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Abstract— This article establishes a baseline for object
reflection symmetry detection in natural images by releasing a
new benchmark named Sym-PASCAL and proposing an end-
to-end deep learning approach for reflection symmetry. Sym-
PASCAL spans challenges of multiobjects, object diversity, part
invisibility, and clustered backgrounds, which is far beyond those
in existing data sets. The end-to-end deep learning approach,
referred to as a side-output residual network (SRN), leverages the
output residual units (RUs) to fit the errors between the symmetry
ground truth and the side outputs of multiple stages of a trunk
network. By cascading RUs from deep to shallow, SRN exploits
the “flow” of errors along multiple stages to effectively matching
object symmetry at different scales and suppress the clustered
backgrounds. SRN is interpreted as a boosting-like algorithm,
which assembles features using RUs during network forward
and backward propagations. SRN is further upgraded to a
multitask SRN (MT-SRN) for joint symmetry and edge detection,
demonstrating its generality to image-to-mask learning tasks.
Experimental results verify that the Sym-PASCAL benchmark
is challenging related to real-world images, SRN achieves state-
of-the-art performance, and MT-SRN has the capability to
simultaneously predict edge and symmetry mask without loss
of performance.

Index Terms— Edge detection, multitask deep learning,
object reflection symmetry detection, side-output residual
network (SRN).

I. INTRODUCTION

RFLECTION symmetry is an inherent visual property
of natural objects. With reflection symmetry, objects

can be abstracted into descriptive and interpretable curves.
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Such curves constitute a continuous decomposition of object
shapes [1], [2], providing discriminative cues for object rep-
resentation. Reflection symmetry has been used to produce
features and/or spatial constraints and applied to image seg-
mentation [3], foreground extraction [4], object proposal [5],
object detection [6], and text-line detection [7].

Early symmetry detection, often referred to as skele-
ton extraction, involves binary images [8], [9]. In recent
years, symmetry detection has addressed processing color
images [10]–[12], which uses cropped image patches focusing
on the foreground. SYMMAX [13], WH-SYMMAX [14],
SK506 [15], and SK-LARGE [16] are data sets with natural
images. However, they lack either object-level annotation or
in-the-wild settings.

To make object reflection symmetry close to practical
application, we present a new data set with clustered back-
grounds named Sym-PASCAL and an end-to-end deep sym-
metry detection approach. The new benchmark is derived from
the PASCAL-VOC-2011 [17] segmentation data set, which
is composed of 1435 natural images with 1742 individual
objects. The data set is more challenging than the existing ones
as multiple objects in a single image; object with different
illuminations, viewpoints, and partially occluded; and the
contextually cluttered scenes.

The object reflection symmetry detection is treated as an
image-to-mask learning task. We propose a deep side-output
residual network (SRN) for symmetry mask prediction. It uses
color images as input and directly outputs the mask of object
reflection symmetry. SRN is built on the successful holistically
nested edge detection network (HED) [18] and upgrades it by
cascading multiple residual units (RUs) on the side outputs,
which are computed on different stages of convolutional layers
with the fully convolutional network [19]. The RU is used
to fit the error between the symmetry ground truth and the
outputs of different convolutional stages. It is computationally
easier as it pursues the minimization of residuals among scales
rather than combines multiscale features to fit the ground
truth. SRN provides an effective way to model the association
and complementary among multilayer features. The RUs we
defined not only significantly improve the performance of the
baseline HED but also solve the learning convergence problem
left by HED.

SRN is composed of a trunk network for feature learning
and a branch network for hierarchical side-output process-
ing. When multiple branch networks are added to the trunk
network, SRN is upgraded to a multitask SRN (MT-SRN),
where the trunk network is shared by different image-to-mask
tasks, and each branch network specifies a task. The usage
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Fig. 1. Flowchart of the processes in this article. A data set is released in Section III, SRN is proposed in Section IV, and MT-SRN is introduced in Section V.

of a shared trunk network not only reduces the number of
network parameters but also improves network learning by
collectively leveraging training samples from multiple tasks.
SRN was first proposed in our CVPR article [20] and is
upgraded to MT-SRN in this full version. With extended
experiments about symmetry detection and edge detection,
the general applicability of SRN to image-to-mask learning
tasks is further validated. The main contributions of this article
are shown in Fig. 1, which includes the following:

1) an object reflection symmetry data set that spans chal-
lenges of diversity, multiobjects, part invisibility, and
various clustered backgrounds, promoting the research
of object symmetry to in-the-wild setting;

2) an SRN that fits the errors between ground truth and
the outputs of different convolutional stages, enforcing
representation capability under the principle of boosting-
like feature ensemble;

3) an MT-SRN that performs joint symmetry and edge
detection, showing not only the generality of SRN to
image-to-mask learning tasks but also the feasibility to
train a shared deep network on data sets for similar tasks.

A. Definition of Object Reflection Symmetry

An object is a reflection symmetric if it can be divided
into two or more identical pieces that are arranged in an
organized manner [10]. This means that an object is symmetric
if there is a transformation that moves individual pieces of the
object but does not change the overall shape. According to the
way the pieces are organized and the type of transformation,
an object has reflection, rotation, and scale symmetry, which,
respectively, corresponds to the representation of skeleton,
orientation, and scale. In this article, we involve reflection
symmetry.

