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Synchronization Control for Discrete-Time Delayed
Dynamical Networks with Switching Topology

under Actuator Saturations
Yonggang Chen, Zidong Wang, Jun Hu and Qing-Long Han

Abstract—This paper is concerned with the synchronization
control problem for a class of discrete-time dynamical networks
with mixed delays and switching topology. The saturation phe-
nomenon of physical actuators is specifically considered in design-
ing feedback controllers. By exploring the mixed-delay-dependent
sector conditions in combination with the piecewise Lyapunov-
like functional and the average-dwell-time switching, a sufficient
condition is first established under which all trajectories of the
error dynamics are bounded for admissible initial conditions
and non-zero external disturbances, while thel2-l∞ performance
constraint is satisfied. Furthermore, the exponential stability of
the error dynamics is ensured for admissible initial conditions in
the absence of disturbances. Secondly, by using some congruence
transformations, the explicit condition guaranteeing the existence
of desired controller gains is obtained in terms of the feasibility
of a set of linear matrix inequalities. Then, three convex op-
timization problems are formulated regarding the disturbance
tolerance, the l2-l∞ performance and the initial condition set,
respectively. Finally, two simulation examples are given to show
the effectiveness and merits of the proposed results.

Index Terms—Synchronization control, discrete-time networks,
dynamical networks, mixed delays, switching topology, actuator
saturations.

I. I NTRODUCTION

Over the past several decades, the complex dynamical
networks have received significant research attention due to
their wide applications in social networks, transportation net-
works, electric power grids and neural networks, etc [1], [9],
[16], [31], [38], [41], [43]. Moreover, it has been generally
recognized that the synchronization problem among all dy-
namical nodes is one of the most interesting research issues
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for complex dynamical networks [11], [28], [30], [36], [39],
[40], [50], [58]. On the other hand, time-delays are frequently
encountered in complex dynamical networks because of the
parallel signal transmission among a large number of nodes
as well as the complicated couplings of dynamical networks.
As time-delays could lead to poor network performance or
even undesirable instability, considerable research interest has
been devoted to the synchronization problem of complex
dynamical networks with various types of time-delays [13],
[23], [27], [29], [44]. In particular, when a dynamical network
cannot achieve the synchronization by itself or the network is
expected to possess better performance, a variety of control
techniques have been proposed during the past decade, see
e.g. [2], [14], [21], [26], [35], [49], [56]. For example, an
event-triggered approach has been adopted in [14] for discrete-
time dynamical networks with coupling delay, the pinning
impulsive scheme has been proposed in [26] for a class of
nonlinear dynamical networks with time-varying delay, and
the adaptive control scheme has been employed in [56] for a
general nonlinear dynamical network with delayed nodes.

Despite the extensive investigation on dynamical networks,
the vast majority of existing results are concerned with dynam-
ical networks with stationary/static topologies. In reality, how-
ever, the network topology may be time-varying due probably
to the link failures, the mobility of networks and the creation of
new links [34], [59]. To characterize the dynamical (sometimes
even abrupt) changes of the topology structure, two types
of network topologies have been introduced in the literature,
one is the switching topology and the other is the Markov
jump topology. Here, the switching topology means that the
topology changes according to certain deterministic switching
logic (including the arbitrary switching and the designed
switching) [59]. In the past decade, several remarkable results
have been obtained on the dynamical networks with switching
topology or Markov jump topology [15], [17], [22], [24], [25],
[45], [59]. For example, the synchronization problem has been
addressed in [25] for delayed dynamical networks with switch-
ing topology under the average dwell time (ADT) switching.
The impulsive synchronization scheme has been used in [15]
to consider the discrete delayed stochastic complex networks
with switching topology. In [45], the pinning synchronization
problem has been studied for directed networks with switching
topology by using multiple Lyapunov function approach.

In many feedback control systems, actuator saturation is an
unavoidable phenomenon because of the inherent constrains on
physical actuators. Actuator saturation constitutes yet another
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source of instability and performance degradation. In the past
two decades, the analysis and synthesis problems have been
under extensive investigation for control systems subject to
actuator saturations [12], [19], [20], [37], [42], [47], [51], [52].
It has been shown that theglobal results are almost impossible
to be achieved if the open-loops of control systems are
exponentially unstable [20], [47]. As such, the local/regional
design has gained an ever-increasing interest [19], [37], [51],
[52]. In general, two types of models have been developed to
deal with the saturation nonlinearity, namely, the polytopic
models and the models with generalized sector conditions.
For systems with both time-delays and saturating actuators,
the corresponding results have been established in [4], [6],
[33], [57]. In particular, it is noted that the delay-dependent
polytopic models have been proposed in [4], [6] in order to
obtain some improved stabilization conditions.

In the past years, the synchronization control problem has
been widely investigated for dynamical networks with actuator
saturations [3], [7], [46], [48]. For example, the sampled-data
control scheme has been used in [46] for nonlinear dynamical
networks with actuator saturations. By utilizing the informa-
tion from both time-delays and the nodes involving saturation
nonlinearities, the exponential synchronization problem has
been studied in [7] for delayed dynamical networks. Neverthe-
less, it is worth pointing out that the network topologies in ex-
isting literature have been assumed to be stationary/static and
the external disturbances have been largely overlooked. More-
over, the existing results have been mainly concerned with
the continuous-time dynamical networks without time-delays
(or with a single discrete delay). Clearly, the synchronization
control problem has not been examined yet fordiscrete-
time delayed dynamical networks withswitching topology
and actuator saturations, not to mention the case that the
distributed delay and external disturbances are also involved.
This situation has motivated our current investigation.

In this paper, we aim to address the synchronization control
problem for a class of discrete-time dynamical networks with
mixed delays, switching topology and actuator saturations. By
using the combination of novel sector conditions, a piecewise
Lyapunov-like functional and the ADT switching, a sufficient
condition is first obtained under which the error dynamics
can achieve some desirable performance indices including
the boundedness, thel2-l∞ performance and the exponential
stability. Then, an explicit condition is obtained for designing
desirable controllers by means of the feasibility of some linear
matrix inequalities (LMIs). Subsequently, several optimization
problems have been proposed to obtain the optimal perfor-
mance indices. Finally, two simulation examples demonstrate
the values of our obtained results.The main contributions of
this paper are summarized as follows. 1) The synchronization
control problem is addressed, for the first time, for dynamical
networks with both switching topology and time delays under
actuator saturations within a discrete-time framework. 2) For
discrete-time dynamics with mixed delays, this paper proposes
the mixed-delay-dependent sector conditions. Specially, the
distributed-delay term

∑+∞

l=1 νlh̄(e(k − l)) is introduced for
the first time in our sector conditions. Moreover, different
from the existing approaches using the augmented Lyapunov-

like functionals to facilitate the utilization of delay-dependent
sector conditions [7], the analysis procedure in this paper is
based on a fairly simple yet effective Lyapunov-like functional
that proves to be more appropriate for large-scale networks. 3)
Different from the weightedl2-l∞ performance index employed
in [8], [10] for switched systems under the ADT switching, the
l2-l∞ performance proposed in this paper is in a non-weighted
framework and is shown to be more effective for dynamical
networks with switching topology.

Notation. The superscript“T ” refers to the matrix trans-
position.Rn andR

n×n denote then-dimensional Euclidean
space and the set of alln× n real matrices, respectively.‖x‖
stands for the Euclidean norm of a vectorx. The matrixP > 0
(P ≥ 0) denotes thatP is real, symmetric and positive definite
(positive semi-definite).λM (P ) andλm(P ) are the maximum
and minimum eigenvalue of the matrixP , respectively.u(l)
denotes thel-th element of a vectoru and K(l) stands for
the l-th row of the matrixK. I is an identity matrix with
proper dimension and⊗ denotes the Kronecker product. The
symmetric terms in a symmetric matrix are denoted by∗. Also,
for vector functionse(k) and ω̄(k) (k ≥ 0), we denote

‖e(k)‖∞ , sup
k≥0

√

eT (k)e(k), ‖ω̄(k)‖2 ,

√

√

√

√

+∞
∑

k=0

ω̄T (k)ω̄(k).

