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Abstract—Mixture modelling using elliptical distributions
promises enhanced robustness, flexibility and stability over the
widely employed Gaussian mixture model (GMM). However,
existing studies based on the elliptical mixture model (EMM)
are restricted to several specific types of elliptical probability
density functions, which are not supported by general solutions
or systematic analysis frameworks; this significantly limits the
rigour in the design and power of EMMs in applications. To this
end, we propose a novel general framework for estimating and
analysing the EMMs, achieved through Riemannian manifold
optimisation. First, we investigate the relationships between
Riemannian manifolds and elliptical distributions, and the so
established connection between the original manifold and a
reformulated one indicates a mismatch between these manifolds,
a major cause of failure of the existing optimisation for solving
general EMMs. We next propose a universal solver which is
based on the optimisation of a re-designed cost and prove the
existence of the same optimum as in the original problem; this
is achieved in a simple, fast and stable way. We further calculate
the influence functions of the EMM as theoretical bounds
to quantify robustness to outliers. Comprehensive numerical
results demonstrate the ability of the proposed framework to
accommodate EMMs with different properties of individual
functions in a stable way and with fast convergence speed.
Finally, the enhanced robustness and flexibility of the proposed
framework over the standard GMM are demonstrated both
analytically and through comprehensive simulations.

Index Terms—Finite mixture model, elliptical distribution,
manifold optimisation, robust estimation, influence function

I. INTRODUCTION

Finite mixture models have a prominent role in statistical
machine learning, owing to their ability to enhance prob-
abilistic awareness in many learning paradigms, including
clustering, feature extraction and density estimation [1].
Among such models, the Gaussian mixture model (GMM) is
the most widely used, with its popularity stemming from a
simple formulation and the conjugate property of Gaussian
distribution. Despite mathematical elegance, a standard GMM
estimator is subject to robustness issues, as even a slight
deviation from the Gaussian assumption or a single outlier in
data can significantly degrade the performance or even break
down the estimator [2]. Another issue with GMMs is their
limited flexibility, which is prohibitive to their application in
rapidly emerging scenarios based on multi-faceted data which

This is the author’s version of an article that has been published accepted
to IEEE Transactions on Neural Networks and Learning Systems with DOI:
10.1109/TNNLS.2020.3010198. Changes were made to this version by the
publisher prior to publication. Please note that personal use is permitted. For
any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org. Shengxi Li, Zeyang Yu and Danilo Mandic are
with the department of Electrical and Electronic of Imperial College London.

are almost invariably unbalanced; sources of such imbalance
may be due to different natures of the data channels involved,
different powers in the constitutive channels, or temporal
misalignment [3].

An important class of flexible multivariate analysis tech-
niques are elliptical distributions, which are quite general
and include as special cases a range of standard distributions,
such as the Gaussian distribution, the logistic distribution and
the t-distribution [4]. The desired robustness to unbalanced
multichannel data is naturally catered for in elliptical distri-
butions; indeed estimating certain elliptical distribution types
results in robust M-estimators [5], thus making them a natural
candidate for robust and flexible mixture modelling. In this
work, we therefore consider mixtures of elliptical distributions,
or elliptical mixture model (EMM), in probabilistic modelling.
By virtue of the inherent flexibility of EMMs, it is possible
to model a wide range of standard distributions under one
umbrella, as EMM components may exhibit different proper-
ties, which makes EMMs both more suitable for capturing
intrinsic data structures and more meaningful in interpreting
data, as compared to the GMM. Another appealing property
of EMMs is their identifiability in mixture problems, which
has been proved by Holzmann et al. [6]. In addition, it
has also been reported that several members of the EMM
family can effectively mitigate the singular covariance problem
experienced in the GMM [7].

Existing mixture models related to elliptical distributions
are most frequently based on the t-distribution [7], [8], [9],
the Laplace distribution [10], and the hyperbolic distribution
[11]; these are optimised by a specific generalised expectation-
maximisation process, called the iteratively reweighting algo-
rithm (IRA) [12]. These elliptical distributions belong to the
class of scale mixture of normals [13], where the IRA actually
operates as an expectation maximisation (EM) algorithm, and
such an EMM model is guaranteed to converge. However,
for other types of elliptical distributions, the convergence of
the IRA requires constraints on both the type of elliptical
distributions and the data structure [12], [14], [15]. Therefore,
although beneficial and promising, the development of a
universal method for estimating the EMM is non-trivial, owing
to both theoretical and practical difficulties.

To this end, we set out to rigorously establish a whole
new framework for estimating and analysing the identifiable
EMMs, thus opening an avenue for practical approaches
based on general EMMs. More specifically, we first analyse
the second-order statistical differential tensors to obtain the
Riemannian metrics on the mean and the covariance of
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elliptical distributions. A reformulation trick is typically
used to convert the mean-covariance-estimation problem
into a covariance-estimation-only problem [12]. We further
investigate the relationship between the manifolds with and
without the reformulation, and find that an equivalence of
the two manifolds only holds in the Gaussian case. Since
for general elliptical distributions, the equivalence is not
guaranteed, this means that a direct optimisation on the
reformulated manifold cannot yield the optimum for all EMMs.
To overcome this issue, we propose a novel method with
a modified cost of EMMs and optimise it on a matched
Riemannian manifold via manifold gradient descent, where
the same optimum as in the original problem is achieved in a
fast and stable manner. The corresponding development of a
gradient-based solver, rather than the EM-type solver (i.e., the
IRA), is shown to be beneficial, as it offers more flexibility in
model design, through various components and regularisations.
We should point out that even for the EMMs where the IRA
converges, our proposed method still outperforms the widely
employed IRA. We finally systematically verify the robustness
of EMMs by proving the influence functions (IFs) in closed-
form, which serves as the theoretical bound.

The recent related work in [16], [17] adopts manifold
optimisation for GMM problems by simply optimising on
the intrinsic manifold. However, this strategy is inadequate in
EMM problems due to a mismatch in manifolds for optimisa-
tion, which leads to a different optimum after reformulation.
More importantly, as the flexibility of EMMs allows for
inclusion of a wide range of distributions, this in turn requires
the statistics of mixture modelling to be considered in the
optimisation, whilst the work [16], [17] only starts from a
manifold optimisation perspective. The key contributions of
this work are summarised as follows:

1) We justify the usage of Riemannian metrics from the
statistics of elliptical distributions, and in this way connect
the original manifold with the reformulated one, where the
convergence can be highly accelerated.

2) A novel method for accurately solving general EMMs in
a fast and stable manner is proposed, thus making the flexible
EMM truly practically applicable.

3) We rigorously prove the IFs in closed-form as theoretical
bounds to qualify the robustness of EMMs, thus providing a
systematic framework for treating the flexibility of EMMs.

II. PRELIMINARIES AND RELATED WORKS

As our aim is to solve the EMMs from the perspective of
manifold optimisation, we first provide the preliminaries on
the manifold related to probability distributions in Section
II-A. Then, we introduce the preliminaries and notations of
the elliptical distributions in Section II-B. We finally review
the related EMM works in Section II-C.

A. Preliminaries on the Riemannian manifold

A Riemannian manifold (M, ρ) is a smooth (differential)
manifold M (i.e., locally homeomorphic to the Euclidean
space) which is equipped with a smoothly varying inner

product ρ on its tangent space. The inner product also
defines a Riemannian metric on the tangent space, so that
the length of a curve and the angle between two vectors
can be correspondingly defined. Curves on the manifold
with the shortest paths are called geodesics, which exhibit
constant instantaneous speed and generalise straight lines in
the Euclidean space. The distance between two points on M
is defined as the minimum length of all geodesics connecting
these two points.

We shall use the symbol TΣM to denote the tangent space
at the point Σ, which is the first-order approximation of M
at Σ. Consequently, the Riemannian gradient of a function f
is defined with regard to the equivalence between its inner
product with an arbitrary vector ξ on TΣM and the Fréchet
derivative of f at ξ. Moreover, a smooth mapping from TΣM
into M is called the retraction, whereby an exponential
mapping obtains the point on geodesics in the direction of the
tangent space. Because the tangent spaces vary across different
points onM, parallel transport across different tangent spaces
can be introduced on the basis of the Levi-Civita connection,
which preserves the inner product and the norm. In this way,
we can convert a complex optimisation problem on M into a
more analysis friendly space, i.e., TΣM. For a comprehensive
text on the optimisation on the Riemannian manifold, we
refer to [18]. Therefore, on the basis of the above basic
operations, the manifold optimisation can be performed by
the Riemannian gradient descent [19]. The retraction is then
utilised to map a step descent from the tangent space to
the manifold. To accelerate gradient descent optimisation,
the parallel transport can also be utilised to accumulate the
first-order moments [20], [21], [22], [23], [24].