The reflection symmetry refers to the longest middle axis
going through an object and dividing it into two pieces which
are mirror images of each other. Formally, for an object with
reflection shape, we divide it to homogeneous rectangles first,
denoting as {Ri }N

i=1, where N denotes the number of rectangles
in the object, as shown in Fig. 2. For Ri , a segment of
reflection symmetry, Si , is defined as axis subject to

Ri (x, y) ≈ Ri (−x, y)
Di (x, y) = Di (−x, y)

(1)

where (x, y) denotes the coordinates in Ri , (−x, y) denotes
the symmetric coordinates in terms of the axis Si , and Ri (x, y)
denotes the pixel value of point (x, y), as shown in Fig. 2.
Di (x, y) and Di (−x, y), respectively, denote the distance

Fig. 2. Reflection symmetry refers to the longest middle axis (S) going
through an object and dividing it into two pieces which are mirror images of
each other.

between (x, y) or (−x, y) and the symmetry Si . Following
the definition in [11], the first equation indicates that the
pixel values are similar under Si in the 2-D Euclidean space.
The second equation implies that the distances of Si to the
two sides of object contours are the same.

When Si tends to be infinitesimally small, the assembled
set of Si defines the object reflection symmetry, as

S = {Si}N
i=1. (2)

The reminder of this article is organized as follows.
Related work is reviewed in Section II. Section III intro-
duces the Sym-PASCAL data set for in-the-wild object
reflection symmetry detection. Sections IV and V detail the
implementation of SRN and MT-SRN. Section VI presents
experimental evaluation, and Section VII concludes this
article.

II. RELATED WORK

Symmetry has attracted much attention of the com-
puter vision community. The benchmarks span from binary
images [8], [21] to color images [10], [13]–[15], while the
detection approaches range from handcrafted-based [22]–[24]
to learning-based [3], [13]–[15], [20].

A. Benchmarks

Symmetry is qualitatively evaluated on quite limited binary
shapes [8] for subjective perception or a few real-world
images for objective evaluation [10], [25]. SYMMAX [13]
contains hundreds of training and test images with reflection
symmetry annotations, which can be regarded as an authentic
benchmark. However, the reflection symmetry in SYMMAX is
used for low-level image representation, regardless of objects.
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WH-SYMMAX [14], SK506 [15], and SK-LARGE [16] are
recently released benchmarks that are annotated with object
skeleton. WH-SYMMAX is only composed of side-view
horses, while SK506 and SK-LARGE consist of cropped
objects from natural images. As none of them involves clus-
tered background or multiple objects, plenty of room is left
for us to develop new object reflection symmetry benchmarks.
In the proposed Sym-PASCAL benchmark, we emphasize the
challenging aspects, including multiobjects, object diversity,
part invisibility, and various clustered backgrounds. We also
provide Toolbox and instructions about how to create the data
set and define criteria about how to determine whether an
image contains multiple objects and/or partial invisibility.

B. Methods

1) Conventional Methods: In the early stage, symmetry
extraction is known as skeleton detection1 [9], [26], which is
mainly proposed for binary images. Morphological operation
is always used for these images. For color images, an instance
segmentation step should be used as preprocessing, which is
utilized to transfer color images to binary masks [21], [27].
As there is still no perfect solution for instance segmentation,
integrating symmetry detection with instance segmentation not
only accumulates the errors but also increases the complexity.

Extracting symmetry for color image based on superpixels
is an alternative way [22]–[24]. Symmetry axes are extracted
as a subset of lines that connect the center points for adjacent
superpixels [22]. The symmetry curve can also be generated by
the path of center point with a sequence of deformable disks
within the superpixels [23]. In [24], the symmetry curve is
linked with local skeleton segments with a particle filter, which
models the smoothness and consistency of the symmetry.

Recently, learning-based methods are purposed for more
effective symmetry detection in color images. A model is
trained to predict whether a pixel is on the symmetry curve.
Symmetry detection has seemed as an image-to-mask task
with a dense prediction for all image pixels. Multiple instance
learning is utilized for SYMMAX data set in [13], as the pixel
is represented as an instance bag with multiorientation and
multiscale. Structured random forest (SRF) [3] and subspace
MIL [14] are employed to train a reflection symmetry detector
with the same feature with [13]. Nevertheless, due to the limi-
tation of the hand-designed features and conventional learning
models, these methods are unable to detect the symmetry
pixels with large scales, as much more context information
needs to handle.

2) Deep Learning Methods: With the rise of deep learning,
researchers have recently investigated the skeleton detection
problem by fusing multilayer convolutional features [15], [20].
Symmetry detection is converted into an image-to-mask learn-
ing problem and unified with edge detection [18], [28]–[31]
and semantic segmentation [19], [32], [33]. By using learned
weights to combine the multilayer convolutional features,
object skeletons/edges/segments are extracted in an end-to-end
manner.

DeepContour [28] and HED [18] are two pioneering works
that use learned weights to fuse the multiscale convolutional

1Although symmetry is equal to the skeleton in most cases, it is different
from the skeleton when the objects have small length-width ratio or occlusion
[see Fig. 4(c)] and, thus, is a more accurate word than a skeleton in this article.

features and predict edges in an end-to-end manner. The
trunk network of HED is an FCN [19], [34], which provides
multiscale convolutional features for multiscale edge detection.
When using the convolutional features in an oriented/encoder–
decoder manner, HED is upgraded to detect oriented/higher
level object contours [29], [30]. Bertasius et al. [31] further
shown that they can predict object edges by exploiting object-
level features from a multiscale side-output network.

FCN is also be applied to semantic segmentation in an
image-to-mask manner, i.e., taking the input of arbitrary
size images and producing the correspondingly sized out-
put [19]. The application of FCN to semantic segmentation
not only validates its applicability to spatially dense prediction
tasks [34] but also contributes to multitask deep networks, e.g.,
the multitask network cascade [35] and joint object detection
and semantic segmentation. In these works, multiscale con-
volutional features are usually used in a cascading manner,
while the problems about how to minimize the errors among
multiple scales and adaptively fit complex outputs with limited
convolutional layers need to be further explored.