II. PROBLEM DESCRIPTION

Consider the following class of discrete-time dynamical
networks consisting ofN identical coupled nodes subject to
mixed delays, switching topology and actuator saturations:































xi(k + 1) = Cxi(k) +Af(xi(k)) +D1g(xi(k − τk))

+D2

+∞
∑

l=1

νlh(xi(k − l)) +

N
∑

j=1

l̃σk

ij Γxj(k)

+Bsat(ui(k)) + Eωi(k),

xi(θ) = φi(θ), θ ∈ (−∞, 0], i = 1, 2, . . . , N

(1)

wherexi(k) ∈ R
n, ui(k) ∈ R

m, ωi(k) ∈ R
ς andφi(θ) ∈ R

n

(i ∈ {1, 2, . . . , N} , N ) denote the state vector, the control
input, the disturbance input and the initial condition of thei-th
node, respectively.A,B, C,D1,D2 andE are known constant
matrices with appropriate dimensions.τk is the time-varying
discrete delay satisfyingτ ≤ τk ≤ τ , whereτ andτ are known
non-negative integers.σk is a piecewise constant function tak-
ing values in a finite set{1, 2, · · · ,M} , M, which is used to
the characterize the switching behavior of the network topol-
ogy.Γ denote the inner-coupling matrix, andLα = (l̃αij)N×N

(α ∈ M) is a matrix representing the outer-coupling config-
uration with l̃αij ≥ 0 (i 6= j) and

∑N
j=1 l̃

α
ij = 0. sat(ui) =

[sat(ui(1)) sat(ui(2)) · · · sat(ui(m))]
T is a standard vector-

valued saturation function with the saturation levelsūi(j) >
0, where sat(ui(j)) = sgn(ui(j))min{|ui(j)|, ūi(j)} (j =

1, 2, . . . ,m). The term involving the sum
∑+∞

l=1 νlh(xi(k− l))
is referred to as the infinite distributed delay term.
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Throughout this paper, it is assumed that there exists a scalar
0 < ρ < 1 such that the following condition holds:

+∞
∑

l=1

νl <

+∞
∑

l=1

νlρ
−l < +∞. (2)

For vector-valued functionsf(x) ∈ R
n, g(x) ∈ R

n and
h(x) ∈ R

n, we assume that they are continuous withf(0) =
g(0) = h(0) = 0 and satisfy the following conditions [23]:







































[f(x) − f(y)− F1(x− y)]T

×[f(x)− f(y)− F2(x− y)] ≤ 0,

[g(x) − g(y)−G1(x − y)]T

×[g(x)− g(y)−G2(x− y)] ≤ 0,

[h(x) − h(y)−H1(x− y)]T

×[h(x)− h(y)−H2(x− y)] ≤ 0

(3)

wherex, y ∈ R
n, andF1, F2, G1, G2, H1, H2 ∈ R

n×n are
known real constant matrices.

Remark 1:The conditions (3) are well-known sector-like
descriptions of the nonlinearities. The nonlinearities in many
systems, such as Lorenz system, Chua’s circuit, Chen system
and recurrent neural networks, satisfy the sector conditions (3).
Compared with the usual Lipschitz assumption, it is seen that
the sector-like assumption is more general. Of course, the con-
ditions (3) are stricter than the semi-Lipschitz conditions [2],
[50]. However, by using (3), one can obtain less conservative
results since more information on nonlinearities is utilized.

In this paper, the isolate node has the following form:






















s(k + 1) = Cs(k) + Af(s(k)) +D1g(s(k − τk))

+D2

+∞
∑

l=1

νlh(s(k − l)) + Eω(k),

s(θ) = φ(θ), θ ∈ (−∞, 0]

(4)

wheres(k) ∈ R
n, ω(k) ∈ R

ς andφ(θ) ∈ R
n are, respectively,

the state vector, the disturbance input and the initial condition.
Let us introduce the following new notations:

ei(k) ,xi(k)− s(k), ω̄i(k) , ωi(k)− ω(k),

φ̄i(θ) ,φi(θ)− φ(θ), L̄σk
, Lσk

⊗ Γ,

f̄(ei(k)) ,f(xi(k))− f(s(k))− F1ei(k),

ḡ(ei(k)) ,g(xi(k))− g(s(k))−G1ei(k),

h̄(ei(k)) ,h(xi(k))− h(s(k)), C̄ , IN ⊗ C,

Ā ,IN ⊗A, B̄ , IN ⊗B, Ē , IN ⊗ E,

D̄j ,IN ⊗Dj , F̄j , IN ⊗ Fj , j = 1, 2,

Ḡj ,IN ⊗Gj , H̄j , IN ⊗Hj , j = 1, 2,

e(k) ,[eT1 (k) eT2 (k) · · · eTN(k))]T ,

f̄(e(k)) ,[f̄T (e1(k)) f̄T (e2(k)) · · · f̄T (eN (k)))]T ,

ḡ(e(k)) ,[ḡT (e1(k)) ḡT (e2(k)) · · · ḡT (eN (k)))]T ,

h̄(e(k)) ,[h̄T (e1(k)) h̄T (e2(k)) · · · h̄T (eN (k)))]T ,

sat(u) ,[satT (u1) satT (u2) · · · satT (uN )]T ,

ω̄(k) ,[ω̄T
1 (k) ω̄T

2 (k) · · · ω̄T
N(k))]T ,

φ̄(θ) ,[φ̄T1 (θ) φ̄T2 (θ) · · · φ̄T3 (θ)]
T .

Then, we have the following error dynamics:






























e(k + 1) = (C̄ + F̄1 + L̄σk
)e(k) + Ḡ1e(k − τk)

+ Āf̄(e(k)) + D̄1ḡ(e(k − τk)) + D̄2

×
+∞
∑

l=1

νlh̄(e(k − l)) + B̄sat(u(k)) + Ēω̄(k),

e(θ) = φ̄(θ), θ ∈ (−∞, 0].

(5)

Using the conditions in (3), we can see that










f̄T (e(k))[f̄(e(k))− (F̄2 − F̄1)e(k)] ≤ 0,

ḡT (e(k))[ḡ(e(k))− (Ḡ2 − Ḡ1)e(k)] ≤ 0,

[h̄(e(k))− H̄1e(k)]
T [h̄(e(k))− H̄2e(k)] ≤ 0

(6)

In addition, we assume that the disturbanceω̄(k) of (5) is
energy-bounded and satisfy the following condition:

+∞
∑

k=0

ω̄T (k)ω̄(k) ≤ δ (7)

whereδ is known positive scalar.
Remark 2:It is noted that the component̄ωi(k) (i ∈ N )

of ω̄(k) in (5) is actually the disturbance error between the
disturbanceωi(k) in the network (1) and the disturbanceω(k)
in the isolate node (4). Therefore, the condition (7) can be
written as

∑+∞

k=0

∑N
i=1[ωi(k)− ω(k)]T [ωi(k)− ω(k)] ≤ δ. If

the disturbanceω(k) in the isolate node (4) is absent, then the
condition (7) becomes

∑+∞

k=0

∑N
i=1 ωi(k)

Tωi(k) ≤ δ.
In order to achieve the synchronization of the dynamical

network (1), we employ the following switching controller:

ui(k) = Kσk

i ei(k), i = 1, 2, . . . , N (8)

whereσk is the switching signal denoted in the model (1) and
Kα

i ∈ R
m×n (α ∈ M) is the controller gain matrix.

Defining the functionψ(z) , z − sat(z) and using the
controller (8), we obtain the following closed-loop dynamics:






























e(k + 1) = (C̄ + F̄1 + L̄σk
+ B̄Kσk

)e(k)

+ Ḡ1e(k − τk) + Āf̄(e(k)) + D̄1ḡ(e(k − τk))

+ D̄2

+∞
∑

l=1

νlh̄(e(k − l))−Bψ(u(k)) + Ēω(k),

e(θ) = φ̄(θ), θ ∈ (−∞, 0]

(9)

where

Kσk
,diag{Kσk

1 ,Kσk

2 , . . . ,Kσk

N },

ψ(u(k)) ,[ψT (u1(k)) ψT (u2(k)) · · · ψT (uN (k))]T .

