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Syndronization Control for Discrete-Time Delayed
Dynamical Networks with Switching Topology
under Actuator Saturations

Yonggang Chen, Zidong Wang, Jun Hu and Qing-Long Han

Abstract—This paper is concerned with the synchronization for complex dynamical networks [11], [28], [30], [36], [39],
control problem for a class of discrete-time dynamical networks [40], [50], [58]. On the other hand, time-delays are frequently
with mixed delays and switching topology. The saturation phe- gncountered in complex dynamical networks because of the

nomenon of physical actuators is specifically considered in design- lel si |t . | b f nod
ing feedback controllers. By exploring the mixed-delay-dependent paraflel signal transmission among a large number of nodes

sector conditions in combination with the piecewise Lyapunov- as Well as the complicated couplings of dynamical networks.
like functional and the average-dwell-time switching, a sufficient As time-delays could lead to poor network performance or
condition is first established under which all trajectories of the even undesirable instability, considerable research interest has
error dynamics are bounded for admissible initial conditions been devoted to the synchronization problem of complex

and non-zero external disturbances, while thd,-l., performance d ical ¢ K ith . i f 1 del 13
constraint is satisfied. Furthermore, the exponential stability of dynamical networks with various types of time-delays [13],

the error dynamics is ensured for admissible initial conditions in  [23], [27], [29], [44]. In particular, when a dynamical network
the absence of disturbances. Secondly, by using some congruenceannot achieve the synchronization by itself or the network is
transformations, the explicit condition guaranteeing the existence expected to possess better performance, a variety of control
of desired co_ntroller gains is obta!ned in terms of the feasibility techniques have been proposed during the past decade, see
of a set of linear matrix inequalities. Then, three convex op-
timization problems are formulated regarding the disturbance €.9. [2]'_ [14], [21], [26], [35], [49], [56]. qu example,_ an
tolerance, the l>-lo. performance and the initial condition set, €vent-triggered approach has been adopted in [14] for discrete-
respectively. Finally, two simulation examples are given to show time dynamical networks with coupling delay, the pinning
the effectiveness and merits of the proposed results. impulsive scheme has been proposed in [26] for a class of
Index Terms—Synchronization control, discrete-time networks, Nnonlinear dynamical networks with time-varying delay, and
dynamical networks, mixed delays, switching topology, actuator the adaptive control scheme has been employed in [56] for a
saturations. general nonlinear dynamical network with delayed nodes.
Despite the extensive investigation on dynamical networks,
|. INTRODUCTION the vast majority of existing results are concerned with dynam-

Over the past several decades, the complex dynamilﬁ‘fp networks with stationary/static to_pologies_. In reality, how-
networks have received significant research attention dueS6" the network topology may be time-varying due probably

their wide applications in social networks, transportation nel the_ link failures, the mobility of.networks and.the creatlo_n of
works, electric power grids and neural networks, etc [1], [9 lew links [34], [59]. To characterize the dynamical (sometimes

[16], [31], [38], [41], [43]. Moreover, it has been generall ven abrupt) changes of the topology structure, two types

recognized that the synchronization problem among all d f network topologies have been introduced in the literature,

namical nodes is one of the most interesting research iss 0§ is the switching topology a_nd the other is the Markov
jump topology. Here, the switching topology means that the
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saurce of instability and performance degradation. In the pdgte functionals to facilitate the utilization of delay-dependent
two decades, the analysis and synthesis problems have bsertor conditions [7], the analysis procedure in this paper is
under extensive investigation for control systems subject based on a fairly simple yet effective Lyapunov-like functional
actuator saturations [12], [19], [20], [37], [42], [47], [51], [52].that proves to be more appropriate for large-scale networks. 3)
It has been shown that tlgdobal results are almost impossibleDifferent from the weightet}-i, performance index employed
to be achieved if the open-loops of control systems aie[8], [10] for switched systems under the ADT switching, the
exponentially unstable [20], [47]. As such, the local/regiona}-i., performance proposed in this paper is in a non-weighted
design has gained an ever-increasing interest [19], [37], [S¥famework and is shown to be more effective for dynamical
[52]. In general, two types of models have been developednetworks with switching topology.
deal with the saturation nonlinearity, namely, the polytopic Notation. The superscriptT” refers to the matrix trans-
models and the models with generalized sector conditiopsition. R” and R™*"™ denote then-dimensional Euclidean
For systems with both time-delays and saturating actuatogpace and the set of all x n real matrices, respectiveljz||
the corresponding results have been established in [4], [6lands for the Euclidean norm of a veciofThe matrixP > 0
[33], [57]. In particular, it is noted that the delay-dependenitP > 0) denotes thaP is real, symmetric and positive definite
polytopic models have been proposed in [4], [6] in order tpositive semi-definite)A,,(P) and\,, (P) are the maximum
obtain some improved stabilization conditions. and minimum eigenvalue of the matrik, respectively.u

In the past years, the synchronization control problem héenotes the-th element of a vector and K, stands for
been widely investigated for dynamical networks with actuatéte /-th row of the matrix K. I is an identity matrix with
saturations [3], [7], [46], [48]. For example, the sampled-dajsroper dimension and denotes the Kronecker product. The
control scheme has been used in [46] for nonlinear dynamiegimmetric terms in a symmetric matrix are denoted bglso,
networks with actuator saturations. By utilizing the informafor vector functionse(k) andw (k) (k > 0), we denote
tion from both time-delays and the nodes involving saturation
nonlinearities, the exponential synchronization problem has
been studied in [7] for delayed dynamical networks. Neverthqg(lg)HoO £ sup eT(k)e(k), ||lw(k)
less, it is worth pointing out that the network topologies in ex- k>0
isting literature have been assumed to be stationary/static and
the external disturbances have been largely overlooked. More-
over, the existing results have been mainly concerned with Il. PROBLEM DESCRIPTION
the continuous-time dynamical networks without time-delays
(or with a single discrete delay). Clearly, the synchronization €onsider the following class of discrete-time dynamical
control problem has not been examined vyet ftiscrete- networks consisting ofV identical coupled nodes subject to
time delayed dynamical networks witswitching topology mixed delays, switching topology and actuator saturations:
and actuator saturationsnot to mention the case that the
distributed delay and external disturbances are also involved| %i(k +1) = sz( )+ Af(xi(k)) + Dlg(xz(k — 7))
This situation has motivated our current investigation.

