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Cross-Subject and Cross-Modal Transfer for
Generalized Abnormal Gait Pattern Recognition

Xiao Gu, Yao Guo, Fani Deligianni, Benny Lo, and Guang-Zhong Yang*, Fellow, IEEE

Abstract—For abnormal gait recognition, pattern-specific
features indicating abnormalities are interleaved with the
subject-specific differences representing biometric traits. Deep
representations are therefore prone to overfitting and the models
derived cannot generalize well to new subjects. Furthermore,
there is limited availability of abnormal gait data obtained from
precise Motion Capture (Mocap) systems because of regulatory
issues and slow adaptation of new technologies in health care.
On the other hand, data captured from markerless vision
sensors or wearable sensors can be obtained in home envi-
ronments but noises from such devices may prevent effective
extraction of relevant features. To address these challenges,
we propose a cascade of deep architectures that can encode
cross-modal and cross-subject transfer for abnormal gait recog-
nition. Cross-modal transfer maps noisy data obtained from
RGBD and wearable sensors to accurate four-dimensional (4D)
representations of the lower limb and joints obtained from the
Mocap system. Subsequently, cross-subject transfer allows to
disentangle subject-specific from abnormal pattern-specific gait
features based on a multi-encoder autoencoder architecture. To
validate the proposed methodology, we obtained multi-modal
gait data based on a multi-camera motion capture system along
with synchronized recordings of Electromyography (EMG) data
and 4D skeleton data extracted from a single RGBD camera.
Classification accuracy was improved significantly in both Mocap
and noisy modalities.

Index Terms—gait analysis, model generalization, body sensor
network, multi-modal representation.

1. INTRODUCTION

NE of the key characteristics of Deep Neural Networks

(DNN) is their ability to automatically extract relevant
features from a large amount of complex data. This is im-
portant in the analysis of health informatics as conventional
machine learning algorithms depend on explicit features for
related applications [1], [2]. Potentially meaningful informa-
tion is ignored and the ability to learn and generalize from
abstract data is limited.

However, in health informatics, datasets are usually
small and complex [1]. In particular, the four-dimensional
(4D) human motion data (xyz-t) encodes information in
both the spatial and temporal dimensions. This com-
plex information reflects both subject-specific as well as
motion-specific/pathological information. Human motion anal-
ysis and in particular gait analysis play an important role
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Fig. 1. A gait cycle across subjects and walking patterns. Disentangling
pattern characteristics from gait biometrics is a major challenge in abnormal
gait detection.

in several biomedical applications, including pathological gait
detection [3], [4], [5], rehabilitation assistance [6] and emotion
recognition [7]. Training DNNs for abnormal gait recog-
nition requires precise estimation of the lower limbs and
joint kinematics, which normally is only available via highly
specialized Motion Capture (Mocap) Systems. These systems
are state-of-the-art technologies for tracking 3D human skele-
ton by recording highly precise 3D locations of reflective
markers attached to some key points of the human body.
The encoded kinematic data, containing subtle changes of the
lower limbs, can provide abnormality indicators in healthcare
applications [8], [9].

Furthermore, automated abnormal gait recognition based on
wearable and vision sensors can play a prominent role in the
so-called connected health model because it facilitates ob-
jective gait assessment in home environments. Those sensing
technologies provide a more convenient and comfortable solu-
tion for pervasive monitoring [10]. However, these modalities
result in noisy representations, which can largely reduce the
generalization of DNNs in new subjects [4], [5].

One of the main challenges in abnormal gait recognition is
that the pattern-specific features representing abnormal gait are
often more subtle compared to the subject-specific differences.
Subject-specific differences highlight the biometric traits ex-
isting in the gait data representations [11], [12], [13]. As an
example! shown in Fig. 1, each subject tends to exhibit unique
walking characteristics due to their age, gender, weight, bone

'The visualization is based on data in Section IV. The animation effect can
be viewed on https:/guxiao0822.github.io/GAGR
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(b) Disentangled Representations

Fig. 2. Schematics of entangled representations and disentangled representations for normal and four abnormal gait patterns.

length proportion, and geometric shape of lower extremities.
Hence, the factors affecting the way a person walks involve
both gait abnormality and inherent biometric traits. These two
specific data representations, as shown in Fig. 2(a), would lend
information to each other when training a classifier for identity
recognition or abnormal detection, thus impeding the general-
ization of the classifier to new subjects. This is reflected by
the fact that the accuracy of intra-subject classification is high,
whereas the accuracy is largely decreased in cross-subject
classification [5]. Although, the subject-specific differences
could be eliminated automatically if the training dataset is
large, the acquisition of large-scale healthcare data is usually
limited due to several reasons, including rare abnormalities,
patient compliance, ethics, and slow adaptation of emerging
technologies in healthcare [1].

For accurate abnormal gait classification, this paper firstly
proposes a multi-encoder autoencoder network to automat-
ically split the raw 3D kinematic data into two indepen-
dent parts, i.e., the pattern-specific and the subject-specific
representations (shown in Fig. 2(b)). This kind of architec-
ture enables the disentanglement of the pattern-specific and
subject-specific representations by minimizing a cross recon-
struction loss when transferring the patterns across two differ-
ent subjects. The normal and abnormal walking patterns can be
converted while preserving the identity characteristics during
the cross-subject transfer. Subsequently, the pattern-specific
features that are subject-invariant, are extracted for abnor-
mal pattern recognition. Results demonstrate significantly im-
proved performance on cross-subject validation compared to
conventional deep architectures, highlighting the good gener-
alization ability of the trained model to new subjects.

Furthermore, we explore cross-modal transfer enabling
the data representation transfer across modalities, not only
to address the limited availability of accurate pathological
human pose data but also to derive kinematic information
from noisy skeleton estimated by RGBD sensing data and
electrocardiogram (EMG). The principle behind cross-modal
common representation learning is to retrieve the common
representation that links two modalities. Here, modalities
reflect sensing technologies applied to gait analysis [9], [10].
We aim to transfer the clean representation knowledge from
accurate 4D human pose Mocap data to noisy RGBD and
EMG data.

There is a large heterogeneity gap between the Mocap
skeleton and the EMG signals. EMG records the individual
muscle response that reflect the intention of someone to walk.
Previous work [14] has demonstrated its ability to estimate
the lower limb kinematics. However, raw EMG signals across
subjects are inevitably affected by several factors, including
motion artifacts, skin-electrode interface and cross-talk, which
results in the large contamination [15]. Furthermore, individual
differences are enlarged by the different displacement of
sensors and muscle conditions across trials and subjects.

