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Abstract

We propose a new generic type of stochastic neurons, called q-neurons, that considers activation
functions based on Jackson’s q-derivatives, with stochastic parameters q. Our generalization of neural
network architectures with q-neurons is shown to be both scalable and very easy to implement. We
demonstrate experimentally consistently improved performances over state-of-the-art standard activation
functions, both on training and testing loss functions.

1 Introduction

The vanilla method to train a Deep Neural Network (DNN) is to use the Stochastic Gradient Descent (SGD)
method (a first-order local optimization technique). The gradient of the DNN loss function, represented as
a directed computational graph, is calculated using the efficient backpropagation algorithm relying on the
chain rule of derivatives (a particular case of automatic differentiation).

The ordinary derivative calculus can be encompassed into a more general q-calculus [1, 2] by defining the
Jackson’s q-derivative (and gradient) as follows:

Dqf(x) :=
f(x)− f(qx)

(1− q)x
, q 6= 1, x 6= 0. (1)

The q-calculus generalizes the ordinary Leibniz gradient (obtained as a limit case when q → 1 or when x→
0) but does not enjoy a generic chain rule property. It can further be extended to the (p, q)-derivative [8, 3]
defined as follows:

Dp,qf(x) :=
f(px)− f(qx)

(p− q)x
= Dq,pf(x), p 6= q, x 6= 0. (2)

which encompasses the q-gradient as D1,qf(x) = Dq,1f(x) = Dqf(x).
The two main advantages of q-calculus are

1. To bypass the calculations of limits, and

2. To consider q as a stochastic parameter.

We refer to the textbook [2] for an in-depth explanation of q-calculus. Appendix A recalls the basic rules
and properties of the generic (p, q)-calculus [3] that further generalizes the q-calculus.
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To the best of our knowledge, the q-derivative operators have seldom been considered in the machine
learning community [11]. We refer to [4] for some encouraging preliminary experimental optimization results
on global optimization tasks.

In this paper, we introduce a meta-family of neuron activation functions based on standard activation
functions (e.g., sigmoid, softplus, ReLU, ELU). We refer to them as q-activations. The q-activation is a
stochastic activation function built on top of any given activation function f . q-Activation is very easy
to implement based on state-of-the-art Auto-Differentiation (AD) frameworks while consistently producing
better performance. Based on our experiments, one should almost always use q-activation instead of its
deterministic counterpart. In the remainder, we define q-neurons as stochastic neurons equipped with q-
activations.

Our main contributions are summarized as follows:

• The generic q-activation and an analysis of its basic properties.

• An empirical study that demonstrates that the q-activation can reduce both training and testing errors.

• A novel connection and sound application of (stochastic) q-calculus in machine learning.

2 Neurons with q-activation functions

Given any activation function f : R → R, we construct its corresponding “quantum” version, also called
q-activation function, as

gq(x) :=
f(x)− f(qx)

1− q
= (Dqf(x))x, (3)

where q is a real-valued random variable. To see the relationship between gq(x) and f(x), let us observe
that we have the following asymptotic properties:

Proposition 1. Assume f(x) is smooth and the expectation of q is E(q) = 1. Then ∀x, we have

lim
Var(q)→0

gq(x) = f ′(x)x.

lim
Var(q)→0

g′q(x) = f ′(x) + f ′′(x)x,

where E(·) denotes the expectation, and Var(·) denotes the variance.

Proof.

lim
Var(q)→0

gq(x) = lim
Var(q)→0

f(x)− f(qx)

x− qx
x = lim

qx→x

f(x)− f(qx)

x− qx
x = f ′(x)x.

lim
Var(q)→0

g′q(x) = lim
Var(q)→0

f ′(x)− qf ′(qx)

1− q
= lim

Var(q)→0

f ′(x)− qf ′(x) + qf ′(x)− qf ′(qx)

1− q

= f ′(x) + lim
Var(q)→0

qf ′(x)− qf ′(qx)

1− q
= f ′(x) + lim

q→1

f ′(x)− f ′(qx)

x− qx
qx = f ′(x) + f ′′(x)x.

Notice that as Var(q) → 0, the limit of gq(x) is not f(x) but f ′(x)x. Thus informally speaking, the
gradient of gq(x) carries second-order information of f(x).

We further have the following property:

Proposition 2. We have for p, q 6= 1:

Dp(gq(x)) =
1

1− p
Dqf(x)− p

1− p
Dp,pqf(x). (4)
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Table 1: Common activation functions f(x) with their corresponding limit cases limVar(q)→0 gq(x) = f ′(x)x.

f(x) sigm(x) tanh(x) relu(x) softplus(x) elu(x)

f ′(x)x sigm(x)(1− sigm(x))x sech2(x)x relu(x) sigm(x)x

{
x x ≥ 0
α exp(x)x x < 0

Proof.