Next, we introduce the following definition and lemma.
Definition 1: [18] For anyk > l ≥ k0, let Nσ(l, k) be the

switching number ofσ over [l, k]. If Nσ(l, k) ≤ N0 + (k −
l)/Ta holds for any givenTa > 0 andN0 ≥ 0, thenTa and
N0 are called ADT and chatter bound, respectively.

Lemma 1: [23], [32] Let Z ∈ R
n×n be a positive definite

matrix, xi ∈ R
n, and ai ≥ 0, bi ≥ 0 (i = 1, 2, · · · ). If the

sequences concerned are convergent, then we have
(+∞
∑

i=1

aixi

)T

Z

(+∞
∑

i=1

aixi

)
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≤

(+∞
∑

i=1

aib
−1
i

)(+∞
∑

i=1

aibix
T
i Zxi

)

.

The main objective of this paper is to design the switching
controller (8) such that, under the ADT switching signals, the
closed-loop error dynamics (9) has the following properties:

1) all trajectories are bounded for admissible initial condi-
tions φ̄(θ) (θ ∈ (−∞, 0]) and non-zero disturbances̄ω(k);

2) the l2-l∞ performance requirement

‖e(k)‖2∞ ≤ γ‖ω̄(k)‖22 + γV (0)

is ensured, whereγ > 0 is a scalar andV (k) is a functional;
3) whenω̄(k) = 0, the exponential stability can be guaran-

teed for admissible initial conditions̄φ(θ) (θ ∈ (−∞, 0]).
Remark 3:Recently, the synchronization control problem

has been addressed for dynamical networks subject to actuator
saturations [3], [7], [46], [48]. Different from most existing
results, this paper attempts to discuss the synchronization con-
trol problem for dynamical networks with time delays under
actuator saturations in adiscrete-timeframework. Moreover,
the switching topology, the distributed delay and the external
disturbances are incorporated in the considered network. On
the other hand, it is worth pointing out that, different from
the weightedl2-l∞ performance index introduced in [8], [10]
for switched dynamical systems, the performance proposed in
this paper is in a more appropriatenon-weightedframework.

In the sequel, let us introduce the delay-dependent sector
conditions for the purpose of dealing with the dead-zone
nonlinearityψ(u) induced by actuator saturations. First, we
define the functionals

vi(k) =U
σk

i e(k) + V σk

i e(k − τk)

+W σk

i

+∞
∑

l=1

νlh̄(e(k − l)), i = 1, 2, . . . , N (10)

whereσk is the switching signal as in (1) and (8), andUα
i ,

V α
i andWα

i (α ∈ M) arem× nN real constant matrices.
Letting ǫi ∈ R

N (i ∈ N ) be a row vector whosei-th
element is 1 and others are zero, it can be seen that

ui(k) = ǫi ⊗Kσk

i e(k), i = 1, 2, . . . , N. (11)

Assume that the following constraint conditions are true:

|ui(j)(k)− vi(j)(k)| =
∣

∣(ǫi ⊗Kσk

i(j) − Uσk

i(j))e(k)

− V σk

i(j)e(k − τk)−W σk

i(j)

+∞
∑

l=1

νlh̄(e(k − l))

∣

∣

∣

∣

≤ ūi(l),

i = 1, 2, . . . , N, j = 1, 2, . . . ,m, k ≥ 0. (12)

Then, by using the generalized sector condition in [37], it is
concluded that the following sector conditions hold:

ψT (ui(k))T
σk

i

[

ψ(ui(k))− U
σ(k)
i e(k)

− V σk

i e(k − τk)−W σk

i

+∞
∑

l=1

νlh̄(e(k − l))

]

≤ 0,

i = 1, 2, . . . , N, k ≥ 0 (13)

whereTα
i > 0 (α ∈ M) is anym×m diagonal matrix.

Denoting that

Tσk
, diag{T σk

1 , T σk

2 , . . . , T σk

N },

Uσk
, [(Uσk

1 )T (Uσk

2 )T · · · (Uσk

N )T ]T ,

Vσk
, [(V σk

1 )T (V σk

2 )T · · · (V σk

N )T ]T ,

Wσk
, [(W σk

1 )T (W σk

2 )T · · · (W σk

N )T ]T ,

the inequalities in (13) can be represented as

ψT (u(k))Tσk

[

ψ(u(k))− Uσk
e(k)− Vσk

e(k − τk)

−Wσk

+∞
∑

l=1

νlh̄(e(k − l))

]

≤ 0, k ≥ 0. (14)

Remark 4:Under the constraint conditions (12), the novel
mixed-delay-dependent sector conditions (13) are proposed in
this paper to alleviate the effect of actuator saturations in
a less conservative framework. Different from the existing
techniques [4], [6], [7], the infinite-distributed-delay terms
are specifically introduced, for the first time, in our proposed
sector conditions to deal with the infinite distributed delay
effectively. Moreover, different from the delay-dependent ap-
proach proposed in [6], we introduce only the discrete-delay
terms in the sector conditions (13) to tackle the discrete
delay in a relatively simple framework, which should be more
appropriate for large-scale networks. Using the mixed-delay-
dependent sector conditions (13), some slack variables can be
effectively introduced in the main results of this paper, and
this allows us to obtain less conservative results.

III. M AIN RESULTS

In this section, we will first establish the corresponding
analysis condition by employing the ADT approach and the
following piecewise Lyapunov-like functional:

Vσk
(k) =eT (k)Pσk

e(k) +

−τ
∑

j=−τ

k−1
∑

l=k+j

ρk−l−1eT (l)Qσk
e(l)

+

+∞
∑

j=1

νj

k−1
∑

l=k−j

ρk−l−1h̄T (e(l))Zσk
h̄(e(l)). (15)

where0 < ρ < 1, Pα > 0, Qα > 0 andZα > 0 (α ∈ M).
For convenience of subsequent presentation, we denote

ν̄ ,

+∞
∑

l=1

νl, ν̂ ,

+∞
∑

l=1

νlρ
−l, τ̂ , τ − τ + 1,

κ1 ,
τ̂ (1− ρ)− ρτ + ρτ+1

(1− ρ)2
, κ2 ,

+∞
∑

l=1

1− ρl

1− ρ
νl,

Ĥ ,H̄T
1 H̄2 + H̄T

2 H̄1, Ȟ , H̄T
1 H̄1 + H̄T

2 H̄2.

Theorem 1:Let the scalars0 < ρ < 1, µ ≥ 1, δ > 0 and the
integerN0 ≥ 0 be given. Assume that there existnN × nN
matricesPα > 0, Qα > 0, Zα > 0, mN × nN matrices
Kα , diag{Kα

1 ,K
α
2 , . . . ,K

α
N}, Uα , [(Uα

1 )
T (Uα

2 )
T

· · · (Uα
N )T ]T , Vα , [(V α

1 )T (V α
2 )T · · · (V α

N )T ]T , Wα ,

[(Wα
1 )

T (Wα
2 )

T · · · (Wα
N )T ]T ,mN×mN diagonal matrices

Tα , diag{Tα
1 , T

α
2 , . . . , T

α
N} > 0, and the scalarsεα1 > 0,
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εα2 > 0, εα3 > 0 (α = 1, 2, . . . ,M ), γ > 0, 0 < ̟ ≤ 1/(µN0δ)
such that the following matrix inequalities hold:

[

Ωα ΠT
α

Πα −P−1
α

]

< 0, ∀ α ∈ M, (16)

Pα ≤ µPβ , Qα ≤ µQβ , Zα ≤ µZβ ,

∀ α, β ∈ M, α 6= β, (17)








ū2i(j)̟ ǫi ⊗Kα
i(j) − Uα

i(j) −V α
i(j) −Wα

i(j)

