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Adaptive Synchronization of Fractional-Order
Output-Coupling Neural Networks via

Quantized Output Control
Haibo Bao, Ju H. Park , Senior Member, IEEE, and Jinde Cao , Fellow, IEEE

Abstract— This article focuses on the adaptive synchronization
for a class of fractional-order coupled neural networks (FCNNs)
with output coupling. The model is new for output coupling
item in the FCNNs that treat FCNNs with state coupling as its
particular case. Novel adaptive output controllers with logarithm
quantization are designed to cope with the stability of the
fractional-order error systems for the first attempt, which is
also an effective way to synchronize fractional-order complex
networks. Based on fractional-order Lyapunov functionals and
linear matrix inequalities (LMIs) method, sufficient conditions
rather than algebraic conditions are built to realize the syn-
chronization of FCNNs with output coupling. A numerical
simulation is put forward to substantiate the applicability of our
results.

Index Terms— Fractional order, neural networks, output
coupling, quantized control, synchronization.

I. INTRODUCTION

FOR several decades, quantities of researchers have
devoted themselves to neural networks due to their fruitful

applications, including associative memories, pattern recog-
nition, optimization, image processing, robotic manipulators,
and so forth [1]–[3]. In particular, coupled neural networks
have been paid fascinated massive attention due to the fact that
the brain can be seen as being coupled with a lot of neurons.
Research of dynamics and synchronization of coupled neural
networks is also a vital step in understanding human brain
science [4], [5].

Up to now, state coupling and output coupling are the two
main types of coupling forms in coupled neural networks
and complex networks. The coupled means includes linear
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coupling and nonlinear coupling. In coupled neural networks
with state coupling, the neuron state is directly affected by
its own state and other neurons’ states. It is worth pointing
out that most of the synchronization study in the literature is
the ones with state coupling [6]–[8]. Chen et al. [7] obtained
some simple and generic criteria for coupled delay neural
networks by designing suitable coupling matrix and the inner
linking matrix. Cao et al. [8] investigated the problem of
synchronization for more general coupled neural networks
with hybrid coupling, while the results on output coupling are
only a few. However, in real neural networks, it is impossible
or difficult to obtain and measure all the neurons’ states
because of the factors of sensors saturation, package loss,
stochastic disturbances, and so forth. The investigation of
dynamics and synchronization for coupled neural networks
and complex networks with output coupling is of signif-
icance and necessity. Under this circumstance, a complex
network model with output coupling was first proposed by
Jiang et al. [9], and some sufficient synchronization conditions
were given based on the Lyapunov stability and state observer
design. Sufficient criteria were established to ascertain the
complex network with output coupling to achieve exponen-
tial mean square synchronization [10]. Wang and Wu [11]
investigated local and global exponential output synchroniza-
tion for a class of complex dynamical networks with output
coupling.

On the other hand, fractional-order calculus has recently
received increasing attention for its superiority in describing
infinite memory and hereditary properties of system mod-
els in the fields of bioengineering, neural networks, fluid
mechanics, and so on [12], [13]. As we know, the long-
term memory property of synapses is neglected in integer-
order neural networks. Moreover, existing research shows the
conductivity of the biological cell membrane is fractional-
order [14]. Thus, it is more appropriate and precise to employ
fractional-order differential equations to model the real neural
networks and study the dynamics, such as stability [15]–[17],
stabilization [18], and Hopf bifurcations [19], [20].

It should be pointed out that for fractional-order neural
networks, most existing works about synchronization are
the results of fractional-order neural networks without cou-
pling [21]–[27]. There are only a few works about the
synchronization of fractional-order neural networks with
state coupling [28], [29]. Until now, there are no results
of fractional-order coupled neural networks (FCNNs) with
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output coupling. Here, we mainly aim to investigate the
synchronization of FCNNs with output coupling. For sim-
plicity and clarity, we consider linear output coupling in this
article.

Considering the limited network communication capacity,
different kinds of quantized control methods were proposed
to effectively make use of the bandwidth and decrease
the network transmission pressure [30]–[32]. For instance,
Brockett and Liberzon [33] proposed a quantized feed-
back control approach to stabilize the linear systems.
Zhang et al. [31] built less conservative conditions for iner-
tial neural networks with the aid of quantized sampled-data
control. Yang et al. [32] proposed a mode-dependent quan-
tized control theme to realize the synchronization of coupled
reaction–diffusion neural networks under Markovian switching
topologies. There are also some good results about the topic
of quantized state estimation [34]–[36].

