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Abstract—At present, adversarial attacks are designed in a
task-specific fashion. However, for downstream computer vision
tasks such as image captioning, image segmentation etc., the
current deep learning systems use an image classifier like VGG16,
ResNet50, Inception-v3 etc. as a feature extractor. Keeping this
in mind, we propose Mimic and Fool, a task agnostic adversarial
attack. Given a feature extractor, the proposed attack finds an
adversarial image which can mimic the image feature of the
original image. This ensures that the two images give the same (or
similar) output regardless of the task. We randomly select 1000
MSCOCO validation images for experimentation. We perform
experiments on two image captioning models, Show and Tell,
Show Attend and Tell and one VQA model, namely, end-to-end
neural module network (N2NMN). The proposed attack achieves
success rate of 74.0%, 81.0% and 87.1% for Show and Tell,
Show Attend and Tell and N2NMN respectively. We also propose
a slight modification to our attack to generate natural-looking
adversarial images. In addition, we also show the applicability
of the proposed attack for invertible architecture. Since Mimic
and Fool only requires information about the feature extractor
of the model, it can be considered as a gray-box attack.

Index Terms—Adversarial Attack, Task agnostic method, Vi-
sion and Language Systems, Deep Learning

I. INTRODUCTION

Adpversarial attacks have shed light on the vulnerability of
several state-of-the-art deep learning systems across varied
tasks such as image classification, object detection, image seg-
mentation etc. —. Recently, adversarial attacks were also
proposed for multimodal tasks involving vision and language
like image captioning and visual question answering (VQA)
(5], [6]l. Usually, these attacks fall under two categories: white-
box and black-box. In white-box attack, the adversary has
complete information about the model and its parameters.
Whereas in black-box attack, the adversary has no information
about the model that it wants to attack. Black-box attacks
[7] are possible due to the transferability phenomenon of
adversarial examples. Liu et al. show that the adversarial
examples designed for one image classification model can be
transferred successfully to other classification models as well.
Similarly, Xu et al. [[f] show transferability of adversarial im-
ages between two state-of-the-art VQA models. Very recently,
Shi ez al. [9] improved black-box attack performance for image
classification by allowing for more diverse search trajectories
and squeezing redundant noise. However, the present-day
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Show and Tell

a c t laying on top
of a blanket on a bed

a cat laying on top
of a blanket on a bed

Show Attend and Tell

a youngirl is playin a oung girl is playing
with a frisbee with a frisbee

N2NMN

Q: what accessory is
the teady wearing?
P: sunglasses

Q: what accessory is
the teady wearing?
P: sunglasses

Fig. 1. Examples of Mimic and Fool. The first two rows show the original
and adversarial images along with the predicted captions by Show and Tell
and Show Attend and Tell respectively. The last row shows original and
adversarial image for N2NMN (Q, P denote the question and the predicted
answer respectively).

adversarial attacks are task-specific in nature since a task-
specific adversarial loss function is optimized to generate
adversarial examples.

On the other hand, the current deep learning systems use
output from intermediate layers of convolutional neural net-
work (CNN) based image classification models (e.g. ResNet50
[10], VGG16 [I1]], Inception-v3 etc.) as a feature for the
input image. The rationale behind this approach is that the
discriminative features learned by these classifiers are useful
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for other vision tasks as well. Hence, it is more beneficial
to use these features instead of learning them from scratch.
As a result, the aforementioned image classifiers function
as feature extractors. Some deep learning systems also fine-
tune the parameters of the feature extractors during training
to make the image feature more suitable for the task in
hand. However, fine-tuning is usually done if large amount
of training data is available. Although using deep CNN-based
image features give significant advantage to the present-day
models, they have their own set of drawbacks. CNN-based
feature extractors are known to be non-invertible [13|], [14]].
Mahendran and Vedaldi [14] show that AlexNet [15] maps
multiple images to the same 1000-dimensional logits. These
images are thus indistinguishable from the viewpoint of the
last fully connected layer of AlexNet.

A. Motivation: Agnosticism in Adversarial Attacks

The main goal of this paper is to introduce the notion of
a task-agnostic attack. If such an attack were possible, it will
shed light on the common weakness shared by different vision
systems across various tasks. So far, adversarial training has
been the most popular approach for building robust image
classifiers. However, adversarial training is computationally
expensive and more importantly, ill-defined for downstream
tasks like image captioning. In such a scenario, mitigating the
common weakness can make the task of building robust end-
to-end systems tractable.