Most recently, a deep learning method, i.e., FSDS [15],
is used to learn a model for skeleton predicting with the
multiscale association on WH-SYMMAX and SK506 data
sets. It is developed from HED [18] and supervises the side
outputs with scale-associated ground truth. Even though it
achieves good performance for symmetry detection, intensive
annotation of scales for each symmetry point is needed, which
takes more effort to prepare the data for training. Compared
with FSDS, our proposed SRN matches the symmetry scale
adaptively without requiring scale-associated annotation.

3) Multitask Learning: The concept of multitask learn-
ing is early proposed by Caruana [36]. Recently, multitask
deep learning that aims to solve multiple tasks using a
single network has attracted increased attention [37]–[40].
Sermanet et al. [37] used a CNN network for joint localization,
detection, and classification. Eigen and Fergus [38] proposed
a multiscale CNN for simultaneously predicting depth, surface
normal, and semantic labels for an image. Eigen et al. [39]
trained a network for joint person detection, pose estimation,
and gender recognition. These methods have the advantage of
performing multiple tasks with single deep networks but are
difficult to be trained by diverse data sets.

In this article, SRN is extended to MT-SRN, which is
trained on two diverse data sets. Compared with UberNet that
fuses low-, mid-, and high-level vision tasks with diverse data
sets, MT-SRN uses a different training strategy. It leverages
a trunk network to extract low-level features, buffer convolu-
tional layers to integrate the low-level features for the task-
specific purpose, and SRNs to predict output on the buffer
convolutional layers.

III. OBJECT SYMMETRY BENCHMARK

A. Annotation Toolbox

To facilitate symmetry annotation, we create a toolbox,2

as shown in Fig. 3(a). With the toolbox, annotators can
simultaneously load images and masks, revise the masks,
and save the ground-truth symmetry. The toolbox loads the
instance masks and uses a skeleton generation algorithm [27]

2https://github.com/KevinKecc/SRN
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Fig. 3. Reflection symmetry annotation. (a) Annotation Toolbox. Its most salient aspect is the interactive function by which annotators can leverage instance
semantic segmentation and skeleton generation algorithms to speed up symmetry annotation. (b) Annotation procedure: (i) Original mask and skeleton
generation. (ii) Manual mask extension. (iii) Reflection symmetry extraction for a single object. (iv) Reflection symmetry extraction for multiple objects.

for symmetry annotation. Following the definition of reflection
symmetry, annotators can revise the object skeleton to reflec-
tion symmetry so that each pixel on the segmentation mask
has only one symmetric point subject to the symmetry axis.
With the initialization of the object skeleton, an annotator can
complete the symmetry for an image within one minute.

Annotation instruction is illustrated in Fig. 3(b). First, it is
required to load an image and its instance segmentation mask,
as shown in Fig. 3(b)–(i). Second, it is required to use the
“Disc” or “Poly” operations defined in the toolbox to obtain
an extended mask, as shown in Fig. 3(b)–(ii). The skeletoniza-
tion is applied to the extended mask to get initial reflection
symmetry, as shown in Fig. 3(b)–(iii). Finally, it is required
to revise the skeleton to symmetry by cutting the extended
skeleton according to the original mask. The instances are
annotated one by one, and the ground-truth symmetry of the
whole image is completed, as shown in Fig. 3(b)–(iv).

B. Categorization
We annotate the segmentation subset of PASCAL VOC

2011 [17] and release it as Sym-PASCAL. As potted plants,
dining tables, motorbikes, bicycles, chairs, and sofas in
PASCAL VOC contain a lot of discontinuous parts, the sym-
metry cannot be annotated, Fig. 4(a). The other 14 object
categories in PASCAL VOC are symmetry-available, which
is divided into easy ones consisted of slender parts [see
Fig. 4(b)] and hard ones with occlusion or small length-width
ratio [see Fig. 4(c)]. We name the new symmetry data set as
Sym-PASCAL, which is consisted of 648 images for training
and 787 images for the test. Among these images, 31.3% are
multiobject, i.e., more than one instance in a single image,
and 45.6% are part invisibility, i.e., an instance or a part of
an instance is occluded by itself and/or other instances, or out
the scope of the image.

Fig. 4. Comparison of skeleton and object reflection symmetry. The green
masks are annotated semantic segmentation ground truth. The red lines are the
skeletons of semantic segmentation masks. The yellow lines are the annotated
symmetry ground truth. (a) Symmetry unavailable images. (b) Images in which
symmetry is equal to the skeleton and is easy to be annotated. (c) Images in
which symmetry is hard to be annotated. (Best viewed in color.)

For the easy annotated images, the skeleton algorithm [27] is
utilized directly on the instance mask of the object. As shown
in Fig. 4(b), the skeleton is equal to symmetry ground
truth for easy annotated images. The hard annotated images
are processed with different strategies with wide object and
occlusion. As shown on the top of Fig. 4(c), the symmetry
for the object with a small long-width ratio, i.e., monitor,
is generated by extending the instance mask along the long
axis, producing skeleton on the extended mask, and cut the
skeleton with original instance mask. As shown at the bottom
of Fig. 4(c), the symmetry for the object with occlusion,
i.e., bird, is generated by empirically filling the mask of
occlusion parts, producing skeleton on the filled mask. One
can see that the symmetry ground truth (colored with yellow)
is totally different from the skeleton (colored with red), and
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TABLE I

COMPARISON OF SKELETON AND SYMMETRY DETECTION DATA SETS

Fig. 5. Symmetry examples from the new released benchmark,
Sym-PASCAL, and other four commonly used benchmarks. Compared with
the existing data sets, Sym-PASCAL spans challenges, including object
diversity, multiobjects, part invisibility, and various complex background.

the symmetry is more representative than the skeleton for these
images [see Fig. 4(c)].

