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for EHR Mortality Prediction
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Abstract—Electronic health records (EHR) are characterized
as non-stationary, heterogeneous, noisy, and sparse data; there-
fore, it is challenging to learn the regularities or patterns inherent
within them. In particular, sparseness caused mostly by many
missing values has attracted the attention of researchers, who
have attempted to find a better use of all available samples
for determining the solution of a primary target task through
the defining a secondary imputation problem. Methodologically,
existing methods, either deterministic or stochastic, have applied
different assumptions to impute missing values. However, once
the missing values are imputed, most existing methods do not
consider the fidelity or confidence of the imputed values in
the modeling of downstream tasks. Undoubtedly, an erroneous
or improper imputation of missing variables can cause dif-
ficulties in modeling as well as a degraded performance. In
this study, we present a novel variational recurrent network
that (i) estimates the distribution of missing variables (e.g.,
the mean and variance) allowing to represent uncertainty in
the imputed values, (ii) updates hidden states by explicitly
applying fidelity based on a variance of the imputed values
during a recurrence (i.e., uncertainty propagation over time),
and (iii) predicts the possibility of in-hospital mortality. It is
noteworthy that our model can conduct these procedures in a
single stream and learn all network parameters jointly in an
end-to-end manner. We validated the effectiveness of our method
using the public datasets of MIMIC-III and PhysioNet challenge
2012 by comparing with and outperforming other state-of-the-art
methods for mortality prediction considered in our experiments.
In addition, we identified the behavior of the model that well
represented the uncertainties for the imputed estimates, which
indicated a high correlation between the calculated MAE and
the uncertainty.

Index Terms—Electronic health records; Bioinformatics; Time-
Series Modeling; Missing Value Imputation; Mortality Predic-
tion; Deep Learning; Deep Generative Model; Uncertainty

I. INTRODUCTION

IN the past decade, there have been growing interests and
researches in applying machine learning (ML) to clinical

domains, particularly on electronic health records (EHR) data
analysis for intensive care units [1, 2]. However, owing to
the nature of physiological EHR data, they generally involve
a substantial number of missing values because of the lack
of collection (i.e., unexpected accidents such as equipment
damage) or documentation (i.e., an irregular recording across
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medical variables and even time) [3]. Such an unfavorable
characteristic constrains the use of conventional ML models,
which commonly assume fully observed and fixed-sized ob-
servations in practice [4].

To address this issue, some previous studies have directly
modeled observations with missing values, for example, trans-
forming them into a time series of distributions over the
possible values [5]. However, not only does this show a
low performance under a high rate of missing data, it also
requires separate modeling for different datasets. Meanwhile,
numerous imputation methods have also been proposed to
fill in missing values. Broadly, existing imputation methods
can be categorized into (i) deterministic or (ii) stochastic
approaches, depending on the presence of randomness in
the imputation process [6]. Deterministic imputation methods
determine only one possible value for each missing value
using the model parameters and/or conditions, thus resulting
in a unique imputed value for each observation. This approach
ranges from statistical methods (i.e., simple mean [7], median
imputation [8], and ratio imputation) to ML approaches, such
as expectation maximization (EM) [9], k-nearest neighbor
(KNN), matrix factorization [10], and matrix completion [11].
In recent years, centered on deep learning (DL), recurrent
neural networks (RNNs) such as long short-term memory
(LSTM) and a gated recurrent unit (GRU) have shown remark-
able a performance in modeling the temporal dependencies
of a clinical time series and explicitly estimating the missing
values, thus being regarded as de facto methods [12, 13].

However, stochastic methods, for example, multivariate im-
putation by chained equations (MICE) [14], possess some
inherent randomness and take into account the distributions,
thus allowing the generation of samples. More recently, [15]
exploited the adversarial learning framework [16], in which
a generator imputes missing values based on other observed
values and a discriminator criticizes whether the completed
values (by applying both the observed and imputed values) are
realistic. In addition, a variational autoencoder (VAE) [17, 18]
has also been used for a time series imputation, where the
temporal dynamics is separately modeled through a Gaussian
process [19] or an RNN [20].

Although previous imputation methods have shown a rea-
sonable performance, there is no doubt that an erroneous
or improper imputation of missing data can degrade the
performance in downstream tasks [21]. Therefore, this has
resulted in the need to take account of the fidelity for the
imputed values. That is, imputed values with low and high
fidelity should be treated differently during the modeling. To
the best of our knowledge, most existing methods exploiting
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the aforementioned imputation techniques do not consider
the fidelity of the imputed values in the downstream tasks
[12, 13, 15, 22].