In this paper, we aim to address the synchronization contro, + D> Z vih(zi(k = 1)) + Zl fLa;(k
problem for a class of discrete-time dynamical networks with
mixed delays, switching topology and actuator saturations. B + Bbat(“l(k)) + Ewi(k),
using the combination of novel sector conditions, a piecewise\ i(¢) = ¢:(0), 0 € (—o0,0], i =1,2,..., N
Lyapunov-like functional and the ADT switching, a sufficient (1)
condition is first obtained under which the error dynamics
can achieve some desirable performance indices includiffgerez;(k) € R™, u;(k) € R™, w;(k) € R and¢;(¢) € R"
the boundedness, the-l.. performance and the exponentiali € {1,2,...,N} = N) denote the state vector, the control
stability. Then, an explicit condition is obtained for designin§Put, the disturbance input and the initial condition of tkté
desirable controllers by means of the feasibility of some lineApde, respectively, B, C, Dy, D, andE are known constant
matrix inequalities (LMIs). Subsequently, several optimizatiomatrices with appropriate dimensions. is the time-varying
problems have been proposed to obtain the optimal perféiscrete delay satisfying < 7, <7, wherer and7 are known
mance indices. Finally, two simulation examples demonstrdi@n-negative integers is a pleceW|se constant function tak-
the values of our obtained resulfae main contributions of ing values in a finite sef1, 2, --- , M} £ M, which is used to
this paper are summarized as follows. 1) The synchronizatifi characterize the switching behavior of the network topol-
control problem is addressed, for the first time, for dynamic@9y. I' denote the inner-coupling matrix, ard, = (%) nxn
networks with both switching topology and time delays undéwr € M) is a matrix representing the outer- coupling config-
actuator saturations within a discrete-time framework. 2) Fodration with I > 0 (i # j) and ZJ 1137 = 0. sat(u;) =
discrete-time dynamics with mixed delays, this paper propodest(u;(1)) bat( Ui2)) - sat(ui)]” is a standard vector-
the mixed-delay- dependent sector conditions. Specially, ¥ajued saturation function with the saturation IevEL{sJ)
distributed-delay termd_;"> vh(e(k — 1)) is introduced for 0, where sat(u;(;y) = sgn(u;;))min{|u; i”' Uiy (U
the first time in our sector conditions. Moreover, different,2,...,m). The term involving the sum -, ulh(xz(k l))
from the existing approaches using the augmented Lyapunavreferred to as the infinite distributed delay term.
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Throughout this paper, it is assumed that there exists a scal&en, we have the following error dynamics:
0 < p < 1 such that the following condition holds: _ _
e(k+1)=(C+ Fi + Lo, )e(k) + Gre(k — 1)

S < S < 4 2 + A (1)) + Digle(k — 7)) + Dy
=1 =1

+oo
x> " wih(e(k — 1)) + Bsat(u(k)) + Ew(k), ®)
For vector-valued functiong(z) € R", g(x) € R™ and =1
h(r) € R™, we assume that they are continuous witt) = e(0) = ¢(0), 6 € (—o0,0].
¢(0) = h(0) = 0 and satisfy the following conditions [23]: Using the conditions in (3), we can see that
) — - z—y))T = 3 = =
TR L FEIF0) = (B = Fi)e] <0
) o) eI g7 (e(R)lge(k) — (Go — GreW] <0, (©)

X 0(@) — oy) — Cale— )] <0 ®3) [(e(k)) = Hre(R)]" [R(e(k)) — Hee(k)] <0
[h(z) — h(yj — Hy(z —y)]” B In addition, we assume that the disturbaneg:) of (5) is
x[h(z) — ]:L(y) — Ha(z—y)] <0 energy-bounded and satisfy the following condition:

+oo
wherez,y € R, and Fy, Iy, Gy, Go, Hy, Hy € R" " are Z@T(k)a’(k) <5 (7)
known real constant matrices. =0 B
Remark 1:The conditions (3) are well-known sector-like

descriptions of the nonlinearities. The nonlinearities in mar¥\’here(S is known positive scalar.
P ’ Y Remark 2:It is noted that the component; (k) (i € N)

systems, such as Lorenz system, Chua’s circuit, Chen syste L(k) in (5) is actually the disturbance error between the

and recurrenF neural networ_ks, sa_1t|sfy the se(_:tor pqnd|t|ons( Kturbanceu; (k) in the network (1) and the disturbancék)
Compared with the usual Lipschitz assumption, it is seen tha ) i noé
) . in_the isolate node (4). Therefore, the condition (7) can be
the sector-like assumption is more general. Of course, the con- Foo <N ™
L . - . L ritten as) , "0 > i [wi(k) —w(k)]" [wi(k) —w(k)] < 6. If
ditions (3) are stricter than the semi-Lipschitz conditions [2 : = : .
: : the disturbances(k) in the isolate node (4) is absent, then the
[50]. However, by using (3), one can obtain less conservative™ . Foo <N T
: ; ' : A condition (7) becomed ", ") >0 wi(k)" wi(k) < 0.
results since more information on nonlinearities is utilized. In order o achieve the s rl1chron' ation of the dvnamical
In this paper, the isolate node has the following form: 1ev Y zall Y !

network (1), we employ the following switching controller:
s(k+1) = Cs(k) + Af(s(k)) + Dig(s(k — 7))

+oo uz(k):Kf’“el(k), i:1,2,...,N (8)
+ D2 Z vih(s(k = 1)) + Ew(k), (4)  whereoy is the switching signal denoted in the model (1) and
=1 K e R™*™ (o € M) is the controller gain matrix.
s(0) = ¢(6), 0 € (—00,0] Defining the functiom(z) £ z — sat(z) and using the

wheres(k) € R™, w(k) € RS andg(h) € R™ are, respectively, controller (8), we obtain the following closed-loop dynamics:
the state vector, the disturbance input and the initial condition. e(k+1) = (C+ P + Lo, + BK,, )e(k)