C. Data set Comparison

SYMMAX contains 200 training images and 100 test
images, which is annotated on BSDS300 [41]. Both back-
ground and foreground are annotated with local reflection
symmetry. As foreground usually takes more important posi-
tion than background [4], [42], it is more meaningful to
compute the symmetry for objects (i.e., foreground) instead
of the symmetry for the whole image. WH-SYMMAX has
228 training images and 100 test images. It is developed
for object skeletons, but it is made up of only cropped
horse patches that are not comprehensive for general object
symmetry. SK506 involves skeletons from about 16 classes of
objects with 300/206 training and test images. SK-LARGE is
extended from SK506 to 746/745 training and test images.

Fig. 5 shows some examples, Table I gives the statistic
information, and Fig. 6 shows the object-class distribution of
different symmetry data sets. Comparing with the existing data

Fig. 6. Object-class distributions of the Sym-PASCAL, SK506, and
SK-LARGE data sets. (a) Sym-PASCAL. (b) SK506. (c) SK-LARGE.

sets, the proposed Sym-PASCAL has more images for training
and test (see Table I). Particularly, these images involve
multiple objects, clustered backgrounds, and/or occlusions (see
Fig. 5). In Sym-PASCAL, the number distribution of images
for object class is more balanced than other data sets [see
Fig. 6(a)]. In contrast, the object distributions are unbalanced
in SK506 and SK-LARGE [see Fig. 6(b) and (c)].

IV. SIDE-OUTPUT RESIDUAL NETWORK

SRN is based on the simple yet effective output RU with
end-to-end learning.

A. Network Architecture

The SRN is a fully convolutional neural network which
stacks RUs on the side outputs of different convolutional
stages. By choosing the input of the first stacked RU as the
deepest or the shallowest side output, the deep-to-shallow
and shallow-to-deep architectures are constructed, as shown
in Fig. 7(a) and (b). SRN incorporates the advantages of both

Authorized licensed use limited to: Oulu University. Downloaded on June 04,2020 at 07:21:54 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 7. Architectures of proposed SRN by cascading RUs in (a) deep-to-shallow and (b) shallow-to-deep strategies. The RUs are marked with dashed boxes.
With the deep supervision both on the input and output of RUi , i = 1, 2, 3, the residual between the ground truth and the output of RUi (i.e., ri ) is computed
hierarchically. Along the cascading orientation, the residual decreases so that the RUi (i.e., ri ) is closer to ground truth than the input of RUi (i.e., ri+1 in
deep-to-shallow, ri−1 in shallow-to-deep).

Fig. 8. Implementation of the i th RU. (a) Deep-to-shallow. (b) Shallow-to-
deep.

residual learning and scale adaptability. The deep-to-shallow
architecture is introduced in detail below, and the shallow-to-
deep one has a similar implementation.

The implementation of RU in deep-to-shallow is shown
in Fig. 8(a). RUi is denoted as the RU on the side output si .
The input and output of RUi are ri+1 and ri , respectively. The
side output si is utilized to learn the residual between ri+1 and
the ground truth and updates ri+1 to ri . For the deepest RU,
the input is set as the side output, i.e., r3 = s3 [see Fig. 8(a)].
Note that the size of output ri is same to the side output
si rather than the size of input ri+1. Therefore, a Gaussian
deconvolutional layer [19] is introduced to upsample ri+1.
In this architecture, only 2× upsampling is used as the
additional mapping, i.e., F(y) is 2× larger of the input of
RU. A weight layer wr

i is used to improve the adaptability
of scales as the upsampling with the fixed Gaussian kernel is
a linear transformation. Instead of hard-add upsampled ri+1

and si directly, a 1 × 1 convolutional layer wc
i is utilized to

generate ri . The i th RU is formulated as

ri = wi
c ⊗ (

si + wr
i · ri+1

)
. (3)

Fig. 9. Output RU (a) in SRN and Residal block (b) in ResNet [43].
By supervision both on the input and output of RU, the additional mapping
F(y) estimates the residual of ground truth y.

The convolution operation in 3 can be written as

ri = wi
c
1 · si + wi

c
2 · wr

i · ri+1 (4)

where wi
c and wi

r are the convolutional weights of the
concatenation layer and the upsampled ri+1. wi

r is a scaler
to weight ri+1 and wi

c has two elements: one for si and
the other for ri+1. The output residual between ri and ri+1

is computed as

Fi(y) = wi
c
1 · si + (

wi
c
2 · wr

i − 1
)
ri+1. (5)

When wi
c
2 ·wr

i approximates 1.0, the residual is related to only
the side output. To the extreme, along the stacking orientation
of RUs, the residual F(y) approximates 0.0.

B. Output Residual Learning Mechanism

The RU for the side output of the trunk network is different
from the short-cut connection for feature learning in residual
network [43]. The former one approximates a progressive
estimation function for ground truth, while the later one
eases the training of deep networks. As shown in Fig. 9(b),
the conventional residual block uses a shortcut connection
between the input x and the output F(x)+ x , with the aim to
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push the residual F(x) toward 0, while, in Fig. 9(a), our RU
involves deep supervision on side outputs r and r +F(y) and
targets at precisely fitting the side-output signal.

The mechanism of RU is shown in Fig. 9(a). Both the input
and output of RU are deeply supervised with ground truth.
It is forced to learn the residual between the input of RU and
the ground truth. Simplify the notification as r , y, and F(y)
that stand for the input of RU, ground truth, and additional
mapping, respectively. The RU is formulated as{

r ≈ y
r + F(y) ≈ y

(6)

where F(y) is used to estimate the residual of y. By stacking
RU on the side output of different stages of the trunk network,
it implies a functional module for the “flow” of errors along
the stacking direction. It would be easier to push F(y) to zero
than to fit it to ground truth when an input r is optimal.