In this study, we explicitly utilize the uncertainty for im-
puting missing values represented in terms of variance as
the fidelity and propose a novel uncertainty-gated stochastic
sequential model for a clinical time-series prediction. Inspired
by the success of stochastic RNN models that introduce
a stochastic gradient variational Bayes (SGVB) approach
[17, 18] into an RNN sequence model, we take advantage of
its capabilities to capture the underlying sequential structure
and temporally generate missing values for a multivariate time-
series data imputation. In addition to providing probabilistic
imputation estimates, as a result of stochastic inference, we
estimate their corresponding uncertainty from a latent space
and further propagate it within the GRU cells in a time-series
modeling for mortality prediction. Note that, to harness the
rich representational power of a latent space, our proposed
method implicitly uses the imputed time series for prediction.
The main contributions of this work are as follows:
• To the best of our knowledge, our study is the first to

use an extended RNN with stochastic units to provide
probabilistic imputation estimates with uncertainty.

• We propose a novel GRU cell, called GRU-U, that
exploits uncertainty-gated attention and further leverages
attention weights for a reliable mortality prediction.

• We simultaneously conduct a missing value imputation
and further prediction task jointly in an end-to-end man-
ner.

• We evaluated our model on real-world healthcare datasets
and achieved state-of-the-art results for the mortality pre-
diction task, validating the effectiveness of the proposed
approach in a clinical setting.

II. RELATED WORK

In the past decades, numerous imputation methods have
been proposed to handle missing values that are sampled
irregularly and/or sparsely in a multivariate time series. Con-
ventional imputation methods can largely be divided into three
classes. The first comprises statistical imputation methods,
from simple mean [7], median [8], and ratio imputation
methods to classical statistical time-series models including
the auto-regressive integrated moving average (ARIMA) [23],
which eliminates the non-stationary parts in a sequence and fits
a parameterized stationary model. However, these statistical
imputation methods have a limitation in terms of inadequately
modeling the temporal sequence and deterministically imput-
ing missing values without any stochastic factors.

The second class comprises a variety of ML-based im-
putation methods have been developed for better missing
value estimation, such as the EM algorithm [9], KNN, matrix
factorization [10], and matrix completion [11]. Furthermore,
MICE [14] is widely used in practice by iteratively applying
the aforementioned ML-based methods and averaging the
results. Although such methods exploit randomness added as
a stochastic approach, they rarely consider the uncertainty
information.

Finally, as the thrid class, i.e., deep learning-based imputa-
tion methods, the RNNs [12, 13] have more recently been
proven to achieve successes in modeling temporal depen-
dencies and imputing the sequence, particularly within the
healthcare domain. Hence, we focus more on the RNN-based
state-of-the-art imputation methods of a clinical time series,
which are usually leveraged together with further downstream,
i.e., classification/regression.

GRU-D [12] assumes that missing variables can be derived
by combining the mean imputation and forward filling using
the last observation. For this, a trainable temporal decaying
factor toward the global mean is introduced from the time
interval information. In addition, the masking vector is di-
rectly modeled with the time-series data inside the GRU cell,
allowing missing patterns to also be modeled internally. GRU-
D achieves a superior performance in various clinical tasks but
has a strong assumption regarding the data, which may not be
well-suited to typical time-series datasets.

As another RNN-based imputation method, M-RNN [13]
utilizes a bi-directional RNN to reconstruct missing values by
operating both within streams (i.e., interpolation) and across
streams (i.e., imputation). The imputed values in M-RNN are
treated as constants, which cannot be sufficiently updated.

As another bidirectional approach, similar to an M-RNN,
BRITS [22] also uses bi-directional recurrent dynamics by
considering the forward and backward directions on a given
time-series to solve the error delay problem until the presence
of the next observation. It further formulates a feature-based
estimation as a correlation among variables in addition to a
history-based estimation. At the same time, it considers the
imputed values as variables and updates them during back-
propagation as opposed to M-RNN, thereby resulting in a
SOTA performance in the healthcare domain.

Despite these remarkable realizations of deep learning-
based imputation models, it should be noted that these methods
have a major drawback in that they do not investigate the
uncertainty for the imputation estimates. Meanwhile, [15]
recently proposed the GRU-I that uses the adversarial learning
framework to impute a multivariate time-series and explicitly
leverage it for further classification. However, this method has
a limitation in that the imputation and downstream steps are
separated, and thus training dose not occur in an end-to-end
manner. In addition, although an uncertainty occurs in an input
space, it is not utilized explicitly for classification tasks.

By adding stochasticity into the hidden states of an RNN,
this study is the first to provide probabilistic imputation
estimates with uncertainty, and further apply uncertainty-
gated attention within the GRU cell, as well as consider the
effectiveness in terms of an in-hospital mortality prediction
task.

III. METHODS

In this section, we describe our proposed uncertainty-gated
stochastic sequential model that extends a variational RNN
(VRNN) [24] for mortality prediction using EHR data. In
particular, by leveraging a VRNN as our base model, we
devise a novel network that handles representation learning,
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(a) (b)

Fig. 1: Graphical illustrations of (a) the whole architecture of the stochastic recurrent imputation method and (b) each step of
the VRNN.

missing value imputation, and in-hospital mortality prediction
simultaneously. Notably, we propose a new type of GRU
cell, in which temporal information encoding in hidden states
is updated by propagating the uncertainty for the inferred
distribution over the variables. The overall architecture of the
proposed model is shown in Fig. 1.