In this paper, we propose Mimic and Fool, a task ag-
nostic adversarial attack, which exploits the non-invertibility
of CNN-based feature extractors to attack the downstream
model. Given a model and its feature extractor, the proposed
attack is based on the simple hypothesis that if two images
are indistinguishable for the feature extractor then they will
be indistinguishable for the model as well. In other words,
attacking the feature extractor by finding two indistinguishable
images is equivalent to hacking the eyes of the model. As an
example, consider an encoder-decoder architecture like Show
and Tell [16]], if we can successfully find two images which
are mapped to the same feature by the encoder, then the two
images will generate same (or similar) caption regardless of
the decoder architecture. Thus to attack any model, attacking
its feature extractor suffices. Based on this insight, Mimic and
Fool finds an adversarial image which can mimic the feature of
the original image thereby fooling the model. Figure |1| shows
examples of Mimic and Fool on two captioning models: Show
and Tell [[16], Show Attend and Tell [[17]] and one VQA model:
end-to-end neural module network (N2NMN) [18]]. It is crucial
to note that the goal of Mimic and Fool differs from traditional
adversarial attacks [2f], [3]], [5], [6]. In traditional adversarial
attacks, small amount of noise is added to the image in order
to fool the model to generate a different output. Whereas, in
Mimic and Fool, the goal is to generate an adversarial image
which can fool the model to predict the same output as the
original image. As we can see from Figure [T] the adversarial
images obtained via Mimic and Fool are noisy images. Such
images, although noisy, pose a security risk for real-world
systems. This is in line with adversarial attacks on object

detectors where a large amount of noise is added [1]], [19]. In
order to generate natural-looking adversarial images, we also
propose a modified version of our attack, namely One Image
Many Outputs (OIMO). In OIMO, we start with a fixed natural
image and restrict the amount of noise that can be added to
the image.

Since Mimic and Fool only requires the fine-tuned weights
of the feature extractor to attack the model, it can be thought
of as a gray-box attack. In fact, if a model does not fine-
tune its feature extractor, Mimic and Fool can function as
a black-box attack. This is because the number of possible
feature extractors is limited. Hence, an adversary can generate
an adversarial image per feature extractor knowing that one
of these images is bound to fool the model. Furthermore,
Mimic and Fool is extremely fast and requires less computing
resources since only the feature extractor needs to be loaded
in the memory instead of the model.

We perform experiments on two tasks: image captioning
and visual question answering (VQA). We randomly choose
1000 MSCOCO [20] validation images and study the proposed
attack on three models: Show and Tell, Show Attend and Tell,
and N2NMN. We get 5208 image-question pairs from VQA
v2.0 dataset [21]] for the 1000 selected images. We choose
these three models since they use different feature extractors.
Show and Tell uses fully connected features from Inception-
v3, Show Attend and Tell uses convolutional layer features
from VGG16 and N2NMN uses features from a residual
network [[10]. Thus the three feature extractors vary from
shallow to very deep helping us to validate our proposed attack
for different types of feature extractors. We consider our attack
successful if the model gives the same output for original and
adversarial image.

B. Contributions of this work

The contributions of this paper are as follows: (i) We intro-
duce the notion of a task agnostic attack. The proposed task
agnostic attack, Mimic and Fool, achieves high success rates
for Show and Tell, Show Attend and Tell, N2NMN respec-
tively. This validates our hypothesis that attacking the feature
extractor suffices and also shows that the proposed attack
works for different feature extractors. For image captioning
models, we also compute the BLEU [22] and METEOR [23]]
score for the failure cases to show that even though the original
and adversarial captions do not match exactly for these cases,
they are very similar to each other. (ii) Even for One Image
Many Outputs, the proposed attack achieves decent success
rate. This shows that, by adding minimal noise to the fixed
image, it is possible to find an adversarial image which can
mimic image feature of any arbitrary image. This result is
intriguing as it suggests that the feature extractors are very
chaotic in nature. (iii) Since Mimic and Fool is task agnostic,
while attacking a VQA model like N2NMN we need to run
the attack for every image instead of every image-question
pair. This is a huge advantage in terms of time saved for the
adversary. The same will hold true for any future tasks which
take multiple modalities as input with image being one of
the modalities. (iv) At first glance, it seems that an invertible



feature extractor will be resistant to the proposed attack.
However, we show that the proposed attack also works for
invertible architecture [24]. This shows that such architectures,
despite being invertible, assign similar features to dissimilar
images. Hence, invertibility is not a sufficient condition to
safeguard the models against the proposed attack.

II. METHOD
A. Proposed Attack

In this section, we describe the proposed attack, Mimic and
Fool, and One Image Many Outputs (OIMO) which is able
to generate natural looking adversarial images. Since both the
attacks are task agnostic, we describe the attack in terms of
the feature extractor instead of the model.