C. Formulation

Suppose S = {(Xn, Yn)}N
n=1 is object reflection symmetry

training data set with N samples. Xn = {x (n)
j , j = 1, . . . , T } is

an input image with T pixels. Yn = {y(n)
j , j = 1, . . . , T } is the

ground-truth symmetry map, where y(n)
j = 1 indicates the pixel

on the symmetry curve and y(n)
j = 0 indicates background.

n is drooped for notational simplicity below. Suppose the
trunk network with M stages and it produces M side outputs.
The SRN stacks M − 1 RUs and uses the Mth side output
as the basic output (the input of first stacked RU). For the
basic output, the loss is computed with weighted entropy
loss [18], as

Lb(W, wb) = −β
∑
j∈Y+

log Pr(y j = 1|X; W, wb)

− (1 − β)
∑
j∈Y−

log Pr(y j = 0|X; W, wb) (7)

where Y+ and Y− denote the ground-truth label sets indicating
a pixel on symmetry curve or background, respectively. W is
the parameters of trunk network. wb is the parameter for 1×1
convolutional layer, which is used as a pixel-based classifier
for the basic output. The loss weight β = |Y+|/|Y |, in which
|Y+| and |Y−| denote the numbers of pixel on symmetry curve
and background, respectively. Pr(y j = 1|X; W, wb) ∈ [0, 1] is
the probability that measures how confident a pixel is on the
axis of the symmetry. For the i th RU, where i = M−1, . . . , 1,
the loss is computed, as

Li (W, θi , wi ) = −β
∑
j∈Y+

log Pr(y j = 1|X; W, θi , wi )

− (1 − β)
∑
j∈Y−

log Pr(y j = 0|X; W, θi , wi )

(8)

where θi = (wc
i , w

s
i ) is parameter for the i th RU, in which wc

i
and ws

i are for the convolutional layers after the concatenation
layer and side-output layer. wi is the classifier parameter for
the i th side output. The fused loss function is computed by

L(W, θ,w) = Lb(W, wb) +
1∑

i=M−1

Li (W, θi , wi ). (9)

We learn the parameters for the trunk network and RUs by

(W∗, θ∗, w∗) = arg minL(W, θ,w). (10)

For inference, the output by the last stacked RU is used as
symmetry prediction map for the input image X , as

Ŷ = Pr(y j = 1|X; W∗, θ∗, w∗). (11)

D. Understanding SRN

The proposed SRN leverages output RUs to fit the errors
between the object symmetry ground truth and the inputs of
RUs. By cascading RUs in a deep-to-shallow manner, SRN
approximates a progressive estimation function, which has
been successfully used in mechanics and control systems [44]
and validated to be more effective than direct linear error
estimation. With such progressive estimation, SRN exploits the
“flow” of errors among multiple scales to ease the problems
of fitting complex outputs with limited convolutional layers.
The residual monotonically decreases, and the features are
weighted and assembled during learning.

Given M RUs to be stacked, (6) is reformulated as

ro = rM +
1∑

i=M

Fi(y) (12)

where ro is the final output of SRN and {ri}M
i=1 ∈ [0, vgt ] are

the inputs of RUs. vgt ∈ {0, 1} is the ground truth. Mth RU,
i.e., rM , is supervised by ground truth and is seen as an
initial output. After the sigmoid operation, the residual keeps
positive, i.e., Fi(y)M

i=1 ≥ 0. For the pixels on symmetry axis,
we have 1 = vgt+ ≥ ro ≥ r1 ≥ . . . ≥ rM , which means that the
residual monotonically decreases in the order of the stacking
RUs, while, for the pixels on background, the network forces
ro → 0.

From the perspective of learning, SRN implements a special
kind of learner ensemble, where each learner corresponds to
a convolutional layer and can be regarded as a weak learner.
Multiple weak learners are assembled to construct a strong
learner. The deep-to-shallow SRN first chooses the best weak
learner, which uses features from the deepest convolutional
layer to fit the ground truth. In the next layer, the error of
each sample is calculated, and the samples of larger error
contribute more to the second weak learner. Such a procedure
could be regarded as a special kind of resampling by assigning
larger weights to samples with larger errors. With weak learner
ensemble and resampling, the learning procedure of SRN is a
boosting-like algorithm [45], and the prediction is a assemble
of multiple layer features with loss defined as 9. In the
following layers, pixels of larger loss will be assigned with
bigger weights.

V. MULTITASK SRN

SRN consists of a trunk network for feature learning and
a branch network, i.e., stacked RUs, for hierarchically side-
output processing. When multiple branch networks are added
to the trunk, the SRN is upgraded to a MT-SRN (see Figs. 10
and 11). Representation, the buffer layers are used for task-
specific feature representation, and stacked RUs are used for
output prediction. By combining multiple tasks, we can use
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Fig. 10. General framework of the proposed MT-SRN.

Fig. 11. Architecture of MT-SRN. Buffer convolutional layers (CBuf and
SBuf) are added to the trunk network to construct a symmetry branch network
and an edge branch network. The MT-SRN is optimized with an alternating
training strategy.

more data to train the shared trunk network to activate object
regions and depress backgrounds. MT-SRN is used to perform
joint symmetry and edge detection by using a color image as
input and predicting the mask as the output of the last stacked
RU.