Dp(gq(x)) =
gq(x)− gq(px)

(1− p)x
=

(Dqf(x))x− (Dqf(px)) px

(1− p)x

=
1

1− p
Dqf(x)− p

1− p
Dqf(px). (5)

Since Dqf(px) = f(px)−f(pqx)
px−pqx = f(px)−f(pqx)

(p−pq)x = Dp,pqf(x), eq. (4) is straightforward.

By proposition 2, the p-derivative of the q-activation gq(x) agrees with the original activation function f .
See table 1 for a list of activation functions with their corresponding functions f ′(x)x, where

sigm(x) = 1/(1 + exp(−x)),

is the sigmoid function,
softplus(x) = log(1 + exp(x)),

is the softplus function,

relu(x) =

{
x if x ≥ 0
0 otherwise

is the Rectified Linear Unit (ReLU) [5], and

elu(x) =

{
x if x ≥ 0
α(exp(x)− 1) otherwise

denotes the Exponential Linear Unit (ELU) [6].
A common choice for the random variable q that is used in our experiments is

q = 1 + (2[ε ≥ 0]− 1) (λ|ε|+ φ) , (6)

where ε ∼ N(0, 1) follows the standard Gaussian distribution, [·] denotes the Iverson bracket (meaning 1 if
the proposition is satisfied, and 0 otherwise), λ > 0 is a scale parameter of q, and φ = 10−3 is the smallest
absolute value of q so as to avoid division by zero. See fig. 1 for the density function plots of q defined on
(−∞,−φ] ∪ [φ,∞]

To implement q-neurons, one only need to tune the hyper-parameter λ. It can either be fixed to a small
value, e.g. 0.02 or 0.05 during learning, or be annealed from an initial value λ0. Such an annealing scheme
can be set to

λ =
λ0

1 + γ(T − 1)
, (7)

where T = 1, 2, · · · is the index of the current epoch, and γ is a decaying rate parameter. This parameter γ
can be empirically fixed based on the total number of epochs: For example, in our experiments we train 100
epochs and apply γ = 0.5, so that in the final epochs λ is a same value (around 0.02λ0). We will investigate
both of those two cases in our experiments.

Let us stress out that deep learning architectures based on stochastic q-neurons are scalable and easy
to implement. There is no additional free parameter imposed. The computational overhead of gq(x) as
compared to f(x) involves sampling one Gaussian random variable, and then calling f(x) two times and
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λ0λ0

q1− φ 1 + φ

λ1λ1

q1− φ 1 + φ

Figure 1: The probability density function of stochastic variable q (zero-avoiding) used when calculating
q-derivatives.

computing gq(x) according to eq. (3). In our Python implementation, the core implementation of q-neuron
is only in three lines of codes (see A.3).

Alternative approaches to inject stochasticity into neural network training include dropout [13], gradi-
ent noise [12], etc. Both q-neuron and dropout modify the forward pass of the neural network. In the
experimental section we will investigate the effect of q-neurons with or without dropout.

3 Experiments

We carried experiments on classifying MNIST digits1 and CIFAR10 images2 using Convolutional Neural
Networks (CNNs) and Multi-Layer Perceptrons (MLPs). Our purpose is not to beat state-of-the-art records
but to investigate the effect of applying q-neuron and its hyper-parameter sensitivity. We summarize the
neural network architectures as follows:

• The MNIST-CNN architecture is given as follows: 2D convolution with 3×3 kernel and 32 features; (q-
)activation; batch normalization; 2D convolution with 3×3 kernel and 32 features; (q-)activation; 2×2
max-pooling; batch normalization; 2D convolution with 3 × 3 kernel and 64 features; (q-)activation;
batch normalization; 2D convolution with 3 × 3 kernel and 64 features; (q-)activation; 2 × 2 max-
pooling; flatten into 1D vector; batch normalization; dense layer of output size 512; (q-)activation;
batch normalization; (optional) dropout layer with drop probability 0.2; dense layer of output size 10;
soft-max activation.

• The MNIST-MLP architecture is: dense layer of output size 256; (q-)activation; batch normalization;
(optional) dropout layer with drop probability 0.2; dense layer of output size 256; (q-)activation; batch
normalization; (optional) dropout layer with drop probability 0.2; dense layer of output size 10; soft-
max activation.