To the best of our knowledge, most works relative to
quantized control are state control, while, in real network
control environment and applications, all the neurons’ states
information is difficult or too expensive to be directly mea-
sured. Output control was proposed to overcome the difficulty
in achieving all the system states information [37]–[39]. It is
noted that studies about quantized output control for integer-
order systems are only a few [40], [41], not mention to the
results of FCNNs. Inspired by the idea of the output control,
we develop an output quantized control method for FCNNs
with output coupling. Therefore, the method adopted in this
article can be considered as the first attempt on quantized
output control of the synchronization of FCNNs with output
coupling.

Motivated by the abovementioned reasons, we investi-
gate the adaptive synchronization problem of FCNNs with
output coupling. The novelties of this article are listed as
follows.

1) A new FCNN model with output coupling is proposed,
which contains the model with state coupling as a special
case.

2) The synchronization criteria are first established for
FCNNs with output coupling in terms of linear matrix
inequalities (LMIs) that are different from algebraic
conditions. Several kinds of sufficient conditions are
also given to ascertain the realization of synchro-
nization by means of quantized control and output
control.

3) The method of quantized control is not only first adopted
in fractional-order neural networks but also developed to
quantized output control.

4) The approaches in this article can also be used to
study the synchronization of fractional-order complex
networks.

This article is organized as follows. In Section II, we will
give some definitions and lemmas together with the model
description. Sufficient conditions are built for FCNNs with
output coupling and quantized output control is Section III.
Section IV gives an example to show the effectiveness of the
proposed synchronization methods. Conclusions are drawn in
Section V.

II. PROBLEM STATEMENT

In this section, we introduce mathematical models of
FCNNs with output coupling and present some notations,
definitions, and lemmas used in this article.

Notation: Throughout this article, n and N denote positive
integers. R

n denotes the n-dimensional Euclidean space. “T ”
represents the transposition of a matrix or a vector. In is the
n × n identify matrix. | · | is the Euclidean norm in R

n . ∗
denotes the item induced by symmetry in a matrix. P > 0
(P ≥ 0) denotes P is a positive (semipositive) symmetric
matrix. Ps = 0.5(P + PT ). ⊗ denotes the Kronecher product.

Definition 1 [12], [13]: The fractional integral of order α
for a function h is defined as

Iαh(v) = 1

�(α)

∫ v

v0

(v − s)α−1h(s)ds

where v ≥ v0 and α > 0, �(α) = ∫ ∞
0 e−s tα−1ds and v0, v,

and s are the lower limit, upper limit, and integral variable of
the fractional integral, respectively.

We adopt Caputo fractional derivative in this article due to
the physical interpretation of its initial conditions.

Definition 2 [12], [13]: Caputo’s derivative of order α for
a function h ∈ Ck([v0,+∞), R) is defined by

v0 Dα
v h(v) = 1

�(k − α)

∫ v

v0

(v − s)k−α−1h(k)(s)ds

where v ≥ v0 and k is a positive integer such that
k − 1 < α < k. In particular, when 0 < α < 1, v0

Dα
v q(v) = (1/�(1 − α))

∫ v
v0

(v − s)−αh′(s)ds.

For brevity, Dαh(v) is used to denote v0 Dα
v h(v).

Consider a class of FCNNs with output coupling consisting
of N identical networks and the dynamics of the i th network
are described by the following equation:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dαxi (t) = −Axi(t) + B f (xi (t))

+ c
N∑

j=1

li j �y j (t) + ui (t)

yi (t) = H xi(t)

(1)

where 0 < α < 1, xi (t) = (xi1(t), xi2(t), . . . , xin(t))T ∈
R

n, (i = 1, 2, . . . , N) denotes the state of the i th network;
A = diag{a1, a2, . . . , an} > 0 and B = [bi j ]n×n, f (xi (t)) =
( f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))T , denote the connec-
tion weight matrix and neuron activation function, respectively.
c > 0 is the coupling strength. L = [li j ]N×N is the coupling
configuration matrix representing the topological structure of
the networks that is irreducible and satisfies li j ≥ 0, i �= j,
lii = − ∑N

j=1, j �=i li j . � = [π j k]n×m represents constants
inner coupling matrix between the j th network and the kth
network, y j (t) ∈ R

m and ui (t) ∈ R
n are output vectors and

the controller, respectively, and H ∈ R
m×n .

