functions from the
global optimization literature: Alpine N.1 and Ackley in
dimensions 3, 4 and 5, respectively. In order to evaluate the
generalization of fitted functions, we generate 104 test samples
using a regular grid in the sampling region, and use the mean
squared error (MSE) with respect to the true function as
the evaluation metric. For all experiments, we used random
forest regressors with 100 trees, and the results reported were
obtained by averaging over 20 independent realizations of
sample designs.
Blind exploration: Figure 5 (a)-(f) compare the performance
of our approach to the baseline methods in the fully ex-
ploratory case. It can be seen that the proposed design
consistently outperforms popularly adopted sampling methods
across varying N (50 to 200). Another striking observation
is that there is significant variability in performance of the
widely-adopted QMC sequences across dimensions, and as
d increases it can sometimes perform even worse than uni-
form random samples. Furthermore, the poor performance of
models learned using LHS and uniform random sampling for
d > 3 can be directly attributed to their poor space-filling
properties. Although SFSD and the proposed approach belong
to the family of coverage-based designs, due to the improved
coverage characteristics, our method consistently outperforms
SFSD in all cases.
Sequential sampling: In this experiment, we study the impact
of the choice for initial design on a Bayes-Opt pipeline.
We consider an initial sampling budget of N = 50, and
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(c) Alpine N.1 (d = 5)
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(d) Ackley (d = 3)
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(f) Ackley (d = 5)
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(g) Alpine N.1 (d = 3)
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Figure 5: Sampling for Predictive Modeling: Performance of sample designs in recovering regression functions using : (a)-(f)
blind exploration, (g)-(l) sequential sampling.

then sequentially sample 150 more samples to evaluate the
behavior of Bayes-Opt on the same set of functions used in
the previous case. Similar to the blind exploration case, we
observe in Figure 5 (g)-(l) that the proposed design performs

significantly better compared to other state-of-the-practice
choices. Although QMC sequences perform reasonably better
than uniform random at d = 3, their performance degrades as
d grows.
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Table I: Hyper-parameter search for a feature extractor-classifier pipeline: Average f1-score obtained over 10 realizations of
exploratory sample designs for the 20-Newsgroup dataset. This pipeline used tf-idf features and a SGD classifier.

Blind Exploration
d N QMC LHS Random SFSD Proposed
5 50 84.0995 ± 0 83.838 ± 0.415 83.872 ± 0.257 84.328 ± 0.166 84.441 ± 0.064
5 75 84.1758 ± 0 84.179 ± 0.237 84.196 ± 0.172 84.431 ± 0.138 84.414 ± 0.100
5 100 84.1543 ± 0 84.227 ± 0.189 84.161 ± 0.205 84.331 ± 0.127 84.463 ± 0.075
5 125 84.3501 ± 0 84.292 ± 0.131 84.286 ± 0.158 84.458 ± 0.073 84.482 ± 0.089
5 150 84.3294 ± 0 84.314 ± 0.141 84.336 ± 0.185 84.453 ± 0.058 84.527 ± 0.028

Table II: Hyper-parameter search to build deep networks for MNIST digit classification: Best test accuracy obtained through
the inclusion of hyper-parameter optimization using different sample designs. Note that, we consider both blind exploration
and sequential sampling settings, and the results reported are averages over 10 independent realizations of the sample design.

Blind Exploration
d N QMC LHS Random SFSD Proposed
3 50 98.57 ± 0 91.198 ± 3.492 98.554 ± 0.229 98.691 ± 0.316 98.79 ± 0.198
3 100 98.82 ± 0 98.794 ± 0.171 98.688 ± 0.431 98.873 ± 0.124 98.896 ± 0.098
3 200 98.92 ± 0 98.932 ± 0.033 98.921 ± 0.126 98.975 ± 0.125 98.969 ± 0.035
4 50 98.66 ± 0 98.116 ± 0.690 97.818 ± 1.285 98.623 ± 0.325 98.806 ± 0.138
4 100 98.61 ± 0 98.70 ± 0.215 98.654 ± 0.216 98.748 ± 0.202 98.976 ± 0.157
4 200 98.199 ± 0 98.832 ± 0.117 98.902 ± 0.134 98.921 ± 0.075 98.932 ± 0.061
5 50 98.188 ± 0 97.996 ± 0.737 91.06 ± 3.485 98.622 ± 0.238 98.832 ± 0.134
5 100 98.77 ± 0 98.802 ± 0.163 98.642 ± 0.233 98.846 ± 0.188 98.834 ± 0.148
5 200 98.73 ± 0 98.992 ± 0.102 98.862 ± 0.131 98.944 ± 0.118 98.967 ± 0.068

