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Policy Iteration Approach to the Infinite Horizon
Average Optimal Control of Probabilistic

Boolean Networks
Yuhu Wu , Member, IEEE, Yuqian Guo , Member, IEEE, and Mitsuru Toyoda , Member, IEEE

Abstract— This article studies the optimal control of
probabilistic Boolean control networks (PBCNs) with the infinite
horizon average cost criterion. By resorting to the semitensor
product (STP) of matrices, a nested optimality equation for
the optimal control problem of PBCNs is proposed. The Lau-
rent series expression technique and the Jordan decomposition
method derive a novel policy iteration-type algorithm, where
finite iteration steps can provide the optimal state feedback
law, which is presented. Finally, the intervention problem of the
probabilistic Ara operon in E. coil, as a biological application,
is solved to demonstrate the effectiveness and feasibility of the
proposed theoretical approach and algorithms.

Index Terms— Boolean networks (BNs), infinite horizon prob-
lem, logical networks, optimal control, probabilistic BNs (PBNs),
semitensor product (STP) of matrix.

I. INTRODUCTION

BOOLEAN networks (BNs), as a special kind of dis-
crete (logical) dynamical models with Boolean-valued

variables, were first proposed by a theoretical biologist Kauff-
man [1] in 1969 to model and analyze the complex biologi-
cal behavior in biological systems, including gene regularity
networks [2]–[4]. Since BNs modeling may be the simplest
representation of the relevant biological and physical concepts
for some finite-state systems, BNs have been also used in
various theoretical and practical applications, such as fault
detection in logic circuits [5], [6], game theory [7], [8],
combustion engines [9], and many other areas.

After introducing the semitensor product (STP) of matrix
[10] to BNs, as an effective approach, some fundamental
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concepts and properties, such as stability, stabilization, con-
trollability, observability, synchronization, and sampled-data
control, pinning control of Boolean or multivalued logical
networks have been well discussed and exploited [11]–[18],
in recent years.

To deal with randomness of gene regulatory networks [19],
probabilistic BNs (PBNs) were proposed [20]. As discussed in
[20]–[22], the PBN model can well capture the key qualitative
features of gene regularity network with inherent biological
uncertainly, where, at each time step, the updating rule of
each gene is randomly selected from among several possible
regularity rules.

The dynamical model inference and network identification
for PBNs have great practical significance in bioinformat-
ics since the inference and reconstruction of gene regula-
tory networks are key issues for genomic signal processing
[23], [24]. An effective method for calculating the Boolean
functions, and the corresponding selecting probabilities of a
Boolean function in the PBN, based on network structure
and steady-state probabilities, was designed in [25]. Recently,
a tractable learning algorithm for identification of large-scale
PBNs was introduced in [26], in the framework of stochastic
conjunctive normal form, an equivalent representation for the
PBN.

In recent years, the optimal control and optimization prob-
lem for Boolean control networks (BCNs) have received
considerable attention [27]–[29]. A special finite horizon
Mayer-type optimization problem for BCNs was discussed by
Laschov and Margaliot [30]. In addition, they also investi-
gated the minimum-time control of BCNs [31]. Finite horizon
optimal control problems for PBNs and stochastic logical
networks were investigated in [28] and [32], respectively. Inte-
ger programming algorithm [29] and polynomial optimization
algorithm for the finite horizon optimal control problem of a
PBN were developed by Kobayashi and Hiraishi [33] to reduce
the computational complexity.

In general, analyzing the long (infinite) horizon criterion
and designing the corresponding optimal controller are more
challenging issues, comparing with the finite horizon problem.
The basic criteria for infinite horizon problem of BCNs or
PBCNs are twofold: the discounted and average cost cri-
teria. Pal et al. [34] first investigated the infinite horizon
discounted cost problem for PBNs and obtained theoretical
results were successfully applied in intervention problem on
melanoma gene-expression network. In addition, an improved
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dynamical programming, which provides a finite time con-
vergence algorithm for the discounted infinite optimization
problem of PBCNs, was developed in [35]. Furthermore, a new
policy iteration-type algorithm, which solves the discounted
infinite horizon problems of PBCNs, was derived in [36],
and it has been successfully utilized to design feedback law
for the residual gas fraction control in internal combustion
engine [37].

Applying topology properties of trajectories and the graph
theory, the infinite horizon problem for deterministic BCNs
was first addressed by Zhao et al. [38]. Using a recursive
algorithm, Fornasini and Valcher solved the average infinite
horizon optimization problem for deterministic BCNs as the
limit of the corresponding finite horizon optimization one in
[39]. The policy iteration approach for the infinite horizon
optimal control for deterministic BCNs was also given in
[40]. By introducing the optimal input-state transfer graph,
Zhu et al. [41] successfully reduced both computational com-
plexity and space complexity in finding optimal controllers for
deterministic BCNs.

Pal et al. [34] first investigated the optimal control problem
for PCBN, and a policy iteration algorithm was deduced
under the assumption that the PBCN is ergodic (or recurrent),
which requires that the transition matrix of PBCN for every
stationary policy consists of a single recurrent class. As men-
tioned in [34], the context-sensitive PBN satisfies the ergodic
assumption, and accordingly, the policy iteration algorithm
given in [34] can work effectively for the context-sensitive
PBN. However, it was found that the optimal criteria given by
[34, Th. 5] and the corresponding policy iteration algorithm
are no longer applicable for the general PBCN (please see
Example 13). As far as the authors know, there are still no
works reported solving the general nonergodic case, which is
the main motivation of this work. The results of this work can
be regarded as a generalization to probabilistic BCNs (PBCNs)
of the results that we obtained in [40] for deterministic BCNs.
This generalization is nontrivial because when designing the
optimal controller for PBCNs, one must to carefully address
the conditional transition probabilities resulting from selection
of update the Boolean functions, especially in the nonergodic
case.

The main contributions of this work can be briefly summed
up in the following aspects.

1) By applying the technique of the STP, a nested type
optimality criterion (see Theorem 10) for the infinite
horizon problem of PBCNs with average cost is derived.
Compared with the optimality criterion given in [34],
which requires the ergodic assumption, the nested opti-
mality criterion proposed in this work can applied to
arbitrary PBCN without any requirement (please see
Example 13).

2) By resorting to the Jordan decomposition technique (see
Proposition 14) and the Laurent type series expression
(see Lemma 17), a policy iteration algorithm (Algo-
rithm 1) is deduced. Compared with the value iteration
algorithm as given in [39], the theoretical analysis on
the proposed iteration algorithm guarantees that finite

TABLE I

NOTATIONS

step iterations deduce a stationary state feedback optimal
policy (see Remark 20).

This article is organized as follows: An equivalent matrix
expression of the model considered in this work is presented
in Section III, after introducing the problem formulation
in Section II. The main results of this article are derived in
Sections IV and V. Then, the probabilistic intervention prob-
lem of Ara operon in E. coil, as a practical biological appli-
cation, is solved by the proposed algorithm in Section VI.
Finally, brief conclusions are provided in Section VII. For
clarity of presentation, some technical proofs are presented
in the Appendix.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section summarizes basic concepts about the PBNs and
the average optimal control problem for PBNs.

A. Definitions and Notations

The notations used in this article are listed in Table I. For
statement ease, the following definitions will be used.

1) A partial order relation a � b means [a]i ≤ [b]i,∀i ∈
[1, s]. Furthermore, a � b means a � b and [a]i0 �= [b]i0

for some i0.
2) A matrix A ∈ RM×N is called a logical matrix if its

columns Col(A) ⊂ �M . Then, any logical matrix A
has the form A = [δi1

M , δi2
M , . . . , δiN

M ], and briefly defined
as A = δM [i1, i2, . . . , iN ]. The set of M × N logical
matrices is denoted by LM×N .

3) The STP [10] of A ∈ Rm×n and B ∈ Rp×q , denoted as
A � B , is defined as

A � B := (A ⊗ Is/n)(B ⊗ Is/p) (1)

where s is the least common multiple of n and p, and ⊗
is the Kronecker product. The symbol � may be omitted
without causing confusion.