On the other hand, RGBD data can model abnormal human
gait based on human pose reconstruction. Recent efforts aim to
improve accuracy of 3D skeleton tracking of the lower limbs
based on a single RGBD camera [5]. However, their accuracy
and robustness is notably lower than the infrared-based motion
capture systems (Mocap) that are available in specialized
clinics and labs. Extracting 3D human pose information from
a single RGB camera is an under-determined problem [16].
RGBD sensors provide additional depth information but it has
low resolution and large noise that is also distance depen-
dent [17]. Furthermore, the human pose estimation model [18]
utilized in most literature is different from the model applied
in Mocap settings, in terms of keypoint locations and numbers.
Therefore, it is not ideal or possible to directly apply the model
trained on Mocap data to the skeleton extracted from RGBD
cameras.

The heterogeneity gap between different modalities also
suffers from domain shift problems. In our case, the asso-
ciation between modalities of the training subjects may well
be different from the testing subjects, where each subject can
be viewed as a domain. However, most of existing works are
only focused on either across-subject or multi-modality prob-
lems [19]. The combination of those two issues is a relatively
new area. We propose a multi-modal representation learning
method to enable cross-subject and cross-modal transfer. With
the accurate Mocap data as the target to be reconstructed, the
skeletal data estimated from RGBD cameras and EMG signals
are mapped to this clean representation. In this way, we have
developed a mechanism to filter noises from EMG and RGBD
data and enhance abnormal gait classification performance.

The whole framework is visualized in Fig. 3. In summary,
the main contribution of this paper is three-fold:
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Fig. 3.

Tllustration of the cross-subject and cross-modal transfer framework in abnormal gait recognition, where E and D indicate the encoder and decoder.

The subscripts s and p represent the encoder for encoding subject-specific and pattern-specific features, and the superscripts s and ¢ indicate single-modal and
cross-modal, respectively. This method is proposed to enhance the generalization of model representations through cross-subject transfer, and find common
representations between 4D skeletal Mocap and noisy RGBD skeleton or surface EMG data through cross-modal transfer.

a) Single-Modal - Cross-Subject Transfer: To over-
come the limited availability of labelled clinical gait datasets
of the lower limb kinematics, we propose a cross-subject
generalization architecture that can effectively extract the
subject-invariant gait pattern features. This improves the
classification performance of abnormal gait recognition with
high-quality Mocap data.

b) Multi-Modal — Cross-Modal Transfer: To allow gen-
eralization of the above framework in noisy skeleton data
obtained from a single RGBD sensor we propose a novel
cross-modal common representation learning approach. This
maps the noisy data to the Mocap kinematic data, thus facilitat-
ing a filtering process. We demonstrate that this, subsequently,
enables subject-invariant features to be extracted from the
mapped clean representations, successfully. Furthermore, we
show that this framework can apply also to other gait sensing
signals of inherently different nature, such as EMG.

c) Generalized Gait Analysis: A novel framework
is proposed to ensure generalization of our method for
gait analysis. The work represents the first attempt of
subject-independent assessment of abnormal gait based
on DNN.

II. RELATED WORKS
A. Deep Learning Based Gait Analysis

For pathological gait analysis, a diversity of methods and
gait models have been explored to investigate effective feature
extraction from the recorded skeletons, such as quantitative
gait parameters [20], joint angles [5], joint motion history
features [21], and other deep representations [22].

Conventional methods manually select important
clinically-relevant features for classification. Different
gait models with pre-defined features are accordingly
proposed to facilitate the diagnosis of different diseases [8].
However, they are inherently limited as the pre-selected
features, in most cases, cannot represent an adequate gait
description and might ignore meaningful information from
the abstract data [23]. With the advancement of deep neural
networks (DNNs) both convolutional neural networks (CNN)
and recurrent neural networks (RNN) have been proposed in
gait analysis and they are briefly described below.

a) Convolutional Neural Network: In [24], the authors
applied CNN on the data from wearable sensors to extract
gait parameters. It directly translated the signals from wearable
sensors to context-related features. Kim et al. [25] utilized
the temporal CNN for the 3D motion recognition based on
one-dimensional (1D) convolution. The proposed model per-
forms convolution operation in the temporal axis while fully
connecting the feature dimensions. A more advanced variant,
the graph convolutional neural network (GCNN) has been
applied in a recent gait analysis study [26]. The graph con-
volution focuses on the relationship within highly connected
nodes and it can extract successfully the spatial information
from human skeletons.

b) Recurrent Neural Network: RNN is capable of mod-
eling and predicting time series signals, especially for signals
of varied length. It has been applied on gait data with respect
to various applications [27], [28], [29]. Kidzinski et al. [30]
adopted a Long-Short-Term-Memory (LSTM) network to de-
velop an online gait phase estimation method based on the
input joint angles and positions information. Liu et al. [31] also



applied a similar LSTM to predict the occurrence of abnormal
knee joint trajectory and then a wearable assistance tool
was actuated for rehabilitation training. In [27], the authors
implemented automatic gait recognition in the wild based
on LSTM and embedded inertial sensors of smart phones.
Compared to CNN, the recurrent neural network is harder
and slower to train because of its folded architecture [32].
Although recent works on the further development or the
combinations of RNN and CNN have demonstrated promising
results [27], [29], their work is not suitable for cross subject
generalization.

B. Cross-Subject Human Motion Retargeting

Disentangling subject-specific from pathology specific
gait patterns is related to human motion synthesis and
retargeting problems. Various kinds of architectures,
like Conditional Restricted Boltzmann Machine [33],
Encoder-Recurrent-Decoder [34] and Auto-Conditioned
Recurrent Neural Networks [35] have been proposed for
modeling, generating and predicting human motion data.
As a research topic in computer graphics area, the human
motion retargeting focuses on transferring movement across
subjects (virtual or real) while optimizing the spatial-temporal
information by preserving the subject-specific features.