Our proposed method consists of three parts: (i) stochas-
tic recurrent missing value imputation, (ii) uncertainty-gated
attention, and (iii) in-hospital mortality prediction.

A. Data Representation

Given a multivariate time series with D variables over T
time points, we denote it as X = (x1, ...,xt, ...,xT )> ∈
RT×D, where xt ∈ RD represents the t-th observation of
all variables observed at timestamp st, and xdt is the d-th
element or variable in xt. In this setting, because the time-
series X includes missing values, we introduce the masking
vector across the time-series, M = (m1, ...,mt, ...,mT )> ∈
RT×D, with the same size of X, to mark which variables
are observed or missing. In particular, md

t = 1 if xdt is
observed, md

t = 0, otherwise. Considering a masking vector,
we define a new multivariate time series including missing
values, X̃ = (x̃1, ..., x̃t, ..., x̃T )> ∈ RT×D, as follows:

x̃dt =

{
xdt , if md

t = 1

∗, otherwise
(1)

where * indicates an unobserved value to be estimated by
the proposed imputation method. Initially, we set * in X̃
to zero [15, 25]. In addition, we maintain the time interval,
∆ = (δ1, ..., δt, ..., δT )> ∈ RT×D, defined as the difference
between the last observation and the current timestamp fol-
lowing the equations for each variable δdt :

δdt =


sdt − sdt−1 + δdt−1, if t > 1, md

t−1 = 0

sdt − sdt−1, if t > 1, md
t−1 = 1

1, if t = 1

. (2)

Given a clinical time series dataset D =
{(X̃(n),M(n),∆(n))}Nn=1 for N subjects, we define an
in-hospital mortality prediction as a binary classification
problem with labels y(n) ∈ {0, 1}. To avoid cluttering,
and without loss of generality, we simply use functional
notation (x̃t,mt, δt) for a patient’s EHR at time t, ignoring
a superscript (n).

B. Stochastic Recurrent Missing Value Imputation
Inspired from a finding indicating that the use of stochastic

representations for hidden states in RNNs helps improve the
time-series modeling [24, 26], we adopt a VRNN [24] in our
base model architecture.

The VRNN is a probabilistic extension of an RNN with
stochastic units. In particular, the hidden states of RNNs
include latent random variables by combining the elements
of the VAE. This allows modeling their distributional char-
acteristics in a latent space, where the underlying structure
of sequential data can be better represented. Based on the
estimated distribution of latent variables, it becomes possible
to generate input values, with which we can impute missing
values accordingly.

The overall stochastic imputation process comprises a series
of steps as shown in Fig. 1: (i) prior and (ii) posterior inference
over the latent variable, (iii) estimating the observational
distribution, called a generation, and (iv) representing hidden
states by recurrence. In other words, the VRNN iteratively
performs both the inference and generation process at every
time step. Note that the inference step approximates the true
posterior, and the generation step performs the imputation
by reconstructing data from this posterior. To handle output
probability distributions and stochastic training, arbitrarily
flexible functions such as neural networks can be chosen.

1) Prior: The prior distribution on the latent random vari-
able follows the distribution p(zt; θ0) = N

(
µ0,t, diag(σ2

0,t)
)
,

[µ0,t, logσ2
0,t] = Fprior(ht−1), (3)

where Fprior is a function with learnable parameters θ0 and
previous hidden states ht−1 as input (Prior in Fig. 1b). In a
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clinical setting, this latent variable zt can be interpreted as the
patient’s hidden health status at a particular time point.

2) Inference: During the inference phase (black dashed
arrows in Fig. 1a and Inference in Fig. 1b), we aim to learn
the inference network that approximates the true posterior
distribution over the latent variables p(zt|x̃t) to q(zt|x̃t;φ) =
N
(
µz,t, diag(σ2

z,t)
)
. We estimate the mean and log-variance

using F inf with the parameter φ, which is conditioned on both
x̃t and ht−1 as:

[µz,t, logσ2
z,t] = F inf(Fx(x̃t),ht−1), (4)

where Fx is a non-linear feature extractor from x̃t. For all
time steps, an approximate posterior depending on z1:T and
x̃1:T factorizes as follows:

q(z1:T |x̃1:T ) = q(z1|x̃1)

T∏
t=2

q(zt|z1:t−1, x̃1:t). (5)

Here, a reparameterization trick [17, 18] is used to make the
network differentiable in our implementation, as in an auto-
encoding variational Bayes algorithm. We sample ε ∼ N (0, I)
and then represent zt = µz,t+σz,t�ε with µz,t and σz,t esti-
mated from an inference network in Eq. (4), where � denotes
an element-wise multiplication. It should be noted that the
inference step is implicitly involved in our imputation process
in the context of the approximated posteriors’ contribution to
the ensuing generation step.