For the purpose of achieving synchronization, we define
the set S = {x = (xT

1 (t), x T
2 (t), . . . , x T

N (t))T : xi (s) ∈
C([t0,+∞], R

n), xi (s) = x j (s), i, j = 1, 2, . . . , N}
as the synchronization manifold for system (1). Also, the
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synchronization state is governed by the following equation:{
Dαs(t) = −As(t) + B f (s(t))

z(t) = H s(t)
(2)

where s(t) could be an equilibrium point, a cycle or a chaotic
orbit of system (2).

Define the synchronization error and output tracking error as
ei (t) = xi(t)− s(t) and θi (t) = yi (t)− z(t) (i = 1, 2, . . . , N).
It is obvious that θi (t) = H ei(t). Also, the error system is
governed by the following equation:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dαei (t) = −Aei (t) + B f̃ (ei (t))

+ c
N∑

j=1

li j �θ j (t) + ui (t)

θi (t) = H ei(t)

(3)

where f̃ (ei (t)) = f (xi(t)) − f (s(t)) (i = 1, 2, . . . , N).
Definition 3: The FCNNs with output coupling are said

to be globally synchronized if ∀i ∈ {1, 2, . . . , N},
limt→∞ |ei (t)| = 0, i.e., limt→∞ xi (t) = s(t) (i =
1, 2, . . . N).

The existence and uniqueness of solutions of system (1) [13]
are pledged by the following assumption.

Assumption 1: The activation function f is Lipschitz con-
tinuous, that is, there exists a positive constant l f such that

| f (xi) − f (x j )| ≤ l f |xi − x j |
for ∀xi , x j ∈ R

n, and ∀i, j ∈ {1, 2, . . . , N}.
The network output is quantized before transmitting on

networks. The adaptive quantized controller ui (t) is designed
as follows: {

ui (t) = −di(t)H T q(θi (t))

Dαdi(t) = β‖θi (t)‖2 (4)

where β is a positive constant and di (t) (i = 1, 2, . . . , N) are
the control gains.

The quantizer q(·) : Rn → V is defined as follows:
q(θi(t)) = (q̃(θi1(t)), q̃(θi2(t)), . . . , q̃(θin (t)))

T

q̃(v) =

⎧⎪⎪⎨
⎪⎪⎩

ξi ,
1

1 + δ
ξi < v ≤ 1

1 − δ
ξi

0, v = 0

−q̃(−v), v < 0

where V = {±ξi : ξi = ρiξ0, i = 0,±1,±2, . . . , } ∪ {0} with
ξ0 > 0, and δ = (1 − ρ/1 + ρ), 0 < ρ < 1. Based on the
theory of Filippov, q(v) can be denoted as q(v) = (1 + ζ )v,
v ∈ R

n, ζ ∈ [−δ, δ].
Remark 1: The controller (4) is first designed with the aid

of adaptive control, output control, and quantized control.
The main features and advantages of this control type are as
follows: 1) it can reduce the control cost; 2) the difficulty
in obtaining all the neurons’ states is avoided; and 3) it
can effectively make use of the bandwidth and decrease the
network transmission pressure.

To carry out the proof of synchronization criteria, the fol-
lowing lemmas are needed.

Lemma 1 [42]: If h(t) ∈ C1([t0,∞], R
n), Q > 0, then the

following inequality holds:
1

2
DαhT (t)Qh(t) ≤ hT (t)QDαh(t), 0 < α ≤ 1.

Lemma 2 [43]: Suppose that A, B, C, and D are matrices
with appropriate dimensions for algebraic operations, κ is a
real constant, and then, the following properties for Kronecher
product hold.

1) (κ A) ⊗ B = A ⊗ (κ B).
2) (A + B) ⊗ C = A ⊗ C + B ⊗ C.
3) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D).
Lemma 3 [44]: ∀ a, b ∈ R

n, ∀γ > 0, the following
inequality holds:

aT b ≤ γ

2
aT a + 1

2γ
bT b.

Lemma 4 (Schur Complement [45]): For a given matrix

P =
[

P11 P12

PT
12 P22

]
< 0

is equivalent to any one of the following conditions.

1) P22 < 0, P11 − P12 P−1
22 PT

12 < 0.