Sequential Sampling
d N QMC LHS Random SFSD Proposed
3 100 97.354 ± 0 97.466 ± 0.081 97.49 ± 0.445 97.367 ± 0.371 97.626 ± 0.128
4 100 97.581 ± 0 96.952 ± 0.562 97.492 ± 0.135 97.628 ± 0.198 97.597± 0.196
5 100 94.222 ± 0 97.296 ± 0.434 96.171 ± 0.950 97.487 ± 0.3134 97.662 ± 0.110

VI. APPLICATION: HYPER-PARAMETER SEARCH

Hyper-parameter search is critical to modern machine learn-
ing algorithms and resource-efficient optimization is directly
linked to the scalability of the solutions. For this experiment,
we consider both a conventional feature extractor-classifier
pipeline and end-to-end deep learning systems, where the goal
is to minimize the validation error [20]. The search space
is characterized by a sparse set of locally optimal solutions,
and requires effective sampling to rapidly choose a well-
performing configuration. The evaluation metric that we use
is the precision, i.e., the number of selected configurations
that produces validation accuracies greater than a pre-defined
threshold τ . We use this proxy metric [6], [20] since the
global optimum is unknown, and more importantly identifying
multiple locally optimal configurations in the search space
reflects the ability of a sampling technique in characterizing
the response surface. For completeness, we also include the
widely-used best validation accuracy achieved over multiple
realizations of the considered sample designs.

A. Conventional Feature Extractor-Classifier Pipeline
In this experiment, we consider the problem of choosing

hyper-parameters for feature extraction and classification of

text documents in the 20-Newsgroup dataset. This is a collec-
tion of approximately 20, 000 documents, partitioned evenly
across 20 different newsgroups. We use a feature extractor-
classifier pipeline that consists of : (a) Count Vectorizer:
converts a collection of text documents into a matrix of token
counts; (b) Tf-idf-Transformer: transforms a count matrix
into a normalized (term-frequency times inverse document-
frequency) tf-idf representation; and (c) linear classifier with
stochastic gradient descent (SGD) training. We considered 5
hyper-parameters – document frequency threshold and maxi-
mum number of features in the feature extraction step, and 3
settings for classifier design : number of iterations, learning
rate and regularization penalty.

We vary the sampling budget N in the range (50, 150) and
compute the f1-score (macro-averaged) from the best per-
forming configuration in the exploratory sample. We report the
mean and standard deviation obtained using 10 independent
realizations of the samples. As showed in Table I, in most
of the cases, coverage-based designs outperform other random
sampling baselines both in terms of expected performance and
variance. More specifically, the proposed approach identifies
the best configuration in every case. The superior performance
of the proposed design over SFSD can be attributed to the
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Figure 6: Hyper-parameter search to build deep networks MNIST digit recognition: Precision metric obtained through blind
exploration with different sample designs.

improved coverage in the synthesized samples. On the other
hand, conventional methods such as LHS and Random suffer
from high variance across realizations.

B. Building Deep Models for MNIST Digit Classification

In this section, we consider the problem of building deep
networks for classifying handwritten digits from MNIST,
which contains 50, 000 train and 10, 000 test images. We
evaluate the proposed sample design approach under blind
exploration and sequential sampling settings.
Blind exploration: We use a simple CNN architecture:
conv[3 × 3 × 8] → conv[3 × 3 × 16] → FC[128] →
FC[64] → FC[10].with ReLU activation and dropouts in
after every layer. The training was carried out using gradient

descent with the momentum optimizer. The set of 5 hyper-
parameters included learning rate, momentum and dropouts at
the 2nd conv layer, the 1st FC layer and the 2nd FC layer
respectively. We also considered 4−d and 3−d subsets, where
some of the dropouts fixed at 0.5. For this experiment, we
used the sampling budgets N = {50, 100, 200}. In each case,
we estimated the precision metric by varying the threshold τ ,
between 0.95 and 1. All results reported were averaged over
10 independent realizations.