When restricted to the manifold of positive definite matrices,
it is natural to define such a manifold via the statistics of
Gaussian distributions because the covariance of the Gaussian
distribution intrinsically satisfies the positive definiteness
property. Pioneering in this direction is the work of Rao,
which introduced the Rao distance to define the statistical
difference between two multivariate Gaussian distributions
[25]. This distance was later generalised and calculated in
closed-form [26], [27], [28], to obtain an explicit metric (also
called the Fisher-Rao metric). However, with regard to other
elliptical distributions, the corresponding Fisher-Rao metric
is not guaranteed to be well suited for optimisation [29].

On the other hand, there is another type of distributions,
named the exponential family, that overlaps with elliptical dis-
tributions; its Fisher-Rao metric can be explicitly determined
by a second-order derivative of the potential function [30].
However, the corresponding Riemannian gradient, Levi-Cevita
connection, exponential mapping, parallel transport, etc., may
not necessarily be obtained explicitly and in a general form for
multivariate exponential families [27]. The existing literature
mainly analyses the Gaussian distribution [31] and the dually-
flat affine geometry [32] in terms of α-connections. More
importantly, even though the optimisation can be formulated,
a further obstacle is the lack of re-parametrisation property,
addressed in this paper. As shown in the sequel, the absence of
re-parametrisation could lead to extremely slow convergence.
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B. Preliminaries on the elliptical distributions

A random variable X ∈ RM is said to have an elliptical
distribution if and only if it admits the following stochastic
representation [33],

X =d µ +RΛU , (1)

where R ∈ R+ is a non-negative real scalar random variable
which models the tail properties of the elliptical distribution,
U ∈ RM ′ is a random vector that is uniformly distributed on
a unit spherical surface with the probability density function
(pdf) within the class of Γ(M/2)/(2πM/2), µ ∈ RM is a
mean (location) vector, while Λ ∈ RM×M ′ is a matrix that
transforms U from a sphere to an ellipse, and the symbol
“=d” designates “the same distribution”. For a comprehensive
review, we refer to [4], [34].

Note that an elliptical distribution does not necessarily
possess an explicit pdf, but can always be formulated by its
characteristic function. However, when M ′ = M and Λ has
a full row-rank 1, that is, for a non-singular scatter matrix
Σ = ΛΛT , the pdf for elliptical distributions does exist and
has the following form

pX (x) = det(Σ)−1/2 · cM · g
(
(x− µ)TΣ−1(x− µ)

)
, (2)

where the term cM = Γ(M/2)

2πM/2
serves as a normalisation term

and solely relates to M . We also denote the Mahalanobis
distance (x−µ)TΣ−1(x−µ) by the symbol t for simplicity.
Then, the density generator, g(·), can be explicitly expressed
as t−(M−1)/2pR(

√
t), where t > 0 and pR(t) denotes the pdf

ofR. For example, whenR =d
√
χ2
M , where χ2

M denotes the
chi-squared distribution of dimension M , g(t) in (2) is then
proportional to exp(−t/2), which formulates the multivariate
Gaussian distribution. For simplicity, the elliptical distribution
in (2) will be denoted by E(x|µ,Σ, g). We also need to point
out that typical EMMs are identifiable [6], which is important
in order to uniquely estimate mixture models.

Remark 1. Before proceeding further, we shall emphasise the
importance of the stochastic representation of (1) in analysing
elliptical distributions:
1) Since R is independent of U , the Mahalanobis distance
(x − µ)TΣ−1(x − µ) (=d R2) is thus independent of the
normalised random variable Σ−1/2(x−µ)/

√
(x−µ)T Σ−1(x−µ)

(=d U), which is an important property in many proofs in
this paper.
2) The stochastic representation provides an extremely simple
way to generate samples, because only two random variables,
i.e., the one-dimensional R and uniform U , can be easily
generated.
3) When R is composed from a scale mixture of normal
distributions, the IRA method converges [35]. For a general
EMM, however, the convergence is not ensured.
4) Elliptical distributions can be easily generalised via the
stochastic representation. For example, when replacing the
uniform distribution, U , with a general directional distribution,

1We assume these two conditions throughout this paper to ensure an
explicit pdf in formulating EMMs.

i.e., the von Mises-Fisher distribution, parametrised by a mean
direction, µv , and a concentration parameter, τ , we obtain a
generalised elliptical distribution. When τ → 0, the von Mises-
Fisher distribution degenerates into the uniform distribution,
U , on the sphere, and the generalised distribution becomes
the symmetric elliptical distribution discussed in this paper.

C. Related works on EMMs

The GMM based estimation is well established in the
machine learning community. Since our focus is on the EMM,
we omit the review of GMM and the readers are referred to
[36] for a comprehensive review. To robustify the mixture
model, the mixtures of the t-distributions have been thoroughly
studied [7], [8], [9], on the basis of the IRA method. A more
general mixture model has been proposed in [37] based on the
Pearson type VII distribution (includes the t-distribution as
a special case). Moreover, as the transformed coefficients
in the wavelet domain tend to be Laplace distributed, a
mixture of the Laplace distributions has been proposed in
[10] for image denoising. Its more general version, a mixture
of hyperbolic distributions, has also been recently introduced
in [11]. The above distributions belong to the scale mixture
of normals class, which can be regarded as a multiplication
with a Gamma distribution, and ensures the convergence of
the IRA. Another recent work proposed a Fisher-Gaussian
distribution as mixing components to better accommodate the
curvature of data, with the Markov chain Monte Carlo used to
solve a Bayesian model [38]. This distribution has a closed-
form representation and mainly consists of a von Mises-Fisher
distribution convolved with Gaussian noise, which belongs to
generalised skew normal distributions [39]. More importantly,
when the concentration parameter τ → 0, this distribution then
belongs to the mixture of symmetric elliptical distributions.

On the other hand, Wiesel proved the convergence of
the IRA in [40] via the concept of geodesic convexity of
Riemannian manifold, and Zhang et al. further relaxed the
convergence conditions in [14]. The work in [15] proves
similar results from another perspective of the Riemannian
manifold, which also states that the IRA cannot ensure a
universal convergence for all EMMs. In other words, for
other elliptical distributions, the convergence is no longer
guaranteed. Despite several attempts, current EMMs, including
[41], [42], [43], are rather of an ad hoc nature.

Besides the IRA method for solving several EMMs,
gradient-based numerical algorithms typically rest upon
additional techniques that only work in particular situations
(e.g., gradient reduction [44], s re-parametrisation [45] and
Cholesky decomposition [46], [47]). Recently, Hosseini and
Sra directly adopted a Riemannian manifold method for
estimating the GMM, which provided an alternative to the
traditional EM algorithm in the GMM problem [16], [17].
However, their method fails to retain the optimum in the
EMM problem. To this end, we propose a universal scheme
to consistently and stably achieve the optimum at a fast speed,
which acts as a “necessity” instead of an “alternative” in the
EMM problem, as the IRA algorithm may not converge.
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III. MANIFOLD OPTIMISATION FOR THE EMM

In this section, we shall first justify the Riemannian metrics
of elliptical distributions in Section III-A, followed by a layout
of the EMM problem, and the introduction of the proposed
method in Section III-B. Finally, a novel type of regularisation
on the EMMs is introduced in Section III-C, which includes
the mean-shift algorithm as a special case.

A. Statistical metrics for elliptical distributions

Although there are various metrics designed for measuring
the distance between matrices [48], [49], [50], [51], not all
of them arise from the smooth varying inner product (i.e.,
Riemannian metrics), which would consequently give a “true”
geodesic distance. One of the widely employed Riemannian
metrics is the intrinsic metric tr(dΣΣ−1dΣΣ−1), which can
be obtained via the “entropy differential metric” [52] of two
multivariate Gaussian distributions. The entropy related metric
was later used by Hiai and Petz to define the Riemannian
metric for positive definite matrices [53]. In this paper,
we follow the work of [53] to calculate the corresponding
Riemannian metrics for the elliptical distributions.

Lemma 1. Consider the class of elliptical distributions
E(x|µ,Σ, g). Then, the Riemannian metric for the covariance
is given by

ds2 =
1

2
tr(dΣΣ−1dΣΣ−1). (3)

Proof. Please see Appendix-A.

More importantly, as the metric is related to Σ, the Levi-
Civita connection is given by ∇XY = − 1

2 (XΣ−1Y +
YΣ−1X) [54], where X,Y are vector fields on the man-
ifold of Σ. The corresponding exponential mapping, which
moves along with the geodesics given the direction from a
tangent vector, can be explicitly obtained as ExpΣ(U) =
Σ

1
2 exp(Σ−

1
2 UΣ−

1
2 )Σ

1
2 , where U ∈ TΣM [54].