1) Mimic and Fool: Let f : R™*"*3 — R? denote the
feature extractor of the model. Hence, d will be 14 x 14 x 1024
if we extract conv4 features from ResNet101 and d will be
2048 if we use output of average pooling layer of Inception-
v3 as image feature.

Let I,y € [0,255]™*"*3 denote the original image. Given
I,rg and a feature extractor f, our goal is to find an adversarial
image .4, € [0,255]™%"*3 which can mimic the image
features of I,.,. We model this task as a simple optimization
problem given by

i 1 trunc(D) = f(Lorg )3
I d

where ||.||, denotes £5—norm and trunc is truncating func-
tion which ensures that the intensity values lie in the range
[0,255]. Although I = I, is a solution to the above opti-
mization problem, it is highly unlikely that the algorithm will
converge to this solution. This is because convolutional neural
networks discard significant amount of spatial information as
we go from lower to higher layers. Mahendran and Vedaldi
[14] show that the amount of invariance increases from lower
to higher layer of AlexNet and regularizers like total variation
(TV) are needed to reconstruct the original image from higher
layer features of AlexNet. We start with a zero-image and run
the proposed attack for max;4., iterations and return the final
truncated image trunc(l) as Igy.

Some feature extractors such as Inception-v3 require the
intensity values of the input image to be in the range [—1,1].
In such a case, let I, € [—1,1]™*"*? be the scaled original
image i.e.

(1

o = 2lorg/255) — 1

org —

2

For this case, we modify the optimization problem defined in
Equation [I] as follows

|/ (tanh(D)) - F(LL,,)]|:
d

where tanh ensures that the input to feature extractor lies
within the required range. We run the attack for max;se,
iterations and rescale the final image tanh([l) to get .4, i.e.

tanh(I) + 1)

3)

min
Ji

“4)

Toaqv = 255 ( 5

2) One Image Many Outputs: In One Image Many Outputs
(OIMO), we start with an image Iy, € [0,255]m*"x3
instead of starting with zero-image. The image I 4+ is kept
fixed throughout the experiment. In OIMO, our goal is to
modify Isiqr¢ S0 as to mimic the feature of I,.4. Equation
[0l is modified as follows

S Grunc(Tsiare + 6)) = £ (Torg) 3
min
s d
Similar to Chen er al. [5]], we modify the Equation [3] as
follows

(&)

S anh (T + ) = £,
d

(6)
where I%,,., = arctanh(M%,.1)s Thore € [—1,1]7%7%3
is the scaled starting image, A is set to 0.9999 to ensure
invertibility of tanh, § € R™>"*3 s the learnable parameter.
For this attack, we reduce the value of max;., and initial
learning rate to ensure that I,4, looks very similar to Is;q¢-

Similar to Mimic and Fool, after running the attack for
Max;ter iterations, I,q, for Equation [3|is trunc(Istart + 0).
For Equation [6] o4, is given by the following equation

Iou = 255 (tanh([é’m,,t +6) + 1)
aav — 2

We name the proposed attack One Image Many Outputs since
all the adversarial images look very similar to Is;q¢.

)

B. Implementation Details

As stated earlier, we study the proposed attack for two
image captioning models; Show and Tell, Show Attend and
Tell and one VQA model, namely, N2NMN. We train the
N2NMN model on VQA v2.0 dataset for 95K iterations with
expert policy followed by 65K iterations in policy search after
cloning stage using the original source code!. The trained
N2NMN has 61.72% accuracy on VQAV2 test-dev set. For
Show and Tell and Show Attend and Tell, we use already
available trained models?>.

Show and Tell uses 2048-dimensional feature from
Inception-v3, Show Attend and Tell uses 14 x 14 x 512 feature
map from VGG16, N2NMN uses output of resbc layer from
ResNet-152 as image feature. The input images are of size
299 x 299 x 3, 224 x 224 x 3, 448 x 448 x 3 for Inception-v3,
VGG16 and ResNet-152 respectively. The trained Show and
Tell, Show Attend and Tell fine-fune their respective feature
extractors whereas N2NMN does not use fine-tuning.

For Mimic and Fool, we set max;;., to 1000, 1000 and
2000 for Inception-v3, VGG16 and ResNet-152 respectively.
The initial learning rate is set to 0.025, 0.025 and 0.0125 for
Inception-v3, VGG16 and ResNet-152 respectively. For One
Image Many Outputs, we set maz;t., to 300, 500, 500 and
set the initial learning rate to 0.0125, 0.0125, 0.00625 for
Inception-v3, VGG16 and ResNet-152 respectively. We use