4) The power-reducing matrix is given by Mn
pr =

diag[δ1
2n , δ2

2n , . . . , δ2n

2n ], i.e., a block diagonal matrix with
diagonal elements δ1

2n , . . . , δ2n

2n . It deduces an equation
x � x = Mn

prx , for any x ∈ �2n .
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B. Boolean Network

A BN, which is a directed network containing
binary (Boolean) logical-valued state nodes, can be
represented by a set of nodes V = {x1, x2, . . . , xn} and
a set of Boolean functions F = { f1, f2, . . . , fn}, where
the state xi(t) of node xi , i ∈ [1, n] belongs to D at
each time t . The update rule of xi(t) is determined by the
Boolean function fi (xi1 , xi2 , . . . , xik ) with k specified input
nodes, and the value of fi is assigned to next state of
node xi . In general, k could be varying as a function of
i , but, without loss of generality, we assume that for each
xi , the corresponding update rule function fi : Dn → D,
by allowing unnecessary nodes in update rule function fi

to be fictitious. For an update rule function f , the logical
node xi is fictitious if f (x1, . . . , xi−1, 0, xi+1, . . . , xn) =
f (x1, . . . , xi−1, 1, xi+1, . . . , xn) for all (x1, . . . , xi−1,
xi+1, . . . , xn) ∈ Dn−1. Hence, the dynamics of a BN of
V and F can be described as⎧⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎩

x1(t + 1) = f1(x1(t), . . . , xn(t))

x2(t + 1) = f2(x1(t), . . . , xn(t))
...

xn(t + 1) = fn(x1(t), . . . , xn(t)).

C. Probabilistic Boolean Control Network

A PBCN is a directed network containing Boolean
logical-valued state nodes V = {x1, . . . , xn} and input control
nodes U = {u1, . . . , um}. In a PBCN, the update rule of
state node xi is regulated by one Boolean function, which
is randomly selected from a set of Boolean functions. More
precisely, define a collection of Boolean function sets F and
the corresponding collection of probability set ϒ as follows.

1) F = {F1,F2, . . . ,Fn}, with Fi = { f j
i }c(i)

j=1, where c(i)
is the number of possible update logical rules for node
xi , and f j

i : Dn × Dm → D( j = 1, . . . , c(i)) are
possible update logical functions for node xi .

2) ϒ = {ϒ1, ϒ2, . . . , ϒn}, with ϒi = {r j
i }c(i)

j=1, where r j
i

is the probability that the logical function f j
i will be

chosen as the update law for node xi . Note that

c(i)�
j=1

r j
i = 1.

In the summary, the dynamics of a PBCN with n state nodes
V = {x1, . . . , xn} and m input nodes U = {u1, . . . , um} can
be described as⎧⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎩

x1(t + 1) = f1(x1(t), . . . ,xn(t), u1(t), . . . ,um(t))

x2(t + 1) = f2(x1(t), . . . , xn(t), u1(t), . . . , um(t))
...

xn(t + 1) = fn(x1(t), . . . ,xn(t), u1(t), . . . ,um(t))

(2)

with F = {F1,F2, . . . ,Fn}, ϒ = {ϒ1, ϒ2, . . . , ϒn}, where,
for each i ∈ [1, n]

fi ∈ Fi = �
f 1
i , . . . , f c(i)

i

�
(3)

with the probability of fi choosing f j
i is

Pr
�

fi = f j
i

� = r j
i ∈ ϒi . (4)

D. Average Optimal Control Problem

Now, consider the class of policies, which consists of an
infinite sequence of control laws π = {μt : t ∈ Z≥0}, where
a control law μt : Dn → Dm, t ∈ Z≥0 maps logical states
x(t) onto control input u(t) = μt (x(t)) in such a way that
μt(x(t)) ∈ Dm for all x(t) ∈ Dn . For notational brevity,
we refer to πμ = {μ,μ, · · · } as the stationary policy μ.

Given an initial state x0 with a policy π = {μ0, μ1, · · · },
consider the infinite horizon average expected cost

Jπ (x0) := lim
T →∞

E
1

T

T −1�
t=0

g(x(t), μ(x(t))) (5)

where the notation E means the expectation, and g : Dn ×
Dm → R is the per-step cost function.

The set of all policies π is denoted by �, that is, the set
of all sequences of functions π = {μ0, μ1, · · · }. Then, the
optimal average cost function J ∗ is given by

J ∗(x0) = inf
π∈�

Jπ (x0), x0 ∈ �N . (6)

The aim of the infinite horizon average optimal control for
PBCNs is to find an optimal policy π∗ ∈ �, which achieves
the optimal cost J ∗, that is

Jπ∗(x0) = J ∗(x0), for all x0 ∈ Dn .

Example 1: Consider a PBCN (2)–(4) with three state
nodes V = {x1, x2, x3}, one input nodes U = {u1}, and an
update dynamics⎧⎨⎨

⎨⎩
x1(t + 1) = f1(x1(t), x2(t), x3(t), u1(t))

x2(t + 1) = f2(x1(t), x2(t), x3(t), u1(t))

x3(t + 1) = f3(x1(t), x2(t), x3(t), u1(t))

(7)

where F = {F1,F2,F3}, and ϒ = {ϒ1, ϒ2, ϒ3}, with⎧⎨⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎨⎩

f 1
1 (x1, x2, x3, u1) = (x1 ∧ x3) ∨ ¬u1

f 1
2 (x1, x2, x3, u1) = ¬x1 ∨ u1

f 2
2 (x1, x2, x3, u1) = x2 ∨ (¬x1 ∧ u1)

f 1
3 (x1, x2, x3, u1) = ¬x1

f 2
3 (x1, x2, x3, u1) = ¬x1 ∨ x3

(8)

and accordingly c(1) = 1, and c(2) = c(3) = 2, respectively.
As described in Fig. 1, the update rule of state x2 with

(or without) self-looped influence is given by f 2
2 (or f 1

2 )
assuming that the probability having self-looped influence for
x2 is 0.4, i.e., r1

2 = Pr{ f2 = f 1
2 } = 0.6 and r2

2 = Pr{ f2 =
f 2
2 } = 0.4. Similarly, assume that the probability having

self-looped influence for x3 is 0.3. Hence, F1 = { f 1
1 },F2 =

{ f 1
2 , f 2

2 },F3 = { f 1
3 , f 2

3 }, ϒ1 = {r1
1 = 1}, ϒ2 = {r1

2 = 0.6,
r2

2 = 0.4}, ϒ3 = {r1
3 = 0.3, r2

3 = 0.7}.
Consider the optimal average control problem (6) for this

PBCN, with the following cost function:

g(x1, x2, x3, u1) =
	

2 + x1, if u1 = 0,

5 + 3x1 − 4x3, if u1 = 1.
(9)
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Fig. 1. Network graph of Example 1, where red → and blue −� express
the activation and inhibition relationship, respectively, and dotted green ���
indicates that the probability of generating the loop is less than 1.

III. MATRIX EXPRESSION OF MODEL

As illustrated in Section II, the PBCNs are expressed by the
combination of logical functions and their stochastic switch-
ing. Since the logical functions are originally intractable, this
section provides a systematic way to deal with PBCNs by
exploiting STP techniques.

Since there are c(i) possible update logical functions f j
i

for each node xi ∈ V , the number of possible realization of
PBCN is

C0 = �n
i=1c(i).

We give a lexicographically order to possible realizations of
PBCN, defining the following special matrix, introduced as
[42], [43]

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1
1 1 · · · 1 2
...

...
. . .

...
...

1 1 · · · 1 c(n)
1 1 · · · 2 1
1 1 · · · 2 2
...

...
. . .

...
...

1 1 · · · 2 c(n)
...

...
. . .

...
...

c(1) c(2) · · · c(n − 1) c(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where a row α(α = 1, . . . , C0) of � ∈ RC0×n corresponds to
the possible update logical functions�

f �α1
1 , f �α2

2 , . . . , f �αn
n

�
(11)

with �α j denoting the (α, j)th entry of the matrix �.
Then, according to (3) and (4), the probability that the

network α is selected as a realization of the PBCN is

Pr[α] := Pr( network α is selected ) = �n
j=1r

�α j

j . (12)

Furthermore, a Boolean variable X ∈ D is identified with
a vector x ∈ �2 in the following form: 1 ∼ δ1

2, 0 ∼ δ2
2 .

Under this vector identification, the whole states and inputs are
expressed by an STP of elements as x(t) = �n

i=1xi(t) ∈ �N ,

with N := 2n, and u(t) = �m
j=1u j(t) ∈ �M , with M :=

2m , respectively. Accordingly, logical state space Dn and input
space Dm can also be rewritten as �N and �M , respectively.