When estimating parameters of elliptical distributions, the
mean vector and the covariance matrix need to be estimated
simultaneously. An elegant strategy would be to incorporate
the mean and the covariance into an augmented matrix with
one extra dimension [12]. Such a strategy has also been
successfully employed in the work of [16], [17], which is
called the “reformulation trick”. Thus, based on the metrics of
Lemma 1, we can introduce the following relationship related
to the reformulation.

Lemma 2. Consider the class of elliptical distributions,
E(y|0, Σ̃, g). Then, upon reformulating y and Σ̃ as

y = [xT , 1]T , Σ̃ =

(
Σ + λµµT

λµT
λµ

λ

)
(4)

the subsequent Riemannian metric follows

ds2 = tr(dΣ̃Σ̃−1dΣ̃Σ̃−1)

=λdµTΣ−1dµ+
1

2
tr(dΣΣ−1dΣΣ−1)+

1

2
(λ−1dλ)2.

(5)

Proof. The proof is a direct extension of that in [55], where
only the Gaussian case is proved, and will thus be omitted.

As dµTΣ−1dµ and 1
2 tr(dΣΣ−1dΣΣ−1) exactly formu-

late the two manifolds of EMMs without reformulation,
we can inspect the relationship between the manifolds of
EMMs with and without the reformulation from Lemma
2, which provides another perspective in understanding the
reformulation.

Remark 2. In Lemma 2, there is a mismatch between the
two manifolds, due to the term 1

2 (λ−1dλ)2. When restricted
to the Gaussian case, we show in the sequel that the gradient
of λ vanishes when optimising Σ̃, i.e., dλ = 0. In this case,
manifold optimisation on Σ̃ is performed under the same
metric as a simultaneous optimisation on a product manifold
of the mean and the covariance, which leads to the success
of [16], [17] in solving GMMs. However, this property does
not hold for general EMMs.

B. Manifold optimisation on the EMM

Generally, we assume that the EMM consists of K
mixing components, each elliptically distributed. To make the
proposed EMM flexible enough to capture inherent structures
in data, in our framework it is not necessary for every
elliptical distribution within the mixture to have the same
density generator (denoted by Ek(x|µk,Σk, gk)). In finite
mixture models, the probability of choosing the k-th mixing
component is denoted by πk, so that

∑K
k=1 πk = 1. For

a set of i.i.d samples xn, n = 1, 2, 3, · · · , N , the negative
log-likelihood can be obtained as

J=−
N∑
n=1

ln

K∑
k=1

πkcMdet(Σk)−
1
2 gk
(
(xn−µk)TΣ−1

k (xn−µk)
)
.

(6)
The estimation of πk, µk and Σk therefore requires the

minimisation of J in (6). By setting the derivatives of J to
0, we arrive at the following equations,

πk =

∑N
n=1 ξnk
N

, µk =

∑N
n=1 ξnkψk(tnk)xn∑N
n=1 ξnkψk(tnk)

,

Σk=−2

∑N
n=1 ξnkψk(tnk)(xn − µk)(xn − µk)T∑N

n=1 ξnk
,

(7)

where ξnk = Ek(xn|µk,Σk,gk)πk∑K
k=1 Ek(xn|µk,Σk,gk)πk

is the posterior distri-

bution of latent variables; tnk = (xn − µk)TΣ−1
k (xn − µk)

is the Mahalanobis distance; ψk(tnk) = g′k(tnk)/gk(tnk) acts
almost as an M-estimator for most heavily-tailed elliptical
distributions, which decreases to 0 when the Mahalanobis
distance tnk increases to infinity. It is obvious that the
solutions πk, µk and Σk are intertwined with ξnk and tnk,
which prevents a closed-form solution2 of (6). By iterating
(7), this results to an EM-type solver, which is exactly the
IRA algorithm. However, the convergence of the IRA is not
guaranteed for general EMMs [12].

2It should be pointed out that there are multiple solutions to (7) and the
goal here is to find a local stationary point. Finding the global optima is
difficult in mixture problems [56] and beyond the scope of this paper.
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On the other hand, when directly estimating the reformu-
lated EMM, i.e., Ek(y|0, Σ̃k, gk), similarly, we arrive at

π̃k =

∑N
n=1 ξ̃nk
N

, Σ̃k = −2

∑N
n=1 ξ̃nkψk(t̃nk)ynyTn∑N

n=1 ξ̃nk
, (8)

where t̃nk = yTn Σ̃−1
k yn and ξ̃nk = Ek(yn|0,Σ̃k,gk)πk∑K

k=1 Ek(yn|0,Σ̃k,gk)πk
. It

needs to be pointed out that the directly reformulated EMM
optimises on the augmented space yn = [xTn , 1]T of RM+1,
which is typically a mismatch to the original problem within
the dimension M . This intrinsic difference becomes clear
after decomposing Σ̃k to obtain the corresponding solutions,
µk and Σk, as well as λk. This is achieved in the form(

Σk + λkµkµ
T
k

λkµTk

λkµk
λk

)
= − 2∑N

n=1 ξ̃nk

N∑
n=1

ξ̃nkψk(t̃nk)

(
xnxTn
xn

xTn
1

)
.

(9)

Because (t̃nk = yTn Σ̃kyn) 6= (tnk = (xn−µk)TΣ−1
k (xn−

µk)), ψk(t̃nk) in (9) does not equal ψk(t̃nk) in (7). The only
exception is when ψk(·) is a constant, e.g., ψk(·)≡− 1

2 for the
Gaussian distribution. In this case, λk≡1, and the manifold
with the reformulation is same as the original one.

To retain the same optimum as the original problem, we
introduce a new parameter ck, which aims to mitigate the
mismatch of the reformulated manifold brought by λk. The
same optimum is ensured in the following theorem.

Theorem 1. The optimisation of πk, Σ̃k and ck based on
the following re-designed cost

J̃=−
N∑
n=1

ln

K∑
k=1

πk ·cM ·(ckdet(Σ̃k))−
1/2gk

(
yTn Σ̃−1

k yn−ck
)

(10)
has the same optimum as those in (7):

πk=

∑N
n=1ξnk
N

, ck =
1

λk
= −

∑N
n=1 ξnk

2
∑N
n=1 ξnkψk(tnk)

Σ̃k=−2

∑N
n=1ξnkψk(tnk)ynyTn∑N

n=1 ξnk

(11)

Proof. Please see Appendix-B.

We optimise (10) on a product manifold of Σ̃k, πk and ck.
For optimising Σ̃k, on the basis of the metric in Section III-A,
we calculate Riemannian gradient as ∇RJ̃ = Σ̃k(∇E J̃)Σ̃k,
where ∇E J̃ is the Euclidean gradient of cost J̃ via ∂J̃/∂Σ̃k.
Furthermore, although explicitly formulated, it is important to
mention that the exponential mapping provided after Lemma
1 operates on a matrix, which comes with an extremely high
computational complexity (typically O(M4)) and even needs
a certain degree of approximation [57]. A common way to
approximate the exponential mapping is via the retraction, of
which the accuracy is up to the first order to the exponential

mapping [58]. Thus, we employ the Taylor series expansion
of exp(Σ−

1
2 UΣ−

1
2 ) as a way of the approximation, via

ExpΣ(U) = Σ
1
2 exp(Σ−

1
2 UΣ−

1
2 )Σ

1
2

≈ Σ
1
2 (0 + Σ−

1
2 UΣ−

1
2 +

1

2
Σ−

1
2 UΣ−1UΣ−

1
2 )Σ

1
2

= Σ + U +
1

2
UΣ−1U = RΣ(U),

(12)
where the approximation is performed up to the cubic (third-
order) term. It can be easily verified that RΣ(U) is a
retraction (Chapter 4.1 of [18]), which significantly reduces
the computational complexity from a matrix exponential to
simple linear operations on matrices. Finally, we employ the
conjugate gradient descent [59] as a manifold solver, with a
pseudo-code for our method given in Algorithm 1.