Let us introduce the following new notations: i _ i
° + Gre(k — ) + Af(e(k)) + Dig(e(k — 7))

ei(k) Zi(k) — s(k), @i(k) £ wi(k) — w(k), = _ )
5:(0) 261(0) — 9(0), Lo, 2 Loy @, + D2 ) uh(e(k =) = By(u(k) + Bu(k),
flei(k)) £f(xi(k)) — f(s(k)) — Frei(k), e(f) = ¢(6), 6 € (—o0,0]
glei(k)) 2g(zi (k) — g(s(k)) — Grex(k), where
Bik éhzk _h k,C_'éI ®Ca A q- o o g
(e ( ZAI]E[:E(XEAA)) B A(SI(N)(;B E NIN ®E KO’k :dlag{K1k7K2k7'-'7KNk}7
= » 2= » = ) AT T T T
Dol Ao oL k) 207w (K) o7 (ua(k)) -+ o7 (un (R))]
5 A 7 A Next, we introduce the following definition and lemma.
! AIJ\;@) GJ’T ! IN?HJ’TJ L2 Definition 1: [18] For anyk > [ > ko, let N, (I, k) be the
B e(k) :[671 (k) ez (k) - en(k))] a switching number ofr over [I,k]. If N, (I,k) < No + (k —
fle(k)) 2[fT (e1 (k) fT(ea(k)) -+ fh(en(B))]T, 1)/T, holds for any giverl, > 0 andNy > 0, thenT, and
. AT =T =T T Ny are called ADT and chatter bound, respectively.
?(e(k)) A[gT(el(k» QT(SZ(M) g,T(eN(k)))] T’ OLemma 1: [23], [32] Let Z € R™*™ be a positive definite
h(e(k)) =[h™(e1(K)) h™(e2(k)) --- h™(en (R, matrix, z; € R”, anda; > 0, b; > 0 (i = 1,2,---). If the
sat(u) Z[sat” (u1) sat”(ug) -+ sat” (un)]”, sequences concerned are convergent, then we have
w(k) £lwf (k) @3 (k) - oy (k)] to0 T, foo
3(6) 2167(6) 3(6) -+ F (O (Z) z (Zw)
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S(ioaibil) (ioaibifo:vi) Denoting that
i=1 i=1 T,, & diag{Ty*, 15", ..., T3},

The main objective of this paper is to design the switching Uy, 2 [(UT)T (UgH)T - (Ug/e)T]T,
controller (8) such that, under the ADT switching signals, the V, 2 (Ve (VT e (VIT]T
closed-loop error dynamics (9) has the following properties: g — 0T 2 N ’

1) all trajectories are bounded for admissible initial condi- Wo, & [(W7)T (Wg)T - (WRHTTT,
tions ¢(6) (9 € (—o0,0]) and non-zero disturbancegk);

2 the -1, performance requirement the inequalities in (13) can be represented as

le(R)1% < yl@(k)|2 +~V(0) T (u(k)) Ty, [w(u(k)) — Us,e(k) = Vo, e(k — 1)
“+oo
is ensured, where > 0 is a scalar and’ (k) is a functional; - Ws, Zyﬂl(e(k - Z))] <0, k>0. (14)
3) whenw(k) = 0, the exponential stability can be guaran- 1=1

teed for admissible initial conditions(¢) (¢ € (—o0,0)). Remark 4:Under the constraint conditions (12), the novel

Remark 3:Recently, the synchronization control problemy;, o qdejay-dependent sector conditions (13) are proposed in
has been addressed for dynamical networks subject to aCtugfQr haner to alleviate the effect of actuator saturations in

saturations [3], [7], [46], [48]. Different from most existing, |ess conservative framework. Different from the existing
results, this paper attempts to discuss the synchronization Cf&hniques [4], [6], [7], the infinite-distributed-delay terms

trol problem for dynamical networks with time delays undeg e gpecifically introduced, for the first time, in our proposed
actuator saturations in discrete-timeframework. Moreover, gacior conditions to deal with the infinite distributed delay
the switching topology, the distributed delay and the extemgke tively. Moreover, different from the delay-dependent ap-
disturbances are |n.corp0rated.|n.the con3|dereq network. B%ach proposed in [6], we introduce only the discrete-delay
the other hand, it is worth pointing out that, different frome; s in the sector conditions (13) to tackle the discrete
the ngghtedg-loo pgrformance index introduced in [8], [10]d,elay in a relatively simple framework, which should be more
for switched dynamical systems, the performance proposedyif, o priate for large-scale networks. Using the mixed-delay-
this paper is in a more appropriaten-weightedramework.  genendent sector conditions (13), some slack variables can be

In the sequel, let us introduce the delay-dependent secl@fectively introduced in the main results of this paper, and
conditions for the purpose of dealing with the dead-zongis aliows us to obtain less conservative results.
nonlinearity )(u) induced by actuator saturations. First, we

define the functionals
IIl. MAIN RESULTS

. _[J%k Ok _
vi(k) =Ui*e(k) + Vi e(k — ) In this section, we will first establish the corresponding

“+o0 . - .
or . B . analysis condition by employing the ADT approach and the
+W; ;Vlh(e(k D), i=12....N (10) following piecewise Lyapunov-like functional:
whereo;, is the switching signal as in (1) and (8), antf, 7 =
Ve and W (a € M) arem x nN real constant matrices. Vo (F) =€ (k) Po, e(k) + _Zﬁ
Letting ¢; € RY (i € N) be a row vector whosé-th =

element is 1 and others are zero, it can be seen that n Ji’f

Vj

k—1
S AT () Qo)
I=k+j

S R 1) 2o Be(D). - (15)
u;(k) =€ @ K %e(k), i=1,2,...,N. (11) J=1  I=k—j

Assume that the following constraint conditions are true:Where0 < p <1, P, >0, Qo >0 andZ, > 0 (o € M).
For convenience of subsequent presentation, we denote
|ul(J) (k}) — Vi(5) (k)| e ‘(EZ X K;‘(’;) — U;?;))e(k)

“+oo — A ~ I ~ A =
- o - B U= v, V= vp ', T=T—1+1,
— Viike(k — i) = Wik Zulh(e(l@—l))‘ < g, = ;
=1
S _ T T+1 too o
i=1.2,... N, i=1,2,....m, k>0 (12) g 270 f(’i_f;jf’ ,,QQéle_f;yl,
Then, by using the generalized sector condition in [37], it is N ART e s e = S
concluded that the following sector conditions hold: H =Hy Hp + Hy Hy, H=Hy Hy + Hy H.
wT(ui(k))T_Uk W(uz'(k)) _ Uf’(k)e(k) Theorem 1:Let the scalar® < p <1, > 1,6 > 0 and the
! e integerNy > 0 be given. Assume that there exislV x nN
o o 7 tricesP, > 0, Qo > 0, Z, > 0, mN x nN matrices
S VPrell = ) - WS iblel - )| <0, TmavigesP, > 0, Qe > 0, Zo > 0
2 Ko £ diag(KP, K5, K§), Un 2 (UF)7 (U8)]
i=1,2,...,N, k>0 @) o WUR)TT Vo = (V)" (V)7 - (V)] Wa =