Uhttps://github.com/ronghanghu/n2nmn
Zhttps://github.com/KranthiGV/Pretrained- Show-and- Tell-model
3https://github.com/DeepRNN/image_captioning
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Task Model Feature Extractor | Success Rate | Average Time for 1000 iterations
- Show and Tell Inception-v3 74.0 % 25.35 sec
Image Captioning
Show Attend and Tell VGG16 81.0 % 15.56 sec
VQA N2NMN ResNet-152 87.1 % 72.98 sec
TABLE 1

SUCCESS RATE OF Mimic and Fool

Adam [25] as the optimizer and Keras [26] for implementing
the proposed attacks. All experiments are done on a single 11
GB GeForce GTX 1080 Ti GPU. The code for Mimic and
Fool is publicly available.*

III. RESULTS

For studying the two proposed attacks, 1000 MSCOCO
validation images are randomly selected. For the 1000 se-
lected images, there are 5208 image-question pairs in VQA
v2.0 dataset. For visual question answering, we discard those
image-question pairs where the VQA model predicts the same
answer for Issqr¢ and Iorg (For Mimic and Fool, 144y is zero-
image). This is done to ensure that the VQA model predicts the
same answer for I+ and I, due to adversarial noise rather
than language bias. The proposed attack is considered to be
successful if the model gives the same output for the original
and the adversarial image. Hence for image captioning, the
two captions need to be exactly the same for the attack to
be successful. In the following subsections, we analyze the
behavior of the two proposed attacks on the three models:
N2NMN, Show and Tell and Show Attend and Tell. We
also study the effectiveness of the proposed method for an
invertible architecture.

A. Results for Mimic and Fool

Table [l shows the success rate of Mimic and Fool for the
three models. Out of 5208 image question pairs, N2NMN
predicts the same answer for I,., and zero-image for 1707
pairs. Out of the remaining 3501 pairs, Mimic and Fool is
successful for 3049 image question pairs. This yields success
rate of 87.1%. The high success rate shows that it is possible
to mimic features extracted from a very deep network like
ResNet-152 as well. Since Mimic and Fool is task-agnostic,
we need to run the proposed attack at image level instead
of image-question pair level. This is a huge advantage since
it results in a drastic reduction in time. The advantage will
be even more pronounced for any future tasks which have
multiple modalities as input with image (or video) being one
of the modalities. Figure [2] shows the predicted answer by
N2NMN for different image-question pairs. From Figure [2]
we can see that a single adversarial image suffices for three
image-question pairs.

As we can see from Table[l] Mimic and Fool is very fast. The
attack only takes around 25 seconds for generating adversarial
images for Show and Tell. The time taken for Show, Attend
and Tell is even less since VGG16 is a shallower network. The
proposed attack achieves success rate of 74.0% and 81.0% for

4https://github.com/akshay 107/mimic-and-fool

Q: How many hands are in the picture?
P: 4
Pzero: 1

Q: What type of place is this?
P: school
PLero: Kitchen

Original

Q: Is this a recent photo?
P: no
PZE‘!‘O: yes

dversarial

Fig. 2. Example of Mimic and Fool for N2NMN. Single adversarial image
suffices for three image-question pairs. Q and P denote the question and the
predicted answer respectively. P.¢ro denotes the predicted answer for zero
image.

Show and Tell and Show Attend and Tell respectively. This is
especially encouraging result since generating exactly the same
caption for an adversarial image is a very challenging task.
This is because, as observed by Chen et al. [5]], the number of
possible captions are infinite which makes a captioning system
harder to attack than an image classifier. Our results show
that in order to generate the same caption, it suffices to attack
just the encoder of the captioning model. This validates our
initial hypothesis that in order to attack any model, attacking
its feature extractor suffices. For the unsuccessful cases, the
predicted captions for original and adversarial images are very
similar. Figure [5] shows two successful and one unsuccessful
examples of Mimic and Fool for Show and Tell and Show
Attend and Tell. As we can see from Figure [5 that for the
unsuccessful cases, the predicted captions for the original and
adversarial images have a large amount of overlap. We also
calculate the BLEU and METEOR score, using the pipeline
provided by Sharma et al. [27]], for unsuccessful adversarial
cases as shown in Table [l] We use the predicted caption for
the original image as reference while calculating these metrics.

B. Results for One Image Many Outputs

The main idea behind One Image Many Outputs is to
generate natural-looking adversarial images. We randomly
choose an image from MSCOCO training set as the starting
image. Figure |§| shows the starting image (Is¢q,+) for One
Image Many Outputs along with the predicted captions of
Show And Tell and Show Attend and Tell. We use the same
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Model Attack BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR
Show-and-Fool [EI] 0.560 0.394 0.266 0.205 0.301
Show and Tell Mimic and Fool 0.597 0.464 0.348 0.264 0.320
OIMO 0.593 0.459 0.350 0.270 0.322
EM 12| 0.765 0.650 0.529 0.423 0.425
Show Attend and Tell SSYM || 0.635 0.501 0.409 0.300 0.337
Mimic and Fool 0.639 0.530 0.421 0.333 0.368
OIMO 0.594 0.468 0.359 0.284 0.336
TABLE II

BLEU AND METEOR SCORES FOR UNSUCCESSFUL CASES. OIMO REFERS TO One Image Many Outputs.