Early works tried to apply the inverse kinematics on this
issue [36]. However, it has been argued that the walking
patterns cannot get well transferred across subjects by sim-
ply copying joint kinematics between each other because it
causes unrealistic movements [37]. To address this, Villegas et
al. [37] introduced a recurrent neural network with neural
forward kinematics layer. It enables realistic joint rotations
transformation across subjects through cycle consistency based
adversarial training, and then the subject-specific motion is
generated by the prior-known basic skeleton and the kinemat-
ics. Yan et al. [38] adopted a variational recurrent auto-encoder
to perform the multi-modal motion transformation from one
to another. The embedding feature was generated by the
variational auto-encoder and it was further enhanced by mo-
tion retargeting. Recently, Aberman et al. [39] encoded the
human motion data into a dynamic character-agnostic latent
motion representation, along with static latent components. It
is successful in generating character-agnostic motion. Another
work [40] on image synthesis was able to generate novel
images of human unseen poses. Our work is inspired by
the above but more focused on effectively disentangling the
pathology and biometrics related features by cross-subject
pattern transfer/retargeting.

C. Cross-Modal Common Representation Learning

Given a specific task, different categories of modalities or
media can be associated to that. Based on the association be-
tween different modalities, the common representation can be
retrieved to enable the knowledge transfer across modalities.
The general common representation learning methods can be
classified into three groups, the joint representation, coordi-
nated representation and encoder-decoder architectures [41].
The joint representation learning integrates the multi-modal
data to draw a complete picture by fusing the complemen-
tary information from different modalities. Several advanced
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information fusion strategies have been proposed to address
this [42]. The coordinated representation learning aims to
enlarge the similarity or correlation of the representations of
different modalities, so that the shared representation subspace
can be derived. Salvador et al. [43] proposed the semantic
regularization for a joint neural embedding model in order to
get the embedding space between food images and cooking
recipes. Finally, the encoder-decoder framework has gained
popularity because it can capture the shared representations for
a specific task by learning the mapping between two different
modalities [44]. The multi-modal representation learning has
been applied in several common natural language processing
and computer vision applications in the literature [45], [46].

The heterogeneity gap between different modalities may
also suffer from domain shift problem. In our case, the rela-
tionship between different sensing modalities would differ on
each subject. To bridge the heterogeneity gap between different
modalities and address the domain shift problems, Huang et
al. [47] proposed a hybrid transfer network for transferring
knowledge from single-modal source domain to cross-modal
target domain, enabling knowledge sharing between texts and
images for media retrieval.

Previous work [48] on gait recognition has successfully
fused inertial and RGBD sensors together to achieve ro-
bust person identification. However, it is focused on the
multi-modal sensor fusion in a feature level based on clas-
sical machine learning approaches. This is different from our
work, where we introduce transfer knowledge across different
modalities and thereby enhance the performance of a signal
noisy modality for pathological gait analysis applications.

D. Domain Generalization

Our work reported here is related to domain generalization.
It aims to aggregate the knowledge from multiple source
domains and then learn to extract a shared common subspace
that can be transferred to an unseen target domain. By taking
each subject or modality as a specific domain, increasing the
generalization ability across subjects or modalities can be
viewed regarded as a domain generalization task [49], [50],
[51]. This is different from and less explored than domain
adaptation [52], which mostly focuses on one source domain
and takes advantage of target domain information to align
domain distribution.

Domain generalization does not require data from the
‘unseen’ target domain during training. Instead, it eliminates
domain-specific bias from multiple ‘seen’ source domains.
Muandet et al. [53] developed a kernel-based optimization
method to transform data from different domains to a canoni-
cal space while preserving the functional relationship between
the input and output. Li et al. [54] proposed a variational
autoencoder based method, incorporating the Maximum Mean
Discrepancy (MMD) loss to align the embedding domain
distribution. In [55], the authors developed a Siamese archi-
tecture to learn an embedding subspace across domains that
is discriminative. Li et al. [56] proposed a episodic training
strategy for domain generalization, which mismatches the
feature extractor and classifier across different domains to
achieve robust performance.
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III. METHODS
A. Gait Representation

Gait is represented as repetitive cycles of motion denoted
as {257} € RT*J=  where x refers to the gait cycle data.
s, p denotes the subject identity s € {sz} —*, and gait pattern
categories p € {p; };V 1» Tespectively. T' denotes the resampling
number in a gait cycle, and .J, reflects the dimensionality of

the modality. For clarity, x57 is written as x/ in the following.

B. Problem Formulation

For the single-modal representation, we assume that gait
cycle is composed of the biometric and abnormality charac-
teristics along with noise n and we denote this as

x] = F(si,pjin) (1)

It is worth noting that the latent vectors e;, & e, representing
identity and pathology pattern are directly denoted as s; and
p; respectively for clarity.

Our goal is to learn an inverse model F—' that takes
apart the subject-specific s; and pattern-specific p; from raw
data representations, resolving the entanglement of these two
independent factors. If the gait data x is a clean representation
(e.g., the skeletal data captured by Mocap system), the noise
can be ignored. Then (1) can be rewritten as

x] = F(si,p;) )

Thus the derived pattern-related latent vector p; is expected
to be subject-invariant, which can additionally generalize on
new subjects.

On the other hand, noisy data z, such as the data derived
from the RGBD camera and EMG data derived from wearable
sensors, is inherently contaminated with several sources of
noises. In these cases, the subject-specific and pattern-specific
features could not be directly disentangled without considering
the noise effects. Hence, the goal of cross-modal transfer
learning is to derive the pattern-specific features from the
noisy modality representation z with the help of the clean
or less-noisy modality representation x. This is formulated as

G*(z]) = F(si,p)) 3)

where G”(-) represents a mapping from the noisy gait data
representation to the clean/ground-truth data x.

C. Multi-Encoder Autoencoder Network

An autoencoder like architecture is adapted to achieve
cross-subject tranfer learning, as shown in Fig.4. Inspired by
recent work introducing multiple encoders for disentangled
representations learning [39], [57], we split the encoder part
into the subject-specific and the pattern specific branches, re-
spectively. The subject-specific branch E encodes the features
s; related to human biometrics, Fs : x; +— s;, and the
patient-specific branch E, encodes the features representing
pathological patterns pj, E, : x? + p;. In the decoding
procedure, the s; and p; are concatenated together as the
input of the decoder to perform the reconstruction of x7,
D : (s;,pj) + %;. This kind of architecture enables to draw a

Pre-
processing
&

P

I

Fig. 4. Basic architecture of the multi-encoder autoencoder. The whole
architecture can be directly applied on clean Mocap data.