2) P11 < 0, P22 − PT
12 P−1

11 P12 < 0.

III. MAIN RESULTS

We devote to give some theorems and corollaries for the
synchronization of FCNNs in this section.

Theorem 1: Suppose that Assumption 1 holds; if there exist
two positive constants ε and γ and selecting d∗ such that
ε − (1 − δ)d∗ < 0 and the following LMI holds, then the
FCNNs with output coupling (1) achieve globally asymptotical
synchronization under the adaptive quantization controller (4)

� =
[

�11 IN ⊗ (l f BT )
∗ −2γ INn

]
< 0 (5)

where �11 = −IN ⊗ A + (γ /2)INn + c(L ⊗ (�H ))s − ε IN ⊗
(H T H ) and IN and INn are N × N and Nn × Nn identify
matrices, respectively.

Proof: Let xi (t) (i = 1, 2, . . . , N) and s(t) are the
solutions of system (1) and (2) with different initial conditions
xi (t0) and s(t0), respectively, and then, ei (t0) �= 0. Suppose
that ei (t) (i = 1, 2, . . . , N) are the solutions of the system (3)
with the controller (4) satisfying ei (t0) �= 0.

Construct a Lyapunov function of the following form:

V (t) = 1

2

N∑
i=1

eT
i (t)ei (t) + 1 − δ

2β

N∑
i=1

(di (t) − d∗)2 (6)

where d∗ is an adaptive constant to be determined later.
Using Lemma 1 and computing the fractional derivative of

V (t) along the solution of (3), one obtains that

DαV (t)

≤
N∑

i=1

eT
i (t)Dαei (t)

+ 1 − δ

β

N∑
i=1

(di (t) − d∗)Dαdi(t)
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=
N∑

i=1

eT
i (t)

⎡
⎣−Aei(t) + B f̃ (ei (t)) + c

N∑
j=1

li j �θ j (t)

⎤
⎦

−
N∑

i=1

eT
i (t)di (t)H T q(θi(t))

+ (1 − δ)

N∑
i=1

(di(t) − d∗)‖θi (t)‖2. (7)

By defining e(t) = (eT
1 (t), eT

2 (t), . . . , eT
N (t))T and using

Lemmas 2 and 3, one has

−
N∑

i=1

eT
i (t)Aei (t) = −eT (t)(IN ⊗ A)e(t) (8)

and
N∑

i=1

eT
i (t)B f̃ (ei (t))

≤ γ

2
eT (t)e(t) + 1

2γ

N∑
i=1

f̃ T (ei (t))BT B f̃ (ei (t))

≤ γ

2
eT (t)e(t) + 1

2γ

N∑
i=1

eT
i (t)l f BT l f Bei(t)

= γ

2
eT (t)e(t) + 1

2γ
eT (t)(IN ⊗ B̄)e(t) (9)

where B̄ = l2
f BT B .

Also, we have

c
N∑

i=1

eT
i (t)

N∑
j=1

li j �θ j (t) = c
N∑

i=1

eT
i (t)

N∑
j=1

li j �H e j(t)

= eT (t)(c(L ⊗ (�H ))s)e(t) (10)

and

−
N∑

i=1

eT
i (t)di (t)H T q(θi(t))

+ (1 − δ)

N∑
i=1

(di (t) − d∗)‖θi (t)‖2

≤ −(1 − δ)

N∑
i=1

di (t)θ
T
i (t)θi (t)

+ (1 − δ)

N∑
i=1

(di (t) − d∗)‖θi (t)‖2

= −(1 − δ)d∗
N∑

i=1

eT
i (t)H T H ei(t)

= eT (t)(ε − (1 − δ)d∗)IN ⊗ (H T H )e(t)
− εeT (t)(IN ⊗ (H T H ))e(t). (11)

Properly choosing d∗ such that (ε − (1 − δ)d∗)IN ⊗
(H T H ) ≤ 0, and combining (7)–(11), we have

DαV (t) ≤ eT (t)

[
−IN ⊗ A + γ

2
INn + 1

2γ
IN ⊗ B̄

+c(L ⊗ (�H ))s − ε IN ⊗ (H T H )

]
× e(t). (12)

By Lemma 4, −IN ⊗ A + (γ /2)INn + (1/2γ )IN ⊗ B̄ +
c(L ⊗ (�H ))s − ε IN ⊗ (H T H ) < 0 that is equivalent to
the inequality (5) holds. Hence, we get

DαV (t) � g(t, e(t)) ≤ −λmin(�)eT (t)e(t)