Igtqre for N2NMN. Similar to Mimic and Fool, we discard
1713 image-question pairs for which N2NMN predicts the
same answer for Io.g and Isqr¢.

Show and Tell: a plastic container
filled with lots of food.

Show Attend and Tell: a tray filled
with different types of food.

Fig. 3. Istart for One Image Many Outputs and the predicted captions.

Q: Is there a thriller playing on the screen?
P: no
PIstart: yes

Q: Is this person sick?
P: no
Py :yes

start *

Q: Is any one of these a TV?
P: yes
PIstart: no

Fig. 4. Example of One Image Many Outputs for N2NMN. Single adversarial
image suffices for three image-question pairs. Q and P denote the question
and the predicted answer respectively. Pr_, . . denotes the predicted answer
for I start-

In One Image Many Outputs, we reduce the value of
maz;., and the initial learning rate to ensure that the ad-
versarial image .4, looks very similar to Ig:,,+. Reduction
in max;., results in even faster running time than Mimic
and Fool. Table [T shows the success rate of One Image
Many Outputs for Show and Tell, Show Attend and Tell and
N2NMN. As we can see from Table [[Jand Table [T]] the success
rate reduces for One Image Many Outputs in comparison to
Mimic and Fool. This is intuitive since in One Image Many
Outputs, the reduced value of max;¢., and initial learning rate
allows for less adversarial noise. Figure [4] shows an example

of OIMO for N2NMN. Similar to Mimic and Fool, a single
adversarial image suffices for multiple image-question pairs.

Model Success Rate | Time (in sec.)
Show and Tell 56.9 % 7.61
Show Attend and Tell 50.3 % 7.78
N2NMN 72.8 % 36.50
TABLE III

SUCCESS RATE OF One Image Many Outputs

From Table we can see that One Image Many Outputs
takes under 8 seconds per image for both the captioning
models. Considering this reduction and the fact that the attack
is successful only when there is an exact match of captions,
the success rate of One Image Many Outputs is impressive.
Similar to Mimic and Fool, we find that for the unsuccessful
cases of One Image Many Outputs, the captions predicted by
the model for the adversarial and original images are very
similar to each other. Table [l shows the BLEU and METEOR
score for the unsuccessful cases of One Image Many Outputs.
This result shows that even when 1,4, is very similar to Ig;q¢,
it can mimic features of an arbitrary image. This shows that
CNN-based feature extractors are chaotic in nature.

Figure [6] shows two successful and one unsuccessful exam-
ples (shown in italics) of One Image Many Outputs for Show
and Tell and Show Attend and Tell. For the adversarial images
in Figure [6| ST and SAT denote Show and Tell and Show
Attend and Tell respectively. As we can see from Figure [6]
all the six adversarial images are very similar to the starting
image, Isqr¢. Also for the unsuccessful cases, the original
and adversarial captions have a large amount of overlap and
are semantically similar. In Figure [] we see that for Show
and Tell, the captions predicted by Show Attend and Tell for
the three adversarial images are the same. Similarly for Show
Attend and Tell, although the captions predicted by Show and
Tell are different, they are semantically similar. Moreover,
for both the captioning models, the predicted captions by the
other captioning model are relevant captions for the starting
image, Ig:q,¢. In fact, we find that when the 1000 adversarial
images for Show And Tell are given as input to Show Attend
and Tell, there are only 15 unique captions. All these 15
captions are relevant captions for Ig;4,¢. Similarly, when the
1000 adversarial images for Show Attend and Tell are given
as input to Show and Tell, there are only 82 unique captions,
most of which are relevant to I ,,+. We find that Show and
Tell generates irrelevant captions for I+ only for 32 out of



Show and Tell

a female tennis player a female tennis player

a pizza sitting in top

a pizza sitting in top @ man in a suit and tie a man in a suit and tie

in action on the court. in action on the court. of a white plate. of a white plate. standing in the room. is smiling.
Show Attend and Tell

1

a man is riding skis
down a snow covered
slope.

Ag:
a man is riding skis
down a snow covered
slope.

motorcycle down a
street.

a man riding a

a man riding a a man swinging a a man is playing
motorcycle down a tennis racquet on tennis on a

street. a tennis court. tennis court.

Fig. 5. Examples of Mimic and Fool. For both the captioning models, the figure shows two successful and one unsuccessful original and adversarial images

along with the predicted captions. Unsuccessful cases are shown in italics.