MT-SRN has two loss functions, defined as

LS = L(WT , θS, wS), (13)

LE = L(WT , θE , wE ) (14)

where WT is the parameter of the trunk network, θS and θE are
the parameters of symmetry branch and edge branch, and wS

and wE are classifiers of the side outputs, respectively. To opti-
mize the two loss functions defined, we propose an alternating
training strategy to optimize the following objectives:(

W∗
T , θ∗

S , w∗
S

) = arg minL(WT , θS, wS), (15)(
W∗

T , θ∗
E , w∗

E

) = arg minL(WT , θE , wE ). (16)

In the training phase, we first fine-tune the trunk network
with the edge branch [see (15)] and then fine-tune the trunk
network with the symmetry branch [see (16)]. Five training
steps are used in total. The first step is with 8000 iterations,
and the number of iterations is reduced by 2000 for each step.

In the MT-SRN, the trunk network is shared for the two
tasks that have different learning objectives. In the learn-
ing procedure, the network parameters could change dras-
tically when switching between the loss functions defined
in (13) and (14). It could aggregate the risk of leaning
instability. To solve this problem, we propose to insert a buffer
convolutional layer before the side-output layer (see Fig. 9).
Buffer layers have been successfully used in a multiscale
region proposal network (RPN) [46] to alleviate the problem
of sharp gradient values.

In MT-SRN, the buffer layers are introduced to smooth the
gradient values propagated from either branch network and

Fig. 12. Illustration of the activated pixels in MT-SRN. The trunk network
tends to activate the object, and the Sbuf and Cbuf layers tend to activate
edge pixel and symmetry regions, respectively. (Best viewed in color and
zoomed in.)

guarantee that the parameters of the trunk network update
smoothly. Besides, the buffer layer is used to extract the task-
specific feature. As shown in Fig. 12, the trunk network tends
to activate the object regions, and the Sbuf and Cbuf layers
tend to activate edge pixel and symmetry regions, respectively.
This inspires the interpretation of SRN by demonstrating
that high-level semantics can be abstracted from low-level
features with the trunk network, while object-oriented low-
level features (symmetry and edge) can be extracted by fusing
low-level features with high-level semantics using SRN.

We can conclude the advantages of MT-SRN: 1) In the
training phase, the shared trunk network of MT-SRN is fine-
tuned by multiple data sets, e.g., the edge and symmetry data
sets. This aggregates the limited training data from each data
set; and 2) in the test phase, MT-SRN uses a shared trunk
network and forward the trunk network once to perform two
detection tasks. It saves both storage space and computational
time comparing to two separated SRNs. The more tasks it
performs, the more storage space and computational time it
saves.

VI. EXPERIMENTS

In this section, the implementation of SRN for symme-
try detection is first presented. The experimental results of
symmetry detection are then analyzed and compared. Finally,
the efficiency and effectiveness of MT-SRN for joint symmetry
and edge detection are validated.

SRN is built on the publicly available implementation
of the deep network for holistically nested edge detection,
HED [18]. The final output map of SRN is postprocessed with
a nonmaximal suppression (NMS) algorithm [47], generating
one-pixel width object symmetry or edge curves. The result
difference between SRN and HED is illustrated in Fig. 13. The
final output of HED is the average of weighted side outputs,
while that of SRN is achieved by cascading the side outputs
hierarchically from the deep to the shallow stages. As shown
in the first and third rows of Fig. 13, the side outputs from
shallow stages of HED are about local structures, and those
from deep stages are about global contours. The weighted
summing of multistage side outputs in HED could introduce
local noises to the final output. To alleviate the noise and
preserve the global contours, the SRN stacks the multistage
side outputs, with which the residuals between the RU-outputs
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Fig. 13. Comparison of the side outputs of HED [18] and single SRNs. From the first to the fifth column, we illustrate the side outputs from deep to shallow
stages. The last column is the final output. For SRN (the second and fourth rows), it can be seen that the residuals between the outputs and the ground truth
decrease progressively. In contrast, HED (the first and third rows) has no such characteristic.

TABLE II

PERFORMANCE OF SRN UNDER DIFFERENT IMPLEMENTATIONS

ON THE SYM-PASCAL BENCHMARK

and the ground truth decrease progressively, as shown in
the second and fourth rows of Fig. 13. This validates the
monotonicity of residual in the order of the stacking RUs,
as defined in 12.

A. SRN Implementation

We use F-measure and precision–recall curve for perfor-
mance evaluation following [13].

Parameters: For both object reflection symmetry detection
and edge detection, we set the minibatch size to 1, the momen-
tum to 0.9, the weight decay to 0.002, the maximum number
of training iterations to 20 000, and the learning rate to 1e-8
for in-the-wild image data sets and 1e-6 for simple image
data sets.

Architecture: Table II shows that SRN with the deep-to-
shallow architecture (F-measure 0.443) performs significantly
better than the shallow-to-deep architecture (F-measure 0.397)
on Sym-PASCAL data set. It confirms that the deep-to-
shallow architecture is easier to reduce the residual than the

shallow-to-deep one as its initialization is better, as analyzed
in Section IV-A.

Data Augmentation: Data augmentation can aggregate the
training data sets. In this work, image rotation, flipping,
upsampling, and downsampling (multiscale) are used for data
argumentation, following [15]. For each scale, we rotate the
training images every 90◦ and flip them along a different axis.
The performance with/without multiscale data argumentation
is compared. Table II shows that the F-measure decreases
when using multiscale augmentation even though it produces
more training data. The reason is that the ground-truth sym-
metry is made up of curves with one-pixel thickness. The
upsampling operation produces curves that have thickness
lager than one pixel, and the down-sampling operation pro-
duces discontinuous symmetry curves.

Conv1: SRN is trained without the conv1 stage of VGG
because the size of the receptive field is so small (only 5 × 5)
that it introduces local noise of symmetry (too small to capture
any symmetry response). The negative impact of a small
receptive field with FSDS [15] is also observed. By pairwise
comparison in Table II, the F-measure without conv1 is slightly
better than that with conv1.