3) Generation: The generation step (green dashed arrows
in Fig. 1a and Generation in Fig. 1b) learns the generative net-
work following the reconstruction distribution of p(x̃t|zt; θ) =
N
(
µx,t, diag(σ2

x,t)
)
, the mean and log-variance of which are

estimated as:

[µx,t, logσ2
x,t] = Fgen(Fz(zt),ht−1), (6)

where Fgen is a generating function with parameter θ, and Fz

is a non-linear feature extractor from zt. Note that they are
dependent on the posterior zt approximated at the inference
step, as well as ht−1. The joint distribution across subsequent
time steps also factorizes as:

p(x̃1:T ,z1:T ) = p(z1)p(x̃1|z1)
T∏
t=2

p(zt|x̃1:t−1, z1:t−1)p(x̃t|z1:t, x̃1:t−1) (7)

where p(zt|x̃1:t−1, z1:t−1) and p(x̃t|z1:t, x̃1:t−1) can be ob-
tained from the prior distribution in Eq. (3) and reconstruction
distribution in Eq. (6) at time t, respectively.

The imputation is performed using the mean values µx,t

from the given reconstruction distribution. Here, we consider
a temporal decaying factor and a feature correlation of a
multivariate time-series. Considering a temporal context where
the influence of the medical features fades over time for
the case of missing long-term values, it is well suited to
introduce a decay mechanism for EHR time series modeling
[12]. Following the aforementioned properties, the negative
exponential rectifier is exploited to make the temporal decay
rate γt monotonically decrease, which is denoted from the
time interval δt as follows:

γt = exp{−max(0,Wγδt + bγ)}. (8)

We learn the decay rates from the training data by learning
the model parameters Wγ ,bγ , rather than fixed a priori.
The actual observations and the estimated mean values from
the VRNN are then combined by the weight βt ∈ [0, 1]D

determined from the temporal decay rate and masking vector
as follows:

βt = σ (Wβ [γt ◦mt] + bβ) , (9)
ct = βt � x̃t + (1− βt)� µx,t, (10)

where Wβ and bβ are learnable parameters. This temporal
decaying mechanism ensures that missing values are smoothly
replaced over time. In addition, we further introduce additional
feature correlations into the imputation process, where one
feature is represented by a linear combination of the others

c̃t = Wxµx,t + bx, (11)

where Wx is a parameter matrix with a diagonal of all zeros.
Consequently, the temporally decayed estimates ct and

feature-correlated estimates c̃t are fully integrated into a
combination vector ĉt using a 1 × 1 convolution operation
(∗), followed by a max pooling operation that incorporates all
channel information as:

ĉt = max-pool (ct ∗ c̃t) . (12)

Thus, depending on the presence of the observation from
masking values mt, we can formulate the final imputation
estimates x̂t as follows:

x̂t = mt � x̃t + (1−mt)� ĉt. (13)

In addition, we also capture the uncertainty ut of the
imputation estimates by using σx,t from the generative net-
work. Here, the uncertainties of observed values are set to
zero, indicating a full fidelity. It is worth noting that the
imputed values are stochastically estimated with corresponding
uncertainty, considering the posteriors inferred at the current
time step. For the estimation of the imputed values, the
uncertainties ut are evaluated as follows:

ut = (1−mt)� σx,t. (14)

4) Recurrence: During the recurrence phase (black solid
arrows in Fig. 1a and Recurrence in Fig. 1b), the extracted
features from x̂t and zt and the previous hidden state ht−1
are fed into the hidden state as

ht = H (Fx(x̂t),Fz(zt),ht−1) , (15)

whereH is a transformation function conditioned on both x̂1:T

and z1:T . For the transformation function, in our study, a GRU
cell [27] is used. Notably, the imputed values x̂t and latent
variables zt are tied through the deterministic hidden state ht,
which further updates the inferred distribution over variables
during the recurrence.
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(a) (b)

Fig. 2: Comparison of (a) original vanilla GRU cell and (b) proposed GRU-U cell.