(W)T (W)T - (W)T)T, mN xmN diagonal matrices
whereT® > 0 (a € M) is anym x m diagonal matrix. T, = diag{T¢, Ts,..., Ty} > 0, and the scalars$ > 0,
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€9 >0,e5>0(=1,2,...,M),7>0,0< @< 1/(u5)
such that the following matrix inequalities hold:

Q. 17

1, _pt <0, VaeM, (16)
PQSMPB, QaSNQBa ZaSMZBa
VapeM, a#p, (17)
2 . a T _ Vo o «@
U@ @Ky —Ugy  =Vigy Wi
* - 0 0 <0
* * p?lea 0 )
* * * Lz,
L pr
i1=1,2,....N, 7=1,2,....m, YVa e M, (18)
(NI T
1 P, >0, VaeM (29)
where
0, =[C+F +L,+BK, Gi. A Di 0 Dy —B E],
4 0 Q0 Q% 0 QF 0]
x Q5 0o Q% 0 0 57 0
* x5 0 0 0 0 0
0 - * * * QY 0 0 0 0
a * * * * 2 0 0 0
* * * * * —%Za 67 0
* * * * * * 27T, O
| * * * * * * * —I_
with

QY = — pPo 4+ 7Qq — e H, Q3 = e$(Fy — )7,
QO[5 :Eg(ﬁl + E’Q)Tv (117 = UTTOH QSQ = _p?Qou
0%, =e5(Go — G1)T, Q% =VIT,, Of = 271,
Oy = — 2651, Q% = —2e51 +0Z,, Q= WIT,.

Then, under the ADT switching witi', > T* £ —Inu/Inp,

the closed-loop error dynamics (9) has the following features:
1) all states remain bounded for all initial conditiop@) sat-

¢ and all non-zero disturbances
w(k) satisfying (7); 2) thels-l, performance requirement
le(®)[% < v*|@(k)l3 + 7*Vo, (0) is ensured where* =
uNoy; 3) whenw(k) = 0, all states converge exponentially to

isfying V(0 < 1/(405z) —

the origin for all¢(6) satisfyingV,, (0) < 1/(uNow).
Proof: ForV o € M, by calculations, one obtains

AV, (k) 2V, (k + 1) — pVa (k)
el (k+1)Poe(k + 1) — pe’ (k) Pye(k)
+7e’ (k)Qae(k) — pTe” (k — 1) Qa
X e(k: —71) + vh" (e(k)) Zoh(e(k))
- zulp BT (e(k = 1)) Zah(e(k —1)).  (20)
Using Lemma 1, it can be seen that
- Zmp BT (e(k — 1)) Zah(e(k — 1))
T 00
<— %[th )} Za[zmh(e(k—l))} (21)
=1

5

For any scalars$ > 0, i = 1,2, 3, it follows from (6) that

— 268 f(e(R))[f(e(k)) = (F> — Fy)e(k)] > 0, (22)
— 2557 (e(k — 73))

x [gle(k — k) — (G2 — Gr)e(k — ;)] > 0, (23)
— 2e5[h(e(k)) — Hie(k)]" [h(e(k)) — Hae(k)] > 0. (24)

Under the constraints (12), it is seen from (14) that
— 29" (u(k))T, [¢(u(k)) — Uae(k)
— Vae( — W, Z ph(e

Adding the left-hand S|des of the inequalities (22)-(25) to
AV, (k) and using the inequality (21), one eventually obtains

AVa (k) <67 (k) (Qa + L Palla)E(K) + 7 (k)a(k), (26)
where(,,, 11, have the same definitions as in (16) and

§(k) =[e" (k) eT( =) fr(e(k) g"(e(k —m))

Z vihT (e(k —
=1

Applying Schur complement to (16), it is clear thag, +
nZp,I, <0,V a € M. Then, it follows from (26) that

} >0.  (25)

_Tk

T

) v (u(k)) @' (k)

Vo (k+1) <pViu (k) + 0T (B)o(k), ¥V a € M. (27)
Also, it is seen from (17) that
Va(k) < pVs(k), ¥V o, B € M. (28)

Let0 =ko < k1 < --- < kg < --- be any switching time
sequence ank be any positive integer belongingfte, ks41)-
If & — ks > 1, using the inequalities (27) and (28) recursively,
we can deduce the following inequality:

)+ Z pr@” (Da(l

Vo (k) < 1°p"Vi (0

ks—1 k1—1
+u Z prw” (Da(l o’ Zpklw Ja(l
1= ]C s—1 = k70
k—1
2 e OBV, (0) + 37 p D pua T (al) - (29)
I=ko

S ph-i-t Slmllarly, if £ = k, one can obtain

Z pr@”’ Dw(l

I=ks_1

wherepy; =

Vo (k) < p°p"Vi, (0)

5 1— 1 k:l 1
+p Z pr@’ (Do) + -+ ™ 1Zpkzw (!
= k?s 2 = kO
k—1
2 NeOR) Ry, (0) + 30 D puaT (D). (30)

I=ko
Noting the relationship#i, (0, k) < No + k/T,, Ny (I, k —
1) <Ng+(k—1-1)/T, andT, > T* £ —Inu/Inp, we have

'LLNU(O,k)pk < ﬂNo(ﬂl/TQp)k A ,LLNoﬁk < ‘LLNO, (31)
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(32)
Then, forV k € [kq, kqy1), it follows from (29) and (30) that

+uN°Zw

On the other hand, for a € M, it is seen from (15) that

uNg(l,k—l)pkl—l—l S MNQ(MI/TQp)k}—l—l S MNO-

V,, (k) < plookv, w(k).  (33)

E

Bl

Vo (k) >eT (k) Pae(k) + PP e T (DQue(l)

l=k—T

+oo
+ wp R ek )

p?fleT(k — 7k)Qae(k — 1)

— 1)) Zah(e(k —

>eT(lg)Pae(k) +

6

the constraints in (12) can also be guaranteed forgédl)
satisfyingV,, (0) < 1/(u"°w). Moreover, whem(k) = 0, the
inequality (33) becomek,, (k) < " 9*V, o) (0). Noting that
9 = p'/Tep < 1 under the conditiorT, > T* £ —Inu/Inp,
it can be concluded that the closed-loop error dynamics (9) is
locally exponentially stable and this completes the prod.
Remark 5:1t is seen from the proof of Theorem 1 that,
different from continuous-time case [4], [7], the discrete-
time characteristics are extensively explored in this paper and
the important relationship (34) is subtly established. In this
case, the mixed-delay-dependent sector conditions (13) can
be effectively utilized even if we choose the rather simple
Lyapunov-like functional (15). As a result, the slack variables
Vo andW,, (e =1,2,..., M) are additionally introduced in
the conditions of Theorem 1 without bringing extra constraints.