Applying the STP of matrix defined in (1), a logical function
can be represented in an algebraic form.

Lemma 2 (10, Th. 3.2): Assume that f : D p → Dq is a
logical function, and let y = f (x1, x2, . . . , x p) ∈ Dq , with
(x1, x2, . . . , x p) ∈ D p. Then, there exists a unique logical
matrix M f ∈ L2q ×2p , such that f can be rewritten in a
multilinear form as

f (x1, x2, . . . , x p) = M f �p
i=1 xi . (13)

The matrix M f is called the structure matrix of the logical
function f , and (13) is called the algebraic expression of f .

Assume that the structure matrix of the logical function
f j
i is M j

i for each i ∈ [1, n], j ∈ [1, c(i)]; then, based on
[44, Th. 2] and Lemma 2, we can obtain, for each α ∈ [1, C0],
the following algebraic expression of α possible realizations
of PBCN as

x(t + 1) = L[α] � u(t) � x(t) (14)

where L[α] ∈ LN×N M is calculated as

Colk(L[α]) := �n
i=1Colk(M�αi

i ) ∀k ∈ [1, N M]. (15)

Definition 3: For a PBCN (2)–(4), define

	 :=
C0�

α=1

Pr[α]L[α] (16)

which is called the transition matrix of the PBCN, where p[α]
and L[α] are given by (12) and (15), respectively.

For a given u = �m
j=1u j ∈ �M at a time step t , denote by

pi j(u) the transition probability from a logical state δi
N to a

next logical state δ
j
N under the control u(t) = u

pi j(u) := Pr(x(t + 1) = δ
j
N |x(t) = δi

N , u(t) = u) (17)

for all δi
N , δ

j
N ∈ �N . It is noticed that the transition probabil-

ities pi j(u) satisfy
�N

j=1 pi j(u) = 1 ∀ i ∈ [1, N], u ∈ �M .
The following fact implies that the transition probabilities of
a PBCN can be directly calculated by the transition matrix 	.

Lemma 4: For any δi
N , δ

j
N ∈ �N , and u ∈ �M , we have

pi j(u) = (δ
j
N )�	 � u � δi

N . (18)

Proof: See the Appendix.
Lemma 5: For a given PBCN (2)–(4), the evolution dynam-

ics of expectation of state x(t) can be expressed by the
following linear form:

Ex(t + 1) = 	u(t)Ex(t) (19)

where 	 is the transition matrix of PBCN (2)–(4).
Proof: See the Appendix.

The per-step cost function g : Dn × Dm → R in the
formulation (5) can be expressed by a matrix expression as1

g(x, u) = x�Gu ∀x ∈ �N , u ∈ �M (20)

1As considered in [39], an equivalent linear form of the per-step cost
function g : �N × �M → R can be given as g(x, u) = c�

� u � x , where
c = (c1, . . . , cM N )� ∈ RM N with c( j−1)N+i = g(δi

N , δ
j
M ), i = 1, . . . , N,

j = 1, . . . , M.
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where G = (Gi, j )N×M = �
g(δi

N , δ
j
M )
�

N×M
is called the cost

matrix.
Example 6: Recall Example 1. Since, in this example,

c(1) = 1, c(2) = c(3) = 2, we have C0 = �3
i=1 c(i) = 4

and

� =

⎡
⎢⎢⎣

1 1 1
1 1 2
1 2 1
1 2 2

⎤
⎥⎥⎦ ∈ R4×3 (21)

by Definition (10). Then, accordion to (12), we get

Pr[α = 1] =
3�

j=1

r
�1 j

j = r�11
1 r�12

2 r�13
3

= r1
1 r1

2 r1
3 = 1 × 0.6 × 0.3 = 0.18

and similarly, Pr[α = 2] = 0.42, Pr[α = 3] = 0.12, Pr[α =
4] = 0.28. Furthermore, applying Lemma 2, one can
obtain the structure matrix M f 1

1
∈ L2×24 of f 1

1 as M f 1
1

=
δ2[2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2] and, similarly, can
obtain M f 1

2
, M f 2

2
, M f 1

3
, and M f 2

3
, respectively. As a result,

according to (15) and (16), we get the transition matrix 	
of this example, given by (23), as shown at the bottom of
the page. Furthermore, according to Lemma 4, the transition
probabilities of this PBCN can be obtained. The transition
probability diagram with fixed control input u = δ1

2 and u = δ2
2

is shown in Fig. 2.
In addition, according to (20), the cost matrix of (9) is

G =
�

2 2 2 2 3 3 3 3
5 1 5 1 8 4 8 4

��
. (22)

IV. AVERAGE OPTIMALITY CRITERION

In this section, an optimality criterion, called a nested
condition, for the avarice optimal control is derived without a
conventional ergodic assumption.

The set of all feedback logical laws μ : �N → �M is
denoted by U , that is, U = {μ | μ : �N → �M}. One can
easily get that the capacity of U is |U | = M N ; by noticing,
the state space �N and control space �M are both finite. In the
framework of the vector formulation, the control law can be
regarded as a logical function from �N to �M . Therefore,
referring to Lemma 2, we will first present the following
fundamental result.

Proposition 7: For an arbitrary control law μ ∈ U , there
exists a unique logical matrix Kμ ∈ LM×N that satisfies

μ(x) = Kμx ∀ x ∈ �N (24)

Fig. 2. Transition probability diagram for Example 6, where S1, . . . , S8
represent states δ1

8, . . . , δ8
8, respectively. (a) When u = δ1

2. (b) When u = δ2
2.

and it is called the structure feedback matrix of μ.
For any given μ ∈ U , we define the matrix 	μ associated

with μ, as

	μ = 	 � KμMn
pr (25)

which includes all the information about the transition prob-
ability of the PBN under feedback control law μ, where Kμ

is the structure matrix of μ, and Mn
pr is the power-reducing

matrix given in Section II.
For any given μ ∈ U with a structure matrix Kμ, since

μ(δi
N ) ∈ �M ,∀δi

N ∈ �N , the following equation:

	 � μ(δi
N ) � δi

N = 	 � KμMn
prδ

i
N = 	μ � δi

N (26)

holds.
Hence, for a given the state feedback control u(t) =

μ(x(t)) = Kμx(t), the evolution dynamics (19) of PBCN

	 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 0.3 1 0.3 0 0 0 0 0 0.12 0 0

0.4 0.4 0.4 0.4 0 0.7 0 0.7 0 0 0 0 0 0.28 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.18 0 0.3

0.6 0.6 0.6 0.6 0 0 0 0 0 0 0 0 0 0.42 0 0.7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R23×24
(23)
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becomes a closed-loop system as

Ex(t + 1) = 	μEx(t) (27)

where 	μ is given by (25).
Lemma 8: For any policy π = {μ0, μ1, . . .}, the vector

form of the expected cost Jπ = �
Jπ (δ1

N ), . . . , Jπ (δN
N )
��

can
be expressed as

Jπ = lim
T →∞

1

T

T −1�
t=0

t−1�
k=0

	�
μk

gμt (28)

and especially, for a stationary policy πμ = {μ,μ, . . .}

Jμ = Jπμ = lim
T →∞

1

T

T −1�
t=0

(	�
μ )t gμ (29)

where the special cost vector gμ associated with feedback
control law μ ∈ U , defined as

gμ = �
g
�
δ1

N , μ
�
δ1

N

��
, . . . , g

�
δN

N , μ
�
δN

N

����
. (30)

Proof: See the Appendix.
Lemma 9: For a given μ ∈ U , if there exist two vectors

(J, h) ∈ RN × RN that satisfy the following equations:	
	�

μ J = J (31)

gμ + (	�
μ − IN )h = J. (32)

Then, we have J ∗ � J.
Proof: Left-multiplying (32) by 	�

μ and applying equal-
ity (31), we get

J = 	�
μ J = 	�

μ gμ + 	�
μ

�
	�

μ − IN
�
h.

Repeating the process above with induction, we deduce the
following equation:

J = �
	�

μ

�n
gμ + �

	�
μ

�n�
	�

μ − IN
�
h (33)

for any n ∈ Z≥0. Summing those expressions from 0 to n − 1,
we have

J = 1

n

n−1�
t=0

�
	�

μ

�t
gμ + 1

n

��
	�

μ

�n − IN

�
h.

Recalling that 	μ is a stochastic matrix, we have �	μ� =
�	�

μ � ≤ 1, and accordingly, �(	�
μ )n − IN � ≤ �	μ�n + 1 ≤ 2.