ST: a woman standing

a woman standing in a brown horse

Show and Tell

a row of motorcycles

ST: a brown horse ST: a row of paed

front of a in front of a standing on top of standing on top of parked next to each motorcycles sitting
refrigerator. refrigerator. a lush green field. a lush green field. other. next to each other.
SAT: a close up of SAT: a close up of SAT: a close up of

a tray of food. a tray of food. a tray of food.

aman olding ahot SAT:a mn olding a man'holding a

dog in his hand. hot dog in his hand. tennis racquet on a
ST: a bunch of tennis court.
different types of

food on a table.

Show Attend and Tell

:@ -
SAT: a man holding a  a cat laying on top of \SAT: a cat laying on
tennis racquet on a a wooden desk. top of a desk.
tennis court. ST: a lunch box
ST: a table topped with a variety of
with lots of different vegetables.
types of vegetables.

Fig. 6. Examples of One Image Many Outputs. For both the captioning models, the figure shows two successful and one unsuccessful original and adversarial
images along with the predicted captions. Unsuccessful cases are shown in italics. For adversarial images, ST and SAT denote Show and Tell and Show

Attend and Tell respectively.

1000 adversarial images. Since the two captioning models use
different feature extractors, this result shows that the proposed
attack is very dependent on the feature extractor. In other
words, ensuring that the two images are indistinguishable
for one feature extractor does not ensure that they will be
indistinguishable for another feature extractor. More examples

of the two proposed attacks are provided in the supplementary
material.’

Shttps://www.isical.ac.in/~utpal/resources.php
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Task Model Method Success Rate | Time (in sec)
Show and Tell Show-and-Fool [5] 95.1 % 177.93
Image Captioning Show Attend and Tell EM [28] 77.1 % 20.69
SSVM [28] 82.1 % 18.73
VQA N2NMN Xu et al. [6] 100.0 % 877X n
TABLE IV

SUCCESS RATE AND TIME FOR TASK-SPECIFIC METHODS.

C. Comparison with task specific attack

In this section, we compare our proposed attack, OIMO
with other task-specific attacks. For Show and Tell, we use
Show-and-Fool [5]]. For Show Attend and Tell, we use EM
and SSVM methods of Yan et al. [28]. For N2NMN, we use
the VQA attack of Xu et al. [6]. For Show-and-Fool and EM
and SSVM methods, we use the official implementation.’
We implement the attack proposed by Xu et al. [6]] using the
default parameters mentioned in the paper. Similar to OIMO,
we start with Ig,,+ and run the task specific attacks in order to
generate adversarial outputs. Table [[V] shows the success rate
and time for different task-specific methods. Show-and-Fool
achieves a success rate of 95.1% and takes 177.93 seconds per
image. The EM and SSVM take less time for Show Attend
and Tell but have lower success rates. In contrast, OIMO
takes around 8 seconds per image for both the captioning
models. For unsuccessful cases, like OIMO, Show-and-Fool
and EM and SSVM generate similar captions for original and
adversarial images as evident from high BLEU and METEOR
scores in Table [I} We find that for the adversarial images
generated by Show-and-Fool, Show Attend and Tell generates
only 11 unique captions, all of which are relevant captions for
Isiqrt- Chen et al. [5] study the transferability of Show-and-
Fool between the captioning models, however in their study,
the two captioning models use the same feature extractor.
Similarly, we obtain only 3 and 5 unique captions from Show
and Tell for adversarial images of EM and SSVM respectively.
All these captions are relevant for I, Xu et al. [6]] achieve
100.0% success rate. The attack takes 8.77 seconds for each
image-question pair. The factor n in the time for Xu et al. in
Table [[V] signifies the average number of questions per image,
which can be arbitrarily large.

D. OIMO for invertible architecture

Recently, Jacobsen et al. [24] propose a deep invertible
architecture, i-RevNet which learns a one-to-one mapping
between image and its feature. These networks achieve im-
pressive accuracy on ILSVRC-2012 [29]. For experimentation,
we choose bijective i-RevNet which takes images of size
224 x 224 x 3 as input and the corresponding feature is of size
3072x7x7. We use the pretrained i-RevNet provided in the of-
ficial implementation® to test our proposed attack, One Image
Many Outputs. We randomly choose 100 correctly classified
images belonging to 41 different classes from the validation set
of ILSVRC-2012. Furthermore, we choose a starting image,

Shttps://github.com/IBM/Image-Captioning- Attack
Thttps://github.com/wubaoyuan/adversarial-attack-to-caption
8https://github.com/jhjacobsen/pytorch-i-revnet

Isiart, belonging to a different class. We also restrict the
search space for adversarial images using the clipping function
Clips,,,.., (i.e. the adversarial noise is clipped to ensure that
the adversarial image I,4, will lie in an € {.,-neighborhood
of Istart). Starting with Iy € [0,255]224%224X3 " we run
the proposed attack, OIMO, in order to mimic the feature
for 100 images. Table [V] shows the success rate for different
values of e. The high success rate shows that the proposed
attack can be applied for invertible architecture like i-RevNet
as well. This is because i-RevNet, despite being invertible,
assigns similar features to dissimilar images. Figure /| shows
one such successful adversarial example.