[e ] T 00
+ LA [Jrzylh(e(k _ l))} Z., [Jrzylh(e(k _ l))]. Ba_sed on the Theorgm 1, in the s_ub_sequent part, we will
pv L = consider the control design problem within an LMI framework.
(34) Theorem 2:Let the scalars0 < p < 1, p > 1,
: . 0 > 0, pa, Yo and the integelN, > 0 be given. Assume
Applying Schur complement to (18), one obtains that there existaN' x nN matrices B, > 0, O > 0,
Fo 0 0 1 Zs > 0, X & diag{Xy, Xo,..., Xy}, mN x nN matrices
# Qe 0> o (000, Yo £ ding{Vy,Vi,. . Vi) U £ ((09)" (057
A )" Vo & 10V V)T e (V)T W
i=1,2,...,N, j=1,2,...,m, VaeM, (35) [(W1 )Tt (W) A xmV diagonal matrices
2 diag{Ty ,T2 ..., T¢} > 0, and the scalars$ > 0,
where®f ) = [; ® KY Uiy —Vity — Wiyl Then, 52 > 0,89 >0 (a = 1,2, M)y >0,0<w< 1/(uNos)
from (34) and (35), it follows that such that the following LMIs hold:
Vo) 2 =" (R) @35 (k) o TE o WE
i(al') x O, 10_ <0, VaeM, (40)
=iy (k) = vigy) (B) [, S _
i(j) PaSILLPﬂ7 QQSMQ,& ZQSILLZﬂ7
i1=1,2,....N, j=1,2,....m (36) Va,BEM, a8, (41)
wheren(k) = [eT(k) eT(k—7,) .0 wih(e(k —1))]" uipw € @Y — Uk, Vﬁn Wity
For all initial conditions ¢(6) sausfying Voo (0) < * Pa 0 <0
1/(uNow) — § and all non-zerao(k) satisfying (7), it is seen * * i lQa 0 ’
from (7), (33) and (36) that the constraints in (12) can be | * * * p%Za
ensured. Furthermore, one can obtain from (15) and (33) that; =1,2,.... N, j=1,2,...,m, VaeM (42)
. [ T
gég}l)‘m(Pa)”e(k)H% < de (k) < l/wa k=0 (37) ?;({ )f{’a >0, VaeM (43)
which implies that all error states of (9) are bounded. ]
Next, we will show that thés-I, performance requirementWhere
of the closed-loop dynamics (9) can be guaranteed. Using [%¢ 0 X% 0 X% 0 U 0 X%
Schur complement, the inequalities in (19) hold if and only if x X% 0 Xg 0 0o VvI o 3%
1 « %+ X% 0 0 0 0 0 X%
Py>—-1, aeM. (38) x o+ % XYy 0 0 0 0 X%
7 . . Yo=1| * * * * Mg 0 0 0 0
From (15), (33) and (38), it is obvious that “ “ * “ £ e W0 xg
T (k)e(k) <7 |@(k)|3 + 77 Vao (0), k>0, (39) (L S D (AU
* * * * * * x —I ET
Taking the supremum on both sides of (39), it is seen that the % % * % % * % R /oA
~ performance constraint is ensured for@(b) satisfying )
V ( ) < 1/(uNow) — 6 and all non-zeras(k) satisfying (7). and
FinaIIy, it remains to prove that, whea(k) = 0, all xT 00000 0 0 R
states of the error dynamics (9) converge exponentially to T , H <0,
the origin for all $(¢) satisfyingV,,(0) < 1/(uNow). When a=4q X7 0000000 R
w(k) = 0, similar to the above argument, it is clear that XT 000 0O0OO0O O, H>0,
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—Qa/7 0 <0 (1 << N) nodes of the network. In this case, the matrices
Oy = 0 EgH| ’ Yo, Ua, Vo and W, in Theorem 2 should be modified as
—Qa/7, H >0, Y £ diag{Yy,...,¥,0,...,0},
U,=[0 0 0 0 7 0 0 0 0 Oo 2 (2T - (T 0 - 0],
with Vo 2 (VT ... (V[a)T 0-- 07,
o _ J=pPar H <0, Wa £ (W) - (W) 0 - 0.
U —pPy — pa(X + XT) 4+ 229 HY, H >0, Finally, let us tackle the optimization problems involved
Do =X (Fy — )T, $% = X (H, + H)T in Theorem 2. For saturated control systems with external
:!3 e disturbances, a basic problem is to measure the largest dis-
X :{((Cj' Flj’ Lo)™ + Ya}g K Yoo = =P Qas turbance tolerance capability such that all state trajectories
25y =Qa(G2 — G1)", 55y = QuGl, g3 = —2871, are bounded for admissible initial conditions and disturbances.
xg, =er AT, ¢, = —2891, ©4, = g DT, ng, = —2z51,  Here, the initial condition of the error dynamics (9) is selected

as¢(f) =0 (6 < 0). In this case, the scalar in (42) should

a _ 7 ~ o _ 7 T a __ o
Koo == Za/V; Mo = ZaD3, X7z = —21, be replaced byt /(p'o§). Then, the maximization problem of

S99 =—TaB", By = —¢u(X + X") + 2 P.. the disturbance tolerance capability can be described as
Then, under the ADT switching witlf, > T* £ —Inu/Inp, Prob.1. max 4, st.,
there exists a switching controller of the form (8) with Pa;QarZa, X Yo, UasVa, Wa, Ta 81,85 ,65,0

K& =YX, such that: 1) all error states are bounded for LMIs (40) — (42) hold.

all initial conditions ¢(6) satisfyingV;,,(0) < 1/(1™@) =0 gnce the maximum disturbance tolerance levg} is
and all non-zerao(k) satisfying (7); 2)l>-l performance obtained, settingd < &,;, the minimization of thels-l

constraint|e(k)||%, < v*||@(k)||3+7* V4, (0) is ensured where performance level* — Moy > 0 can be written as
v* = pMNoy; 3) whenw(k) = 0, the error dynamics (9) is ex-

ponentially stable for alb(6) satisfyingV,,(0) < 1/(uNow). Prob.2. _min - 7, st
Proof: First of all, it is seen from LMIs (40) thatg, = FoQa,Za, X, Yo Ua Vo, Wa Ta 21,6561
(X +XT) 442 P, < 0,¥ o € M. Noting thatP, > 0, it LMIs (40) — (43) hold.

can be concluded that the mattik is invertible if the LMIs in For the case thab(k) = 0, we can maximize the initial
Theorem 2 hold. Then, we can define the following variableggndition set when designing the controller (8). In this context,
P2 X1, XT, Qu 201, 7,2 71 the rows and columns concerning the disturbances in LMIs
¢ o T o e s e (40) should be removed. Moreover, without loss of generality,
1

JRR P N a (44) the scalarw in LMIs (42) can be selected as = 1/ Mo,
Wo =WaZih, To =150, ef = (87)7, In this paper, we represent the initial condition set as
6% é (53)717 Eg é (5%)*17 o = 1725 7M A (D Iy
2. 2{p(0) : pcnax 6@ <} (47)

Using Schur complement, it is clear that the LMIs (40) hold _ - o
if and only if the following matrix inequalities are true: wherer is a positive scalar to be maximized.