Hence

lim
n→∞

1

n

�����	�
μ

�n − IN

�
h
��� ≤ lim

n→∞
2�h�

n
= 0

and applying (29), we obtain that

[J ]i = lim
n→∞

�
1

n

n−1�
t=0

�
	�

μ

�t
gμ

�
i

= [Jπμ]i

≥ inf
π∈�

[Jπ ]i = [J ∗]i

for all i ∈ [1, N]. The proof is complete.
Now, it is ready to present an optimality criterion for the

average optimal control problem of PBCNs as the following
theorem.

Theorem 10: Assume there are two vectors (J, h) ∈ RN ×
RN such that, for any i ∈ [1, N], the following condition
holds

min

⎧⎨⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎨⎩

j∈[1,M]
�
	δ

j
Mδi

N

��
J = (δi

N )� J,

min
j∈
i

Gi j − �
	δ

j
Mδi

N

��
h = �

δi
N

��
(J + h), (34a)

with 
i = �
j ∈ [1, M]���	δ

j
Mδi

N

��
J = �

δi
N

��
J
�
.

(34b)

Then, the vector J is the optimal cost vector of the average
optimal problem (6), that is, J = J ∗.

Remark 11: In the optimality conditions (34), the control
index set 
i , which is the control candidate domain of the
minimization problem in the left-hand side of (34a), depends
on the index set of control inputs that achieve the minimum
in (34a) when J is substituted into it. This is the reason that
the optimality conditions (34) are said to be nested.

Proof of Theorem 10: Nested condition (34) implies 
i ∩
�i �= ∅, for each i ∈ [1, N], where the set 
i is given in (34a),
and �i is defined as

�i = �
j ∈ [1, M]��Gi j − �

	δ
j
Mδi

N

��
h = �

δi
N

��
(J + h)

�
.

(35)

In other words, the existence of a minimizer of the left-hand
side of (34a) is guaranteed by the nested condition, and such
an index ji ∈ 
i ∩ �i is chosen as a feedback law μ� ∈ U

μ��δi
N

� = δ
ji
M , ji ∈ 
i ∩ �i

for each i ∈ [1, N]. Recalling definition of the sets 
i , �i , and
the cost vector gμ� given by (30), we have for each i ∈ [1, N]	

(δi
N )�

�
	�

μ� J
� = �

δi
N

��
J (36)

(δi
N )�

�
gμ� − J + �

	�
μ� − IN

�
h
� = 0 (37)

which is equivalent to (31) and (32) for μ�. Thus, according
to Lemma 9, we get

[J ]i ≥ [J ∗]i ∀i ∈ [1, N]. (38)

Next, we will prove that if vectors (J, h) ∈ RN ×RN satisfy
condition (34), then there is a constant C ≥ 0 such that vectors
J and h̄ = h + C J satisfy the following condition:

min

⎧⎨
⎩

j∈[1,M]
�
	δ

j
Mδi

N

��
J = �

δi
N

��
J (39a)

min
j∈[1,M]

Gi j − �
	δ

j
Mδi

N

��
h̄ = �

δi
N

��
(J + h̄) (39b)

for each i ∈ [1, N]. We refer condition (39a) as the modified
optimality condition of condition (34a). Notice condition (39a)
is the same as the condition (34a). If vectors (J, h), given
in (34), satisfy (39b), then we simply chose h̄ = h with C = 0.
Suppose J and h, given in (34), do not satisfy (39b), then there
exist i0 ∈ [1, N], and j0 ∈ [1, M]\
i0 such that

Gi0 j0 − �
	δ

j0
Mδi0

N

��
h <

�
δi0

N

��
(J + h)

which is equivalent to

C1 := Gi0 j0 − �
δi0

N

��
J + �

δi0
N

����
	δ

j0
M

�� − IN
�
h < 0.
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Furthermore, since j0 ∈ [1, M]\
i0 , recalling the definition of

i0 given by (34a), we have

C2 := �
δi0

N

�����
	δ

j0
M

�� − IN
�
J
�
> 0.

Now, set h̄ := h + C3 J , where C3 > 0 will be given later.
Then

Gi0 j0 − �
δi0

N

���
J − ��

	δ
j0
M

�� − IN
�
h̄
�

= Gi0 j0 − �
δi0

N

���
J − ��

	δ
j0
M

�� − IN
�
h
�

+ �
δi0

N

���
C3

��
	δ

j0
M

�� − IN
�

J
� = C1 + C3C2.

Hence, taking C3 large enough such that C3 > (|C1|/C2),
we have �

δi0
N

���
Gi0 j0 − J + ��

	δ
j0
M

�� − IN )h̄
�

> 0. (40)

Because both of the space of state and control input are finite,
there exists large enough C3 for which (39b) holds for all
i ∈ [1, N] and μ ∈ U .

For any given μ ∈ U , if μ(δi
N ) = δ

j
M , then based on (26)

and (30), we get 	δ
j
Mδi

N = 	μδi
N and Gi j = (δi

N )�gμ, which
implies that

min
j∈[1,M]

�
	δ

j
Mδi

N

��
J = min

μ∈U
�
δi

N

��
	�

μ J (41)

min
j∈[1,M]

Gi j = min
μ∈U

�
δi

N

��
gμ. (42)

Hence, condition (39) is equal to

min

⎧⎨
⎩

μ∈U
�
	μδi

N

��
J = �

δi
N

��
J, (43a)

min
μ∈U

�
δi

N

���
gμ + (	μ − IN )�h̄

� = �
δi

N

��
J. (43b)

By noticing (δi
N )� J = Ji , condition (43a) implies, for all

i ∈ [1, N], that	 [J ]i ≤ �
	�

μ0
J
�

i
(44)

[J ]i ≤ �
gμ0 + �

	�
μ0

− IN
�
h̄
�

i
(45)

and applying condition (43b) to μ1 implies that

[J ]i ≤ �
gμ1 + �

	�
μ1

− IN
�
h̄
�

i
∀i = 1, . . . , N. (46)

Left-multiplying (46) by 	�
μ0

and using inequality (44) imply
that we obtain

[J ]i ≤ �
	�

μ0
J
�

i
≤ �

	�
μ0

gμ1 + 	�
μ0

�
	�

μ1
− IN

�
h̄
�

i

for any i ∈ [1, N]. Then, repeating the abovementioned
process with induction, we get for any n ∈ Z≥0

[J ]i ≤ �
	�

μ0
· · · 	�

μn−1
gμn + 	�

μ0
· · ·	�

μn−1

�
	�

μn
− IN

�
h̄
�

i

where set 	μ−1 = IN , if n = 0. Therefore, summing up those
expressions from 1 to n + 1, we obtain ∀i ∈ [1, N]

[J ]i ≤ 1

n + 1

�
n�

t=0

t−1�
k=−1

	�
μk

gμt

�
i

+
��

	�
μ0

· · · 	�
μn

− IN
�
h̄
�

i

n + 1
.

In addition, applying �(	�
μ0

· · ·	�
μn−1

	�
μn

− IN )h̄� ≤ 2�h̄�,
we have, for all i ∈ [1, N]

[J ]i ≤ lim
n→∞

�
1

n + 1

n�
t=0

t−1�
k=0

	�
μk

gμt

�
i

= [Jπ (x0)]i .

Fig. 3. Transition probability diagram for Example 13, where S1, . . . , S4
represent state δ1

4 , . . . , δ4
4, respectively. (a) When u = δ1

2. (b) When u = δ2
2 .

Then, due to the arbitrariness of π , we deduce that

[J ]i ≤ inf
π∈�

[Jπ ]i = [J ∗]i (47)

for all i ∈ [1, N]. Finally, we get J = J ∗, combining (34)
and (47), and finish the proof. �

Remark 12: As mentioned in Section I, Pal et al.
[34, Th. 5] have given an optimal criterion for the average
optimal control for PBNs, and it has been successfully applied
in the case of context-sensitive PBCNs. However, it requires
the ergodic assumption and cannot be applied in the general
case, as illustrated in the following example.