∗ Pα 0 0
∗ ∗ ρτ−1Qα 0
∗ ∗ ∗ 1

ρν̂Zα









> 0,

i = 1, 2, . . . , N, j = 1, 2, . . . ,m, ∀ α ∈ M, (18)
[

γI I
I Pα

]

> 0, ∀ α ∈ M (19)

where

Πα =[C̄ + F̄1 + L̄α + B̄Kα Ḡ1 Ā D̄1 0 D̄2 − B̄ Ē],

Ωα =

























Ωα
11 0 Ωα

13 0 Ωα
15 0 Ωα

17 0
∗ Ωα

22 0 Ωα
24 0 0 Ωα

27 0
∗ ∗ Ωα

33 0 0 0 0 0
∗ ∗ ∗ Ωα

44 0 0 0 0
∗ ∗ ∗ ∗ Ωα

55 0 0 0
∗ ∗ ∗ ∗ ∗ − 1

ν̂Zα Ωα
67 0

∗ ∗ ∗ ∗ ∗ ∗ −2Tα 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

























with

Ωα
11 =− ρPα + τ̂Qα − εα3 Ĥ, Ωα

13 = εα1 (F̄2 − F̄1)
T ,

Ωα
15 =εα3 (H̄1 + H̄2)

T , Ωα
17 = UT

α Tα, Ωα
22 = −ρτQα,

Ωα
24 =εα2 (Ḡ2 − Ḡ1)

T , Ωα
27 = V T

α Tα, Ωα
33 = −2εα1 I,

Ωα
44 =− 2εα2 I, Ωα

55 = −2εα3 I + ν̄Zα, Ωα
67 =WT

α Tα.

Then, under the ADT switching withTa ≥ T
∗
a , −lnµ/lnρ,

the closed-loop error dynamics (9) has the following features:
1) all states remain bounded for all initial conditionsφ̄(θ) sat-
isfying Vσ0

(0) ≤ 1/(µN0̟)− δ and all non-zero disturbances
ω̄(k) satisfying (7); 2) thel2-l∞ performance requirement
‖e(k)‖2∞ ≤ γ∗‖ω̄(k)‖22 + γ∗Vσ0

(0) is ensured whereγ∗ =
µN0γ; 3) whenω̄(k) = 0, all states converge exponentially to
the origin for all φ̄(θ) satisfyingVσ0

(0) ≤ 1/(µN0̟).
Proof: For ∀ α ∈ M, by calculations, one obtains

∆Vα(k) ,Vα(k + 1)− ρVα(k)

≤eT (k + 1)Pαe(k + 1)− ρeT (k)Pαe(k)

+ τ̂ eT (k)Qαe(k)− ρτeT (k − τk)Qα

× e(k − τk) + ν̄h̄T (e(k))Zαh̄(e(k))

−
+∞
∑

l=1

νlρ
lh̄T (e(k − l))Zαh̄(e(k − l)). (20)

Using Lemma 1, it can be seen that

−
+∞
∑

l=1

νlρ
lh̄T (e(k − l))Zαh̄(e(k − l))

≤−
1

ν̂

[+∞
∑

l=1

νlh̄(e(k − l))

]T

Zα

[+∞
∑

l=1

νlh̄(e(k − l))

]

. (21)

For any scalarsεαi > 0, i = 1, 2, 3, it follows from (6) that

− 2εα1 f̄
T (e(k))[f̄(e(k))− (F̄2 − F̄1)e(k)] ≥ 0, (22)

− 2εα2 ḡ
T (e(k − τk))

× [ḡ(e(k − τk))− (Ḡ2 − Ḡ1)e(k − τk)] ≥ 0, (23)

− 2εα3 [h̄(e(k))− H̄1e(k)]
T [h̄(e(k))− H̄2e(k)] ≥ 0. (24)

Under the constraints (12), it is seen from (14) that

− 2ψT (u(k))Tα
[

ψ(u(k))− Uαe(k)

− Vαe(k − τk)−Wα

+∞
∑

l=1

µlh̄(e(k − l))

]

≥ 0. (25)

Adding the left-hand sides of the inequalities (22)-(25) to
∆Vα(k) and using the inequality (21), one eventually obtains

∆Vα(k) ≤ξ
T (k)(Ωα +ΠT

αPαΠα)ξ(k) + ω̄T (k)ω̄(k), (26)

whereΩα, Πα have the same definitions as in (16) and

ξ(k) =
[

eT (k) eT (k − τk) f̄T (e(k)) ḡT (e(k − τk))

h̄T (e(k))
+∞
∑

l=1

νlh̄
T (e(k − l)) ψT (u(k)) ω̄T (k)

]T

.

Applying Schur complement to (16), it is clear thatΩα +
ΠT

αPαΠα < 0, ∀ α ∈ M. Then, it follows from (26) that

Vα(k + 1) ≤ρVα(k) + ω̄T (k)ω̄(k), ∀ α ∈ M. (27)

Also, it is seen from (17) that

Vα(k) ≤ µVβ(k), ∀ α, β ∈ M. (28)

Let 0 = k0 < k1 < · · · < ks < · · · be any switching time
sequence andk be any positive integer belonging to[ks, ks+1).
If k− ks ≥ 1, using the inequalities (27) and (28) recursively,
we can deduce the following inequality:

Vσk
(k) ≤ µsρkVσ0

(0) +
k−1
∑

l=ks

ρklω̄
T (l)ω̄(l)

+ µ

ks−1
∑

l=ks−1

ρklω̄
T (l)ω̄(l) + · · ·+ µs

k1−1
∑

l=k0

ρklω̄
T (l)ω̄(l)

, µNσ(0,k)ρkVσ0
(0) +

k−1
∑

l=k0

µNσ(l,k−1)ρklω̄
T (l)ω̄(l) (29)

whereρkl , ρk−l−1. Similarly, if k = ks, one can obtain

Vσk
(k) ≤ µsρkVσ0

(0) +

k−1
∑

l=ks−1

ρklω̄
T (l)ω̄(l)

+ µ

ks−1−1
∑

l=ks−2

ρklω̄
T (l)ω̄(l) + · · ·+ µs−1

k1−1
∑

l=k0

ρklω̄
T (l)ω̄(l)

, µNσ(0,k)ρkVσ0
(0) +

k−1
∑

l=k0

µNσ(l,k−1)ρklω̄
T (l)ω̄(l). (30)

Noting the relationshipsNσ(0, k) ≤ N0 + k/Ta, Nσ(l, k −
1) ≤ N0+(k− l−1)/Ta andTa ≥ T

∗
a , −lnµ/lnρ, we have

µNσ(0,k)ρk ≤ µN0(µ1/Taρ)k , µN0ϑk ≤ µN0 , (31)
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µNσ(l,k−1)ρk−l−1 ≤ µN0(µ1/Taρ)k−l−1 ≤ µN0 . (32)

Then, for∀ k ∈ [ks, ks+1), it follows from (29) and (30) that

Vσk
(k) ≤ µN0ϑkVσ0

(0) + µN0

+∞
∑

k=0

ω̄T (k)ω̄(k). (33)

On the other hand, for∀ α ∈ M, it is seen from (15) that

Vα(k) ≥e
T (k)Pαe(k) +

k−τ
∑

l=k−τ

ρk−l−1eT (l)Qαe(l)

+

+∞
∑

l=1

νlρ
l−1h̄T (e(k − l))Zαh̄(e(k − l))

≥eT (k)Pαe(k) + ρτ−1eT (k − τk)Qαe(k − τk)

+
1

ρν̂

[+∞
∑

l=1

νlh̄(e(k − l))

]T

Zα

[+∞
∑

l=1

νlh̄(e(k − l))

]

.