€ Success Rate

2 86.0 %

5 99.0 %

10 100.0 %
TABLE V

SUCCESS RATE OF One Image Many Outputs FOR I-REVNET

Fig. 7. Both the images are classified as ice bear by bijective i-RevNet.

IV. QUANTITATIVE STUDY OF ADVERSARIAL NOISE

Table [V1] shows the peak signal-to-noise ratio (PSNR) for
OIMO and task-specific methods. The PSNR is calculated as
follows

255.0
PSNR =20lo ~ 2900
e (JW) N
2
where MSE = [ adw = Lstartlls
mxnx3

where T4y, Istart € [0,255]m*7%3,

From Table [V it is evident that the PSNR is low for OIMO
in comparison with other task-specific methods. This is mainly
because task-specific methods can exploit the deficiencies of
encoder as well as the decoder and such attack methods can
be stopped at the exact instant when an adversarial image


https://github.com/IBM/Image-Captioning-Attack
https://github.com/wubaoyuan/adversarial-attack-to-caption
https://github.com/jhjacobsen/pytorch-i-revnet

leads to the desired output. Agnosticity, in any form, generally
leads to more noise. As an example, image-agnostic universal
adversarial perturabations (UAP) [30] are quasi-perceptible
instead of being imperceptible.

Model Attack PSNR (mean =+ std)
Show and Tell Show-and-Fool [5] 525 + 6.7
OIMO 23.8 £ 0.6
SSVM (28] 421 £ 1.2
Show Attend and Tell EM [28] 404 £+ 09
OIMO 26.1 £ 1.1
N2NMN Xu et al. [6] 33.8 £ 3.7
OIMO 27.6 £ 0.5
TABLE VI

PSNR BETWEEN I 4, AND Istqrt FOR One Image Many Outputs (OIMO)
AND TASK-SPECIFIC METHODS.

Model Attack SSIM (mean + std)
—4 -3
R MAF 1.8x 1074 +1.3x 10
OIMO | 6.1 x10~4+29x 103
—4 -3
Show Attend and Tell | MAF | 7:5x107 . £27x 7
OIMO | 6.8x107%+4.2x10
—4 -3
N2ONMN MAF | 5.6 x 10 ; +1.5x 10 ,
OIMO | 45x 1074 +£2.2x 10~

TABLE VII
SSIM BETWEEN I,q4, AND Iorg FOR Mimic and Fool (MAF) AND One
Image Many Outputs (OIMO).

Table shows the SSIM [31]] values between I,4, and
I,rg for the proposed methods. The near-zero values of SSIM
clearly show that there is no resemblance between the original
and adversarial image.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a task agnostic adversarial
attack, Mimic and Fool. The proposed attack exploits the non-
invertibility of CNN-based feature extractors and is based on
the hypothesis that if two images are indistinguishable for the
feature extractor then they will be indistinguishable for the
model as well. The high success rate of Mimic and Fool for
three models across two tasks validates this hypothesis. We
also show that the proposed attack works regardless of the
depth of the feature extractor. Due to the task-agnostic nature,
we need to run the attack only at image-level which is a huge
advantage in terms of time saved for tasks involving multiple
modalities as input. We further propose a variant of Mimic
and Fool, named One Image Many Outputs, which generates
natural-looking adversarial images. The results for this variant
of the attack show that it is possible to mimic features of an
arbitrary image by making minimal changes to a fixed image.
This is an important insight into the nature of CNN-based
feature extractors. We also demonstrate the applicability of
the proposed attack for invertible architectures like i-RevNet.

As part of future work, from an attack perspective, one
can explore different task-agnostic strategies which will work
successfully with just the pretrained weights of the feature
extractor. We found that using pretrained instead of fine-
tuned weights leads to drop in success rate of the proposed

attack. From defense perspective, we show that invertible
architectures like iRevNet are not robust to the proposed
attack. Hence, one can explore different feature extractors
which are resistant to the proposed attack. If successful, one
can use these feature extractors to develop end-to-end systems
and check their robustness to task-agnostic as well as task-
specific attacks.