Example 13: Consider the PBCN with two state nodes V =
{x1, x2}, one input nodes U = {u1}, and update dynamics	

x1(t + 1) = f1(x1(t), x2(t), u1(t))

x2(t + 1) = f2(x1(t), x2(t), u1(t)).
(48)

Here, F = {F1,F2}, and ϒ = {ϒ1, ϒ2}, with

F1 = �
f 1
1 , f 2

1

�
, F2 = �

f 1
2

�
ϒ1 = �

r1
1 = 0.7, r2

1 = 0.3
�
, ϒ2 = �

r1
2 = 1

�
, and⎧⎨⎨

⎨⎩
f 1
1 (x1, x2, u1) = x1 ∧ u1,

f 2
1 (x1, x2, u1) = x1 ∧ ¬u1,

f 1
2 (x1, x2, u1) = x2.

Then, according to the analysis given in Section IV, one easily
obtains

� =
�

1 1
2 1

�
∈ RC0×n

with C0 = �2
i=1 c(i) = 2, c(1) = 2, and c(2) = 1.

Furthermore, the transition matrix of this PBCN is calculated
as

	 =

⎡
⎢⎢⎣

1 0 0.7 0 1 0 0.3 0
0 1 0 0.7 0 1 0 0.3
0 0 0.3 0 0 0 0.7 0
0 0 0 0.3 0 0 0 0.7

⎤
⎥⎥⎦. (49)

The corresponding transition probability diagram is shown
in Fig. 3.
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We consider the optimal average control problem (6) for
this PBCN, where the per-step cost function g is given as

G =
�

0 3 1 2
1 2 2 1

��
. (50)

If one tries to solve this optimal control problem based
on the result of [34], it needs to solve the following optimal
criteria given in [34, Th. 5] for all i ∈ [1, 4] :

λ + h(i) = min
u∈�2

⎡
⎣g(δi

4, u) +
4�

j=1

pi j(u)h( j)

⎤
⎦. (51)

According to transition matrix 	 in (49) and cost matrix G
in (50), the first and second equations of the abovementioned
equations are	

λ + h(1) = min{0 + h(1), 1 + h(1)}
λ + h(2) = min{3 + h(2), 2 + h(2)}. (52)

The first equation of (52) indicates that λ = 0, which,
on substitution into the second equation of (52), shows that the
system is inconsistent. The abovementioned analysis implies
that the criterion given in [34, Th. 5] cannot solve this optimal
control problem. The main reason is that the algorithm in [34]
requires the ergodicity of the PBCN (please see [34, Th. 4]).
However, it is easily observed that the PBCN considered in
this example is not ergodic. Indeed, it is observed that there
is no possible way to go from the state δ1

4 to state δ2
4 , under

both of control inputs u = δ1
2 and u = δ2

2 , as shown in Fig. 3,
implying this PBCN is not ergodic since the ergodicity of a
PBCN requires that it is possible to go from each state to all
the states under each stationary policy.

In the following, we will see that the policy iteration
algorithm based on Theorem 10 can successfully solve the
problem in this example.

V. POLICY ITERATION ALGORITHM

By using matrix analysis techniques, including the Jordan
decomposition and the Laurent series expansion, a policy
iteration algorithm for the optimal control formulation given
in Section II is proposed in this section. At the end of the
section, the convergence of the algorithm with finite iteration
steps is examined with the example shown in Sections II–IV.

Several preliminary results, which will be used to prove the
correctness of the policy iteration algorithm, are introduced
first.

Proposition 14: For any control law μ ∈ U , the rank of
IN − 	�

μ ∈ RN×N is less than N , that is

r := Rank
�
IN − 	�

μ

�
< N.

In addition, there exist a nonsingular upper triangular matrix
Sμ ∈ Rr×r and a nonsingular matrix Vμ ∈ RN×N such that

IN − 	�
μ = Vμ

�
0 0
0 Sμ

�
V −1

μ . (53)

Proof: By definition of 	μ, it is obvious that
�N

j=1[IN −
	�

μ ]i j = 0, for any i = 1, 2, . . . , N , which implies that λ = 1
is an eigenvalue of 	�

μ , and 1 = [1, 1, . . . , 1]� ∈ RN is a

solution of homogeneous linear equation (IN − 	�
μ )x = 0.

Hence, r < N.
In addition, since r = Rank(IN − 	�

μ ) < N , applying the
Jordan decomposition theorem (see [45, Th. 3.1.11]), there
are a nonsingular upper triangular matrix Sμ ∈ Rr×r and a
nonsingular matrix Vμ ∈ RN×N such that (53) holds.

Accordion to the Jordan decomposition form of the matrix
IN − 	�

μ given in Proposition 14, we will deduce a computa-
tional formula for Jμ as follows.

Lemma 15: For any μ ∈ U , define the corresponding
limiting matrix 	

μ as

	
μ = lim

T →∞
1

T

T −1�
t=0

�
	�

μ

�t
. (54)

Then the following hold:
1) The Cesaro type limit, defined by the right-hand side of

(54), always exists, and accordingly, the limiting matrix
	

μ satisfies the following properties:

	
μ = Vμ

�
IN−r 0
0 0

�
V −1

μ (55)

	
μ	�

μ = 	
μ = 	�

μ 	
μ. (56)

2) The vector Jμ defined in (29) can be calculated by

Jμ = Vμ

�
IN−r 0
0 0

�
V −1

μ gμ. (57)

Proof: Indeed, by �	μ� = �	Kμ� ≤ 1, we have �	�
μ � =

�	μ� ≤ 1. Hence

lim
T →∞

��	�
μ

�T − IN �
T

≤ lim
T →∞

�	μ�T + 1

T
= lim

T →∞
2

T
= 0.

Then, from the definition (54) of limiting matrix 	
μ, we get

	
μ	�

μ = lim
T →∞

1

T

T�
t=1

�
	�

μ

�t = 	
μ + lim

T→∞

�
	�

μ

�T − IN

T
= 	

μ

that means the first equation of (56) holds, and similarly,
we also deduce that 	

μ = 	�
μ 	

μ.
According to the Jordan decomposition (53), we have

	�
μ = Vμ

�
IN−r 0
0 Ir − Sμ

�
V −1

μ . (58)

Then, using again the definition (54) of the limit matrix 	
μ,

we get

	
μ = Vμ

�
IN−r 0
0 L

22

�
V −1

μ (59)

where L
22 = limT →∞(1/T )

�T −1
t=0 (Ir − Sμ)t . Furthermore,

recalling 	�
μ 	

μ = 	
μ of (56), we get SμL

22 = 0, from (58)
and (59). Then, from the fact that the upper triangular matrix
Sμ ∈ Rr×r is nonsingular, we obtain L

22 = 0. Hence,
from (59), we obtain (55), which also implies that the Cesaro
type limit (54) exists.

Finally, noticing that Jμ = 	
μgμ from (29), we obtain (57)

by (55).
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Lemma 16: For any control law μ ∈ U , define hμ := H 
μgμ,

with

H 
μ := �

IN − 	�
μ + 	

μ

�−1�
I − 	

μ

�
. (60)

Then, hμ can be calculated by

hμ = Vμ

�
0 0
0 S−1

μ

�
V −1

μ gμ. (61)

Proof: From the Jordan decomposition (53) and (55),
we obtain�

I − 	�
μ + 	

μ

� = Vμ

�
IN−r 0
0 Sμ

�
V −1

μ . (62)

This implies that the matrix I −	�
μ +	

μ is nonsingular. Then,
according to 	


22 = 0, we get

�
I − 	�

μ + 	
μ

�−1�
I − 	

μ

� = Vμ

�
0 0
0 S−1

μ

�
V −1

μ . (63)

Therefore, noticing definition (60) of H 
μ, we obtain (61).

We also present the Laurent series expansion of (IN −
α	�

μ )−1, which plays an important role in the proof of the
correction of the policy iteration algorithm given in the fol-
lowing.

Lemma 17: For any given feedback logical control law
μ ∈ U and 0 < α < 1, we have�

IN − α	�
μ

�−1 = 1

1 − α
	

μ + H 
μ + F(α,μ) (64)

where F(α,μ) ∈ RN×N denotes a matrix that will converges
to zero when α → 1.