(34)

Applying Schur complement to (18), one obtains




Pα 0 0
∗ ρτ−1Qα 0
∗ ∗ 1

ρν̂Zα



 >
1

ū2i(j)̟
(Φα

i(j))
TΦα

i(j),

i = 1, 2, . . . , N, j = 1, 2, . . . ,m, ∀ α ∈ M, (35)

whereΦα
i(j) = [ǫi ⊗Kα

i(j) − Uα
i(j) − V α

i(j) −Wα
i(j)]. Then,

from (34) and (35), it follows that

Vσk
(k) ≥

1

ū2i(j)̟
ηT (k)(Φ

σ(k)
i(j) )

TΦ
σ(k)
i(j) η(k)

=
1

ū2i(j)̟
|ui(j)(k)− vi(j)(k)|

2,

i =1, 2, . . . , N, j = 1, 2, . . . ,m (36)

whereη(k) =
[

eT (k) eT (k − τk)
∑+∞

l=1 νlh̄
T (e(k − l))

]T
.

For all initial conditions φ̄(θ) satisfying Vσ0
(0) ≤

1/(µN0̟)− δ and all non-zerōω(k) satisfying (7), it is seen
from (7), (33) and (36) that the constraints in (12) can be
ensured. Furthermore, one can obtain from (15) and (33) that

min
α∈M

λm(Pα)‖e(k)‖
2
2 ≤ Vσk

(k) ≤ 1/̟, k ≥ 0 (37)

which implies that all error states of (9) are bounded.
Next, we will show that thel2-l∞ performance requirement

of the closed-loop dynamics (9) can be guaranteed. Using
Schur complement, the inequalities in (19) hold if and only if

Pα >
1

γ
I, α ∈ M. (38)

From (15), (33) and (38), it is obvious that

eT (k)e(k) ≤ γ∗‖ω̄(k)‖22 + γ∗Vσ0
(0), k ≥ 0. (39)

Taking the supremum on both sides of (39), it is seen that the
l2-l∞ performance constraint is ensured for allφ̄(θ) satisfying
Vσ0

(0) ≤ 1/(µN0̟)− δ and all non-zerōω(k) satisfying (7).
Finally, it remains to prove that, when̄ω(k) = 0, all

states of the error dynamics (9) converge exponentially to
the origin for all φ̄(θ) satisfyingVσ0

(0) ≤ 1/(µN0̟). When
ω̄(k) = 0, similar to the above argument, it is clear that

the constraints in (12) can also be guaranteed for allφ̄(θ)
satisfyingVσ0

(0) ≤ 1/(µN0̟). Moreover, when̄ω(k) = 0, the
inequality (33) becomesVσk

(k) ≤ µN0ϑkVσ(0)(0). Noting that
ϑ = µ1/Taρ ≤ 1 under the conditionTa ≥ T

∗
a , −lnµ/lnρ,

it can be concluded that the closed-loop error dynamics (9) is
locally exponentially stable and this completes the proof.

Remark 5:It is seen from the proof of Theorem 1 that,
different from continuous-time case [4], [7], the discrete-
time characteristics are extensively explored in this paper and
the important relationship (34) is subtly established. In this
case, the mixed-delay-dependent sector conditions (13) can
be effectively utilized even if we choose the rather simple
Lyapunov-like functional (15). As a result, the slack variables
Vα andWα (α = 1, 2, . . . ,M) are additionally introduced in
the conditions of Theorem 1 without bringing extra constraints.

Based on the Theorem 1, in the subsequent part, we will
consider the control design problem within an LMI framework.

Theorem 2: Let the scalars0 < ρ < 1, µ ≥ 1,
δ > 0, ϕα, ψα and the integerN0 ≥ 0 be given. Assume
that there existnN × nN matrices P̄α > 0, Q̄α > 0,
Z̄α > 0, X , diag{X1, X2, . . . , XN}, mN × nN matrices
Yα , diag{Y α

1 , Y
α
2 , . . . , Y

α
N , }, Ūα , [(Ūα

1 )
T (Ūα

2 )
T · · ·

(Ūα
N )T ]T , V̄α , [(V̄ α

1 )T (V̄ α
2 )T · · · (V̄ α

N )T ]T , W̄α ,

[(W̄α
1 )

T (W̄α
2 )

T · · · (W̄α
N )T ]T ,mN×mN diagonal matrices

T̄α , diag{T̄α
1 , T̄

α
2 , . . . , T̄

α
N} > 0, and the scalars̄εα1 > 0,

ε̄α2 > 0, ε̄α3 > 0 (α = 1, 2, . . . ,M ), γ > 0, 0 < ̟ ≤ 1/(µN0δ)
such that the following LMIs hold:





Σα ΥT
α ΨT

α

∗ Θα 0
∗ ∗ − 1

ν̄ Z̄α



 < 0, ∀ α ∈ M, (40)

P̄α ≤ µP̄β , Q̄α ≤ µQ̄β , Z̄α ≤ µZ̄β ,

∀ α, β ∈ M, α 6= β, (41)








ū2i(j)̟ ǫi ⊗ Y α
i(j) − Ūα

i(j) −V̄ α
i(j) −W̄α

i(j)

∗ P̄α 0 0
∗ ∗ ρτ−1Q̄α 0
∗ ∗ ∗ 1

ρν̂ Z̄α









> 0,

i = 1, 2, . . . , N, j = 1, 2, . . . ,m, ∀ α ∈ M, (42)
[

γI XT

X P̄α

]

> 0, ∀ α ∈ M (43)

where

Σα =





























Σα
11 0 Σα

13 0 Σα
15 0 ŪT

α 0 Σα
19

∗ Σα
22 0 Σα

24 0 0 V̄ T
α 0 Σα

29

∗ ∗ Σα
33 0 0 0 0 0 Σα

39

∗ ∗ ∗ Σα
44 0 0 0 0 Σα

49

∗ ∗ ∗ ∗ Σα
55 0 0 0 0

∗ ∗ ∗ ∗ ∗ Σα
66 W̄T

α 0 Σα
69

∗ ∗ ∗ ∗ ∗ ∗ Σα
77 0 Σα

79

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I ĒT

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σα
99





























and

Υα =















[

XT 0 0 0 0 0 0 0 0

XT 0 0 0 0 0 0 0 0

]

, Ĥ < 0,

[

XT 0 0 0 0 0 0 0 0
]

, Ĥ ≥ 0,
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Θα =











[

−Q̄α/τ̂ 0

0 ε̄α3 Ĥ
−1

]

, Ĥ < 0,

−Q̄α/τ̂ , Ĥ ≥ 0,

Ψα =
[

0 0 0 0 ε̄α3 I 0 0 0 0
]

with

Σα
11 =

{

−ρP̄α, Ĥ ≤ 0,

−ρP̄α − ϕα(X +XT ) + ϕ2
αε̄

α
3 Ĥ

−1, Ĥ > 0,

Σα
13 =X(F̄2 − F̄1)

T , Σα
15 = X(H̄1 + H̄2)

T ,

Σα
19 =X(C̄ + F̄1 + L̄α)

T + Y T
α B̄

T , Σα
22 = −ρτ Q̄α,

Σα
24 =Q̄α(Ḡ2 − Ḡ1)

T , Σα
29 = Q̄αḠ

T
1 , Σα

33 = −2ε̄α1 I,

Σα
39 =ǭα1 Ā

T , Σα
44 = −2ε̄α2 I, Σα

49 = ǭα2 D̄
T
1 , Σα

55 = −2ε̄α3 I,

Σα
66 =− Z̄α/ν̂, Σα

69 = Z̄αD̄
T
2 , Σα

77 = −2T̄α,

Σα
79 =− T̄αB̄

T , Σα
99 = −ψα(X +XT ) + ψ2

αP̄α.