B. Symmetry Detection

The proposed SRN is evaluated on both Sym-PASCAL and
the other four data sets, i.e., SYMMAX, WH-SYMMAX,
SK506, and SK-LARGE. The different characteristics of these
data sets have been compared in Section III.

1) Performance on Sym-PASCAL: The PR-curve and
F-measure of SRN and state-of-the-art are shown in Fig. 14
and Table III. We ran the source code with default parameters

Authorized licensed use limited to: Oulu University. Downloaded on June 04,2020 at 07:21:54 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 14. Performance comparison on the Sym-PASCAL data set.

TABLE III

PERFORMANCE COMPARISON ON THE SYM-PASCAL DATA SET BETWEEN

SRN AND THE STATE-OF-THE-ART APPROACHES. †GPU TIME
WITH NVIDIA TESLA K40

to achieve the performance of the existing approaches. We also
compared the result of Rich-SRN (RSRN) [51], in which we
used all the 13 convolutional layers of VGG.

In Table III, one can find that the conventional approaches
have poor performance with long running time. MIL [13]
achieves the best F-measure among these conventional
approaches. The F-measure is 0.174, reflecting that the
released Sym-PASCAL is challenging. The fastest conven-
tional approach, i.e., Lindeberg [48], takes 5.79 s per image.
Other approaches take more time for running as they use
complex features comparing with [48].

The end-to-end deep learning methods perform signif-
icantly better than the conventional ones, both on the
computational efficiency and detection performance (see
Table III). The F-measures of traditional approaches are
less than 0.18, while they are larger than 0.34 for deep
learning-based methods. It is about 2x better. It takes 5.79 s
at least to extract object reflection symmetry for one image
with conventional approaches, while it takes 0.76 s at most

TABLE IV

PERFORMANCE COMPARISON OF THE STATE-OF-THE-ART APPROACHES
ON THE SYMMAX, WH-SYMMAX, SK506, AND

SK-LARGE DATA SETS

for deep learning-based methods. It is about 8x faster. Specif-
ically, HED gets F-measure with 0.369 and takes only ten
milliseconds to process an image. FSDS reaches F-measure
with 0.418 by concatenating and slicing of all side outputs.
The proposed SRN and RSRN achieve the highest F-measure
0.443 and 0.437, which, respectively, outperforms the baseline
HED approach by 7.4% and 6.8% and the state-of-the-art
FSDS approach by 2.5% and 1.9%.

We give some reflection symmetry detection samples
in Fig. 15. From the first to the last column, it illustrates
one-object images without clustered background, one-object
images with clustered background, multiobject images without
clustered background, multiobject images with clustered back-
ground, one-object images with occluded objects, and multiob-
ject images with occluded objects, respectively. The proposed
SRN is more consistent with the ground truth with/without
clustered background and achieves more accurate results for
multiobject and occlusion than other approaches.

To show the effectiveness of the end-to-end framework
for clustered backgrounds, we compare the proposed SRN
with two-stage approaches, which extracts symmetry on the
cropped object patch with object detection or masks from
instance semantic segmentation. The state-of-the-art segmen-
tation network FCN-8s [19] is used to localize objects in the
first stage, and the skeleton method [27] is used to extract sym-
metry in the second stage. It obtains an F-measure of 0.386,
as shown in Fig. 14. We also compare the FSDS [15] on
the detection results from the state-of-the-art object detection
methods: Faster-RCNN [49] and YOLO [50]. In these two
approaches, the FSDS trained on SK506 is performed on
object regions produced by Faster-RCNN or YOLO. As shown
in Fig. 14, the F-measures are 0.343 and 0.354, respectively.
Comparing with the end-to-end SRN, two-stage approaches
introduce error accumulation from the semantic segmentation
and the object detection steps. Besides, semantic segmentation
cannot obtain homogeneous masks when an occlusion exists.

2) Performance on Other Data Sets: The F-measures on
the other four symmetry data sets are shown in Table IV.
Similar to Sym-PASCAL, the deep learning-based methods
achieve significantly better performance on all the data sets
than the conventional methods, especially for the simple image
data sets, WH-SYMMAX, SK506, and SK-LARGE. The
proposed SRN improves the baseline HED with F-measure
from 0.427 to 0.446, 0.732 to 0.780, 0.542 to 0.632, and
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Fig. 15. Object reflection symmetry detection results on the Sym-PASCAL data set. From first to last column, it illustrates one-object images without clustered
background, one-object images with clustered background, multiobject images without clustered background, multiobject images with clustered background,
one-object images with occluded objects, and multiobject images with occluded objects, respectively.

0.586 to 0.678 on SYMMAX, WH-SYMMAX, SK506, and
SK-LARGE, respectively. RSRN further achieves 1.2% and
0.7% performance gain on WH-SYMMAX and SK-LARGE.

In Table IV, RSRN outperforms SRN on all data sets except
the SK506. RSRN outperforms SRN on all data sets except
the SK506. As all the side outputs of the convolutional layer in
VGG-16 are used to construct stack RUs in RSRN, it has richer
representation (more parameters) than SRN. Nevertheless,
with more parameters to learn, RSRN is easier to overfit a
small data set, e.g., SK506.

On WH-SYMMAX and SK506, we achieve the best perfor-
mance. On SYMMAX, we achieve comparable performance
with FSDS. On SK-LARGE, SRN is about 4% lower than
Seg-Skel. We note that SegSkel uses semantic segmentation
cues and is computationally complex.

C. Edge Detection

The BSDS500 [41] data set is used to evaluate the perfor-
mance of edge detection, which is composed of 200 training,
100 validation, and 200 test images. Each image is manually
annotated by five persons. For training images, we preserve
their positive labels annotated by at least three human anno-
tators, following [41]. Edge detection is evaluated with three
standard measures [41]: fixed contour threshold (ODS) that is
the same as F-measure, per-image best threshold (OIS), and
average precision (AP).