= −λmin(�)

N∑
i=1

eT
i (t)ei (t)

= −2λmin(�)W (t) < 0 (13)

where W (t) = (1/2)
∑N

i=1 eT
i (t)ei (t). From Definition 1,

we get

V (t) − V (t0) = 1

�(α)

∫ t

t0
(t − s)α−1g(s, e(s))ds < 0. (14)

Therefore, V (t) ≤ V (t0), t ≥ t0. From the definition of (6),
ei (t) and di (t) are bounded for t ≥ t0. Therefore, there exists
a positive constant M satisfying |DαV (t)| ≤ M, t ≥ t0.
We then conclude that limt→∞ W (t) = 0. The proof of
limt→∞ W (t) = 0 is similar to [26, Proof of Theorem 1],
hence omitted here. From the definition of W (t), we have
limt→∞ ei (t) = 0. Therefore, FCNNs with output coupling are
globally asymptotical synchronized based on the controller (4).
This completes the proof.

Remark 2: The theory and methods of integer-order dif-
ferential equations cannot be directly used to investigate
fractional-order systems. It should be pointed out that how to
design suitable quantized output controllers for FCNNs is not
an easy job and 2) how to give easily checked synchronization
criteria in terms of LMIs for FCNNs which will introduce
some difficulties.

Remark 3: Compared with the results in [28] and [29],
the model in this article has the item of output coupling, and
thus, our models are new and more general. What is more,
the results in this article are in terms of LMIs and easily
checked than those algebraic conditions [28]. Although Wang
et al. [29] investigated synchronization of FCNNs, the cou-
pling item was state coupling and the controller was state-
feedback controller not adaptive quantized output controller.
This is the first time to use an adaptive quantized output
control method to investigate the synchronization of FCNNs
with output coupling or state coupling.

If m = n and H = I, we can get the following FCNNs with
state coupling, error system, quantized controller and results:

Dαxi (t) = −Axi(t) + B f (xi (t))

+ c
N∑

j=1

li j �x j (t) + ui (t) (15)

Dαei (t) = −Aei (t) + B f̃ (ei (t))

+ c
N∑

j=1

li j �e j (t) + ui (t) (16)

{
ui (t) = −di (t)q(ei (t))

Dαdi (t) = β‖ei (t)‖2.
(17)

Theorem 2: Under Assumptions 1, the network (15) is
globally synchronized under the quantized controller (17),
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if there exist positive constants ε and γ, and selecting d∗ such
that

� =
[

�11 IN ⊗ (l f B)T

∗ −2γ INn

]
< 0 (18)

and ε − (1 − δ)d∗ < 0 hold, where �11 = −IN ⊗ A +
(γ /2)INn + c(L ⊗ �)s − ε INn .

Proof: If xi (t) (i = 1, 2, . . . , N) and s(t) are the solutions
of system (15) and (2), respectively, with different initial
conditions xi (t0) and s(t0), then ei (t0) �= 0. Suppose that ei (t)
(i = 1, 2, . . . , N) are the solutions of the system (16) with the
controller (17) satisfying ei (t0) �= 0.

The following Lyapunov function is constructed:

V (t) = 1

2

N∑
i=1

eT
i (t)ei (t) + 1 − δ

2β

N∑
i=1

(di (t) − d∗)2. (19)

Calculating its fractional-order derivative along the solution
of (16), we obtain that

DαV (t)

≤
N∑

i=1

eT
i (t)Dαei (t)

+1 − δ

β

N∑
i=1

(di(t) − d∗)Dαdi (t)

=
N∑

i=1

eT
i (t)

⎡
⎣−Aei (t) + B f̃ (ei (t)) + c

N∑
j=1

li j �e j (t)

⎤
⎦

−
N∑

i=1

eT
i (t)di (t)q(ei (t))

+(1 − δ)

N∑
i=1

(di(t) − d∗)‖ei (t)‖2

≤ eT (t)

[
−IN ⊗ A + γ

2
INn + 1

2γ
IN ⊗ B̄

+ c(L ⊗ �)s − ε INn

]
e(t)

+ (ε − (1 − δ)d∗)eT (t)e(t). (20)

By choosing suitable d∗ satisfying ε−(1−δ)d∗ < 0 and using
Lemma 4, we get

DαV (t) ≤ −λmin(�)eT (t)e(t)

= −λmin(�)

N∑
i=1

eT
i (t)ei (t)

= −2λmin(�)W (t) < 0. (21)

The rest of the proof is similar to that of Theorem 1 and thus
omitted here. This proof is completed.