Algorithm 1 The proposed method for optimising the EMM
Input: N observed samples: x1,x2, . . . ,xN ;

1: initialize: {µ0
k}Kk=1, {Σ0

k}Kk=1, {π0
k}Kk=1, {c0k}Kk=1, and

{λinik }Kk=1

2: for k = 1 to K do
3: for n = 1 to N do
4: yn, Σ̃

0
k ← REPARAMET(xn, µ0

k, Σ0
k, λinik );

5: while not converged (at the t-th iteration): do
6: for k = 1 to K do
7: Calculate Euclidean gradients ∇E(Σ̃t

k), ∇E(πtk)
and ∇E(ctk), by differentiating J̃ of (1);

8: πt+1
k ← Step descent based on ∇E(πtk);

9: ct+1
k ← Step descent based on ∇E(ctk);

10: Update Σ̃t
k:

11: ∇R(Σ̃t
k)← RGRADIENT(Σ̃t

k, ∇E(Σ̃t
k));

12: Ut
k ← Step descent based on ∇R(Σ̃t

k);
13: Σ̃t+1

k ← RETRACTION(Σ̃t
k, Ut

k);
14: for k = 1 to K do
15: µ∗k, Σ∗k ← DECOMPOSITION(Σ̃∗k)
Output: {µ∗k}Kk=1, {Σ∗k}Kk=1 and {π∗k}Kk=1.

16: Procedure: REPARAMET(x, µ, Σ, λ)
17: Re-parametrisation via (4).
18: return y, Σ̃

19: Procedure: RGRADIENT(Σ, ∇E)
20: return ∇R = (Σ∇EΣ)

21: Procedure: RETRACTION(Σ, U)
22: return Σnew = (Σ + U + 1

2UΣ−1U)

23: Procedure: DECOMPOSITION(Σ̃, c)
24: Decompose via inverting (4):

(
Σ+ 1

cµµT

1
cµ

T

1
cµ
1
c

)
= Σ̃

25: return µ and Σ

The advantages of our algorithm, by virtue of its inherent
reformulation, can be understood from two aspects. First,
through the reformulation, our method is capable of providing
a relatively global descent in terms of the re-parametrised
Σ̃k, whereas optimisation without the reformulation requires
a sophisticated incorporated step descent on both µk and Σk,
to ensure a well-behaved convergence. On the other hand,
one typical singularity case is when certain µk moves to the
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boundary of the data during optimisation, in which the cluster
is likely to model a small set of data samples (e.g., one or
two samples). In contrast, the proposed reformulated EMMs
can be regarded as zero-mean mixtures, which to some extent
relieves this singularity issue.

C. Regularisation

We impose the inverse-Wishart prior distribution (i.e.,
pΣk

(Σk) ∝ 1
det(Σk)v/2

exp(−vtr(Σ−1
k S)

2 )) to regularise the
EMM, where v controls the freedom and S is the prior matrix.
The advantages of using a form of tr(Σ−1

k S) are two-fold: i)
it is strictly geodesic convex in Σk and ii) the solutions are
ensured to exist for any data configuration [60]. By utilising
maximising a posterior on covariance matrices, we obtain the
same solutions of πk and µk as those of (7), whereas Σk

now becomes

Σk =
−2 ·

∑N
n=1 ξnkψk(tnk)(xn − µk)(xn − µk)T + vS∑N

n=1 ξnk + v
.

(13)
Similar to Theorem 1, the following proposition can be

obtained for the reformulation with regularisations.

Proposition 1. The optimisation of πk, Σ̃k and ck based on
the following cost function

J̃r= J̃ +

K∑
k=1

(ckdet(Σ̃k))−
v/2 exp

(
−
vtr(Σ̃−1

k S̃)

2

)
, (14)

achieves the same optimal Σk as in (13) and the same πk
and µk as in (7), where S̃ = [S

0
0
0 ]. The optimal ck and λk

are

ck =
1

λk
= −

∑N
n=1 ξnk + v

2
∑N
n=1 ξnkψk(tnk)

. (15)

Proof. The proof is analogous to that of Theorem 1 and is
therefore omitted.

Remark 3. In (13), it can be seen that when v →∞, Σk →
S. Furthermore, when S = IM , Σk = σ2IM , the estimation of
µk in (7) becomes

∑N
n=1 ξnkψk(σ−2||xn−µk||2)xn∑N
n=1 ξnkψk(σ−2||xn−µk||2)

, which is the
basic mean-shift algorithm with soft thresholds. Furthermore,
when S = IM , Σk = IM and ψk(tnk) = −1/2 (the GMM),
it then turns to a soft version of the basic k-means algorithm.
This all demonstrates that the EMM is a flexible framework
in our regularisation settings and that we can choose v and
S to achieve different models.

It needs to be pointed out that although the inverse-Wishart
prior is one of the popular priors (typically S = I), there
are also other priors which suit different requirements. For
example, there is also work using the Wishart prior, which
is less informative but requires a particular setting of the
parameters [61]. Instead of controlling the degrees of freedom
by the scalar v, a generalised inverse-Wishart distribution
has been applied to flexibly control the degrees of freedom
[62]. Another pragmatic solution would be to decompose the
covariance matrix into its standard deviation and correlation
matrix components (inverse-Wishart distribution) so that the

standard deviation can be treated in a flexible way [63].
Moreover, probabilistic graphical models can be used as a
prior to explicitly control the sparsity of the matrices [64],
where e.g., graphical LASSO can be applied. Furthermore,
a robust distribution for positive definite matrices, named
F -distribution, has become a popular choice for priors,
which generalises the half-Cauchy and half-t distributions
[65]. Recently, a Riemannian Gaussian distribution for the
positive definite matrix has been proposed by replacing the
Mahalanobis term with the Fisher-Rao metric of positive
definite matrices [66]. A similar strategy can be extended
to the Laplacian [67] and even to the elliptical distributions,
which has a significant potential to generate a rich class of
priors on positive definite matrices. This paper investigates the
inverse-Wishart prior as an example of regularisation, because
it can further emphasise the flexibility of EMMs and also
the compatibility of our re-parametrisation technique. The
investigation on other priors is part of our future work.

IV. INFLUENCE FUNCTIONS OF THE EMM

Robustness properties of a single elliptical distribution
(or more generally, an M-estimator) have been extensively
studied [69], [70], [2], [71], typically from the perspective
of influence functions (IFs) [72]. The IF is an important
metric for quantifying the impact of an infinitesimal fraction
of outliers on the estimations, which captures the local
robustness. However, to the best of our knowledge, there
exists no work on the IF of mixture models, especially for
the EMMs. To calculate the IFs, we utilise x0 to denote
point-mass outliers, which means that these outliers are
point-mass distributed at x0 [2]. We also explicitly write
the posterior distribution of latent variables as a function
of x (ξj(x) =

Ej(x|µj ,Σj ,gj)πj∑K
k=1 Ek(x|µk,Σk,gk)πk

), because in robustness
analysis, we need to quantify it with respect to outliers. For
simplicity, tj is also defined as the Mahalanobis distance
(x− µj)

TΣ−1
j (x− µj) and E[·] is the expectation over the

true distribution of x. Then, our analysis on the IFs is based
on the following two lemmas.

Lemma 3. Consider the mixture of elliptical distributions,
Ek(x|µk,Σk, gk). When data are well separated, upon de-
noting (x0 − µj) by x0 for the j-th cluster, its IF is given
by,

IΣj (x0)=−
ξj(x0)ψj(x

T
0 Σ−1

j x0)

w2
x0x

T
0

+ Σ
1
2
j

[
2w1 · ξj(x0)ψj(x

T
0 Σ−1

j x0)x
T
0 Σ−1

j x0 + w2 · ξj(x0)I

2(Mw1 − w2)w2

]
Σ

1
2
j ,

(16)
where w1 and w2 are constants (irrelevant to the outlier x0)

given by

w1 =
E[(ξj(x)− ξ2j (x))ψ2

j (t)t
2] + E[ξj(x)ψ′j(t)t2]

M(M + 1)

+
E[(ξj(x)− ξ2j (x))ψj(t)t]

M
+

E[ξj(x)− ξ2j (x)]
4

,

w2=
πj
2
−
E[(ξj(x)− ξ2j (x))ψ2

j (t)t
2]+E[ξj(x)ψ′j(t)t2]

M(M + 1)
.

(17)
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(a) Gaussian (b) Cauchy (c) Laplace (d) GG1.5

Fig. 1. For reproducibility, we follow the work of [68] to generate three one-dimensional clusters using the inverse of the Gaussian cumulative distribution
function. These three clusters are centred respectively at µ1 = 0, µ2 = −5 and µ3 = −10, and IF curves for µ1 are illustrated. The mixture distributions
are the Gaussian, Cauchy, Laplace and GG1.5, as shown in Table I. The theoretical bounds are plotted in solid lines and the actual IFs are plotted in dotted
lines. The horizontal dotted lines represent the boundedness (upper bounds) where the mixtures exhibit robustness. The zoomed versions of the IFs of the
mean are given in the black box of each figure.