_ From the third inequality in (6), it is seen that
Yo+ YO, +0YT 21T, <0, Vae M. (45) B B
2h (e(k))h(e(k))

Pre- and post-multiplying the matrix inequalities (45) by <2 (k) (Hy + Ho) h(e(k)) — 27 (k)T Hae(k).  (48)

diag{X 1, Qn, 1,651,651, Zyo, Tw, I, I} and its transpose,

and using notations in (44) and the following facts: Note that the following fact:
—edXHXT < —po(X + XT) + @29 H1, (46) 2¢ (k) (Hy + Hz)" h(e(k))
—XPIXT < —po (X + XT) + 92 Py <e’(k)(Hy + Hz)" (Hy + Ha)e(k) + h" (e(k))h(e(k))

_ T ] T 71l 17 T 7
whereH > 0, it is seen that the inequalities (16) are ensured. =e (k)He(k) + 2¢7 (k) Hy Hae(k) + h (e(k))h(e(k))@g)

On the other hand, performing the corresponding congru- .

ence transformations to LMIs (41)-(43), respectively, it is seif1en, one can obtain from (48) that

that the matrix inequalities (17_)-A(1A9) are easily optain_eti AT (e(k))h(e(k)) < T (k) He(k). (50)
Remark 6:Note that the matrix? = H{ H,+ HI H, might _

be positive definite, zero or negative definite. In obtaininfloreover, it follows from (15), (44), (47) and (50) that

LMIs (40) of Theorem 2, three cagestare all .considered_. Vo(0)(0) <max [)\M(X—lan—T) + HMM(QQI)
Also, in order to reduce the potential conservatism, the adjust- aeM ) B
ing parameters, and, (a = 1,2,..., M) are introduced + s (H)Aw (Z 1)) £ X (51)

in Theorem 2. On the other hand, it is worth mentioning that
the pinning control strategy can be incorporated in this paper. B
Without loss of generality, we can select and pin the first X 'P, X T <pl, VaeM, (52)

Let us introduce the following matrix inequalities:
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)l <ql, 77V <2, YaeM 53 LA
Qa >~4q [eT— ( ) + Z Z pklyT(l)Riyky(l)
wherep, ¢ and »z are some positive scalars. Noting that the j=—1 l=k+j
inequality (52) is equivalent t&" P, ' X > p~'I and using —7-1 k-1
the fact X" P 1 X > 1o(X + XT) — 12 P, (1 is a scalar), it + 3> oy RZ,y()
is concluded that the inequality (52) can be guaranteed by J=—7 l=k+j
_ +oo 7 k—1
X+X"-P,>p',VaeM. 54 _ ~
spohve 54 3 n S o )RS, Ae)  (57)
Then, applying Schur complement to (53) and (54), it is clear i=1  j=1l=k—j

that (52) and (53) are ensured by the following LMIs:

l

where V,, (k) is given in (15),P, > 0, P, > 0, §% > 0,

pl I ]> RL>0(@eM,i=1,27=1,23), pu 2 p* =1, y(k) 2
= _O,VOZGM, 55 « ’ y 4y ] y 45 9)s Pkl P » Y

[I ta(X +XT) = 3 Ps (55) e(k +1) — e(k), andij(k) 2 [eT(k) 7T (k)7 with 7(k) 2

k—1 k—r—1" T +oo k—1 ) T

~—
~—
—

ql 1 I T (S €T () o et () v S hle(
= | >0, = | >0,YVae M. 56 l=k—1 _ I=k—7 =1"J Zul=k—j
[I QJ - {I ZJ - “ (56) Correspondingly, under the cor%stramt cond|7t|0ns

From the above analysis, it is seen that the optimization

- i) (k) = viggy (k) — L i(k)| < iy,
problem concerning the set,. can be represented as ‘u ) (k) = vigy) (F) 1(3)77( )‘ i)

i=1,2,...,N, j=1,2,....m, k>0 (58)

Prob.3. _ min ¢, s.t.,
PayQarZa, X Yo, UasVa, Wa, Ta 87 ,85,85,P:0,2 where L (a € M) is anym x 3nN constant matrix, the
LMIs (40)— (42) and (55)— (56) hold sector condition (14) can be updated as follows:

where( = p+ k1q + koA (H)g. Furthermore, if there exists VT (u(k)) Ty, [w(u(k)) — U, e(k) = Vg, e(k — )
the optimization solution, the upper boundof the initial too
condition setZ;,. can be obtained_ _by the equatigqn = L. — W, Z vih(e(k —1)) — Lo, (k)| <0 (59)
Remark 7:In the sector conditions (13), by deleting the =
delay-dependent terms, we can obtain tfeday-independent At moenT T T
sector conditions. If the same research is conducted by usigere Lo = [(£17°)" (£5%)" -+ (LF)" )7 . -
such delay-independent conditions, the corresponding optiBY further incorporating the recent developed inequalities
mization problems are readily obtained by settiig = 0 [5], [53], [54], the less conservative cond|t!ons can be readily
andW, =0 (Y o € M) in LMIs (40) and (42), which are e_stabhshed. I—_|owev_er, it is vyorth mentioning more computa-
referred to asProb.1), Prob.2’ and Prob.3’, respectively, for tion burden will be involved in the obtained results.
ease of reference. In addition, it is worth mentioning that, Rémark 10:When the coupling delay and the input delay
for the case without switching topology and the case with o further contained in the dynamical network (1), the closed-
type of time delay, the corresponding results can also be eadf9P error dynamics (9) can be revised as follows:
obtained by removing some terms that are no longer relevant, AL E A 7
Remark 8:In this paper, the synchronization control prob- ek +,1) =(C+ Fl)e@ :F Ghre(k _,Tk) + Lowe(k = hi)
lem is addressed for the first time, for dynamical networks + BEoie(k —di) + Af(e(k)) + Dig(e(k — 7x))
with both switching topology and time delays under actuator o= _
saturations within a discrete-time framework. The main re- + D2ZVlh(e(k = 1)) = Bi(u(k — di)) + Ew(k) (60)
sults established in Theorems 1 and 2 distinguish themselves =1
from existing literature in the following three aspects: 1) thehere k), and d;. are, respectively, the coupling delay and
model considered is comprehensive that involves discrethe input delay. Note that the dynamical network (1) might
time dynamics, switching topology, mixed-time-delays anbe not self-synchronizing. In this case, the analysis approach
actuator saturations; 2) the proposed mixed-delay-dependemiposed in this paper cannot be applicable. However, we can
sector conditions are new, which are particularly suitabkestablish the corresponding conditions by using the techniques
for analyzing large-scale networks; and 3) the proposed stated in Remark 9 to deal with the coupling and input delays.
l performance index is new, which is evaluated in a non-
weighted framework. Overall, our work represents the first
attempt to deal with thaliscrete-time dynamical networks
with mixed delays and switching topology where the actuator Example 1:Consider the discrete-time delayed dynamical
saturations are specifically considered in designing controllefgtwork (1) consisting of three nodes (4), where
Remark 9:In this paper, the techniques handling the time_ 05 02 tanh(0.2z;)
delays are conservative to some extent. To reduce the potential € = { 0 0.95} , flz) = [—tanh(O.?SxQ)] )
conservatism, we can select the following functional [5], [54]:

IV. NUMERICAL EXAMPLES

. " _ _10.221 — tanh(0.1z1) _
Vo (k) =V (k) — €7 (k) Po, (k) + 1" (k) Po (k) 9(x) =h(z) = [ 0.1z , T'=047
e b A=B=Dy=Dy=E=1, ii; = 10,
+ Z prie” (1)Sy, e(l) + Z prie” (1)S5, e(l) e =3+ 1+ (=1)¥/2, v =27,

l=k—1 I=k—7
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For this example, we assume that the network topologiable I, it is seen that Prob.1 provides the larger disturbance
is switching among three modes. Correspondingly, the outéplerance levels,; than Prob.1’, which verifies again that our
coupling matrices are given as follows: proposed mixed-delay-dependent sector conditions are more
effective. Whenp = 0.98, letting § = 200 < d5, and solving
Prob.2 withyy = 1.08, ¢ = 0.3, g = 1o =1 (« = 1,2,3)
andN,; = 1, we obtain the minimuni,-i., performance level
~* = 3.1836 and the following controller gains:

0.2 01  0.1]
Li=]01 —02 01],
01 01 —02]

[—0.1 0.1 0 _ - _ -
.-l 01 —02 01 1o 0.4734  —0.1903 Kl 0.4742  —0.1977
’ 0 01 -o01l 17 =0.0190 —0.5114] 72 7 |-0.0052 —0.5095"
03 01 021 Kl [0.4743  —0.2007] K2 [0.4447  —0.1943]
) . . 3 — | _ _ P 1= | _ _ 5
Li=|01 -01 o0 |. ! 0.0031 0.5098: : 0.0127 0.5390:
0.2 0  —02 K2 0.4818 —0.1976 K2 0.4445 —0.1959
BY calculati _tf hecked that 3‘_ 4 and 27 1-0.0043 —0.4980|° 3 —0.0080 —0.5374]|"
calculations, It IS checke at=o, 7= an - . - -
y K 0.5040 —0.1787 K3 0.4664 —0.2101
[0 0 } [0.2 o] 1 —0.0235 —0.4522|’ 2 0.0194 —0.5318|"’
Fl = ) F2 = ) c - -
0 —-0.75 0 0 3 _ [0:5068  —0.2149
3 — o .
Gy = H, - [0(.)1 001] Gy = Hy = [062 001} _ 0.0251  —0.4920
: : Choose the external disturbances as follows:

First, we address the case without external disturbances. wi(k) =[4.5 4.5]T, wa(k) =[3.6 0]7, 0<k <4
Letting pu = 1.08, oo = 0.2, g = tq = 1 (a = 1,2,3), Ny = B ’ B oo
1, and solving Prob.3 and Prob.3’, the maximum admissible ws(k) =[3 —0.6]", w(k)=[15 3]", 0< k<4,
7 of the initial condition setZ;. can be easily obtained for ~ wi(k) =wa(k) = ws(k) = w(k) =[0 0]", k > 5.
different p, which are listed in Table I. In particular, whentpan it follows thato(k) = [3 1.5 21 —3 1.5 —3.6]7
p = 0.98, we have the following the controller gains: © < 1), wk) = [0 0 00 0 07 (k: > 55_ It

[0.4991  —0.1260] [0.5243 —0.1491] is checked thafy", % 7 (k)w(k) = 199.35 < 200. Using
—0.0888 —0.4921 —0.0685 —0.5540 above controller gains and disturbances, and the switching
05191 —0.1427] (05329  —0.1496] signal in Fig. 3, the synchronization errors are plotted in

1 _ 2 . . . . .
K; = _0.0709 —0.5363] Ky = —0.0623 —0.3441° Figs. 6-7 an_d _the trunca?dd—loo gain-y, is shown in Fig. 8
o - - - under zero initial conditiong¢; = ¢2 = ¢3 = ¢ = 0).

K22 — 0.3643  —0.1636 K§ — 0.6084 ~ —0.1669 In the simulation, the truncateld-l., gain -, is defined as

—0.1210  —0.6686] ’

: _ [—0.0383 —04308]" ' _ [ sup eT(i)e(i)] /[ 20, @" (i)w(i)]. From Figs. 6-8,
0.3785  —0.1047 0<i<k

[0.6384 —0.1901]

K3} = 01525 —0.5215! K3 = —0039]1 —0.4848] ’ it is obvious that the synchro_nization can be achieved well
- - - - and the truncated,-i, gain -y is less thany* = 3.1836.