Theorem 3: Under Assumptions 1, the network (15) is
globally synchronized under the quantized controller (17),
if there exist positive constants ε and γ, and selecting a
suitable constant d∗, such that

� =
[

−IN ⊗ A + c(L ⊗ �)s 1

2
IN ⊗ B

∗ −ε INn

]
< 0 (22)

ε − (1 − δ)d∗/l2
f < 0. (23)

Proof: If xi(t) (i = 1, 2, . . . , N) and s(t) are the solutions
of system (15) and (2), respectively, with different initial
conditions xi (t0) and s(t0), then ei (t0) �= 0. Suppose that ei (t)
(i = 1, 2, . . . , N) are the solutions of the system (16) with the
controller (17) satisfying ei (t0) �= 0.

Choosing the same Lyapunov functional (19), the following
inequality can be derived:

DαV (t)

≤
N∑

i=1

eT
i (t)Dαei (t)

+1 − δ

β

N∑
i=1

(di (t) − d∗)Dαdi(t)

=
N∑

i=1

eT
i (t)

⎡
⎣−Aei (t) + B f̃ (ei (t)) + c

N∑
j=1

li j �e j (t)

⎤
⎦

−
N∑

i=1

eT
i (t)di (t)q(ei (t))

+ (1 − δ)

N∑
i=1

(di (t) − d∗)‖ei (t)‖2

≤ eT (t)[−IN ⊗ A + c(L ⊗ �)s]e(t)
+

N∑
i=1

ei (t)
T B f̃ (ei (t))

− (1 − δ)

N∑
i=1

di (t)e
T
i (t)ei (t)

+ (1 − δ)

N∑
i=1

(di (t) − d∗)‖ei (t)‖2

= eT (t)[−IN ⊗ A + c(L ⊗ �)s]e(t)
+

N∑
i=1

ei (t)
T B f̃ (ei (t))

− (1 − δ)d∗
N∑

i=1

eT
i (t)ei (t)

≤ eT (t)[−IN ⊗ A + c(L ⊗ �)s]e(t)
+ 1

2
eT (t)(IN ⊗ BT )F(t)

+ 1

2
FT (t)(IN ⊗ B)e(t) − (1 − δ)d∗eT (t)e(t)

≤ eT (t)[−IN ⊗ A + c(L ⊗ �)s]e(t)
+ 1

2
eT (t)(IN ⊗ BT )F(t)

+ 1

2
FT (t)(IN ⊗ B)e(t) − εFT (t)F(t)

+ [
ε − (1 − δ)d∗/l2

f

]
FT (t)F(t) (24)

where F(t) = [ f̃ T
1 (t), . . . , f̃ T

n (t)]T .
Selecting an approximate d∗ to ensure ε−(1−δ)d∗/ l2

f < 0,
then

DαV (t) ≤ ξT (t)�ξ(t) ≤ −λmin(�)ξT (t)ξ(t)

≤ −λmin(�)eT (t)e(t) (25)
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Fig. 1. Chaotic attractors of (2).

Fig. 2. Synchronization errors of xi1 − s1.

where ξ(t) = (eT (t), FT (t))T . The rest of proof is similar to
that of Theorem 1 and hence omitted here. This completes the
proof.

When there is no quantization of the network output,
the adaptive output controller ui (t) becomes the following
form: {

ui (t) = −di (t)H T θi (t)

Dαdi (t) = β‖θi (t)‖2.
(26)

Corollary 1: Under Assumption 1, the network (1) is glob-
ally synchronized under the controller (26) if there exist
positive constants ε, γ, and properly choosing d∗ such that
the inequality (5) and (ε − d∗)IN ⊗ (H T H ) ≤ 0 hold.

Corollary 2: Under the condition m = n, H = I , and
Assumption 1, the network (15) is globally synchronized under
the controller {

ui (t) = −di (t)ei (t)

Dαdi (t) = β‖ei (t)‖2 (27)

if there exist positive constants ε and γ such that the inequal-
ity (18) and d∗ > ε hold.

Corollary 3: Under the condition m = n, H = I and
Assumption 1, the networks (15) is globally synchronized
under the controller (27), if there exist positive constants ε
and γ, such that the inequality (22) and d∗ > l2

f ε hold.