Proof: See the Appendix.
Based on Theorem 10, we now present a policy iteration

algorithm for PBCN.
Remark 18: In Algorithm 1, the initial policy μ0 is a

preset variable given by a user. As discussed in proof of
correctness of Algorithm 1 afterward, an arbitrary initial policy
μ0 converges to an optimal policy. Indeed, the initial policy
of Example 5.1 is simply chosen as μ(x) = δ1

2,∀x .
The next proposition characterizes the monotonicity prop-

erty between two control laws in U .
Proposition 19: For any two control laws μ, η ∈ U ,

we define the following three special subsets of �N :
A0(μ, η) = �

δi
N |μ�δi

N

� = η
�
δi

N

��
(65)

A1(μ, η) =
�
δi

N

����	�
η Jμ

�
i
<
�
	�

μJμ

�
i

 
(66)

A2(μ, η) =
	

δi
N

�����
�
	�

μ Jμ

�
i
= �

	�
η Jμ

�
i
, and�

gη + 	�
η hμ

�
i
<
�
gμ + 	�

μ hμ

�
i

!
. (67)

If two different feedback laws μ, η ∈ U satisfy the following
condition

A0(μ, η) ∪ A1(μ, η) ∪ A2(μ, η) = �N (68)

then

lim
α↑1

J α
η � lim

α↑1
J α
μ (69)

where, for all 0 < α < 1

J α
η := �

IN − α	�
η

�−1
gη. (70)

Algorithm 1 Policy Iteration for Optimal Control Problem (6)
of PBCN (2)–(4)
Step 0. Initialization:

1) Compute 	 and G based on (16) and (20).
2) Guess an initial policy μ0 ∈ U .

Step 1. Policy Evaluation:
For a given stationary policy μn , compute the corresponding

Jμn , hμn based on (57), (61).
Step 2. Policy Improvement:
2.A Choose stationary policy μn+1 such that its structure

matrix Kn+1 = L N [qn+1
1 , . . . , qn+1

N ] satisfies

qn+1
i ∈argmin j=1,...,M

��
	� Jμn

�
( j−1)N+i

 
, ∀i ∈ [1, N]

and set qn+1
i = qn

i , if possible.
2.B If μn+1 = μn , go to (2.C); else return to Step 1.
2.C Choose stationary policy μn+1 such that its structure

matrix Kn+1 = L N [qn+1
1 , . . . , qn+1

N ] satisfies

qn+1
i ∈argmin j∈[1,M]

�
Gi j + h�

μn
Col( j−1)N+i(	)

�
,

∀i ∈ [1, N]
and set qn+1

i = qn
i , if possible.

2.D If μn+1 = μn , stop and set μ∗ = μn; else return to
Step 1 and repeat the process.

Proof: See the Appendix.
The condition (68), which can guarantee the monotonicity

relation (69) between two different control laws η and μ, will
help to prove that the policy improvement process given in
Step 2 of Algorithm 1 is greedy.

Proof of Correctness of Algorithm 1: Given an ini-
tial stationary policy μ0, Algorithm 1 generates a sequence
of stationary policy {μ0, μ1, . . .}. For any μn and μn+1,
if A0(μn, μn+1) = �N , then by definition (65), we get μn =
μn+1. Then, based on substep (2.D), Algorithm 1 terminates.

By selecting the structure matrix Kn+1 of μn+1 at substep
(2.A) of Algorithm 1, and using STP properties, we deduce
that, for any i ∈ [1, N]�
	�

μn+1
Jμn

�
i

= �
δi

N

��
	�

μn+1
Jμn = �

δi
N

��
��

n K �
n+1	

� Jμn

= �
δi

N

��
�
�
δi

N

��
K �

n+1	
�Jμn = �

δi
N

��
�
�
Kn+1δ

i
N

��
	�Jμn

= �
δi

N

��
�
�
δ

qn+1
i

M

��
	�Jμn = min

δ
j
M∈�M

�
δi

N

��
�
�
δ

j
M

��
	�Jμn

= min
δ

j
M∈�M

J �
μn

Col( j−1)N+i (	) = min
μ∈U

�
δi

N

��
	�

μJμn

= min
μ∈U

�
	�

μ Jμn

�
i
.

Here, the simple fact Col( j−1)N+i (	) = 	 � (δ
j
M )� � (δi

N )� is
used. In addition, from substep (2.C) of Algorithm 1, we get,
for any i ∈ [1, N]

[hμn+1 + Jμn+1]i = min
μ∈Ui

�
gμ + 	�

μ hμn

�
i
.

On the other hand, if A0(μn, μn+1) �= �N , then
substeps (2.A) and (2.C) of Algorithm 1 guarantee that



WU et al.: POLICY ITERATION APPROACH TO THE INFINITE HORIZON AVERAGE OPTIMAL CONTROL 2919

�N\A0(μn, μn+1) ⊂ A1(μn, μn+1) or �N\A0(μn, μn+1) ⊂
A2(μn, μn+1), respectively, which implies that A0(μ, η) ∪
A1(μ, η) ∪ A2(μ, η) = �N . Thus, based on Proposition 19,
we obtain the following fact:

lim
α↑1

J α
μn+1

� lim
α↑1

J α
μn

.

Since the set of stationary policies is finite as |U | = M N ,
Algorithm 1 must terminate in a finite iterations.

In addition, μn+1 = μn, at termination step μn , and it
implies that⎧⎨⎨⎨⎨

⎨⎨⎨⎩
0 = ��

	�
μn

− IN
�

Jμn

�
i
= ��

	�
μn+1

− IN
�
Jμn

�
i

= minμ∈U
���

	�
μ − IN

�
Jμn

�
i

�
[hμn + Jμn ]i = �

gμn + 	�
μn

hμn

�
i

= minμ∈Ui

�
gμ + 	�

μ hμn

�
i

for any i ∈ [1, N]. Hence, applying Theorem 10, we obtain
Jμn = J ∗, which implies that the stationary policy {μn} is
optimal. �

Remark 20: The abovementioned correctness analysis for
Algorithm 1 also implies that finite iterations can deduce
an optimal stationary policy since the number of stationary
policies, which are considered as control candidates in the
optimization formulation, is finite. At termination step n,
an equation Jμn = J ∗ holds, and {μn} is a stationary optimal
policy. As a result, the following fact holds.

Corollary 21: For the PBCN (2)–(4), there exists a sta-
tionary optimal policy πμ∗ = {μ∗, μ∗, . . .}, which solves the
optimal control problem (6).

Example 22: Now, we apply Algorithm 1 to solve the
problem given in Example 1, following from Example 6.

Initialization:

1) In this example, 	 and G are given by (23) and (22),
respectively.

2) Choose the initial stationary policy μ0 as μ0(x) =
δ2[1, 1, 1, 1, 1, 1, 1, 1]x , for all x ∈ �8.

Policy Evaluation: Applying Lemma 16 to get Vμ0 , Sμ0 , Jμ0 ,
and hμ0 , respectively, as

Vμ0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 − 1 − 1 0 − 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 − 1.4286 0 0.4286 0 0 − 1 0
0 1.4286 0.6 − 1.4286 0 0 − 1.4 0
0 0 0 0 0 0 1 0
0 0 0.6 0 0 0 1.4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Sμ0

=

⎡
⎢⎢⎢⎢⎢⎣

0.3 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

Jμ0 = [0, 0, 0, 0, 20, 0, 0, 0]�, and hμ0 = [2, 2, 2, 2,−173/3,
116/3, 3, 7.8]�.

Policy Improvement:

Fig. 4. Transition probability diagram under the optimal policy μ∗.

1) In substep (2.A), get K1 = δ2[1, 1, 1, 1, 1, 1, 1, 1]; as a
structure matrix μ1.

2) In substep (2.B), since μ1 = μ0, go to (2.C).
3) In substep (2.C), the policy μ1 is renewed with structure

matrix K1 = δ2[1, 2, 1, 2, 1, 1, 1, 1].
4) In substep (2.D), since μ1 �= μ0, return to Step 1, and

proceed to the next iteration.
In substep (2.D) of the fourth iteration, it is easily checked
that μ4 = μ3. Thus, we obtain the optimal stationary pol-
icy π∗ = πμ3 with J μ3 = Q J μ3 . Hence, μ3 is optimal

with K3 = δ2[2, 2, 2, 2, 2, 1, 2, 1] =
�

0 0 0 0 0 1 0 1
1 1 1 1 1 0 1 0

�
,

and the corresponding optimal performance is J ∗ = Jμ2 =
[1, 1, 1, 1, 1, 1, 1, 1]�. The transition probability diagram
under this optimal policy μ∗ is shown in Fig. 4.