K3 = 0.6275  —0.1785) Example 2:Let us consider a coupled neural network with
| —0.0683  —0.5432] mixed delays [36], [49], which can be described by the model

Using the above controller gains, the synchronization errdd® With the following parameters:

are plotted in Figs. 1-2. In the simulation, the initial conditions 09 0 0.18 —0.015

are selected ag (/) = [12 9], ¢2(0) = [17 30]", ¢3(0) = - { 0 0.9] , A= {—0.52 0.35 } ’

[-3 —16 2 5 7 23] € 2,. The switching signal is shown Dy = {—0..026 _6_25} , D2 = {_'0_2 —.0.01} ;

in Fig. 3, whereT, > T* = —In1.08/1n0.98 = 3.8094 and B
Ny = 1. It is seen from Figs. 1-2 that the synchronization can B=I, E=0, =03, N =3, ty =15,

be successfully achieved under the proposed control scheme. f(z) =g(z) = h(x) = [tanh(z1) tanh(:cg)]T,

Figs. 4-5 shovys that the synchronization cannot be gugranteed e =9+ [1+ (=1)F]/2, 1y = e 051/2.

without imposing the controller. On the other hand, it is seen

from Table | that Prob.3 can provide a larger estimate of theHere, the network topology is assumed to be switching
initial condition set.2;. than Prob.3’. Recalling that Prob.3'among three modes, where the outer-coupling matrigesnd

is based on the delay-independent sector conditions, it chnare the same as in Example 1 abglis given as follows:

be concluded that our proposed mixed-delay-dependent sector 01 0 0.1
conditions are really effective in reducing the conservatism. Ly=| 0 —-01 0.1
Next, we will address the case that both the network and the 01 01 -—02

isolate node have disturbances. By solving Prob.1 and Prob.1/, . o . .
with g = 1.08, po = 0.2, ¢y = 1o, = 1 (o = 1,2,3) and It is seen thatr = 9, 7 = 10 and the nonlinear functions

Ny = 1, the maximum disturbance tolerance levéls are f(z) = g(x) = h(z) satisfy the conditions in (3) with
obtained for differentp, which are given in Table Il. From Fi=Gi=H,=0, Fh,=Gy=Hy=1.
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TABLE |
MAXIMUM ADMISSIBLE TOFTHESET&VT FOR DIFFERENTp 8 i ©
ell
- [ e (k)|
P 0.95 0.96 0.7 0.08 0.99 s | en®
Prob.3 260860 27.2126 28.3983 29.6533 30.9877 31
Prob.3’ 215334 225339 235960 24.7262 25.9317 L %
Improvements  21.14%  20.76%  20.35%  19.93%  19.50% g "
5, .
o \,—.\_\ .-‘\_~-
TABLE I s O =
MAXIMUM DISTURBANCE TOLERANCE LEVELS5M FOR DIFFERENTp = //_/r
_2,
) 0.95 0.96 0.97 0.98 0.99 Y ‘ ‘ ‘ ‘ ‘ ‘
Prob.1 179.862 193.601 207.011 220.271 233.618 0 5 0 15 20 25 30 35
Prob.1’ 131.432 142586 153.431 164.094 174.796 Time(k)

Improvements  36.85%  35.78%  34.92% 34.23%  33.65%

Fig. 1. The state evolutions of the controlled error dynamics.

For this example, Fig. 9 shows that the chaotic behavior ”

occurs for the unforced isolate node with the initial condition )
#(0) = [0.4 0.5]7 (6 <0). Moreover, it can be verified that 00 ent]]
the open-loop error dynamics is not stable, which means that & 15} - - —ey, ()|
the synchronization cannot be ensured for the coupled neural (.:_. ol ‘\\
network without using the controller. Choosipg= 1.06, p = = \\
0.98, Yo = ta = 1 (o = 1,2,3), Ny = 1, and solving Prob.3, e
one obtains the maximum admissible bound 9.5711 of the a;°) o T e
initial condition set.Z;. and the following controller gains: 2 sp
Kl —0.9937 0.0915 10}
17102513 —1.0058|"’ 15 |
11 [—1.0016 0.0821 ] 0 5 10 15ime 20 25 30 35
Ko =Ks=102524 —1.0088 e
) 5 [-0.9720 0.1098 ] Fig. 2. The state evolutions of the controlled error dynamics.
Ky =Ky = | 0.2555  —1.0239|"°
o .3 [—1.1125 —0.0104]
Ky =Ry = | 0.2529  —1.0135)° 35
[—0.9717  0.1099 ] .
2 _ 173 3t E
Ky =FK; = | 0.2556  —1.0239]

N
wn

Choosinge; (0) = [3.4 —4.5]T, ¢2(0) = [2.4 — 2.5]T,
#3(0) = [-1.6 6.5]7, #(0) = [0.4 05]T, § € (—o0,0],
we haveo(d) = 3 -5 2 -3 -2 67 ¢ 2.
Using the above controller gains and initial conditions, the
state evolutions of the controlled coupled neural network and
the unforced isolate neural network are plotted Figs. 10-11.
In the simulation, the switching signal is given in Fig. 12, os ‘ ‘ ‘ ‘ ‘ ‘
whereT, > T = —Inl1.06/1n0.98 = 2.8842. It is seen from 0 5 10 15 20 25 30 35
Figs. 10-11 that our proposed control scheme performs well. Time (9
Fig. 3. The switching signab,, of the network topology.

Switching Signal o
I
5 N

V. CONCLUSIONS

In this paper, we have addressed the synchronization control

problem for a class of discrete-time delayed dynamical néhe exponential stability. Then, the explicit characterization of
works with switching topology under actuator saturations. Teontroller gains has been proposed by solving of a set of LMIs.
alleviate the saturation effect effectively, novel mixed-delaysubsequently, three corresponding optimization problems have
dependent sector conditions have been proposed. By furtheen proposed. Finally, two examples have been given to
incorporating the piecewise Lyapunov-like functional and théustrate the feasibility and benefits of our obtained results.
ADT switching, a sufficient condition has been obtained under On the other hand, it is worth mentioning that the tech-
which the error dynamics has some desirable features incluiique of analyzing the switched dynamics in this paper is
ing the boundedness of error statés/., performance and somewhat conservative. As the further work, we would like
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Fig. 5. The state evolutions of the uncontrolled dynamical
network and the unforced isolate node.
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Fig. 6. The state evolutions of the controlled error dynamics.
dependent switching lavr (k) = argmin{V,(k),a € M}
[57]. In addition, it should be pointed out that our proposed
results can be easily extended to the case that the controller

to establish some more effective results by incorporating tB@jitching and the topology switching are not consistent.
mode-dependent ADT switching [60] and the persistent dwell-

time switching [55]. Also, it is more interesting to design the REEERENCES
state-dependent switching rules to ensure the synchronizatign _
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of dynam'c_al networks _[591' In ]_‘aC'F, we Can e_Stab“Sh th “Complex networks: Structure and dynamic$?hys. Rep.vol. 424,
corresponding synchronization criteria by designing the state- no. 4-5, 175-308, Feb. 2006.
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