Fig. 3. Synchronization errors of xi2 − s2.

Fig. 4. Synchronization errors of xi3 − s3.

Fig. 5. Total synchronous error.

Remark 4: The results in Corollaries 1–3 are also new since
the existing results about synchronization of fractional-order
neural networks [21]–[27] are the ones without coupling item.

IV. NUMERICAL EXAMPLE

In this section, a numerical example is employed to illustrate
the effectiveness of the obtained theoretical results.

Consider the 3-D FCNNs given by (1), with n = 3, N = 10,
xi (t) = (xi1(t), xi2(t), xi3(t))T ∈ R

3, and (i = 1, 2, . . . , 10)
denotes the state of the i th network. The synchronization
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Fig. 6. Output tracking errors of θi1 .

Fig. 7. Output tracking errors of θi2 .

reference manifold s(t) is defined by (2). The other parameters
are given as follows:

A =
⎡
⎣ 1.1 0 0

0 1.1 0
0 0 1.1

⎤
⎦, B =

⎡
⎣ 2 −1.2 0

1.5 2.71 1.15
−2.75 0 1.1

⎤
⎦

� =
⎡
⎣ 1 0.2

0 1
0 1

⎤
⎦, H =

[
1 1 0
0 1 1

]

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 3 0 0 0 0 0 0 0
0 −2 1 0 0 0 0 0 0 1
0 0 −2 0 0 0 0 0 1 1
0 0 0 −2 1 0 0 0 0 1
0 0 0 0 −2 1 0 0 1 0
1 0 0 0 0 −4 3 0 0 0
0 1 0 0 0 1 −2 0 0 0
0 0 1 0 1 0 0 −2 0 0
1 0 0 0 2 0 0 0 −3 0
1 0 0 0 0 2 0 0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c = 0.5, β = 0.2, α = 0.95, δ = 0.8, ξ0 = 1, and
f (xi) = (0.5xi1, 0.5 tanh(xi2), 0.5 tanh(xi3))

T .
We use the MATLAB LMI Control Toolbox to solve the

LMI in (5) and obtain the following feasible solution with ε =
22.7061 and γ = 1.4165. Choosing d∗ = 120, and through
simple computation, we get ε − (1 − δ)d∗ = −0.21 < 0.

Fig. 8. Time evolutions of q(θi1).

Fig. 9. Time evolutions of q(θi2).

Fig. 10. Quantized output controller ui1 in (4).

According to Theorem 1, it can be concluded that the sys-
tem (1) is globally synchronized. Fig. 1 shows the trajectory
of (2), which has a chaotic attractor. Figs. 2–4 show the
synchronization errors of xi1 − s1, xi2 − s2, and xi3 − s3,
respectively. Obviously, the synchronization errors tend to
zero, which has also confirmed that system (1) achieves
asymptotical synchronization.

The total error of (3) is defined by err(t) =∑3
i=1(

∑10
j=1 |si − x j i |2)1/2. Fig. 5 shows the total synchro-

nization error and Figs. 6–12 show the output tracking
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Fig. 11. Quantized output controller ui2 in (4).

Fig. 12. Quantized output controller ui3 in (4).

Fig. 13. Output controller ui1 in (26).

errors θi , time evolutions of q(θi), and the quantized output
controller ui (t) in (4), respectively.

It should be mentioned that the FCNNs (1) also
achieve globally asymptotical synchronization with the output
controller (26). For the sake of length, the trajectories of syn-
chronization errors under output controller (26) are omitted.
Figs. 13–15 shows the time evolutions of the output con-
troller (26) for the same system (1). Obviously, in Figs. 10–12,
the continuous signals are converted into piecewise continuous
signals by quantized output controller (4) and this reduces

Fig. 14. Quantized output controller ui2 in (26).

Fig. 15. Quantized output controller ui3 in (26).

control cost and the communication burden in comparisons
with Figs. 13–15.

V. CONCLUSION

The problem of synchronization of FCNNs with output
coupling has been addressed with the help of fractional-
order Lyapunov functions. New adaptive quantized output
controllers are proposed to effectively decrease control fees
and avoid communication channels congestion. Some new
synchronization criteria are derived in forms of LMIs. An illus-
trated example is used to show the correctness of the obtained
results. Further research works would extend our results to
the ones of fractional-order coupled memristor-based neural
networks with and without time delays.
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