Example 23: Reconsider the problem given in Example 13.
Here γ and G are given in (49) and (50), respectively.
We choose an initial policy μ0 as μ0(x) = δ2[2, 2, 2, 2]x .
Then, according to Algorithm 1, similar to the abovementioned
example, we easily obtain that the optimal cost of this problem
is J ∗ = [0, 1, 0, 1]�, and the corresponding optimal stationary
policy is μ∗ = μ1 with structure matrix Kμ∗ = δ2[1, 2, 1, 2],
after one iteration step.

VI. APPLICATION TO INTERVENTION PROBLEM

OF ARA OPERON NETWORK

In this section, the optimal control on intervention of ara-
binose (Ara) operon in E. coil is performed as an application
to practical biological networks. The contributions [46] and
[47] have studied the regulation of Ara operon in E. coil and
given an observation that the regulatory protein is determined
in the presence and absence of arabinose. Fig. 5 shows
a graphical interpretation of Ara Network. As investigated
in [48], the update logics of Ara operon network can be
discredited by the following Boolean equations (71):⎧⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎩

f A = Ae ∧ T

f Aem = (Aem ∧ T ) ∨ Ae

f Ara+ = (Aem ∨ A) ∧ Ara−

fC = ¬Ge

fE = MS

fD = ¬Ara+ ∧ Ara−

fMS = Ara+ ∧ C ∧ ¬D

fMT = Ara+ ∧ C

fT = MT

(71)
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Fig. 5. Boolean model of Ara operon in E. coil.

where MS denotes the mRNA of the structural genes
(araBAD), MT is the mRNA of the transport genes (araEFGH),
E is the enzymes AraA, AraB, and Ara D, coded for by the
structural genes, T is the transport protein, coded for by the
transport genes, A is the intracellular arabinose (high levels),
Aem is the intracellular arabinose (at least medium levels), C
is the cAMP-CAP protein complex, D is the DN A loop, and
Ara+ is the arabinose-bound AraC protein. For more details
of the biological justification of each update function of (71),
please see [48]. There exist four Boolean control variables:
the AraC protein (unbound to arabinose), the extracellular
glucose, the extracellular arabinose (at least medium levels),
and the extracellular arabinose (high levels); those variables
are denoted by Ara−, Ge, Aem, and Ae, respectively. Further-
more, the variable D is 1 if the DNA is looped and 0 if it is
not looped. All the other variables represent the concentration
levels of the corresponding gene products: 1 denotes “present”
or “high concentration” and 0 denote “absent” or “low (basal)
concentration.”

Consider the context-sensitive case, as discussed in [42],
with perturbation on the influence of node MS to logical
function fE , and the influence of node D to the logical
function fMS , as shown by dotted line in Fig. 5. More precisely,
assume that, at each time step, fE and fMS are switched
randomly to f̂E = ¬MS and f̂MS = Ara+ ∧C∧D, respectively,
with probability 0.5, by flipping the state of node Ms and D.
Then, the BN of Ara operon becomes a PBCN, and there are
four possible realizations of this network.

1) No perturbation in network (71).
2) Only fE is switched to f̂E in network (71).
3) Only fMS is switched to f̂MS in network (71).
4) Both fE and fMS are switched to f̂E and f̂MS , respec-

tively, in network (71).

Corresponding to the abovementioned four realization,
the state transition graphs of the lac operon with fixed
control variables ((Ae, Aem, Ara−, Ge) = (0, 1, 1, 0) are
presented in Figs. 6–9. To give the vector expressions
of the nodes, set (A, Aem, Ara+ , C, E, D, MS , MT , T ) =
(x1, x2, x3, x4, x5, x6, x7, x8, x9) and (Ae, Aem, Ara− , Ge) =
(u1, u2, u3, u4). Then, as presented in Section II, based on
STP of matrix, we obtain the linear form BN expression of
Ara operon (71) as x(t + 1) = Lu(t)x(t), with a structure
matrix L ∈ L29×213 .

Fig. 6. State transition graph of the lac operon with fixed control vari-
ables ((Ae, Aem, Ara−, Ge) = (0, 1, 1, 0) in Case 1: no perturbation in
network (71). Steady states are represented by red dots, limit cycles are
represented by green dots, and all transient states are denoted by yellow dots.

Fig. 7. State transition graph of the lac operon with fixed control variables
((Ae, Aem, Ara−, Ge) = (0, 1, 1, 0) in Case 2: only fE is switched to f̂E in
network (71).

We consider a special intervention problem, that requires
to design an optimal feedback law of four parameters (the
extracellular arabinose, the AraC protein, and the extracellular
glucose) to maximize the “present” level of the mRNA of the
structural genes (araBAD). Under the abovementioned PBN
expression of Ara operon network, this intervention problem
can convert into an average minimum cost problem, with the
cost function g as

g(x, u) = −x7 (72)

noticing that x7 = MS denotes the mRNA of the structural
genes (araBAD).
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Fig. 8. State transition graph of the lac operon with fixed control variables
((Ae, Aem, Ara−, Ge) = (0, 1, 1, 0) in Case 3: only fMS is switched to f̂MS
in network (71).

Fig. 9. State transition graph of the lac operon with fixed control variables
((Ae, Aem, Ara−, Ge) = (0, 1, 1, 0) in Case 4: both fE and fMS are switched
to f̂ E and f̂MS in network (71).

Fig. 10. Stationary optimal policy.

Now, using Algorithm 1, we easily get the optimal perfor-
mance for this problem, as J ∗(x) ≡ −1 for all x ∈ �512, and
also obtain the corresponding optimal feedback law, as given

in the following form:

μ∗(x) =

⎧⎨⎨⎨⎨
⎨⎨⎨⎩

(1, 0, 0, 0), if x1 ∨ x2 = 0, and x9 = 0

(0, 1, 0, 0), if x1 ∨ x2 = 0, and x9 = 1

(1, 0, 1, 0), if x1 ∨ x2 = 1, and x9 = 0

(0, 1, 1, 0), if x1 ∨ x2 = 1, and x9 = 1.

Furthermore, under new state representation y = (y1, . . . , y9)
with a special permutation

yi =

⎧⎨⎨
⎨⎩

x9, if i = 3

x3, if i = 9

xi , otherwise.

Then, the optimal stationary policy is given in Fig. 10.
The policy iteration takes 5084.525867 s to obtain the exact
optimal law on a computer with 8-GB RAM memory and
Quad-Core 3.2-GHz processor.

VII. CONCLUSION

This article deal with the infinite horizon optimization
problem for general PBCNs with an average cost. Based
on STP, an equivalent matrix expression of the model was
presented. Then, combining the techniques of the Laurent
series expression and the Jordan decomposition, a novel nested
policy iteration-type algorithm, which solves the probabilis-
tic optimization problem for arbitrary PBCN without any
requirement, was deduced. Finally, some practical applica-
tions, including optimal intervention problem of ARA operon,
are solved to illustrate the benefit of the proposed algorithm
for solving optimal control problems on PBCNs.

APPENDIX

Proof: [Proof of Lemma 4] Define �i, j(u) = {α ∈
[1, C0] | δ

j
N = L[α] � u � δi

N }. Then, according to algebraic
expression (14) and definition (17) of the conditional transition
probability pi j(u), we have

pi j(u) =
�

α∈�i, j (u)

P[α]. (73)

In addition, by observing the relationship	
δ

j
N = L[α] � u � δi

N ⇐⇒ (δ
j
N )�L[α] � u � δi

N = 1

δ
j
N �= L[α] � u � δi

N ⇐⇒ (δ
j
N )�L[α] � u � δi

N = 0

we have

�
α∈�i, j (u)

P[α] =
C0�

α=1

P[α]�δ j
N

��
L[α] � u � δi

N

= �
δ

j
N

�� C0�
α=1

P[α]L[α] � u � δi
N

= �
δ

j
N

��
	 � u � δi

N (74)

by recalling the definition (16) of transition matrix 	. Then,
by combining (73) and (74), we complete the proof of this
lemma.
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Proof of Lemma 5: According to full probability formula

Ex(t + 1) =
N�

j=1

Pr
�
x(t + 1) = δ

j
N

�
δ

j
N

=
N�

j=1

�
N�

i=1

Pr
�
x(t) = δi

N

�
pi j

�
u = δk

M

��
δ

j
N

=
N�

i=1

Pr
�
x(t) = δi

N

�⎡⎣ N�
j=1

pi j
�
u = δk

M

�
δ

j
N

⎤
⎦.(75)

In addition, using Lemma 4 and the fact that
�N

j=1 δ
j
N (δ

j
N )� =

IN , we also get

N�
j=1

pi j
�
u = δk

M

�
δ

j
N =

N�
j=1

δ
j
N

�
δ

j
N

��
	 � δk

M � δi
N

= 	 � δk
M � δi

N . (76)

Combining (75) and (76), we have

Ex(t + 1) =
N�

i=1

	 � δk
M � δi

N Pr
�
x(t) = δi

N

�

= 	 � δk
M

N�
i=1

Pr
�
x(t)=δi

N

�
� δi

N = 	 � δk
MEx(t).