Frt = ϕ (Wr [Fx(x̂t) ◦αt ◦ Fz(zt)] + Urht−1 + Vrmt + br) (16)
Fut = ϕ (Wu [Fx(x̂t) ◦αt ◦ Fz(zt)] + Uuht−1 + Vumt + bu) (17)

h̃t = ϕ (Wh [Fx(x̂t) ◦αt ◦ Fz(zt)] + Uh[Frt � ht−1] + Vhmt + bh) (18)

ht = (1−Fut )� ht−1 + Fut � h̃t (19)

C. Uncertainty-Gated Attention

In this study, we investigate the application of uncertainty
for a downstream task. For each timestamp, we efficiently
propagate the uncertainty within the GRU cell gate such that
the imputed data can be axiomatically incorporated with this
uncertainty in a non-linear fashion. To this end, the uncertainty
ut is additionally injected into the hidden state as input into
the GRU cell with the features from x̂t, zt and the previous
hidden state as

ht = H (Fx(x̂t),Fz(zt),ht−1,ut) . (20)

The basic idea of the proposed approach is to reduce the
influence of the imputed data with low fidelity on the subse-
quent downstream tasks. To this end, our approach introduces
a trainable decay designed for uncertainty in the model, and
it efficiently propagates through the GRU gate units, which
we call uncertainty-gated attention. Therefore, in this paper,
we propose a novel GRU cell, called GRU-U that further
injects uncertainty-gated attention into a vanilla GRU cell. The
difference between the vanilla GRU cell and the proposed
GRU-U is schematically depicted in Fig. 2. Similar to the
temporal decaying rate, the attention weights αt ∈ (0,1] are
formally:

αt = exp{−max(0,Wαut + bα)}, (21)

where Wα and bα are model parameters that are jointly
learned using other recurrence parameters. In particular, Wα

is restricted to a diagonal matrix to ensure that the decay factor
of each variable is independent of the others.

In GRU-U, there are two types of gates: a reset gate Fr and
an update gate Fu used to control the information. Compared
with the vanilla GRU cell, the attention weight vector αt
and masking vector mt are additionally fed into the gate by
following the update computations in Eqs. (16)-(19), where ϕ
is a non-linear activation function. It is worth noting that we
learn the corresponding parameter for αt, thus allowing the
model to learn the extent to which the attention weights are
reflected in the input. In addition, the missing patterns are also

modeled by directly feeding a masking vector and are linearly
combined with other internal representations.

D. Mortality Prediction

To predict the probability of in-hospital mortality, we use
the last GRU hidden state, the representation of which is more
powerful than the explicit use of the imputed data because it
includes temporal information encoding across all time steps.
Given the last hidden state hT , we apply a fully connected
layer, followed by a sigmoid activation function as follows:

p(y = 1|hT ) = sigm(WohT ) (22)

where sigm is a logistic sigmoid activation function
and Wo is a parameter from a classifier. For simplic-
ity, the recurrence, uncertainty-gated attention, and pre-
diction model parameters are summarized as ψ =
{W{γ,β,x,α,r,u,h,o},U{r,u,h},V{r,u,h},b{γ,β,x,α,r,u,h}}. The
overall algorithm for a unidirectional VRNN is described in
Algorithm 1.

E. Bidirectional VRNN

To better capture the long-term dependency of clini-
cal records, in this study, we exploit bidirectional re-
current dynamics. In other words, given a time series
{x̂1, x̂2, ..., x̂T } from the forward direction, each time series
can also be derived from the backward direction function, i.e.,
{x̂′1, x̂′2, ..., x̂′T }. The final estimated imputation is the mean of
x̂T and x̂′T at time t, and the prediction is based on the average
logit from a forward and backward VRNN. The final loss is
obtained by accumulating the forward loss {l1, l2, ..., lT } and
the backward loss {l′1, l′2, ..., l′T }. This bidirectional approach
helps solve the problem of inefficient training and biased
explosions caused by error delays that often occur in the time
sequence.
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F. Learning

To train all model parameters {φ, θ, ψ}, we use a composite
objective function, which consists of (i) VRNN loss LVRNN,
(ii) consistency loss Lcons, (iii) masked value imputation loss
Limp, and (iv) classification loss Lcls. The VRNN loss is
calculated by accumulating the reconstruction error and KL
divergence over the time-series for each sample as follows:

l
(n)
t = E

q(z1:T |x̃(n)
1:T ;φ)

[
log p(x̃

(n)
t |z1:t, x̃

(n)
1:t−1)−

KL(q(zt|x̃(n)
1:T , z1:t−1;φ) ‖ p(zt|x̃(n)

1:t , z1:t−1; θ))
]
.

(23)

All losses for N samples are gathered, which leads to
LVRNN =

∑N
n=1

∑T
t=1 l

(n)
t . The consistency loss Lcons is

defined as the difference between the forward estimation x̂t
and backward estimation x̂′t over time through the mean
absolute error (MAE) for the consistent estimations of both the
forward and backward directions. In terms of the imputation
loss Limp, we calculate masked MAE between the original
sample X as the ground truth and the imputed sample X̂ for
the initially marked values only1 by Mimp as:

Limp =
1

N

N∑
n=1

∣∣∣X(n) �M
(n)
imp − X̂(n) �M

(n)
imp

∣∣∣ (24)

Moreover, in this study, we address the poor classification
problem from highly imbalanced data frequently found in a
healthcare dataset. To accurately detect minority class observa-
tions that are often crucial (i.e., in-hospital death), we exploit a
focal loss [28]. The loss formulation is similar to the standard
cross entropy loss, but reshaped such that it down-weights the
loss assigned to well-classified examples in the following way:

Lcls =

N∑
n=1

−ω1(1− ŷ(n))ω2 log(ŷ(n)) (25)

ŷ(n) =

{
p(n) if y(n) = 1

1− p(n) otherwise
(26)

where p(n) is the model’s predicted probability for y(n) = 1,
ω1 ∈ [0, 1] is a weighting factor used to balance the importance
between them, and ω2 ≥ 0 is a focusing parameter applied to
focus on the minority class.