P

Fig. 5. Illustration of self-reconstruction loss. The Lgeif—recon loss is
minimized to ensure the reconstructing a given input by the autoencoder.

kPl

Fig. 6. Tllustration of cross-subject reconstruction loss. Based on the given
sample xz and a:ée, the latent representations s;, pj, Sk, p; are extracted
individually firstly. Then the patterns are transferred across subjects and
the combinations s;,p; and sy, p; are put into the decoder separately to
reconstruct i:i and ifc The zi and :vfc are indexed from existing data and the

reconstruction loss between {z!,&!}, {x7 .47} are minimized respectively.

complete picture of human gait data by the two disentangled
representations. In practice, the encoder and decoder were
realized by 1D convolution across the time dimension [39].

D. Single-Modal: Self-Reconstruction and Cross-Subject Re-
construction

For a single clean modality representation, a multi-encoder
autoencoder network is applied, as shown in Fig. 4. In order
to learn the complete and disentangled subject and pattern
representations, three sets of loss functions {Lseif—recon;

Leross—recons Lirip & me} are minimized for optimization.

1) Self-Reconstruction: The objective of self-reconstruction
is to realize the basic function of this multi-encoder autoen-
coder, the identity mapping. As illustrated in Fig. 5, the model
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Fig. 7. Tllustration of cross-modal cross-subject transfer model. The data from noisy modalities z, namely the skeleton from RGBD (r) or the EMG data
(e), is firstly converted to the Mocap representation X to facilitate the data filtering. This first cross-modal generation part is structured as a multi-encoder
autoencoder, composed of { S, E5 & D°}. The superscript c refers to cross-modal. The encoders transform data z into subject-specific s¢ and pattern-specific
p¢ features respectively. p¢ represents the associated pattern-specific feature between z and x, which might get contaminated by noises. Subsequently the
generated sample X goes through the second multi-encoder autoencoder network {E?, E; & D#}, being reconstructed to X. The superscript s refers to
single-modal. This further refines the generated samples % by minimizing the loss between X and x. The related encoders divide the embedding features
into the subject-specific s° and pattern-specific p® ones as well. p® represents subject-invariant pattern-specific features from a cleaner data representation.
Subsequently, the pattern feature p® (optionally concatenated with p©) is fed into a classifier C), for abnormal gait recognition. (The cross reconstruction is

not sketched for simplification.)

is expected to learn how to reconstruct the input given a gait
cycle sample x?. The loss function is formulated as follows,

»Cself—recon = E[HX'Z - D(S“p])”] (4)

2) Cross-Subject Reconstruction: However, features en-
coded by Es and L), cannot be well split by only us-
ing a simple autoencoder. To separate subject-specific and
pattern-specific data representations, the cross reconstruction
procedure is introduced during training, as shown in Fig. 6.
During each training step, the training group of samples {x?,
xfc, xi} (i # k) is selected, and the pattern p; in subj k (ch) is
transferred to subj 4 to constitute X in our cross reconstruction

strategy. The loss function is as follows,

Ec’ross—recon = ]E[Hxi - D(ES(Xz)aEP(ch))”] (5)

In addition to the cross reconstruction loss, similar to [39],
we adopted the triplet loss £5,;, & L, to help the s; and
p; get clustered to their own categories more tightly, where
« is the margin constraining intra-class features have smaller
distance (< «) than inter-class features. The loss functions are

formulated as follows.
trip =Bl Es (x]) = B (x]") | = [ Es(x}) — Es (x}) |+
ﬁfrip:E[HEp(X?)*Ep(X%L)II*IIEp(Xﬁ)*Ep(XZ)IIM]@
3) Classifier: In the recognition stage, the parameters of
the autoencoder model are fixed and the pattern features are
extracted from E,. This feature vector is then fed into a
classifier C, to be trained for abnormality recognition. The
loss function L£¢ applied here is the Cross Entropy Loss.

NP
Lo==Y y;log(Ch(p;)) )
(O]

where O represents each observation during training, and j
refers to each class. y; € {0,1} indicates whether belonging
to class j and log(C)p(p,)) is the predicted probability.

E. Multi-Modal: Cross-Modal Generation & Self-Modal Re-
construction

On top of the single-modal clean representation x of the
gait, namely the skeleton acquired from the Mocap system,
vision and wearable technologies can enable mobile moni-
toring outside the laboratory settings. In our study, the noisy
data z, i.e., RGBD based skeleton data (r) and EMG (e), are
considered to demonstrate the implementation of generalized
cross-modal transfer representation learning.

Based on the paired modalities x and z, we introduce a
novel cascaded architecture of two multi-encoder autoencoders
shown in Fig. 7. This involves two steps, the cross-modal
generation and self-modal reconstruction. The former maps the
noisy modality z to the clean representation x, while the latter
further filters the generated sample to X. The pattern-specific
features are extracted from relevant encoders for classification.
Further details are given below.

1) Cross-Modal Generation: Firstly, we adopt the model in
Section III-C to facilitate the cross-modal generation, which
is composed of E°, ES, D¢ (superscript c¢ refers to cross
modal). It generates clean representation data x from the
noisy modality z. Meanwhile, the multiple encoders in this
part can disentangle the associated common representations
to be subject-specific s¢ and pattern-specific p®. The map-
ping across different modalities is learned by considering the
unique pattern along with the subject characteristics based on
cross-subject reconstruction. This training strategy, which is
similar to the single-modality cross-subject transfer learning,
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has the advantage to avoid over-fitting. The loss functions are
formulated as below,

L3lfy-gen = Elld = D(E &), By o
L asmgen = Ell; = D*(E:(2]), B (23))]l]

Besides, similar to the loss involved in Section III-D2, we also
applied the triplet loss.

2) Self-Modal Reconstruction: The cross-modal generation
part maps the noisy representations into a clean representation,
thus facilitating denoising. To this end, the pattern-specific p©
and subject-specific s, features extracted from the cross-modal
generation part may suffer from the interference of the noise
embedded inside the raw data. To provide further filtering of
the generated sample X, the second multi-encoder autoencoder
is concatenated based on E;, E?, D? (superscript s refers to
single modal). It reconstructs X from the generated sample X,
minimizing the distance between X and x. The second part also
extracts the disentangled features from the generated samples
X. These features are subject-specific s° and pattern-specific
p®, and are extracted from a cleaner representation X com-
pared to z. The training loss functions are the same as in
Section V-B.

a) Classifier: The whole model except for the clas-
sifier is trained end-to-end. Subsequently, the classifier for
abnormality recognition is applied for training, similarly to
Section III-D3. The pattern-specific feature from the feature
from the reconstruction part p® is provided as the only input to
the classifier as it is less influenced by noises. Optionally, we
also concatenate the first generation part p©. It encodes some
complementary information from the original modality, which
might gets lost during the cross-modal generation.