Lemma 4. Consider the mixture of elliptical distributions,
Ek(x|µk,Σk, gk). When data are well separated, for the j-th
cluster, its IF on the mean is given by

Iµj
(x0) =

1

w3
ξj(x0)ψj(x0)(x0 − µj), (18)

where w3 is a constant (irrelevant to the outlier x0) given by

w3 =
2E[ξj(x)ψ′j(t)t]

M

+ E[ξj(x)ψj(t)] +
2E[(ξj(x)− ξ2

j (x))ψ2
j (t)t]

M
.

(19)

Proofs of the two lemmas are provided in the Appendices-C
and D. The actual3 and theoretical IF curves of the four EMMs
are plotted in Fig. 1, showing that in practice the robustness
of the EMMs can be well captured by our theoretical bounds.

More importantly, the robustness of the EMM can also
be analysed from Lemmas 3 and 4, and is determined by
ψk(·) (or gk(·)) of each cluster. Specifically, when x0 →
∞, IΣj

(x0) is bounded (defined as covariance robust) only
when ψj(t)t is bounded for t→∞, which leads to bounded
ψj(x

T
0 Σ−1

j x0)xT0 Σ−1
j x0 in (16). Likewise, bounded Iµj

(x0)

(defined as mean robust) requires bounded ψj(t)
√
t, which

is slightly more relaxed than the requirement of covariance
robust. For example, in Fig. 1, by inspecting the boundedness
of the curves, we find that the Gaussian and GG1.5 mixtures
are neither covariance robust and mean robust, while the
Cauchy mixtures are both covariance robust and mean robust.
For the Laplace mixtures, they are not covariance robust but
are mean robust, which shows that the covariance robust is
more stringent than the mean robust. Thus, the developed
bounds provide an extremely feasible and convenient treatment
for qualifying or designing the robustness within EMMs.

V. EXPERIMENTAL RESULTS

Our experimental settings are first detailed in Section
V-A. We then employ in Section V-B two toy examples to
illustrate the flexibility of EMMs in capturing different types

3The actual IF is obtained via numerical tests on the actual difference
between the estimated parameter and the ground truth when increasing the
absolute value of a single outlier, to establish whether an outlier could
totally break down the estimation; this is cumbersome and requires extensive
repeated estimations to obtain the curve.

of data. This also highlights the virtues of our method in
universally solving EMMs. In Section V-C, we systematically
compare our EMM solver with other baselines on the synthetic
dataset, followed by a further evaluation on the image data
of BSDS500 in Section V-D.

A. Parameter settings and environments

Baselines: We compared the proposed method (Our) with
the regular manifold optimisation (RMO) method without
reformulation (i.e., updating µk and Σk separately) and the
IRA method, by optimising different EMMs over various
data structures. It should be pointed out that the IRA includes
a range of existing works on solving certain EMMs, e.g.,
the standard EM algorithm for the Gaussian distribution, [7]
for the t-distribution and [11] for the hyperbolic distribution.
Besides, the convergence criterion in all the experiments was
set by the cost decrease of adjacent iterations of less than
10−10. For our method and the RMO, that involved manifold
optimisation, we have utilised the default conjugate gradient
solver in the Manopt toolbox [73]. We should also point out
that we evaluated all the methods on original EMM problems
and due to the fact that priors are highly data-dependent,
we leave the reasonable and comprehensive evaluations on
regularised EMMs as part of our future work.

Performance objectives: We compared our method with
the RMO and IRA methods by comprehensively employing 9
different elliptical distributions as components within EMMs.
These are listed in Table I, with their properties provided in
Table II, where the Cauchy distribution is a special case of
the student-t distribution with v = 1. We should also point
out that the non-geodesic elliptical distributions cannot be
solved by the IRA method [14], [15]. In contrast, as shown
below, our method can provide a stable and fast solution even
for the non-geodesic elliptical distributions.

Synthetic datasets: We generated the synthetic dataset via
randomly choosing the mean and the covariance, except for
the separation c and eccentricity e [36], [74], which were
controlled to comprehensively evaluate the proposed method
under various types of data structures. The separation, c,
of two clusters k1 and k2 is defined as ||µk1 − µk2 ||2 >
c ·max{tr(Σk1), tr(Σk2)}, and the eccentricity, e, is defined
as a ratio of the largest and the smallest eigenvalue of the
covariance matrix within one cluster. The smaller value of
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TABLE I
DETAILS OF THE 9 ELLIPTICAL DISTRIBUTIONS USED FOR ASSESSMENTS

Gaussian Student-t (v = 1 and v = 10) GG1.5 Logistic

g(t) of (2) g(t) ∝ exp(−0.5t) g(t) ∝ (1 + t/v)−(M+v)/2 g(t) ∝ exp(−0.5t1.5) g(t) ∝ exp(−t)

(1+exp(−t))2

Laplace Weib0.9 Weib1.1 Gamma1.1

g(t) of (2) g(t) ∝
K(1−0.5M)(

√
2t)

√
0.5t0.5M−1

g(t) ∝ t−0.1 exp(−0.5t0.9) g(t) ∝= t0.1 exp(−0.5t1.1) g(t) ∝ t0.1 exp(−0.5t)

Note: Kx(y) is the modified Bessel function of the second kind. Student-t with v = 1 is the Cauchy distribution.

TABLE II
PROPERTIES OF THE ELLIPTICAL DISTRIBUTIONS USED FOR EVALUATIONS

Gaussian Student-t Laplace GG1.5
Covariance Robust No Yes No No

Mean Robust No Yes Yes No
Heavily Tailed No Yes Yes No

Geodesic Convex Yes Yes Yes Yes

Logistic Weib0.9 Weib1.1 Gamma1.1
Covariance Robust No No No No

Mean Robust No No No No
Heavily Tailed No Yes No No

Geodesic Convex Yes Yes No No

c indicates the larger overlaps between clusters; the smaller
value of e means more spherically distributed clusters. In
total, we generated 3 × 2 = 6 types of synthetic datasets,
whereby M and K were set in pairs to {8, 8}, {16, 16}, and
{64, 64}; c and e were set in pairs to {10, 10} and {0.1, 1}
to represent the two extreme cases. Each synthetic dataset
contained 10, 000 samples in total (N = 10, 000) drawn from
different mixtures of Gaussian distributions. For each test case
(i.e., for each method and for each EMM), we repeatedly ran
the optimisation over 50 trials, with random initialisations.
Finally, we recorded average values of the iterations, the
computational time and the final cost. When the optimisation
failed, i.e., converging to singular covariance matrices or
infinite negative likelihood, we also recorded and calculated
the optimisation fail ratio within the 50 initialisations for each
test case, to evaluate the stability in optimisation.

BSDS500 dataset: Finally, we evaluated our method on
the image data, over two typical tasks. The first was related
to image segmentation, where all the 500 pictures in the
Berkeley segmentation dataset BSDS500 [75] were tested
and reported in our results. We set K = 2 in this task
in order to clearly show the effects of different EMMs in
segmentation (as shown in Fig. 6). Evaluation over multiple
parameters K was included in the second task. Moreover,
each optimisation was initialised by the k-means++ using the
vl-feat toolbox [76], which is a typical initialisation method
in clustering tasks such as the k-means clustering. The cost,
iterations and computational time were recorded for all the 500
pictures. In the second task, our evaluation was implemented
on another challenging task, by modelling and clustering
3 × 3 and 5 × 5 image patches from the image dataset. It
needs to be pointed out that this task is a core part of many
applications, such as image denoising, image super-resolution
and image/video compression, where similarities of image
patches play an important role. Specifically, we randomly

extracted 100 patches (3× 3 and 5× 5) from each image in
the BSDS500, and vectorised those patches as data samples.
Thus, we finally obtained the test data with sizes 50, 000×27
and 50, 000× 75, where K was set to 3 and 9. Also, we ran
each optimisation with 50 times random initialisations, and
recorded the average final cost and the standard deviation.

B. Toy examples

Before comprehensively evaluating our method, we first
provide some intuition behind its performance based on flower-
shaped data with 4 clusters (N = 10, 000) (shown in Fig. 2-
(a)). The flexibility of the EMMs via our method is illustrated
by: (i) adding 100% uniform noise (i.e., 10, 000 noisy
samples), as shown in Fig. 2-(b); (ii) replacing two clusters
by the Cauchy samples with the same mean and covariance
matrices, as shown in Fig. 2-(c). The five distributions that
were chosen as components in EMMs are shown in Fig. 2-(d).

The optimised EMMs are shown in Fig. 3. From this figure,
we find that the GMM is inferior in modelling noisy or
unbalanced data. This is mainly due to its lack of robustness,
and thus similar results can be found in another non-robust
EMM, i.e., the GG1.5. In contrast, for a robust EMM, such as
the Cauchy and the Laplace, the desirable level of estimation
is ensured in both cases. Therefore, a universal solver is
crucial as it enables flexible EMMs can be well optimised
for different types of data.