Then, under the ADT switching withTa ≥ T
∗
a , −lnµ/lnρ,

there exists a switching controller of the form (8) with
Kα

i = Y α
i X

−T
i such that: 1) all error states are bounded for

all initial conditionsφ̄(θ) satisfyingVσ0
(0) ≤ 1/(µN0̟) − δ

and all non-zerōω(k) satisfying (7); 2)l2-l∞ performance
constraint‖e(k)‖2∞ ≤ γ∗‖ω̄(k)‖22+γ

∗Vσ0
(0) is ensured where

γ∗ = µN0γ; 3) whenω̄(k) = 0, the error dynamics (9) is ex-
ponentially stable for all̄φ(θ) satisfyingVσ0

(0) ≤ 1/(µN0̟).
Proof: First of all, it is seen from LMIs (40) thatΣα

99 =
−ψα(X+XT )+ψ2

αP̄α < 0, ∀ α ∈ M. Noting thatP̄α > 0, it
can be concluded that the matrixX is invertible if the LMIs in
Theorem 2 hold. Then, we can define the following variables:



















Pα , X−1P̄αX
−T , Qα , Q̄−1

α , Zα , Z̄−1
α ,

Kα , YαX
−T , Uα , ŪαX

−T , Vα , V̄αQ̄
−1
α ,

Wα , W̄αZ̄
−1
α , Tα , T̄−1

α , εα1 , (ε̄α1 )
−1,

εα2 , (ε̄α2 )
−1, εα3 , (ε̄α3 )

−1, α = 1, 2, . . . ,M.

(44)

Using Schur complement, it is clear that the LMIs (40) hold
if and only if the following matrix inequalities are true:

Σα +ΥT
αΘ

−1
α Υα + ν̄ΥT

α Z̄
−1
α Υα < 0, ∀ α ∈ M. (45)

Pre- and post-multiplying the matrix inequalities (45) by
diag{X−1, Qα, ε

α
1 I, ε

α
2 I, ε

α
3 I, Zα, Tα, I, I} and its transpose,

and using notations in (44) and the following facts:
{

−εα3XĤX
T ≤ −ϕα(X +XT ) + ϕ2

αε̄
α
3 Ĥ

−1,

−XP̄−1
α XT ≤ −ψα(X +XT ) + ψ2

αP̄α

(46)

whereĤ > 0, it is seen that the inequalities (16) are ensured.
On the other hand, performing the corresponding congru-

ence transformations to LMIs (41)-(43), respectively, it is seen
that the matrix inequalities (17)-(19) are easily obtained.

Remark 6:Note that the matrixĤ , H̄T
1 H̄2+H̄

T
2 H̄1 might

be positive definite, zero or negative definite. In obtaining
LMIs (40) of Theorem 2, three cases ofĤ are all considered.
Also, in order to reduce the potential conservatism, the adjust-
ing parametersϕα andψα (α = 1, 2, . . . ,M) are introduced
in Theorem 2. On the other hand, it is worth mentioning that
the pinning control strategy can be incorporated in this paper.
Without loss of generality, we can select and pin the firstľ

(1 < ľ < N) nodes of the network. In this case, the matrices
Yα, Ūα, V̄α andW̄α in Theorem 2 should be modified as

Yα , diag{Y α
1 , . . . , Y

α
ľ
, 0, . . . , 0},

Ūα , [(Ūα
1 )

T · · · (Ūα
ľ
)T 0 · · · 0]T ,

V̄α , [(V̄ α
1 )T · · · (V̄ α

ľ
)T 0 · · · 0]T ,

W̄α , [(W̄α
1 )T · · · (W̄α

ľ
)T 0 · · · 0]T .

Finally, let us tackle the optimization problems involved
in Theorem 2. For saturated control systems with external
disturbances, a basic problem is to measure the largest dis-
turbance tolerance capability such that all state trajectories
are bounded for admissible initial conditions and disturbances.
Here, the initial condition of the error dynamics (9) is selected
as φ̄(θ) = 0 (θ ≤ 0). In this case, the scalar̟ in (42) should
be replaced by1/(µN0δ). Then, the maximization problem of
the disturbance tolerance capability can be described as

Prob.1. max
P̄α,Q̄α,Z̄α,X,Yα,Ūα,V̄α,W̄α,T̄α,ε̄α

1
,ε̄α

2
,ε̄α

3
,δ
δ, s.t.,

LMIs (40)− (42) hold.

Once the maximum disturbance tolerance levelδM is
obtained, settingδ ≤ δM , the minimization of thel2-l∞
performance levelγ∗ = µN0γ > 0 can be written as

Prob.2. min
P̄α,Q̄α,Z̄α,X,Yα,Ūα,V̄α,W̄α,T̄α,ε̄α

1
,ε̄α

2
,ε̄α

3
,γ
γ, s.t.,

LMIs (40)− (43) hold.

For the case that̄ω(k) = 0, we can maximize the initial
condition set when designing the controller (8). In this context,
the rows and columns concerning the disturbances in LMIs
(40) should be removed. Moreover, without loss of generality,
the scalar̟ in LMIs (42) can be selected as̟ = 1/µN0.

In this paper, we represent the initial condition set as

Xr ,
{

φ̄(θ) : max
θ∈(−∞,0]

‖φ̄(θ)‖ ≤ r} (47)

wherer is a positive scalar to be maximized.
From the third inequality in (6), it is seen that

2h̄T (e(k))h̄(e(k))

≤2eT (k)(H̄1 + H̄2)
T h̄(e(k))− 2eT (k)H̄T

1 H̄2e(k). (48)

Note that the following fact:

2eT (k)(H̄1 + H̄2)
T h̄(e(k))

≤eT (k)(H̄1 + H̄2)
T (H̄1 + H̄2)e(k) + h̄T (e(k))h̄(e(k))

=eT (k)Ȟe(k) + 2eT (k)H̄T
1 H̄2e(k) + h̄T (e(k))h̄(e(k)).

(49)

Then, one can obtain from (48) that

h̄T (e(k))h̄(e(k)) ≤ eT (k)Ȟe(k). (50)

Moreover, it follows from (15), (44), (47) and (50) that

Vσ(0)(0) ≤max
α∈M

[

λM (X−1P̄αX
−T ) + κ1λM (Q̄−1

α )

+ κ2λM (Ȟ)λM (Z̄−1
α )

]

r2 , χr. (51)

Let us introduce the following matrix inequalities:

X−1P̄αX
−T ≤ pI, ∀ α ∈ M, (52)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: 
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Q̄−1
α ≤ qI, Z̄−1

α ≤ zI, ∀ α ∈ M (53)

wherep, q and z are some positive scalars. Noting that the
inequality (52) is equivalent toXT P̄−1

α X ≥ p−1I and using
the factXT P̄−1

α X ≥ ια(X +XT )− ι2αP̄α (ια is a scalar), it
is concluded that the inequality (52) can be guaranteed by

X +XT − P̄α ≥ p−1I, ∀ α ∈ M. (54)

Then, applying Schur complement to (53) and (54), it is clear
that (52) and (53) are ensured by the following LMIs:

[

pI I
I ια(X +XT )− ι2αP̄α

]

≥ 0, ∀ α ∈ M, (55)
[

qI I
I Q̄α

]

≥ 0,

[

zI I
I Z̄α

]

≥ 0, ∀ α ∈ M. (56)

From the above analysis, it is seen that the optimization
problem concerning the setXr can be represented as

Prob.3. min
P̄α,Q̄α,Z̄α,X,Yα,Ūα,V̄α,W̄α,T̄α,ε̄α

1
,ε̄α

2
,ε̄α

3
,p,q,z

ζ, s.t.,

LMIs (40)− (42) and (55)− (56) hold

whereζ = p+ κ1q+ κ2λM (Ȟ)q. Furthermore, if there exists
the optimization solution, the upper boundr of the initial
condition setXr can be obtained by the equationχr = 1.

Remark 7:In the sector conditions (13), by deleting the
delay-dependent terms, we can obtain thedelay-independent
sector conditions. If the same research is conducted by using
such delay-independent conditions, the corresponding opti-
mization problems are readily obtained by settingV̄α = 0
and W̄α = 0 (∀ α ∈ M) in LMIs (40) and (42), which are
referred to asProb.1’, Prob.2’ and Prob.3’, respectively, for
ease of reference. In addition, it is worth mentioning that,
for the case without switching topology and the case with one
type of time delay, the corresponding results can also be easily
obtained by removing some terms that are no longer relevant.