We complete the proof. �
Proof of Lemma 8: Since (29) is immediately obtained

from (28), we just prove (28).
Based on the definition of gμ given in (30), it is easily

checked that g(δi
N , μ(δi

N )) = (δi
N )�gμ, for any δi

N ∈ �N and
μ ∈ U . This implies that the expectation of cost g can be
calculated as

Eg(x, μ(x)) =
N�

i=1

Pr
�
x = δi

N

��
δi

N

��
gμ = [Ex]�gμ. (77)

Hence, for the given policy π = {μ0, μ1, . . .} and an initial
state x(0) ∈ �N , based on closed-loop matrix expression (27)
of PBCN evolution dynamics, we get

Eg(x(t), μt (x(t)))

= [Ex(t)]�gμt = [E	μt−1 x(t − 1)]�gμt

= [E	μt−1 · · · 	μ0 x(0)]�gμt = x(0)�
t−1�
k=0

	�
μk

gμt

for all t ≥ 1. Hence, if x(0) = δi
N , then

Jπ

�
δi

N

� = lim
T →∞

E

�
1

T

T −1�
t=0

g(x(t), μt(t))

�

= lim
T →∞

�
1

T

T −1�
t=0

Eg(x(t), μt (t))

�

= �
δi

N

��
lim

T →∞
1

T

T −1�
t=0

t−1�
k=0

	�
μk

gμt

which implies (28), by recalling Jπ = [Jπ(δ1
N ), . . . ,

Jπ (δN
N )]�. �

Proof of Lemma 17: It is noted that if 	μ = IN , then (64)
automatically holds with 	

μ = IN and H 
μ = F(α,μ) = 0.

Hence, it is enough to consider the case of 	μ �= IN . For
0 < α < 1, we take α = (1/1 + β), β > 0, and then

IN − α	�
μ = 1

1 + β

�
β IN + �

IN − 	�
μ

��
.

By the Jordan decomposition (53), we have β IN +(IN −	�
μ ) =

V

�
β IN−r 0
0 β Ir + S

�
V −1. Hence

(IN − α	�
μ )−1 = (β + 1)V

�
β−1 IN−r 0

0 (β Ir + S)−1

�
V −1

= β + 1

β
V

�
IN−r 0

0 0

�
V −1

+ (β + 1)V

�
0 0
0 (β Ir + S)−1

�
V −1. (78)

We now analyze (β Il + S)−1. (β Ir + S)−1 = [(Ir +
βS−1)S]−1 = S−1(Ir +βS−1)−1. Notice that if 0 < β�S−1� <
1, which equivalent to 1 − (1/1 + �S−1�) < α < 1, then,
based on [45, Corollary 5.6.16], we deduce that Ir + βS−1

in a nonsingular matrix, and its inverse have an expression as
[Ir + βS−1]−1 = �∞

i=0(−β)i S−i . Hence

(β Ir + S)−1 = S−1(Ir + βS−1)−1

= S−1 − β

∞�
i=0

(−β)i S−i−2. (79)

Substituting (79) into (78), we get

(IN − α	�
μ )−1 = β + 1

β
V

�
IN−r 0
0 0

�
V −1

− β(β + 1)V

⎡
⎢⎣

0 0

0
∞�

i=0

(−β)i s−i−2

⎤
⎥⎦V −1

+ (1 + β)V

�
0 0
0 S−1

�
V −1

= β + 1

β
	

μ + Hμ+ F(α,μ) (80)

with

F(α,μ) := β Hμ − β(β + 1)V

⎡
⎢⎣

0 0

0
∞�

i=0

(−β)i S−i−2

⎤
⎥⎦V −1

where (59) and (63) are used in the last step of (80). Finally,
by noticing (β + 1/β) = (1/1 − α), and when α → 1,
we have β = (1 − α/α) → 0, and β(β + 1) = (1 − α/α2) →
0. As a result F(α,μ) → 0, as α → 1. We finish the proof.�

Proof of Proposition 19: Set

eα(η, μ) := �
IN − α	T

η

��
J α
η − J α

μ

�
. (81)

Then, by definition (70) of J α
μ , we obtain

eα(η, μ) = gη + α	�
η J α

μ − J α
μ . (82)
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For any x ∈ Se(μ, η), we get

x�gη = g(x, η(x)) = g(x, μ(x)) = x�gμ (83)

x�	�
η = (	ηx)� = (L � η(x) � x)�

= (L � μ(x) � x)� = (	μx)� = x�	�
μ . (84)

Hence, if δi
N ∈ A0(μ, η), using (83), (84), and (IN −

α	�
μ )J α

μ = gμ

eα(η, μ)(δi
N ) = �

δi
N

���
gη + α	�

η J α
μ − J α

μ

�
= �

δi
N

���
gμ + α	�

μ J α
μ

� − �
δi

N

��
J α
μ = 0. (85)

Now, we analyze the case x /∈ A0(μ, η). Applying the inverse
matrix expression of (IN − α	�

μ ), given by the Laurent series
expansion in Lemma 17

J α
η = �

IN − α	�
η

�−1
gη

= 1

1 − α
	

μgη + H 
μgη + F(α,μ)gη

= 1

1 − α
Jμ + hμ + F(α,μ)gμ. (86)

Then, by rearranging terms in (82)

eα(η, μ) = gη − �
IN − α	�

η

�� 1

1 − α
Jμ + hμ + F(α,μ)gμ

�
= D1+D2+(1−α)	�

α hμ + �
IN − α	�

μ

�
F(α,μ)gμ

(87)

with

D1 = α

1 − α

�
	�

η − IN
�

Jμ (88)

D2 = gη − Jμ + �
	�

η − IN
�
hμ. (89)

Noticing limα→1 F(α,μ) = 0, we have

lim
α↑1

�
(1 − α)	�

α hμ + �
I − α	�

μ

�
f (α,μ)gμ

� = 0. (90)

Recalling definition (29) and (56), we get 	�
μ Jμ = Jμ.

Hence, if δi
N ∈ A1(μ, η), then we have

lim
α↑1

[D1]i = lim
α↑1

α

1 − α

��
	�

η − 	�
μ

�
Jμ

�
i
= −∞. (91)

Furthermore, according to the definition (89) of D2, we get

|[D2]i | ≤ �gη� + �Jμ� + 2�hμ�. (92)

Hence, combining (90)–(92), we deduce that

lim
α↑1

[eα(η, μ)]i = −∞, if δi
N ∈ A1(μ, η). (93)

If δi
N ∈ S2(μ, η), then we easily obtain

[D1]i = α

1 − α

��
	�

η − 	�
μ

�
Jμ

�
i
= 0 (94)

and the second condition in Definition (66) of A2(μ, η)
implies that

[D2]i < [gμ + 	μhμ]i − [Jμ + hμ]i = 0. (95)

Thus, from (90), (94), and (95), we deduce that

lim
α→1

[eα(η, μ)]i < 0, if δi
N ∈ A2(μ, η). (96)

Now summing (85), (93), and (96), we obtain	
limα↑1[eα(η, μ)]i = 0, if δi

N ∈ A0(μ, η)

limα↑1[eα(η, μ)]i < 0, if δi
N ∈ A1(μ, η) ∪ A2(μ, η).

In addition, condition (68) implies that there is an i0 satisfying
δi0

N ∈ A1(μ, η) ∪ A2(μ, η). Hence, limα↑1 eα(η, μ) � 0.
Using again definition (81) of eα(η, μ), we get

J α
η − J α

μ = �
IN − α	T

η

�−1
eα(η, μ).

Then, applying again [45, Corollary 5.6.16], we get

�
IN − α	T

η

�−1 =
+∞�
k=0

�
α	T

η

�k = I + α	T
η + · · ·

by noticing 0 < α < 1. Thus, finally, we have limα↑1 J α
η −

J α
μ � limα↑1 eα(η, μ) � 0, form which one easily deduces

that limα↑1 J α
η � limα↑1 J α

μ . �
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