Hence, all losses are then accumulated by integrating both
the forward loss and backward loss, defining the composite
loss as L = λVRNN(LVRNN +L′VRNN) + λcons(Lcons +L′cons) +
λimp(Limp +L′imp)+(Lcls +L′cls), where λVRNN, λcons and λimp
are hyper-parameters that control the ratio between the losses.
We optimize all the parameters of our model in an end-to-end
manner via this composite loss.

IV. EXPERIMENTS

In this section, we evaluate the proposed uncertainty-gated
stochastic sequential imputation method on in-hospital mor-
tality prediction and missing value imputation task on two
publicly available healthcare dataset, (i) Medical Information

1Actually, we randomly selected 10% of non-missing values and removed
them to investigate the masked imputation loss. Thus, another masking vector
Mimp is introduced for the purpose of marking the selected values.

Algorithm 1 Uncertainty-gated stochastic recurrent imputation
in unidirectional VRNN
Require: x̃1:T , m1:T , ∆θ0 ← 0, ∆φ ← 0, ∆θ ← 0, ∆ψ ←

0, L ← 0
1: repeat
2: for t← 1 to T do
3: p(zt; θ0)← N

(
µ0,t, diag(σ2

0,t)
)

4: q(zt|x̃t;φ)← N
(
µz,t, diag(σ2

z,t)
)

5: ε ∼ N (0, I)
6: zt ← µz,t + σz,t � ε
7: p(x̃t|zt; θ)← N

(
µx,t, diag(σ2

x,t)
)

8: γt ← exp{−max(0,Wγδt + bγ)}
9: βt ← σ (Wβ [γt ◦mt] + bβ)

10: ct ← βt � x̃t + (1− βt)� µx,t

11: c̃t ←Wxµx,t + bx
12: ĉt ← max-pool (ct ∗ c̃t)
13: x̂t ←mt � x̃t + (1−mt)� ĉt
14: ut ← (1−mt)� σx,t

15: αt ← exp{−max(0,Wαut + bα)
16: ht ← GRU (Fx(x̂t),Fz(zt),ht−1,ut)
17: end for
18: L ← λVRNNLVRNN + λconsLcons + λimpLimp + Lcls
19: ∆θ0 ← ∂

∂θ0
L

20: ∆φ← ∂
∂φL

21: ∆θ ← ∂
∂θL

22: ∆ψ ← ∂
∂ψL

23: θ0 ← Optimize(θ0,∆θ0)
24: φ← Optimize(φ,∆φ)
25: θ ← Optimize(θ,∆θ)
26: ψ ← Optimize(ψ,∆ψ)
27: until Convergence

Mart for Intensive Care III (MIMIC-III) and (ii) PhysioNet
Challenge 2012, which have multivariate time-series that
include numerous missing values. To compare the results
depending on the ratio of missing values, we considered two
masking scenarios where 5% or 10% of the observations were
additionally masked for each dataset.

We reported the performances of the mortality prediction
task with the average results from a 5-fold cross validation in
terms of (i) the area under the ROC curve (AUC) and (ii) the
area under the precision-recall curve (AUPRC). The results
of the missing value imputation are reported in terms of the
MAE. Here, with respect to the mortality prediction task, both
the prediction and imputation are conducted during training,
although only prediction is applied during testing. In addition,
regarding the imputation task, only a missing value imputation
is conducted during the training and testing.

We compared the results of the two tasks with other state-
of-the-art methods in the literature to show the superiority
of the proposed method. In addition, we conducted extensive
ablation studies of our model to evaluate the effects of different
components in the proposed method.