We further plot the iteration numbers against the average
cost difference of Our, IRA and RMO methods when optimis-
ing the two cases in Fig. 4 and 5. Note that for the purpose of
illustrations [16], the cost difference is defined by the absolute
difference between the cost of each iteration and the relatively
“optimal” cost, which was obtained by choosing the lowest
value among the final costs of the three methods. From the two
figures, the IRA achieved a monotonic convergence, because
it consistently increases the lower bound of the log-likelihood;
our method, although occasionally fluctuating at the late stage
of convergence, such as for the Cauchy distribution in Fig.
5, consistently achieved the lowest cost among all EMMs
and converged with the least number of iterations. A further
cautious choice of optimisers as well as line search methods
can probably achieve a monotonic convergence. Moreover,
although one iteration of our method takes longer time than
that of the IRA method due to the line search, the overall
computational time of our method is comparable to that of
the IRA method. As shown in the next section, our method
even performs much faster in terms of computational time
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(a) Ground truth (b) Case 1: 100% Noise

(c) Case 2: Cauchy clusters (d) Tails of distributions

Fig. 2. Toy examples consisting of four Gaussian sets. (a) Data structure:
The red circles represent the mean values at (5, 5), (5,−5), (−5, 5) and
(−5,−5), and the black circles denote covariance ellipses including 95%
data samples of each Gaussian distribution. (b) Test case adding 100%
uniform noisy samples to the data. (c) Test case of data that consist of two
Gaussian and two Cauchy sets. (d) Tails of the distributions which were
utilised in this test. It needs to be pointed out that the Cauchy samples in
(c) are spread over a wide range, so that we show (c) within (±15,±15)
for illustration convenience.

than the IRA for higher dimensions and larger numbers of
clusters (M > 2 and K > 4).

C. Evaluations over the synthetic datasets
We next systematically evaluated our method based on the

synthetic dataset described in Section V-A. For each dataset,
we had 8 × 3 = 24 test cases, i.e., 9 types of EMMs for
the 3 methods. The 9 types of EMMs include 7 types of
elliptical distributions and the other one (denoted as Mix)
is composed by half the number of Cauchy distributions
and the other half of Gaussian distributions. Table III shows
the overall result averaged across dimensions M and K for
the 9 EMMs. As can be seen from Table III, our method
exhibits the fastest convergence speed in terms of both the
number of iterations and computation time, and it also obtains
the minimum cost. It can also be found that datasets with
more overlaps (i.e., {c = 0.1, e = 1}) take a longer time to
optimise, whereby iterations and computational time increase
for all the 3 methods. On the other hand, by comparing the
results of our method and those of the RMO method, we can
clearly see a significant improvement in both convergence
speed and final minimum, which verifies the effectiveness of
our reformulation technique.

We provide further details of the comparisons of different
M and K in Table IV, where 3 EMMs and {c = 10, e = 10}
were reported due to the space limitation and the fact that
similar results can be found for other EMMs and settings
of Table III. We can see from this table that the superior
performance of our method is consistent over different
dimensions M and cluster numbers K. Table IV shows that
our method requires the minimum number of iterations as well
as least computational time. More importantly, the standard
deviations for the iterations and computational time of our

method are almost the lowest, which means that our method is
able to stably optimise the EMMs. With an increase in M and
K, our method consistently achieves the best performance of
the average costs with 0% fail ratio. In contrast, the IRA can
become extremely unstable. One reason is due to the fact that,
as mentioned in Section II-C, the IRA cannot converge for
the non-geodesic convex distributions such as the Weib1.1 and
Gamma1.1 in Table III [40]. Another perspective is that it even
failed on geodesic convex distributions in Table IV (e.g., 90%
fail ratio for the Gaussian and 100% fail ratio for the Cauchy
when M = 64,K = 64). This may be due to the separate
updating scheme on µk and Σk, which has been mentioned
in Section III-B. Although we see an enhanced stability
when using manifold optimisation, this separate updating
scheme, we believe, is also the reason that the RMO requires
extremely large computational complexity to converge (> 900
iterations and > 4000 seconds when M = 64,K = 64) and
in several cases it even failed to converge altogether. Our
method, on the one hand, re-parametrises the parameters to
perform a simultaneous update on µk and Σk via Σ̃k; the re-
parametrised EMMs also have a fixed zero mean that prevents
potential clusters to move to the data boundary. These two
aspects enable our method to consistently and stably optimise
EMMs with the fastest convergence speed and lowest cost.

D. BSDS500 dataset:
Convergence speed between Our, the IRA, and the RMO

methods was compared over averaged results across the whole
500 pictures in BSDS500, as shown in Table V. Again, our
method converged with the fastest speed and achieved the
minimum cost error among the RMO and the IRA methods.
We further show in Fig. 6 four reconstructed images via our
method when optimising the five EMMs. Observe that the
images reconstructed from the non-robust distributions (e.g.,
the Gaussian and the GG1.5 distributions) were more “noisy”
than those from the robust distributions (e.g., the Cauchy
and Laplace distributions); however, these may capture more
details in images. Thus, by our method, different EMMs can
flexibly model data for different requirements or applications.

Finally, we evaluated our method on modelling the
BSDS500 image patches, which is a challenging but important
task in practice. More comprehensively, besides the manifold
conjugate gradient solver adopted as a default of our method,
we further evaluated the manifold steepest descent (denoted
as Our (STP)) and the manifold LBFGS (denoted as Our
(LBF)) as alternatives to solve the step descent in Algorithm
1. The results are reported in Table VI. From this table,
we can see again that our method consistently achieved the
lowest costs across different initialisations. For example, for
the Gaussian mixtures, it obtained 72.8 ± 1.30 in the 50
random initialisations, compared to 73.9± 2.01 of the IRA
and 75.5 ± 6.72 of the RMO. Also, our method converged
with the least computational time and was able, compared to
the existing methods, to consistently provide fast, stable and
superior optimisation. Furthermore, by employing different
solvers, the results achieved by our method are comparable
to one another; among the three solvers, the steepest descent
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(a) Gaussian (b) Cauchy (c) Laplace (d) Logistic (e) GG1.5

Fig. 3. Optimisation results of the proposed method across the 5 EMMs. The top row shows the results for Case 1 and the bottom row shows the results
for Case 2. The red circles denote the ground-truth as shown in Fig. 2-(a), whilst the black crosses and ellipses represent the estimated mean and covariance
matrices. The colour of each sample is corresponding to that of Fig. 2-(a), and is classified by selecting the maximum posterior among the clusters.

(a) Gaussian (b) Cauchy (c) Laplace (d) Logistic (e) GG1.5

Fig. 4. Cost difference against the number of iterations of the 5 EMMs for Case 1. The top figures show the cost difference against the iterations optimised
via Our, IRA and RMO methods. The bottom quantities are the final convergence speed in terms of the number of iterations and execution time (ites/sec).

(a) Gaussian (b) Cauchy (c) Laplace (d) Logistic (e) GG1.5

Fig. 5. Cost difference against the number of iterations of the 5 EMMs for Case 2. The top figures show the cost difference against the iterations optimised
via Our, IRA and RMO methods. The bottom quantities are the final convergence speed in terms of the number of iterations and execution time (ites/sec).

solver took slightly more computational time due to its naive
update rule, whilst the conjugate gradient solver performed
slightly better than the other two solvers in balancing the
computational time and cost. Overall, all the three solvers of
our method achieved much better results than the IRA and the
RMO methods, which also verifies the effectiveness of our
re-designed cost. Therefore, we can conclude that for various
scenarios and applications, our method was able to consistently
yield a superior model with the lowest computational time.