IV. ABNORMAL GAIT DATABASE
A. Data Collection

In our abnormal gait database?, 18 healthy volunteers (16
male and 2 female) were recruited and instructed to walk nor-
mally and imitate four pathological gait patterns (i.e., toe-in,
toe-out, supination, and pronation), following the settings of
previous simulation based works [58], [59], [60]. The recruited
subjects were with no lower-limb injury history and did not
undergo any joint instability during the course of the past
six months. Among pathological gait categories as shown
in Fig. 1, the supination refers to the outward roll of ankle
joint while the pronation indicates the inward rotation. The
toe-in and toe-out are the inward and outward of the foot
forward direction during walking [5]. To avoid exaggerated
imitation, specialized correction insoles were placed inside the
shoes to resemble supination and pronation characteristics. For
each pattern, subjects were walking within a straight pathway
inside the laboratory (four meters, in four diagonal directions).
Details can be found in the Supplementary Material.

During the capturing process, multi-modal gait data as listed
in Fig. 8 was collected by Mocap system, RGBD camera,
and wearable surface EMG sensors. For the Mocap data, 16

2This experiment was approved by Imperial College Research Ethics
Committee under Reference No. 181C4915.
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Fig. 8. Gait cycle representation. The Mocap data x was collected by the
motion capture system (Vicon Motion System Ltd., Oxford, UK). RGBD
camera used is RealSense D435 (Intel Corporation, California, US) and the
skeleton data r was extracted by [5]. The surface EMG data e was collected
by Trigno Avanti wireless EMG System (Delsys Incorporated, Massachusetts,
Us).

device images sources:

ahttps://www.intelrealsense.com/depth-camera-d435/
b:https://www.vicon.com/hardware/cameras/
c:https://www.delsys.com/trigno/sensors/
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Fig. 9. Experimental setup during the multi-modal data collection. (a)
Marker positions of ground truth markers recorded with Vicon motion capture
system [5]; (b) Keypoint positions of human pose estimation model [18]; (c)
Positions of eight wireless EMG sensors attached to different muscles.

markers as illustrated in Fig. 9(a), were attached on the key
joints of the lower limb. They were recorded by the Vicon
multi-camera Mocap system, with similar settings as in [5].
The sampling rate was 120 Hz. A single RGBD camera was
placed at the corner of the sensing area and 4D skeletal data
were extracted from color and depth images based on previous
work [5]. The Mocap data detect 16 joints that are shown in
Fig. 9(a), whereas the skeleton data extracted from the RGBD
sensor detect in real-time twelve joints as shown in Fig. 9(b).
The sampling rate of the RGBD sensor is 30 Hz. The RGBD
camera and Vicon system data streams were synchronized by
the pre-calibrated time stamps of each system. As shown in



Fig. 9(c), eight wireless surface EMG sensors® were attached

on the lower limb to measure the muscle response of Tib-
ialis Anterior, Peroneus Longus, Gastrocnemius, and Rectus
Femoris, respectively [61]. The EMG data has sampling rate
1200 Hz and it was synchronized with the Mocap data via
the Vicon Lock Lab.

B. Preprocessing

For each walking sequence, data was segmented along the
time axis to extract each gait cycle, as shown in Fig. 8. This
involves detecting the right toe-off phase automatically based
on the Mocap data. Subsequently, we resample each cycle
to T frames with the toe-off phase of the left leg fixed at
50%. The global displacement was removed by subtracting
the x and y positions of the root joint (i.e., the average of
LASI and RASI) and the rotation around the axis vertical to
the ground was removed as well. Then each joint trajectory
across time is Z-Normalized by substracting the average value
and deviding with the standard deviation along the sequence.
Gait cycles contain the turning around point during walking
were excluded. As mentioned in Section IV-A, synchronized
skeleton data based on a single RGBD camera and EMG
data were recorded. The RGBD camera was upsampled to
the same sampling rate of the Mocap system. The EMG
data was on-chip filtered, and then the extracted envelop was
downsampled to the frame rate of the Mocap data.

V. RESULTS

A. Implementation Details

1) Datasets and Parameters: Based on the dataset we
introduced in Section IV, in our case, the resampling size of
the gait cycle is 7T=128, whereas the dimensionality of the
Mocap, RGBD and EMG data is J,=3x16, J,.=3x12, J.=8§,
respectively. J, and J,. represent the number of 3D joints
coordinates (each contains x,y,z) of the skeleton data, whereas
J. represents the number of EMG channels. The number of
subjects is N;=18 and the number of walking patterns is N,=5.

2) Experimental Settings: The DNN architecture was im-
plemented by Pytorch and trained with Titan XP. The architec-
ture details are listed in the Supplementary Material. The loss
functions {Eselffrecon’ ‘Ccrossfrecon’ ’;Eff,gens »Cz,%ffss_gem
Lfr/f;} are summed by weights {1,1,1,1,0.5} when used,
respectively. The training for the multi-encoder autoencoder
E,,E,, D and the classifier C}, were done separately. The
adaptive learning rate optimization algorithm (ADAM) was
applied for training with learning rate initialized as 0.002 and
B as {0.9, 0.999}. For the multi-encoder autoencoder, the
learning rate was decayed by 0.5 every 200 iterations until
reaching 1000 iterations. For the classifier, the learning rate
was decayed by 0.5 every 100 iterations until reaching 300
iterations. During training, 10% of data was randomly sliced
out from the training set for validation. All the quantitative
results related experiments are done five times independently
and the average value is reported.

3The EMG data with Subjs 6 & 17 and the RGBD data with Subjs 12&16
were not recorded.
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Fig. 10. Comparison results of K-Fold cross validation on Mocap data. Left:
Cross-subject method; Right: Pattern Only variant.