In addition to validating the performances of the two tasks,
we visualized the imputation estimates with the uncertainties
predicted from our model against actual observations over
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TABLE I: Performances of the mortality prediction task (mean ± std from 5-cross validation)

Masking ratio Method MIMIC-III PhysioNet
AUC AUPRC AUC AUPRC

5%

GRU-Zero 0.807 ± 0.021 0.345 ± 0.036 0.819 ± 0.021 0.444 ± 0.033
GRU-Mean 0.796 ± 0.018 0.330 ± 0.016 0.793 ± 0.021 0.431 ± 0.041
GRU-KNN 0.794 ± 0.020 0.338 ± 0.017 0.790 ± 0.026 0.412 ± 0.049
GRU-D [12] 0.853 ± 0.013 0.380 ± 0.019 0.809 ± 0.030 0.464 ± 0.046
M-RNN [13] 0.822 ± 0.010 0.317 ± 0.016 0.781 ± 0.023 0.383 ± 0.042
RITS [22] 0.854 ± 0.009 0.373 ± 0.028 0.810 ± 0.015 0.456 ± 0.039
BRITS [22] 0.863 ± 0.014 0.414 ± 0.025 0.824 ± 0.004 0.460 ± 0.042
SAnD [29] 0.830 ± 0.010 0.374 ± 0.024 0.787 ± 0.017 0.426 ± 0.026
Ours 0.865 ± 0.008 0.416 ± 0.029 0.832 ± 0.018 0.470 ± 0.054

10%

GRU-Zero 0.809 ± 0.023 0.346 ± 0.024 0.822 ± 0.022 0.440 ± 0.039
GRU-Mean 0.795 ± 0.011 0.326 ± 0.020 0.793 ± 0.018 0.436 ± 0.028
GRU-KNN 0.798 ± 0.015 0.328 ± 0.021 0.788 ± 0.021 0.428 ± 0.041
GRU-D [12] 0.853 ± 0.013 0.380 ± 0.019 0.809 ± 0.030 0.464 ± 0.046
M-RNN [13] 0.824 ± 0.006 0.322 ± 0.023 0.781 ± 0.023 0.383 ± 0.042
RITS [22] 0.860 ± 0.004 0.392 ± 0.004 0.810 ± 0.015 0.456 ± 0.039
BRITS [22] 0.864 ± 0.011 0.412 ± 0.032 0.824 ± 0.004 0.460 ± 0.042
SAnD [29] 0.826 ± 0.009 0.372 ± 0.025 0.787 ± 0.017 0.426 ± 0.026
Ours 0.865 ± 0.010 0.415 ± 0.014 0.829 ± 0.022 0.465 ± 0.054

time, and further investigated the behavior of our model re-
garding the representation of the uncertainties for the imputed
estimates in terms of the correlation between imputation MAE
and uncertainty.

All the codes are available at “https://open-after-
acceptance”.

A. Data

We used two publicly available datasets, namely, the
MIMIC-III and PhysioNet challenge 2012 datasets.

1) MIMIC-III: We used the publicly available real-world
EHR dataset, MIMIC-III2, which contains longitudinal mea-
surements for more than 40,000 critical care patients. We
selected a subset of 13,998 patients with at least 48 hours
of hospital stay, and sampled the time-series every 2 hours in
the first 48 hours. For each patient, 99 different longitudinal
measurements were selected, which were divided into four
main categories: laboratory measurements, inputs to patients,
outputs collected from patients, and drug prescriptions. The
selected time series were scarcely observed leading to a miss-
ing rate of approximately 93.92%. For the in-hospital mortality
label, the ratio between 1,181 positive (dead in hospital) and
12,817 negative (alive in hospital) was approximately 1:10.8.

2) PhysioNet challenge 2012: We also used the PhysioNet
challenge 2012 dataset3, which contains longitudinal measure-
ments for 4,000 critical care patients with at least 48 hours
of hospital stay. Here, we removed 3 patients from original
dataset who had no observations at all. We sampled the
observations hourly in the first 48 hours, taking the mean value
of multiple observations within one hour. For each patient, 35
different longitudinal measurements were exploited, including
the time-series measurements of vital signs and lab test results.
The time-series data contain a large number of missing values

2Available at https://mimic.physionet.org/.
3Available at https://physionet.org/content/challenge-2012/1.0.0/.

with a missing rate of approximately 80.51% and an in-
hospital mortality label imbalanced at a ratio of approximately
1:6 between 554 in-hospital deaths and 3,443 survival cases.

B. Preprocessing and Training

For the MIMIC-III dataset, data cleaning was conducted by
handling inconsistent units, multiple recordings made at the
same time, and the range of the recorded feature values. We
referred to [12, 30] for feature selection, data cleaning, and
preprocessing.

For all datasets, because each variable has a different range,
all inputs were first Winsorized for removing outliers and then
z-normalized using the global mean and standard deviation
from the entire training set to achieve a zero mean and unit
variance in a variable-wise manner, as described in [31].

We trained our models using the Rectified Adam (RAdam)
optimizer [32] with an initial learning rate of 0.001 and a
multiplicative decay of 0.5 for 80 epochs using mini-batches
of 64 samples. We chose the final optimal model based on the
performance of the validation set.