VI. CONCLUSIONS

We have proposed a general framework for a systematic
analysis and universal optimisation of the EMMs, and have
conclusively demonstrated that this equips EMMs with
significantly enhanced flexibility and ease of use in practice.
In addition to the general nature and the power of the
proposed universal framework for EMMs, we have also

verified both analytically and through simulations, that this
provides a reliable and robust statistical tool for analysing
the EMMs. Furthermore, we have proposed a general solver
which consistently attains the optimum for general EMMs.
Comprehensive simulations over both synthetic and real-world
datasets validate the proposed framework, which is fast, stable
and flexible.
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TABLE III
OVERALL RESULTS AVERAGED ACROSS M AND K FOR 9 TYPES OF EMMS OPTIMISED BY OUR, IRA AND RMO METHODS.

c = 10, e = 10 Gaussian Cauchy Student-t (v = 10) GG1.5 Logistic Weib0.9 Weib1.1 Gamma1.1 Mix

Our Ite. / T. (s) 108 / 40.3 135 / 34.5 136 / 32.7 219 / 160 113 / 43.2 158 / 37.8 139 / 56.5 138 / 38.3 132 / 51.8
Cost 64.5 65.6 64.8 69.8 47.8 64.4 64.4 64.4 67.5

IRA Ite. / T. (s) 367 / 90.0 —- —- —- 428 / 249 310 / 46.8 —- —- —-
Cost 66.2 —- —- —- 49.0 64.5 —- —- —-

RMO Ite. / T. (s) 658 / 1738 848 / 1590 776 / 1681 796 / 1435 744 / 1651 825 / 1806 773 / 1625 760 / 1550 711 / 1547
Cost 64.3 65.8 64.7 71.6 47.5 64.4 64.5 64.5 66.8

c = 0.1, e = 1

Our Ite. / T. (s) 693 / 201 424 / 99.9 621 / 106 581 / 100 734 / 242 686 / 119 655 / 111 664 / 94.6 470 / 65.7
Cost 40.0 41.0 40.2 39.8 23.5 39.1 40.1 40.1 39.2

IRA Ite. / T. (s) —- —- —- —- —- 711 / 101 —- —- —-
Cost —- —- —- —- —- 40.6 —- —- —-

RMO Ite. / T. (s) 1000 / 1707 956 / 1661 951 / 1789 898 / 1206 963 / 1508 969 / 1632 975 / 1744 958 / 1561 917 / 1505
Cost 40.4 41.5 40.8 42.1 23.8 40.3 40.5 40.4 40.4

Note: T. (s): Time (seconds); Ite.: Iteration numbers; —-: Singularity or infinity in either M = 8, M = 16 or M = 64.

TABLE IV
DETAILED COMPARISONS AMONG OUR, IRA AND RMO ON OPTIMISING 3 EMMS IN THE CASE OF c = 10 AND e = 10

(M, K) Gaussian Cauchy Logistic
Our IRA RMO Our IRA RMO Our IRA RMO

(8, 8)
T. (s) 3.70 ± 5.44 5.48 ± 4.13 4.23 ± 10.76 2.23 ± 1.67 3.04 ± 2.45 20.4 ± 10.6 4.28 ± 4.60 4.71 ± 4.08 18.9 ± 17.3
Ite. 165 ± 240 538 ± 403 122 ± 308 107 ± 81.3 340 ± 275 640 ± 334 177 ± 191 463 ± 398 537 ± 489

Co./Fa. 19.4 / 0% 19.6 / 0% 19.3 / 0% 20.3 / 0% 20.4 / 0% 20.3 / 0% 14.9 / 0% 15.0 / 0% 14.9 / 0%

(16, 16)
T. (s) 15.8 ± 13.4 28.8 ± 15.2 221 ± 78.3 38.1 ± 34.5 40.9 ± 18.2 260 ± 1.84 15.7 ± 7.64 23.6 ± 14.6 193 ± 115
Ite. 115 ± 94.0 400 ± 207 853 ± 304 272 ± 243 570 ± 254 1000 ± 0.00 115 ± 54.0 325 ± 201 734 ± 433

Co./Fa. 37.7 / 0% 38.0 / 0% 37.8 / 0% 38.7 / 0% 38.8 / 0% 39.0 / 0% 28.6 / 0% 28.8 / 0% 28.6 / 0%

(64, 64)
T. (s) 101 ± 18.0 236 ± 0.00 4988 ± 152 63.2 ± 11.7 —- 4491 ± 1549 110 ± 19.3 720 ± 343 4741 ± 475
Ite. 45.8 ± 5.67 163 ± 0.00 1000 ± 0.00 26.9 ± 3.70 —- 902 ± 309 49.3 ± 5.98 497 ± 235 960 ± 121

Co./Fa. 136 / 0% 141 / 90% 136 / 10% 138 / 0% – / 100% 138 / 0% 99.7 / 0% 103 / 70% 99.1 / 10%

Note: T. (s): Time (seconds); Ite.: Iteration numbers; Co.: Final cost; Fa.: Optimisation fail ratio; —-: Singularity or infinity

(a) Original (b) Gaussian (c) Cauchy (d) Laplace (e) Logistic (f) GG1.5

Fig. 6. Reconstructed images by Our method when optimising the 5 EMMs.

APPENDIX

A. Proof of Lemma 1
To calculate the Riemannian metric for the covariance

matrix, we follow the work of [53] to calculate the Hessian of
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TABLE V
COMPARISONS AVERAGED OVER 500 PICTURES AMONG OUR, THE IRA AND THE RMO FOR ESTIMATING THE 5 EMMS

Gaussian Cauchy Laplace GG1.5 Logistic
Our IRA RMO Our IRA RMO Our IRA RMO Our IRA RMO Our IRA RMO

Iterations 56 234 954 87 390 939 101 288 962 61 224 982 58 239 965
Time (s) 5.55 11.8 165 7.12 16.8 159 20.4 42.2 486 8.32 14.4 205 6.73 13.3 177

Cost 12.3 12.3 12.3 12.1 12.4 12.3 12.2 12.2 12.3 12.4 12.4 12.4 11.1 11.1 11.2
SSIM [77] 0.5930 0.6052 0.6112 0.5813 0.5792

TABLE VI
COMPARISONS AMONG OUR (WITH DIFFERENT MANIFOLD SOLVERS), IRA AND RMO METHODS ON THE BSDS500 IMAGE PATCHES

Gaussian Cauchy
K,M = 3, 27 Our Our (STP) Our (LBF) IRA RMO Our Our (STP) Our (LBF) IRA RMO

Time (s) 28.3±7.62 210±109 102±8.67 155±37.0 486±197 118±72.9 224±106 302±139 —- 556±26.2
Iterations 109±27.5 749±390 318±37.3 930±221 844±342 416±254 817±387 670±253 —- 983±54.4

Cost 72.8±1.30 73.6±6.30 72.0±1.84 73.9±2.01 75.5±6.72 70.7±1.53 69.5±4.63 70.5±1.47 —- 70.7±1.82
K,M = 9, 75 Our Our (STP) Our (LBF) IRA RMO Our Our (STP) Our (LBF) IRA RMO

Time (s) 170±23.3 125±34.1 1609±74.7 —- 4568±904 595±473 2025±38.6 898±157 —- 4389±1229
Iterations 90.0±8.80 63.0±25.5 998±7.07 —- 921±177 295±230 1e3±0 394±93.0 —- 918±259

Cost 160±3.33 178±21.1 160±2.89 —- 172±0.31 170±0.25 171±3.32 171±2.37 —- 173±4.31

the Boltzman entropy of elliptical distributions. The Boltzman
entropy is first obtained as follows,

H(x|Σ) =

∫
x

px(x) ln px(x)dx

=

∫
x

px(x)[−1

2
ln |Σ|+ ln cM + ln g(t)]dx

= −1

2
ln |Σ|+ ln cM +

∫
RM

pR(t) ln g(t)dt.

(20)
Because (ln cM +

∫
RM pR(t) ln g(t)dt) is irrelevant to Σ, the

Hessian of H(x|Σ) can be calculated as

∂H(x|Σ + sΣ0 + hΣ1)

∂s∂h
|s=0,h=0 =

1

2
tr(Σ0Σ

−1Σ1Σ
−1).

(21)
The Riemannian metric can thus be obtained as ds2 =
1
2 tr(dΣΣ−1dΣΣ−1), which is the same as the case for
multivariate normal distributions and is the mostly widely
used metric.

This completes the proof of Lemma 1.

B. Proof of Theorem 1

The proof of this property rests upon an expansion
yTn Σ̃−1

k yn to become (xn−µk)TΣ−1
k (xn−µk)+ 1

λk
within

derivatives of J̃ . By setting ∂J̃/∂λk = 0 and ∂J̃/∂ck = 0, we
then arrive at

λk = −2

∑N
n=1 ξ̃nkψk(tnk + 1

λk
− ck)∑N

n=1 ξ̃nk
,

ck = −1

2

∑N
n=1 ξ̃nk∑N

n=1 ξ̃nkψk(tnk + 1
λk
− ck)

,

(22)

where

ξ̃nk=
πk · cM ·

√
ck · det(Σ̃−1

k ) · gk
(
yTn Σ̃−1

k yn − ck
)

∑K
k=1 πk · cM ·

√
ck · det(Σ̃−1

k ) · gk
(
yTn Σ̃−1

k yn−ck
) .

(23)

By inspecting λk = 1/ck, det(Σ̃k) = λk · det(Σk) and
yTn Σ̃−1

k yn = (xn − µk)TΣ−1
k (xn − µk) + 1

λk
, we obtain

ξ̃nk = ξnk and ψk(tnk + 1
λk
− ck) = ψk(tnk).