• The CIFAR-CNN architecture is: 2D convolution with 3× 3 kernel and 32 features; (q-)activation; 2D
convolution with 3 × 3 kernel and 32 features; (q-)activation; 2 × 2 max-pooling; (optional) dropout
layer with drop probability 0.2; 2D convolution with 3 × 3 kernel and 64 features; (q-)activation; 2D
convolution with 3 × 3 kernel and 64 features; (q-)activation; 2 × 2 max-pooling; (optional) dropout
layer with drop probability 0.2; flatten into 1D vector; dense layer of output size 512; (q-)activation;
(optional) dropout layer with drop probability 0.1; dense layer of output size 10; soft-max activation.

We use the cross-entropy as the loss function. The model is trained for 100 epochs based on a stochastic
gradient descent optimizer with a mini-batch size of 64 (MNIST) or 32 (CIFAR) and a learning rate of 0.05

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/~kriz/cifar.html
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(MNIST) or 0.01 (CIFAR) without momentum. The learning rate is multiplied by (1 − 10−6) after each
mini-batch update. We compare tanh, relu, elu, softplus activations with their q-counterparts. We either fix
λ0 = 0.02 or 0.1, or anneal from λ0 ∈ {1, 5, 9} with γ = 0.5. The learning curves are shown in figs. 3 to 5,
where the training curves show the sample-average cross-entropy values evaluated on the training set after
each epoch, and the testing curves are classification accuracy. In all figures, each training or testing curve is
an average over 10 independent runs.

For q-activation, c means the λ parameter is fixed (’c’onstant); a means the λ is ’a’nnealed based on
eq. (7). For example, “c0.02” means λ = 0.02 throughout the training process, while “a1” means that λ is
annealed from λ0 = 1.

We see that in almost all cases, q-activation can consistently improve learning, in the sense that both
training and testing errors are reduced. This implies that q-neurons can get to a better local optimum as
compared to the corresponding deterministic neurons. The exception worth noting is q-relu, which cannot
improve over relu activation. This is because gq(x) is very similar to the original f(x) for (piece-wisely)
linear functions. By proposition 1, f ′′(x) = 0 implies that the gradient of gq(x) and f(x) are similar for
small Var(q). One is advised to use q-neurons only with curved activation functions such as elu, tanh, etc.

We also observe that the benefits of q-neurons are not sensitive to hyper-parameter selection. In almost
all cases, q-neuron with λ simply fixed to 0.02/0.1 can bring better generalization performance, while an
annealing scheme can further improve the score. Setting λ too large may lead to under-fit. One can benefit
from q-neurons either with or without dropout.

On the MNIST dataset, the best performance with error rate 0.35% (99.65% accuracy) is achieved by
the CNN architecture with q-elu and q-tanh. On the CIFAR10 dataset, the best performance of the CNN
with accuracy 82.9% is achieved by q-elu.

4 Conclusion

We proposed the stochastic q-neurons based on converting activation functions into corresponding stochastic
q-activation functions using Jackson’s q-calculus. We found experimentally that q-neurons can consistently
(although slightly) improve the generalization performance, and can goes deeper in the error surface.
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A Brief overview of the (p, q)-differential calculus

For p, q ∈ R, p 6= q, define the (p, q)-differential:

dp,qf(x) := f(qx)− f(px).

In particular, dp,qx = (q − p)x.
The (p, q)-derivative is then obtained as:

Dp,qf(x) :=
dp,qf(x)

dp,qx
=
f(qx)− f(px)

(q − p)x
.

We have Dp,qf(x) = Dq,pf(x).
Consider a real-valued scalar function f(x). The differential operator D consists in taking the derivative:

Df(x) = d
dx = f ′(x).

The (p, q)-differential operator Dp,q for two distinct scalars p and q is defined by taking the following
finite difference ratio:

Dp,qf(x) :=

{
f(px)−f(qx)

(p−q)x , x 6= 0 and p 6= q,

f ′(0), x = 0 or p = q.
(8)

We have Dp,qf(x) = Dq,pf(x).
The (p, q)-derivative is an extension of Jackson’s q-derivative [1, 2, 7, 8] historically introduced in 1909.

Notice that this finite difference differential operator that does not require to compute limits (a useful
property for derivative-free optimization), and moreover can be applied even to nondifferentiable (e.g., ReLU)
or discontinuous functions.

An important property of the (p, q)-derivative is that it generalizes the ordinary derivative:

Lemma 3. For a twice continuously differentiable function f , we have limp→qDp,qf(x) = 1
qDf(qx) =

1
q f
′(qx) and limx→0Dp,qf(x) = Df(0) = f ′(0).