B. Single-Modal Cross-Subject Transfer: Mocap

1) K-Fold Cross Validation: First of all, to evaluate the
effectiveness of our model, a K-Fold (K=10) cross validation
was first conducted on our data. The entire dataset was divided
into nine subsets, and during each time, one subset was
selected as the testing set while the remaining nine subsets
were utilized for training. We also compared the results by
the common single-encoder autoencoder architecture and the
same training procedure but without the cross-reconstruction
part, called as Pattern Only. As shown in Fig. 10, both our
method and the ablated model of only pattern branch show
good performance, and our two-branch model shows better
classification accuracy than the ablated one.

2) Leave-One-Subject-Out Cross Validation: The good per-
formance shown in K-Fold cross validation part may be caused
by overfitting, as the model was trained on a mixture of
all subjects and tested on the remaining set of the same
subjects. No new subjects appear in the testing procedure.
Therefore, this approach cannot demonstrate the generalization
ability of the trained models. To address this, we applied more
challenging Leave-One-Subject-Out (LOSO) cross validation.
In each session, one subject was selected for testing, and the
model is trained on the subset of the other subjects.

a) Qualitative results of cross-subject transfer: With
LOSO, the representative qualitative results of cross-subject
reconstruction is shown in Fig. 11. This cross reconstruction
part facilitates learning subject-invariant gait features across
training subjects. As the changes between normal, supination
and pronation are relatively small to be observed from the
skeleton data, we only present herewith the pattern transfer
between normal, toe-in and toe-out. It can be seen from Fig. 11
that the pattern is successfully retargeted across subjects
without introducing unrealistic movements, while preserving
the subject-specific geometric characteristics.

b) Abnormal gait recognition results: During LOSO
cross validation on the entire 18 subjects, the performance
of each subject and each pattern is evaluated in terms of
the following three metrics, Precision (Pre), Recall (Rec),
and F1. The overall accuracy (Acc) is also reported. These
results are presented in Table 1. The boxplots represent the
accuracy across each held-out subject under LOSO validation
and it is also shown in Fig. 12. These plots demonstrate
the overall consistency in generalization performance across
subjects. Furthermore, we applied paired t-test to confirm that
differences in performance across methods are statistically
significant. The corresponding p values are displayed on the
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Fig. 11. Selected qualitative results of cross-subject transfer of different walking patterns. 11 skeleton samples are downsampled from the whole gait cycle

and visualized horizontally. Other results and the animation effect can be viewed on https://guxiao0822.github.io/GAGR.

TABLE I
QUANTITATIVE RESULTS (%) UNDER LOSO VALIDATION FOR SINGLE-MODAL MOCAP DATA.

. Normal Supination Pronation Toe-in Toe-out
Modality  Methods Pre  Rec Tl Pre  Rec Tl Pre  Rec Tl Pre _Rec Tl Pre  Rec Tl Ace
SVM-angle[5]  70.14 7291 7150 74.75 70.72 72.68 88.33 8727 8780 0448 O8.13 9627 96.12 09588 96.00 8545
LSTM-angle[5] 7890 75.14 7697 81.14 7838 79.74 8872 9043 89.56 9641 9773 97.06 9435 97.90 96.09 89.51
LSTM-xyz[S] 8440 9044 8732 8824 8583 87.02 9226 8882 90.51 9784 9859 9821 97.15 97.03 97.09 91.90
Mocap  Pattern Only ~ 74.85 8459 7942 8278 7344 7783 78.16 79.17 78.66 9561 9528 9545 9429 9393 9411 8534
CCSA [55] 9148 8803 89.72 0207 8772 8084 8863 9088 89.74 9788 98.15 9801 9391 0825 09603 0281
Epi-FCR [56] - X 17 41 85, 7.7 97 } X 57 977 ) 7. 7. 7. .
pi-FCR [56] 8552 9098 88 90.41 8529 8778 8997 9021 90.09 9857 97.73 9815 97.03 97.88 97.45 92.50
Proposed 9498 93.11 9404 9555 9271 9411 9341 9504 9422 9871 98.65 9843 97.20 99.00 9748 95.72
score in bold indicates the best.
YT dropping out the original 3D data would cause information
<0.01
' § p=0.001 : loss.
e To highlight the robustness of our method, we also tested
" T e T e e = two deep learning based domain generalization methods.
. = These are the Classification and Contrastive Semantic Align-
R w0 ( . . . . .
:;85 ment (CCSA [55])*, and the Episodic Domain Generalization
4
£, L ) (Epi-FCR [56])>. Our method outperforms these approaches
§ 7 s . as well. Pre, Rec, F1 scores and overall accuracy are shown
in Table I. In addition, Fig. emonstrates that the propose
* ' Table 1. In addit; Fig. 12 d trates that th d
85 £ 3 .
SVM-angle LSTM-angle LSTM-xyz PatternOnly ~ CCSA Epi-FCR  Proposed method outperforms these state-of-the-art domain general_
Methods

Fig. 12. Classification accuracy across different methods represented as
boxplots that encompasses the accuracy of each held-out subject in the LOSO
cross validation. The results of paired t-test between our proposed method and
those compared are annotated on the top.

top of Fig. 12.

For detailed comparison, in addition to the proposed
method and ablated Pattern Only, the accuracy of meth-
ods in our previous work [5] is shown as well. These in-
clude the SVM (Support Vector Machine) trained with angle
features (SVM-angle), LSTM trained with angle features
(LSTM-angle), and LSTM trained directly with 3D positions
input (LSTM-xyz, the same input as our proposed model)
and they are viewed as baseline abnormal gait recognition
methods. As shown in Table I, compared with these methods,
overall our proposed model shows superior performance. Fur-
thermore, we notice that the LSTM models trained with direct
3D joints skeleton information outperform the model trained
with the extracted joint angles. This shows that the features
related to gait abnormalities are not limited to the joint angles
extracted in our previous work [5], and therefore directly

ization methods as well and the difference in accuracy is
statistically significant (p < 0.05).
3) Leave-Multiple-Subject-Out Validation:

a) Feature visualization during the training procedure:
To further validate the learned disentanglement of both
subject-specific and pattern-specific features, we selected the
first 14 subjects for training and the remaining 4 subjects
for testing. To visualize those two features, we applied
the t-Distributed Stochastic Neighbor Embedding (t-SNE)°
to show the extracted s and p separately. The t-SNE is
a high-dimensional data visualization tool that is able to
effectively reduce feature dimensions while clustering the data
of similar distributions. The t-SNE plot of s, p on training set
and testing set are presented in Fig. 13. It can be observed
that with the increment of iterations, the pattern feature space
and subject feature space are disentangled and each sample
is clustered into their individual categories, gradually. Similar