To prove the equivalence of the optimum of Σ̃k in (10)
and optima of µk and Σk, we directly calculate ∂J̃/∂Σ̃k in
(10) and set it to 0, to yield

Σ̃k = −2

∑N
n=1 ξ̃nkψk(tnk + 1

λk
− ck)ynyTn∑N

n=1 ξ̃nk
. (24)

Again, as λk = 1/ck and ξ̃nk = ξnk, we arrive at

Σ̃k = −2

∑N
n=1 ξnkψk(tnk)ynyTn∑N

n=1 ξnk

= −2

∑N
n=1 ξnkψk(tnk)∑N

n=1 ξnk

[
xnxTn xn
xTn 1

]
.

(25)

By substituting µk and Σk of (7) and λk in (22), we have

Σ̃k =

[
Σk + λkµkµ

T
k λkµk

λkµ
T
k λk

]
, (26)

which means that the optimum value Σ̃k is exactly the
reformulated form by the optimum values of (7).

This completes the proof of Theorem 1.

C. Proof of Lemma 3

We here denote the contaminated distribution F = (1 −
ε)Fx + εFx0

, where ε is the proportion of outliers; Fx

is the true distribution of x and Fx0
is the point-mass

distribution at x0. For simplicity, we employ t to denote (x−
µj)

TΣ−1
j (x−µj) and t0 to denote (x0−µj)TΣ−1

j (x0−µj).
Then, the maximum log-likelihood estimation on the Σj of
Ej(µj ,Σj , gj) becomes

(1− ε)E[ξj(x)ψj(t)(x− µj)(x− µj)
T +

1

2
ξj(x)Σj ]

+ εξj(x0)ψj(t0)(x0 − µj)(x0 − µj)
T + ε

ξj(x0)

2
Σj = 0.

(27)
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We first calculate the IF (denoted by I in the proof) when
Σj = I and µj = 0. Thus, we have t = xTx and t0 = xT0 x0

in the following proof. Then, according to the definition of IF,
we differentiate (27) with respect to ε and when it approaches
0, we arrive at

E
[∂ξj(x)

∂ε
|ε=0ψj(t)xxT

+ξj(x)
∂ψj(x

TΣ−1
j x)

∂ε
|ε=0xxT +

1

2

∂ξj(x)

∂ε
|ε=0I+

1

2
ξj(x)I

]
+ ξj(x0)ψj(t0)x0x

T
0 +

1

2
ξj(x0)I = 0.

(28)

In addition, we obtain

∂ξj(x)

∂ε
|ε=0 = (ξj(x)− ξ2

j (x)) · (−1

2
tr(I)− ψj(t)xTIx),

∂ξj(x)

∂ε
|ε=0 = −ψ′j(t)xTIx.

(29)

By combining (28) and (29), we arrive at

E
[
(ξj(x)−ξ2

j (x))·(−1

2
tr(I)−ψj(t)xTIx)·(ψj(t)xxT +

1

2
I)

− ξj(x)ψ′j(t)(x
TIx)xxT +

1

2
ξj(x)I

]
+ ξj(x0)ψj(t0)x0x

T
0 +

1

2
ξj(x0)I = 0.

(30)

It should be pointed out that (x − µ)TΣ−1(x − µ)
has the same distribution as R2. It is thus independent
of Σ−

1/2(x−µ)√
(x−µ)T Σ(x−µ)

(denoted by u), which has the same

distribution as S (i.e., uniform distribution). For mixing
components, when data are well-separated, those x that do not
belong to the j-th cluster have extremely low ξj(x). In other
words, the expectation in (30) is dominated by the expectation
of the data which belong to the j-th cluster. Therefore, to
calculate the expectation, we can treat the quadratic term
(x − 0)T I(x − 0) = xTx (i.e., t) as independent of the
normalised term I−

1/2(x−0)√
t

= x√
t

(i.e., u) of the j-th cluster.

Based on this approximation, we can rewrite (30) as

E
[
(ξj(t)−ξ2

j (t))·(−1

2
tr(I)−ψj(t)t · uTIu)·(ψj(t)t·uuT +

1

2
I)

−ξj(t)ψ′j(t)t2(uTIu)uuT +
1

2
ξj(t)I

]
+ ξj(x0)ψj(t0)x0x

T
0 +

1

2
ξj(x0)I = 0.

(31)

Moreover, as u is uniformly distributed, we have
E[uuT ] = 1

M I, E[uTIu] = 1
M tr(I) and E[(uTIu)uuT ] =

1
M(M+1) (I + tr(I)I). Thus, we arrive at

−
(E
[
(ξj(t)−ξ2

j (t))ψ2
j (t)t2

]
+ E

[
ξj(t)ψ

′
j(t)t

2
]
)(I + tr(I)I)

M(M + 1)

−
E
[
(ξj(t)−ξ2

j (t))ψj(t)t
]
tr(I)

2M
I−

E[(ξj(t)−ξ2
j (t))]tr(I)

4
I

− 1

2M
E[(ξj(t)− ξ2

j (t))ψj(t)t]tr(I)I +
πj
2
I

+ ξj(x0)ψj(t0)x0x
T
0 +

1

2
ξj(x0)I = 0.

(32)
With w1 and w2 in (17), we can re-write (32) as

w2I = w1tr(I)I− ξj(x0)ψj(t0)x0x
T
0 −

1

2
ξj(x0)I. (33)

Then, by taking the trace on both sides of (33), we have

tr(I) =
ξj(x0)ψj(t0)x0x

T
0 + 1

2ξj(x0)I

Mw1 − w2
(34)

Thus, the IF at point x0 of the j-th cluster, when Σj = I,
can be obtained as

I(x0) =

[
2w1 · ξj(x0)ψj(x

T
0 x0)xT0 x0 + w2 · ξj(x0)

2(Mw1 − w2)w2

]
· I

− ξj(x0)ψj(x
T
0 x0)

w2
x0x

T
0 .

(35)
The IF is then obtained at point x0 of the j-th cluster for

general Σj and µj according to its affine equivalence (i.e.,
IΣj (x0) = Σ

1/2
j I(Σ

−1/2
j (x0 − µj))Σ

1/2
j ).

This completes the proof of Lemma 3.

D. Proof of Lemma 4

Similar to the proof of Lemma 3, we have the following
equation for estimating µj with contaminated distribution
F = (1− ε)Fx + εFx0

:

(1− ε)E[ξj(x)ψj(t)Σ
−1
j (x− µj)]

+εξj(x0)ψj(t0)Σ−1
j (x0 − µj) = 0

(36)
Note that in (36), for simplicity we also use t to denote (x−
µj)

TΣ−1
j (x−µj) and t0 to denote (x0−µj)TΣ−1

j (x0−µj).
We here also utilise I to denote the IF in this proof.

In addition, by differentiating with ε and ε→ 0, we arrive
at

E
[∂ξj(x)

∂ε
|ε=0ψj(t)Σ

−1
j (x− µj)

+ ξj(x)
∂ψj(t)

∂ε
|ε=0Σ

−1
j (x− µj)− ξj(x)ψj(t)Σ−1

j I
]

+ ξj(x0)ψj(t0)Σ
−1
j (x0 − µj) = 0.

(37)
Besides, we also calculate

∂ξj(x)

∂ε
|ε=0 = (ξj(x)− ξ2

j (x)) · (−2ψj(t)(x− µj)
TΣ−1

j I)

∂ψj(x)

∂ε
|ε=0 = −2ψ′j(t)(x− µj)

TΣ−1
j I.

(38)
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When data are well separated, we can assume that t =

(x− µj)
TΣ−1

j (x− µj) is independent of u =
Σ
−1/2
j (x−µj)
√
t

.
Therefore, (38) becomes

2·E
[
(ξj(x)− ξ2

j (x))ψ2
j (t)t

]
·E
[
uTΣ

− 1
2

j Iu
]

+2·E
[
ξj(x)ψ′j(t)t

]
·E
[
uTΣ

− 1
2

j Iu
]
+E[ξj(x)ψj(t)]Σ

− 1
2

j I

= ξj(x0)ψj(t0)Σ
− 1

2
j (x0 − µj),

(39)
which yields E[uTΣ

− 1
2

j Iu] = 1
MΣ

− 1
2

j I . Thus, we arrive at

I= ξj(x0)ψj(t0)(x0 − µj)
2
M
E[(ξj(x)− ξ2j (x))ψ2

j (t)t]+
2
M
E[ξj(x)ψ′j(t)t]+E[ξj(x)ψj(t)]

.

(40)
This completes the proof of Lemma 4.
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