Proof. Let us write the first-order Taylor expansion of f with exact Lagrange remainder for a twice contin-
uously differentiable function f :

f(qx) = f(px) + (qx− px)f ′(px) +
1

2
(qx− px)2f ′′(ε),

for ε ∈ (min{px, qx},max{px, qx}).
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It follows that

Dp,qf(x) =
f(px)− f(qx)

x(p− q)
=
f(qx)− f(px)

x(q − p)
, (9)

= f ′(px) +
1

2
x(q − p)f ′′(ε). (10)

Thus, whenever p = q we have Dp,qf(x) = f ′(px) = 1
pDf(px), and whenever x = 0, we have Dp,qf(0) =

f ′(0). In particular, when p = 1, we have Dqf(x) = f ′(x) when q = 1 or when x = 0.

Let us denote Dq the q-differential operator Dq := D1,q = Dq,1.
Since BF (qx : px) := f(qx) − f(px) − (qx − px)f ′(px) = 1

2 (qx − px)2f ′′(ε), we can further express the
(p, q)-differential operator using Bregman divergences [9] as follows:

Corollary 4. We have:

Dp,qf(x) =
f(px)− f(qx)

x(p− q)
= f ′(px) +

BF (qx : px)

x(p− q)
,

=
f(qx)− f(px)

x(q − p)
= f ′(qx) +

BF (px : qx)

x(q − p)
.

A.1 Leibniz (p, q)-rules of differentiation

The following (p, q)-Leibniz rules hold:

• Sum rule (linear operator):

Dp,q(f(x) + λg(x)) = Dp,qf(x) + λDp,qg(x)

• Product rule:

Dp,q(f(x)g(x)) = f(px) +Dp,qg(x) + g(qx)Dp,qf(x),

= f(qx) +Dp,qg(x) + g(px)Dp,qf(x).

• Ratio rule:

Dp,q(f(x)/g(x)) =
g(qx)Dp,qf(x)− f(qx)Dp,qg(x)

g(px)g(qx)
,

=
g(px)Dp,qf(x)− f(px)Dp,qg(x)

g(px)g(qx)
.

A.2 The (p, q)-gradient operator

For a multivariate function F (x) = F (x1, . . . , xd) with x = (x1, . . . , xd), let us define the first-order partial
derivatives for i ∈ [d] and pi 6= qi,

Dp,q,xiF (x) :=

{
F (x1,...,pixi,...,xn)−F (x1,...,qixi,...,xn)

(pi−qi)xi
xi 6= 0,

∂F (x)
∂xi

xi = 0

=

{
F (x+(pi−1)ei)−F (x+(qi−1)ei)

(pi−qi)xi
xi 6= 0,

∂F (x)
∂xi

xi = 0
,

where ei is a one-hot vector with the i-th coordinate at one, and all other coordinates at zero.
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The generalization of the (p, q)-gradient [10] follows by taking d-dimensional vectors for p = (p1, . . . , pd)
and q = (q1, . . . , qd):

∇p,qF (x) :=

 Dp1,q1,x1F (x)
...

Dpd,qd,xd
F (x)


The (p, q)-gradient is a linear operator: ∇p,q(aF (x)+ bG(x)) = a∇p,qF (x)+ b∇p,qG(x) for any constants

a and b. When p, q → 1, ∇p,q → ∇: That is, the (p, q)-gradient operator extends the ordinary gradient
operator.

A.3 Code snippet in Python

We can easily implement q-neurons based on the following reference code, which is based on a given activation
function activate. Note, q has the same shape as x. One can fix eps= 10−3 and only has to tune the
hyper-parameter lambda.

def qactivate( x, lambda, eps ):

q = random_normal( shape=shape(x) )

q = ( 2*( q>=0 )-1 ) * ( lambda * abs(q) + eps )

return ( activate( x * (1+q) ) - activate( x ) ) / q

8
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Figure 2: The density function of q-neurons with q sampled according to eq. (6) for different values of λ.
The activation is roughly a deterministic function f ′(x)x for small λ as shown in table 1. The activation is
random for large λ. Darker color indicates higher probability density.
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Figure 3: Training loss (descending curves) and testing accuracy (ascending curves) of a CNN on the MNIST
dataset, using different activation functions (from top to bottom), with (left) or without (right) dropout.
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Figure 4: Training loss (descending curves) and testing accuracy (ascending curves) of a MLP on MNIST.
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Figure 5: Training loss (descending curves) and testing accuracy (ascending curves) of a CNN on CIFAR10.
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