4Based on the codes from https://github.com/samotiian/CCSA
SBased on the codes from https://github.com/HAHA-DL/Episodic-DG
Ohttps://scikit-learn.org/stable/modules/generated/sklearn.manifold. TSNE
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Fig. 13. The t-SNE visualization of s and p on training set and testing set based on the cross-subject transfer on Mocap data. 14 subjects are used for training
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Fig. 14. Comparison of results under random-leave-subject-out (sampling
with replacement) evaluation. In each training session, four subjects are
randomly selected and substituted in the training set from the remaining
subjects. For each training number, the random selection is repeated 10 times.

results are also shown on the pattern and subject feature space
extracted from the testing set. This qualitatively demonstrates
that the pattern encoding model is of good generalization
ability on ‘unseen’ new subject.

b) Random-leave-subject-out validation (Sampling with
replacement): In addition, to highlight the generalization
ability of our method when the training subject number is
limited, we implemented a random-leave-subject-out strategy
to further explore the robustness in terms of the number of
training subjects. We randomly select four subjects as the test
dataset, whereas in the training set, we substitute them with a
random subsampling from the remaining set of subjects. The
training subject number increases from 4 to 14. The sampling
process is repeated 10 times for each number of the training
subjects. The results are presented in Fig. 14. It is shown
that our proposed method can achieve consistently superior
performance compared to all other methods.

4) Ablation Study: Apart from merging the multi-encoder
into a single one (namely Pattern Only), we also applied
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Fig. 15. Results of ablation study for single-modal cross-subject transfer on
Mocap data.

an ablation study on the effectiveness of each loss function
(Eself—recona ‘ccross—recon and Etm’p% as shown in Flg 15. It
can be observed that the classification performance decreases
to some extent in the ablated ones, demonstrating the effec-
tiveness of each loss function.

C. Cross-Modal Cross-Subject Transfer: RGBD & EMG

Our goal is firstly to learn a mapping from a noisy sensing
modality z to a clean representation X. This is achieved
with the first multi-encoder decoder network {E¢, ES, D¢}.
Subsequently, we reconstruct the generated x from X with the
second multi-encoder decoder network {E%, ES, D*®}. There-
fore, the pattern-related features are extracted from the E;j and
E, and they are subject-invariant. This cascaded architecture
enables progressively converting the noisy representations to
the associated clean representation.

1) Comparison of Generated and Reconstructed Samples:

a) Visualization of different samples: First of all, we
show the qualitative results of generated and reconstructed
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respectively.

samples of {Normal, Toe-in, Toe-out} in Fig. 16. As the
difference between Normal and Pronation/Supination is hard
to observe by human eyes during walking, only Normal and
Toe-in, Toe-out samples are shown. The skeletons in Fig. 16
are their corresponding Mocap data. On the top RGBD part of
Fig. 16, the comparison between the original RGBD samples
r and the Mocap samples x are also displayed. The observed
difference between these two modalities reflect the noises from
the depth sensors and 3D pose estimation errors, in addition
to the heterogeneity gap of the localization between human
keypoints and attached markers. For both modalities, favorable
performance can be observed in reconstructed x compared to
generated X.

b) Quantitative results: In Fig. 17, the boxplot of the
normalized Euclidean distance between X/x samples and x is
shown. They are displayed by each pattern group separately.
As shown in Fig. 17, the reconstructed samples are further
refined. Quantitative results in Fig. 17, along with the quali-
tative results in Fig. 16 demonstrate the effectiveness of our
cascaded architecture.

2) Abnormal Gait Recognition Results:

a) General results: To compare with previous meth-
ods, we applied four methods and two architecture vari-
ants, including LSTM [5], Pattern Only, CCSA, Epi-FCR
and Single-Modal Cross-Subject (SM-CS), Cross-Modal
Direct-Mapping (CM-DM). Among them, SM-CS adopts the

structure for Mocap data, one multi-encoder autoencoder.
CM-DM changed the first cross-modal generation part, which
only minimizes the self-generation loss ﬁjgfju gen during
training. It directly maps one modality to another in the first
generation part, the same as the settings of a conventional
autoencoder. Furthermore, different pattern features extracted
from our proposed model were also explored. p°, p°, and
p¢+ p® are extracted separately and then used for training the
classifier. We call these variant architectures as Proposed-C,
Proposed-S, Proposed-CS, respectively.

For RGBD skeleton and EMG modality, we performed the
LOSO validation on the entire dataset (16 subjects), respec-
tively. Similarly to the metrics used in Section V-B, Pre, Rec,
F1 of each gait pattern and the total accuracy are reported in
Table II. The distribution of accuracy for all held-out subjects
are visualized in Fig. 18 with statistical annotation. These
results have shown superior performance of our proposed
method (Proposed-S & Proposed-CS) compared to others.