Remark 8:In this paper, the synchronization control prob-
lem is addressed for the first time, for dynamical networks
with both switching topology and time delays under actuator
saturations within a discrete-time framework. The main re-
sults established in Theorems 1 and 2 distinguish themselves
from existing literature in the following three aspects: 1) the
model considered is comprehensive that involves discrete-
time dynamics, switching topology, mixed-time-delays and
actuator saturations; 2) the proposed mixed-delay-dependent
sector conditions are new, which are particularly suitable
for analyzing large-scale networks; and 3) the proposedl2-
l∞ performance index is new, which is evaluated in a non-
weighted framework. Overall, our work represents the first
attempt to deal with thediscrete-time dynamical networks
with mixed delays and switching topology where the actuator
saturations are specifically considered in designing controllers.

Remark 9:In this paper, the techniques handling the time
delays are conservative to some extent. To reduce the potential
conservatism, we can select the following functional [5], [54]:

V̂σk
(k) =Vσk

(k)− eT (k)Pσk
e(k) + η̂T (k)P̂σk

η̂(k)

+

k−1
∑

l=k−τ

ρkle
T (l)S1

σk
e(l) +

k−τ−1
∑

l=k−τ

ρkle
T (l)S2

σk
e(l)

+

−1
∑

j=−τ

k−1
∑

l=k+j

ρkly
T (l)R1

σk
y(l)

+

−τ−1
∑

j=−τ

k−1
∑

l=k+j

ρkly
T (l)R2

σk
y(l)

+

+∞
∑

i=1

νi

i
∑

j=1

k−1
∑

l=k−j

ρklh̄
T (e(l))R3

σk
h̄(e(l)) (57)

whereVσk
(k) is given in (15),Pα > 0, P̂α > 0, S ĩ

α > 0,
Rj̃

α > 0 (α ∈ M, ĩ = 1, 2, j̃ = 1, 2, 3), ρkl , ρk−l−1, y(k) ,
e(k + 1) − e(k), and η̂(k) , [eT (k) η̃T (k)]T with η̃(k) ,
[
∑k−1

l=k−τ e
T (l)

∑k−τ−1
l=k−τ e

T (l)
∑+∞

j=1 νj
∑k−1

l=k−j h̄(e(l))
]T

.
Correspondingly, under the constraint conditions

∣

∣ui(j)(k)− vi(j)(k)− Lσk

i(j)η̃(k)
∣

∣ ≤ ūi(l),

i = 1, 2, . . . , N, j = 1, 2, . . . ,m, k ≥ 0 (58)

whereLα
i (α ∈ M) is anym × 3nN constant matrix, the

sector condition (14) can be updated as follows:

ψT (u(k))Tσk

[

ψ(u(k))− Uσk
e(k)− Vσk

e(k − τk)

−Wσk

+∞
∑

l=1

νlh̄(e(k − l))− Lσk
η̃(k)

]

≤ 0 (59)

whereLσk
, [(Lσk

1 )T (Lσk

2 )T · · · (Lσk

N )T ]T .
By further incorporating the recent developed inequalities

[5], [53], [54], the less conservative conditions can be readily
established. However, it is worth mentioning more computa-
tion burden will be involved in the obtained results.

Remark 10:When the coupling delay and the input delay
are further contained in the dynamical network (1), the closed-
loop error dynamics (9) can be revised as follows:

e(k + 1) = (C̄ + F̄1)e(k) + Ḡ1e(k − τk) + L̄σk
e(k − hk)

+ B̄Kσk
e(k − dk) + Āf̄(e(k)) + D̄1ḡ(e(k − τk))

+ D̄2

+∞
∑

l=1

νlh̄(e(k − l))−Bψ(u(k − dk)) + Ēω(k) (60)

where hk and dk are, respectively, the coupling delay and
the input delay. Note that the dynamical network (1) might
be not self-synchronizing. In this case, the analysis approach
proposed in this paper cannot be applicable. However, we can
establish the corresponding conditions by using the techniques
stated in Remark 9 to deal with the coupling and input delays.

IV. N UMERICAL EXAMPLES

Example 1:Consider the discrete-time delayed dynamical
network (1) consisting of three nodes (4), where

C =

[

−0.5 0.2
0 0.95

]

, f(x) =

[

tanh(0.2x1)
−tanh(0.75x2)

]

,

g(x) =h(x) =

[

0.2x1 − tanh(0.1x1)
0.1x2

]

, Γ = 0.4I,

A =B = D1 = D2 = E = I, ūi(j) = 10,

τk =3 + [1 + (−1)k]/2, νl = 2−l.
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For this example, we assume that the network topology
is switching among three modes. Correspondingly, the outer-
coupling matrices are given as follows:

L1 =





−0.2 0.1 0.1
0.1 −0.2 0.1
0.1 0.1 −0.2



 ,

L2 =





−0.1 0.1 0
0.1 −0.2 0.1
0 0.1 −0.1



 ,

L3 =





−0.3 0.1 0.2
0.1 −0.1 0
0.2 0 −0.2



 .

By calculations, it is checked thatτ = 3, τ = 4 and

F1 =

[

0 0
0 −0.75

]

, F2 =

[

0.2 0
0 0

]

,

G1 = H1 =

[

0.1 0
0 0.1

]

, G2 = H2 =

[

0.2 0
0 0.1

]

.

First, we address the case without external disturbances.
Lettingµ = 1.08, ϕα = 0.2, ψα = ια = 1 (α = 1, 2, 3), N0 =
1, and solving Prob.3 and Prob.3’, the maximum admissible
r of the initial condition setXr can be easily obtained for
different ρ, which are listed in Table I. In particular, when
ρ = 0.98, we have the following the controller gains:

K1
1 =

[

0.4991 −0.1260
−0.0888 −0.4921

]

, K1
2 =

[

0.5243 −0.1491
−0.0685 −0.5540

]

,

K1
3 =

[

0.5191 −0.1427
−0.0709 −0.5363

]

, K2
1 =

[

0.5329 −0.1496
−0.0623 −0.3441

]

,

K2
2 =

[

0.3643 −0.1636
−0.1210 −0.6686

]

, K2
3 =

[

0.6084 −0.1669
−0.0383 −0.4308

]

,

K3
1 =

[

0.3785 −0.1047
−0.1525 −0.5215

]

, K3
2 =

[

0.6384 −0.1901
−0.0391 −0.4848

]

,

K3
3 =

[

0.6275 −0.1785
−0.0683 −0.5432

]

.

Using the above controller gains, the synchronization errors
are plotted in Figs. 1-2. In the simulation, the initial conditions
are selected asφ1(θ) = [12 9]T , φ2(θ) = [17 30]T , φ3(θ) =
[22 48]T , φ(θ) = [15 25]T (θ ≤ 0). It is clear thatφ̄(θ) =
[−3 −16 2 5 7 23]T ∈ Xr. The switching signal is shown
in Fig. 3, whereTa ≥ T

∗
a = −ln1.08/ln0.98 = 3.8094 and

N0 = 1. It is seen from Figs. 1-2 that the synchronization can
be successfully achieved under the proposed control scheme.
Figs. 4-5 shows that the synchronization cannot be guaranteed
without imposing the controller. On the other hand, it is seen
from Table I that Prob.3 can provide a larger estimate of the
initial condition setXr than Prob.3’. Recalling that Prob.3’
is based on the delay-independent sector conditions, it can
be concluded that our proposed mixed-delay-dependent sector
conditions are really effective in reducing the conservatism.