1) Performance: After the sigmoid process, the output from
the last stacked RU produces an edge mask. In Table V
and Fig. 16, the CNN-based methods significantly outperform
conventional methods. Specifically, DeepContour [28] has
very good performance but is computational expensive. The
HED [18] achieves better performance with ODS = 0.780,
which is computed fast at 2.5 frames/s. With negligible

TABLE V

EDGE DETECTION PERFORMANCE EVALUATION ON BSDS500

computational cost overhead, the proposed SRN achieves
ODS = 0.782 at 2.3 frames/s, which outperforms the baseline
HED method.

D. Learning Convergence

The learning convergence of HED and SRN on Sym-
PASCAL is shown in Fig. 17. It illustrates that HED has
a learning convergence problem even though it achieves
good performance on symmetry and edge detection tasks.
The proposed SRN tends to converge, benefiting from the
output residual fitting. HED needs 12 000 learning iterations to
achieve the best performance. Benefited from the RUs, SRN
needs only 3000 iterations to achieve the same performance.

E. Multitask SRN

In MT-SRN, VGG is also used as the trunk network,
and the settings of the buffer layers are the same as those
of the connected convolutional layers in the trunk network.
The five training steps are run with 8000, 6000, 4000, 2000,
and 1000 learning iterations, respectively. In each training
step, the edge and symmetry branches are trained alternatively.
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Fig. 16. Edge detection results on BSDS500.

Fig. 17. Loss and F-measure comparison on Sym-PASCAL.

The learning rate is 1e-6 for the first two steps and 1e-8 for
the last three steps.

As discussed in Section V, the stability of the trunk network
parameters in MT-SRN is important as it is related to learning
convergence. Such stability is measured with the norm dif-
ference of the convolutional parameters during the learning
iterations. Fig. 18(a) shows that the stability decreases when
the training branch switches from one to another. For example,
in the first learning stage, when the learning switching from the
edge branch to the symmetry branch at the 8000th iteration,
the norm difference is large. It is also observed that after
the five steps of learning, the difference decreases to a very
small value. The decreasing norm difference signifies the
increasing of the network stability, which not only validates
the effectiveness of buffer layers but also the plausibility of
MT-SRN. The norm difference of MT-SRN without the buffer
layer is also shown in Fig. 18(a), which oscillates larger than
the MT-SRN with the buffer layer. It results in that the loss
of MT-SRN without buffer layer is not convergence as good
as the MT-SRN with buffer layer [see Fig. 18(b)].

We use the abovementioned data sets for symmetry and
edge detection to evaluate the performance of MT-SRN

Fig. 18. Comparison of (a) norm difference and (b) loss curve of MT-SRN
with and without buffer layers.

(see Table VI). Surprisingly, the performances for both tasks
increase. When BSDS and SYMMAX are used for joint
edge and symmetry detection, the ODS of edge detection is
improved from 0.782 to 0.785, and the F-measure of symmetry
detection improves from 0.446 to 0.464, which updates the
state of the art (see Table VI). The other four groups of data
sets, i.e., (BSDS500, WH-SYMMAX), (BSDS500, SK506),
(BSDS500, SK-LARGE), and (BSDS500, Sym-PASCA), have
the similar improvement. There are two reasons for per-
formance improvement. One is that more training iterations
(42 000) are used for the trunk network so that MT-SRN is
trained better than individual SRN (20 000 iterations). This
advantage is observed by comparing it with a specific task with
a singular data set in Fig. 17, and the F-measure of SRN does
not increase with more iterations. The other is that two differ-
ent data sets mean more training images so that the diversity of
the training set increases. The fact that more training data can
improve the performance that is illustrated in object detection
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TABLE VI

RESULTS OF MT-SRN FOR EDGE AND SYMMETRY DETECTION
TASKS SIMULTANEOUSLY

when multiple data sets for a single task are combined [49].
We further validate that the proposed MT-SRN is feasible to
train a shared deep network on data sets from different image-
to-mask tasks, which is very useful for tasks where there is no
significant training data available. In Table VI, it can be seen
that the MT-SRN with buffer layers reports higher performance
than MT-SRN without buffer layers for both object reflection
symmetry detection and edge detection, as the buffer layer is
used as a feature transformation function, and each pixel has
task-specific feature representation.

The general applicability presented by MT-SRN is using
a shared trunk network and separated branches to perform
multitask learning. This helps build deep learning models
that can save both storage space and computational cost.
Specifically, two separated SRN models need 115 060 KB
space, whereas the MT-SRN model needs 78 966 KB. MT-
SRN saves 36 094 KB.

VII. CONCLUSION

Object reflection symmetry detection has great applicability
in computer vision yet remains unsolved, as indicated by the
low performance (often lower than 0.5) of the state-of-the-art
methods. In this article, we introduce a new data set for reflec-
tion symmetry and propose an end-to-end SRN, establishing
a strong baseline for object reflection symmetry detection for
natural images. The new data set, with challenges related to
real-world images, is validated to be a good touchstone of
various state-of-the-art approaches. The proposed SRN, with
well-defined and stacked RUs, is validated to be more effective
to perform symmetry detection in complex background.

With the adaptability to object scales, the robustness to
complex backgrounds, and the end-to-end learning architec-
ture, SRN provides insights into network architecture design.
We have extended the SRN to process a similar image-to-
mask computer vision task, i.e., edge detection. With multiple
network branches designed and alternating training strategy,
SRN is upgraded to MT-SRN for joint symmetry and edge
detection, showing great potential to process the image-to-
mask tasks that are lack of training data. In the future, more
effective SRN architectures could be explored by optimizing

side-output connects and RUs with emerging network archi-
tecture search (NAS) method [55].
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