REFERENCES

[1] S. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “Shapeshifter:
Robust physical adversarial attack on faster R-CNN object detector,” in
Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2018, vol. 11051. Springer, 2018, pp. 52-68.

[2] I.J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Repre-
sentations (ICLR), 2015.

[3] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in ICLR Workshop, 2017.

[4] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. L. Yuille,
“Adversarial examples for semantic segmentation and object detection,”
IEEE International Conference on Computer Vision (ICCV), pp. 1378-
1387, 2017.

[5] H. Chen, H. Zhang, P.-Y. Chen, J. Yi, and C.-J. Hsieh, “Attacking visual
language grounding with adversarial examples: A case study on neural
image captioning,” in Proc. of 56th Annual Meeting of the Association
for Computational Linguistics, 2018, pp. 2587-2597.

[6] X. Xu, X. Chen, C. Liu, A. Rohrbach, T. Darrell, and D. Song,
“Fooling vision and language models despite localization and attention
mechanism,” in [EEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018, pp. 4951-4961.

[71 N. Papernot, P. McDaniel, 1. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proc. of ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS, 2017, pp. 506-519.

[8] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable ad-
versarial examples and black-box attacks,” in Proc. of 5th International
Conference on Learning Representations (ICLR), 2017.

[91 Y. Shi, S. Wang, and Y. Han, “Curls & whey: Boosting black-box

adversarial attacks,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019, pp. 6512-6520.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in IEEE Conference on Computer Vision and Pattern

Recognition, CVPR, 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” in 3rd International Conference on

Learning Representations, ICLR, 2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2015, pp. 1-9.

A. Dosovitskiy and T. Brox, “Inverting visual representations with

convolutional networks,” in JEEE Conference on Computer Vision and

Pattern Recognition, CVPR, 2016, pp. 4829-4837.

A. Mahendran and A. Vedaldi, “Understanding deep image representa-

tions by inverting them,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015, pp. 5188-5196.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097-1105.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural

image caption generator,” in [EEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015, pp. 3156-3164.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov,

R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image cap-

tion generation with visual attention,” in Proc. of 32nd International

Conference on Machine Learning (ICML), 2015, pp. 2048-2057.

R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, “Learning

to reason: End-to-end module networks for visual question answering,”

in IEEE International Conference on Computer Vision (ICCV). 1EEE

Computer Society, 2017, pp. 804-813.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]



[19]

[20]

[21]

[22]

(23]

[24]
[25]
[26]

[27]

[28]

[29]

(30]

(31]

Y. Huang, A. W. Kong, and K. Lam, “Attacking object detectors
without changing the target object,” in PRICAI 2019: Trends in Artificial
Intelligence - 16th Pacific Rim International Conference on Artificial In-
telligence, Cuvu, Yanuca Island, Fiji, August 26-30, 2019, Proceedings,
Part 111, ser. Lecture Notes in Computer Science, A. C. Nayak and
A. Sharma, Eds., vol. 11672. Springer, 2019, pp. 3-15.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Proc. European Conference on Computer Vision (ECCV),
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., 2014, pp. 740-
755.

Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making
the V in VQA matter: Elevating the role of image understanding in
Visual Question Answering,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017, pp. 6325-6334.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proc. of the 40th Annual
Meeting of the Association for Computational Linguistics, 2002, pp.
311-318.

S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt
evaluation with improved correlation with human judgments,” in Proc.
of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization, 2005, pp. 65-72.

J.-H. Jacobsen, A. W. M. Smeulders, and E. Oyallon, “i-revnet: Deep
invertible networks,” in International Conference on Learning Repre-
sentations (ICLR), 2018.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.
F. Chollet et al., “Keras,” https://keras.io, 2015.

S. Sharma, L. El Asri, H. Schulz, and J. Zumer, “Relevance of unsuper-
vised metrics in task-oriented dialogue for evaluating natural language
generation,” CoRR, vol. abs/1706.09799, 2017.

Y. Xu, B. Wu, F. Shen, Y. Fan, Y. Zhang, H. T. Shen, and W. Liu, “Exact
adversarial attack to image captioning via structured output learning
with latent variables,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019, pp. 4130-4139.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211-252, 2015.

S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017, pp. 86-94.

Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600612, April
2004.


https://keras.io

	I Introduction
	I-A Motivation: Agnosticism in Adversarial Attacks
	I-B Contributions of this work

	II Method
	II-A Proposed Attack
	II-A1 Mimic and Fool
	II-A2 One Image Many Outputs

	II-B Implementation Details

	III Results
	III-A Results for Mimic and Fool
	III-B Results for One Image Many Outputs
	III-C Comparison with task specific attack
	III-D OIMO for invertible architecture

	IV Quantitative study of Adversarial Noise
	V Conclusion and Future Work
	References