Next, we will address the case that both the network and the
isolate node have disturbances. By solving Prob.1 and Prob.1’
with µ = 1.08, ϕα = 0.2, ψα = ια = 1 (α = 1, 2, 3) and
N0 = 1, the maximum disturbance tolerance levelsδM are
obtained for differentρ, which are given in Table II. From

Table II, it is seen that Prob.1 provides the larger disturbance
tolerance levels̄δM than Prob.1’, which verifies again that our
proposed mixed-delay-dependent sector conditions are more
effective. Whenρ = 0.98, letting δ = 200 ≤ δM and solving
Prob.2 withµ = 1.08, ϕα = 0.3, ψα = ια = 1 (α = 1, 2, 3)
andN0 = 1, we obtain the minimuml2-l∞ performance level
γ∗ = 3.1836 and the following controller gains:

K1
1 =

[

0.4734 −0.1903
−0.0190 −0.5114

]

, K1
2 =

[

0.4742 −0.1977
−0.0052 −0.5095

]

,

K1
3 =

[

0.4743 −0.2007
−0.0031 −0.5098

]

, K2
1 =

[

0.4447 −0.1943
−0.0127 −0.5390

]

,

K2
2 =

[

0.4818 −0.1976
−0.0043 −0.4980

]

, K2
3 =

[

0.4445 −0.1959
−0.0080 −0.5374

]

,

K3
1 =

[

0.5040 −0.1787
−0.0235 −0.4522

]

, K3
2 =

[

0.4664 −0.2101
0.0194 −0.5318

]

,

K3
3 =

[

0.5068 −0.2149
0.0251 −0.4920

]

.

Choose the external disturbances as follows:

ω1(k) =[4.5 4.5]T , ω2(k) = [3.6 0]T , 0 ≤ k ≤ 4,

ω3(k) =[3 − 0.6]T , ω(k) = [1.5 3]T , 0 ≤ k ≤ 4,

ω1(k) =ω2(k) = ω3(k) = ω(k) = [0 0]T , k ≥ 5.

Then, it follows thatω̄(k) = [3 1.5 2.1 − 3 1.5 − 3.6]T

(0 ≤ k ≤ 4), ω̄(k) = [0 0 0 0 0 0]T (k ≥ 5). It
is checked that

∑+∞

k=0 ω̄
T (k)ω̄(k) = 199.35 ≤ 200. Using

above controller gains and disturbances, and the switching
signal in Fig. 3, the synchronization errors are plotted in
Figs. 6-7 and the truncatedl2-l∞ gain γk is shown in Fig. 8
under zero initial conditions(φ1 = φ2 = φ3 = φ = 0).
In the simulation, the truncatedl2-l∞ gain γk is defined as
γk =

[

sup
0≤i≤k

eT (i)e(i)
]

/
[
∑k

i=0 ω̄
T (i)ω̄(i)

]

. From Figs. 6-8,

it is obvious that the synchronization can be achieved well
and the truncatedl2-l∞ gain γk is less thanγ∗ = 3.1836.

Example 2:Let us consider a coupled neural network with
mixed delays [36], [49], which can be described by the model
(1) with the following parameters:

C =

[

0.9 0
0 0.9

]

, A =

[

0.18 −0.015
−0.52 0.35

]

,

D1 =

[

−0.17 −0.012
−0.026 −0.25

]

, D2 =

[

0.06 0.015
−0.2 −0.01

]

,

B =I, E = 0, Γ = 0.3I, N = 3, ūi(j) = 15,

f(x) =g(x) = h(x) =
[

tanh(x1) tanh(x2)
]T
,

τk =9 + [1 + (−1)k]/2, νl = e−0.5l/2.

Here, the network topology is assumed to be switching
among three modes, where the outer-coupling matricesL1 and
L2 are the same as in Example 1 andL3 is given as follows:

L3 =





−0.1 0 0.1
0 −0.1 0.1
0.1 0.1 −0.2



 .

It is seen thatτ = 9, τ = 10 and the nonlinear functions
f(x) = g(x) = h(x) satisfy the conditions in (3) with

F1 = G1 = H1 = 0, F2 = G2 = H2 = I.
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TABLE I
MAXIMUM ADMISSIBLE r OF THE SETXr FOR DIFFERENTρ

ρ 0.95 0.96 0.97 0.98 0.99

Prob.3 26.0860 27.2126 28.3983 29.6533 30.9877
Prob.3′ 21.5334 22.5339 23.5960 24.7262 25.9317

Improvements 21.14% 20.76% 20.35% 19.93% 19.50%

TABLE II
MA XIMUM DISTURBANCE TOLERANCE LEVELSδM FOR DIFFERENTρ

ρ 0.95 0.96 0.97 0.98 0.99

Prob.1 179.862 193.601 207.011 220.271 233.618
Prob.1′ 131.432 142.586 153.431 164.094 174.796

Improvements 36.85% 35.78% 34.92% 34.23% 33.65%

For this example, Fig. 9 shows that the chaotic behavior
occurs for the unforced isolate node with the initial condition
φ(θ) = [0.4 0.5]T (θ ≤ 0). Moreover, it can be verified that
the open-loop error dynamics is not stable, which means that
the synchronization cannot be ensured for the coupled neural
network without using the controller. Choosingµ = 1.06, ρ =
0.98, ψα = ια = 1 (α = 1, 2, 3), N0 = 1, and solving Prob.3,
one obtains the maximum admissible boundr = 9.5711 of the
initial condition setXr and the following controller gains:

K1
1 =

[

−0.9937 0.0915
0.2513 −1.0058

]

,

K1
2 =K1

3 =

[

−1.0016 0.0821
0.2524 −1.0088

]

,

K2
1 =K3

1 =

[

−0.9720 0.1098
0.2555 −1.0239

]

,

K2
2 =K3

3 =

[

−1.1125 −0.0104
0.2529 −1.0135

]

,

K2
3 =K3

2 =

[

−0.9717 0.1099
0.2556 −1.0239

]

.

Choosingφ1(θ) = [3.4 − 4.5]T , φ2(θ) = [2.4 − 2.5]T ,
φ3(θ) = [−1.6 6.5]T , φ(θ) = [0.4 0.5]T , θ ∈ (−∞, 0],
we have φ̄(θ) = [3 − 5 2 − 3 − 2 6]T ∈ Xr.
Using the above controller gains and initial conditions, the
state evolutions of the controlled coupled neural network and
the unforced isolate neural network are plotted Figs. 10-11.
In the simulation, the switching signal is given in Fig. 12,
whereTa ≥ T

∗
a = −ln1.06/ln0.98 = 2.8842. It is seen from

Figs. 10-11 that our proposed control scheme performs well.

V. CONCLUSIONS

In this paper, we have addressed the synchronization control
problem for a class of discrete-time delayed dynamical net-
works with switching topology under actuator saturations. To
alleviate the saturation effect effectively, novel mixed-delay-
dependent sector conditions have been proposed. By further
incorporating the piecewise Lyapunov-like functional and the
ADT switching, a sufficient condition has been obtained under
which the error dynamics has some desirable features includ-
ing the boundedness of error states,l2-l∞ performance and
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Fig. 2. The state evolutions of the controlled error dynamics.

 Time (k)
0 5 10 15 20 25 30 35

 S
w

it
ch

in
g

 S
ig

n
al

 σ
k

0.5

1

1.5

2

2.5

3

3.5

Fig. 3. The switching signalσk of the network topology.

the exponential stability. Then, the explicit characterization of
controller gains has been proposed by solving of a set of LMIs.
Subsequently, three corresponding optimization problems have
been proposed. Finally, two examples have been given to
illustrate the feasibility and benefits of our obtained results.

On the other hand, it is worth mentioning that the tech-
nique of analyzing the switched dynamics in this paper is
somewhat conservative. As the further work, we would like
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Fig. 4. The state evolutions of the uncontrolled dynamical
network and the unforced isolate node.
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Fig. 6. The state evolutions of the controlled error dynamics.

to establish some more effective results by incorporating the
mode-dependent ADT switching [60] and the persistent dwell-
time switching [55]. Also, it is more interesting to design the
state-dependent switching rules to ensure the synchronization
of dynamical networks [59]. In fact, we can establish the
corresponding synchronization criteria by designing the state-
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Fig. 9. Chaotic behavior of the unforced isolate node.

dependent switching lawσ(k) = argmin{Vα(k), α ∈ M}
[57]. In addition, it should be pointed out that our proposed
results can be easily extended to the case that the controller
switching and the topology switching are not consistent.
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Fig. 10. The state evolutions of the controlled dynamical
network and the unforced isolate node.
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Birkhäuser, 2003.

[19] Y. Li, Z. Lin, Stability and Performance of Control Systems with
Actuator Saturation. Basel, Switzerland: Birkḧauser, 2018.
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