Figure 6 and Table II illustrate the validation performance of
different sample designs for this problem. We observe that the
proposed design consistently achieves superior precision over
existing experimental designs, thus ensuring a high probability
of obtaining a generalizable model, particularly at lower
sampling budgets. Although LHS and QMC samples perform
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Figure 7: Hyper-parameter search to build deep networks MNIST digit recognition: Precision metric obtained through Bayes-Opt
with different initial exploratory samples.

reasonably well in some cases, their performance degrades
as d grows. Through the improved coverage characteristics,
our approach sometimes identifies even twice as many local
optima (based on the precision metric), thus motivating its use
as an initializer for subsequent exploitation using Bayesian
optimization. The results in Table II show that our method is
able to sample the region of maximum interest consistently
with low variance. Note that, the state-of-the-art SFSD design
also performs consistently better than Random and discrepancy
based designs in terms of test accuracy, but often demonstrates
a larger variance.
Sequential Sampling: The success of Bayesian optimization
relies on its ability to exploit uncertainties in the search
space, to trade-off between exploration and exploitation. We
argue that the choice of initial space-filling design can sig-
nificantly impact the performance of sequential optimiza-
tion in hyper-parameter search. For this experiment, we
train a DNN architecture comprised of only dense layers:
FC[784]→ FC[512]→ FC[256]→ FC[64]→ FC[10], with
ReLU activation and dropout after every layer. We used the
same set of hyper-parameters as in the previous case, i.e.,
learning rate, momentum and dropout ratios. Experiments
were conducted with an initial sampling budget of N = 50
samples and an additional 50 samples from sequential sam-
pling, in dimensions 3, 4 and 5, respectively. Figure 7 and
Table II demonstrate the impact of different initial exploratory
samples on the sequential optimization performance. The gains
over discrepancy-based and random designs is even more
significant in this case, thus emphasizing coverage as a desired
characteristic of exploratory designs. The consistency of our
approach in its performance across dimensions, evidences its
robustness when compared to other widely adopted designs.

C. Building CNN for Cifar-10 Image Classification
In this final experiment, we consider a 5 − d hyper-

parameter search to train a CNN for classifying images from
the CIFAR-10 dataset. The architecture used is as follows:
conv[3× 3× 32]→ conv[3× 3× 32]→ conv[3× 3× 64]→
conv[3 × 3 × 64] → FC[512]→ FC[128]→ FC[10]. with
ReLU activation, max-pooling, and batch normalization after
every convolution layer. Dropouts are included after the 2nd

conv layer, the 4th conv layer and the 1st FC layer. The set
of 5 hyper-parameters included learning rate, momentum and
the 3 dropout ratios. For blind exploration, we used sampling
budgets of N = 50 and N = 100. In case of sequential
sampling, experiments were conducted with an initial budget
of N = 50 samples and an additional 50 were sampled
sequentially using Bayesian optimization. We report the mean
and standard deviation of the best test accuracy achieved
over 10 realizations in Table III and the precision metric
in Figure 8. In all the cases, the proposed method achieves
the best expected generalization performance. Along with the
other experiments, this observation clearly strengthens the
premise that coverage-based designs are highly effective for
hyper-parameter search when compared to existing random
sampling and discrepancy-based designs.

VII. CONCLUSIONS

We considered the problem of designing high quality ex-
ploratory samples. We introduced improved coverage Poisson
disk sample designs using pair correlation function. We also
proposed an approach to automatically determine the optimal
parameters of the PDS designs. To generate these samples with
high accuracy, we proposed an adaptive learning rate based
gradient descent approach and showed that it significantly
outperforms baseline methods. Finally, we evaluated the per-
formance of PDS designs on predictive modeling and hyper-
parameter search applications in both blind exploration and
sequential search with Bayesian optimization. Experimental
results show that the proposed PDS approach consistently
outperforms state-of-the-art techniques, especially with low
sampling budget.
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Table III: Hyper-parameter search to build CNNs for Cifar-10 image classification: Best test accuracy obtained through the
inclusion of hyper-parameter optimization using different sample designs. Note that, we consider both blind exploration and
sequential sampling settings, and the results reported are averages over 10 independent realizations of the sample design.

Blind Exploration
d N QMC LHS Random SFSD Proposed
5 50 80.36 ± 0 80.023 ± 0.393 80.217 ± 0.217 80.145 ± 0.409 80.522 ± 0.334
5 100 80.70 ± 0 80.338 ± 0.245 80.448 ± 0.236 80.488 ± 0.136 80.959 ± 0.374
Sequential Sampling
d N QMC LHS Random SFSD Proposed
5 100 80.842 ± 0.0 80.436 ± 0.206 80.623 ± 0.561 80.866 ± 0.341 81.033 ± 0.294
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Figure 8: Hyper-parameter search to build CNNs for Cifar-10 image classification: Precision metric obtained through blind
exploration and Bayes-Opt with different initial exploratory samples.
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