It can be observed that for SM-CS, the improvement of the
Mocap data cannot be reproduced on the RGBD/EMG data
by a similar architecture and training strategy. Perhaps this
indicates that the single-modal model cannot well deal with
the noise in the RGBD/EMG data representations. Therefore,
the cross-subject reconstruction strategy alone fails to disen-
tangle subject-specific and pattern-specific information in the
presence of noise. Moreover, the result of CM-DM is poor,
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TABLE II
QUANTITATIVE RESULTS (%) UNDER LOSO VALIDATION FOR RGBD & EMG DATA.
. Normal Supination Pronation Toe-in Toe-out
Modality  Methods P Rec FI  Prc Rec FI P Ree FI  Pre  Rec FI  Pre Rec FI
LSTM [5] 4731 48,57 4793 4323 4040 41.77 41.64 43.14 4238 6659 65.08 65.82 63.00 64.67 63.82 5255
Pattern Only 4848 4959 49.03 4579 4332 4452 4224 40.88 4155 6557 6585 6571 59.67 63.17 6137 52.67
CCSA [55] 64.15 4337 51.75 4370 46.82 4521 40.67 56.52 4730 76.03 6439 69.73 7061 67.19 68.86 56.20
Epi-FCR [56] 51.30 55.87 5349 5239 4248 4692 4344 4317 4330 6741 75.04 71.02 6770 68.76 6822 57.07
RGBD SM-CS™ 53.16 4148 4660 3523 4326 38.83 40.13 4953 4434 7495 6522 69.75 7136 60.77 6564 5242
CM-DM* 4723 4678 47.00 39.72 40.16 3994 4174 49.84 4544 8330 71.38 76.88 7697 7247 7465 56.56
Proposed-C 49.88 3977 4426 3529 3643 3591 3592 36.65 3628 6835 6290 6551 5825 6847 6295 4934
Proposed-S 58.87 5341 56.01 4236 62.79 5059 47.11 43.01 4497 8730 7321 79.64 8226 6947 7533 60.63
Proposed-CS 57.66 5417 55.86 4622 57.83 51.38 4898 4829 48.63 87.10 7637 81.38 7920 73.89 7646 62.42
LSTM [5] 21.73 1526 17.93 4327 3292 3739 239.72 4424 4186 5344 6091 5693 4802 5997 5388 43.67
Pattern Only 19.10 1562 17.19 3792 3292 3525 4348 49.16 46.14 51.16 5204 5159 54.65 6144 5785 4345
CCSA [55] 2682 30.51 2855 44.67 3835 4127 4322 5238 4736 61.78 4232 5023 49.17 5466 51.77 4430
Epi-FCR [56] 27.87 21.88 2451 43.62 3556 39.18 43.65 5177 4736 55.04 5392 5447 50.60 59.75 5479 45.59
EMG SM-CS™ 22.84 21.88 2235 3581 60.71 4505 5190 3349 40.71 6142 4890 5445 5450 4958 5192 43.67
CM-DM* 3339 3695 3508 40.59 31.83 3568 44.17 4885 4639 6252 56.74 5949 5558 61.16 5824 47.69
Proposed-C 3798 3456 36.19 4691 4953 4819 51.68 4731 4940 69.01 70.85 6991 6456 6921 66.80 55.16
Proposed-S 4140 4779 4437 47.69 61.02 5354 54.08 41.78 47.14 7583 6834 71.89 7221 66.81 69.41 57.58
Proposed-CS 46.99 4301 4491 51.77 56.88 5411 6020 47.16 52.89 7137 76.18 73.69 68.65 76.69 7245 60.75
* SM-CS: Single Modal; Cross Subject score in bold indicates the best.
# CM-DM: Cross Modal; Direct Mapping
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Fig. 18. Classification accuracy across different methods represented as boxplots that encompasses the accuracy of each held-out subject in the LOSO cross
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Fig. 19. The t-SNE visualization of the pattern feature p extracted from different variants and our proposed method under LOSO.

indicating that the direct mapping method can cause overfitting
inside the first generation part and it does not generalize well.

3) Pattern Feature Comparison: Here we further dis-
cuss the difference between Proposed-C, Proposed-S,
and Proposed-CS. Proposed-C utilizes p°, the associated
pattern-specific feature during mapping from z to X, while
Proposed-S takes p® as the input of classification, pattern
specific feature extracted from the process of reconstructing
X from X. As p® is from a cleaner representation X than
p°, Proposed-S outperforms Proposed-C as shown in Ta-
ble II. We also observe a slightly better performance after
concatenating p¢ and p® together. This is probably due to the

complementary information provided by p° from the original
sensing modality.

Moreover, the utilized pattern feature p from differ-
ent methods {CM-CS, CM-DM, Proposed-C, Proposed-S,
Proposed-CS} are visualized by t-SNE and the results are
shown in Fig. 19. It is shown that the clustering of each group
is better in Proposed-S and Proposed-CS. This demonstrates
that our framework helps to transform noisy data to cleaner
and more discriminative representations.

4) Fine-tuning of Mocap-EMG: The EMG is a type of
physiological signal that records the electrical activities of
muscles, while the skeleton data records the kinematics in-
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Fig. 20. Results based on fine tuned self-reconstruction loss on surface EMG.

formation. As the muscle distribution and strength varies
largely across subjects, the mapping between EMG and Mocap
skeletal information might be affected the stochastic nature
of EMG signals. To examine this, we split the data of test
subjects in two halves. For each half, we fine-tune the model
by minimizing the self-generation loss ﬁgfff_gm. Then the
fine-tuned model is applied on the left half test set. The results
are shown in Fig. 20. It is observed that the accuracy can
achieve 74.3% with this strategy. However, there might be
some unique information from Mocap skeleton to EMG by
such a countermeasure, and in most cases, the ground truth
clean kinematic data obtained from the Mocap system cannot
be acquired outside the lab. Further work would partially focus
on how to get more robust and generalized mapping between
human skeleton and EMG.

VI. CONCLUSIONS

The applications of deep learning in health informatics have
grown rapidly because of the ability of the deep models to not
only outperform classical methods but also reach performance
levels that fulfill clinical requirements. One of their major
strength is to automatically extract relevant features in a
hierarchical way. However, in applications where datasets are
limited, subject-specific characteristics are interleaved with
pathological characteristics, and this results in overfitting and
lack of generalization to ‘unseen’ subjects. Various physi-
ological signals contain both biometric information as well
as pathological characteristics. Therefore, the development of
robust inter-subject classification algorithms is of paramount
importance.

In particular, abnormal gait recognition constitutes an inter-
esting problem that can be formulated as a four-dimensional
motion analysis. In fact, gait motion encodes both biomet-
ric characteristics, which reflect subject-specific information,
as well as abnormal pattern-specific characteristics. In the
absence of large datasets, we first propose a cross-subject
reconstruction strategy that disentangles subject-specific from
abnormal pattern-specific information. The proposed archi-
tecture improves classification performance with statistically
significant difference compared to others.

Although, this strategy works well when the training kine-
matic datasets are precise (i.e., obtained by a Mocap system),
it fails when the training datasets are noisy. In connected
health applications, there is a need to perform abnormal gait
recognition based on gait data obtained from a small number
of vision-based or wearable sensors that would be able to
work in home environments. To address this issue, we propose
a novel cascaded architecture of a cross-modal, cross-subject

transfer that allows to map noisy data obtained from a single
RGBD camera or a set of eight EMG sensors to accurate
Mocap kinematic estimations. This operation acts as filtering
and it enables the successful application of the subsequent
cross-subject transfer.

We have extensively validated our approach and demon-
strated that it outperforms both state-of-the-art deep neural
network architectures with statistically significant improve-
ment for both the RGBD and the EMG data. Further work
should aim to validate the robustness of the proposed model
in clinical settings with longitudinal datasets from large cohort
patient studies.
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