C. Model Implementations

The VRNN comprises an inference network, a generative
network, feature extractors, and an RNN, which are built using
neural networks in our implementation. The inference and
generative network were fully connected with 2 hidden layers
that are a linear operation followed by batch normalization,
and a rectified linear unit (ReLU) activation, where the di-
mensions of the latent variables are 32 and 16 for each layer,
respectively. For the feature extractors, we constructed a single
hidden layer using a Tanh activation to extract complex non-
linear features. For the RNN, a single layer with 64 GRU
hidden units was employed with a Tanh activation function.
The ω1 and ω2 in the focal loss were chosen to be 5 and
0.25, respectively. The ratio in the composite loss was set to
λVRNN = 1e−5, λcons = 1 and λimp = 1e−2 as a result of

https://mimic.physionet.org/
https://physionet.org/content/challenge-2012/1.0.0/
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varying their values in [0, 5e−6, 1e−5, 1e−4, 1e−3, 1e−2,
1e−1, 1].

All model parameters were initialized as small random num-
bers such that their values fell within the standard deviation
interval, which is the inverse of the number of input nodes.

D. Baseline Methods

We validated the efficacy of our framework by dividing the
evaluation of (i) the in-house mortality prediction task and (ii)
the missing value imputation task. Regarding the mortality
prediction task, we compared our proposed method with the
vanilla GRU with the zero, mean, and KNN imputation4

(i.e., GRU-Zero, GRU-Mean, and GRU-KNN); RNN-based
SOTA models such as GRU-D [12], M-RNN [13], BRITS and
RITS [22], removing the backward direction in BRITS; and a
transformer-based SOTA model, SAnD [29], which employs
a masked self-attention mechanism for clinical diagnosis.

For a missing value imputation, we included Zero Impute,
Mean Impute, KNN, GRU-D [12], M-RNN [13], BRITS, and
RITS [22]. The prediction tasks for all datasets are compared
in Table I, and that of the imputation task is compared in Table
II.

V. RESULTS

A. Result of Mortality Prediction

Table I compares the results of our proposed method with
those of the baselines for mortality prediction. In both masking
scenarios, our model achieved the best classification perfor-
mance on both datasets. The results of a relatively simple
imputation method with a GRU (GRU-Zero, GRU-Mean, and
GRU-KNN) suggest the need for a more sophisticated impu-
tation method compared with the other SOTA models. Among
the RNN-based baselines, BRITS demonstrated a competitive
performance. In contrast, SAnD showed a relatively low
performance compared with the other RNN-based methods,
despite the benefits of computational efficiency. These exper-
imental results validate the efficacy of our proposed method
equipped with the stochastic recurrent imputation using the
VRNN and GRU-U cell, showing its superior performance in
the downstream task.

B. Result of Missing Value Imputation

Table II compares other imputation baselines for the missing
value imputation task. Whereas BRITS showed the lowest
MAE scores under two masking scenarios on both datasets,
the MAE scores of our proposed method are slightly higher,
comparable to those of Mean Impute, and in most cases, better
than those of Zero Impute, Mean Impute, KNN, and GRU-D.

4 The Mean Impute (SimpleFill) and KNN are implemented by using
fancyimpute library in Python. The code is publicly available at https:
//github.com/iskandr/fancyimpute.

TABLE II: Results of missing value imputations measured by
MAE score

Masking ratio Method MIMIC-III PhysioNet

5%

Zero Impute 0.724 ± 0.005 0.788 ± 0.006
Mean Impute 0.520 ± 0.003 0.510 ± 0.010
KNN 0.508 ± 0.003 0.396 ± 0.005
GRU-D [12] 0.584 ± 0.007 0.660 ± 0.014
M-RNN [13] 0.451 ± 0.008 0.411 ± 0.011
RITS [22] 0.354 ± 0.005 0.325 ± 0.007
BRITS [22] 0.332 ± 0.005 0.297 ± 0.008
Ours 0.497 ± 0.012 0.525 ± 0.004

10%

Zero Impute 0.724 ± 0.005 0.791 ± 0.004
Mean Impute 0.523 ± 0.006 0.513 ± 0.004
KNN 0.515 ± 0.004 0.415 ± 0.004
GRU-D [12] 0.582 ± 0.006 0.658 ± 0.016
M-RNN [13] 0.438 ± 0.005 0.397 ± 0.009
RITS [22] 0.331 ± 0.006 0.308 ± 0.006
BRITS [22] 0.312 ± 0.004 0.283 ± 0.008
Ours 0.503 ± 0.011 0.526 ± 0.010

TABLE III: Performance of a set of ablation experiments for
mortality prediction task

Method AUC AUPRC

VAE + vanilla GRU 0.759 ± 0.007 0.373 ± 0.019
VAE + GRU-U 0.813 ± 0.017 0.442 ± 0.029
VRNN + vanilla GRU 0.794 ± 0.013 0.411 ± 0.038
VRNN + GRU-U 0.832 ± 0.018 0.470 ± 0.054

TABLE IV: Performance of the ablation experiments related
to loss and Wα for the mortality prediction task

Ablation Method AUC AUPRC

Loss BCE loss 0.776 ± 0.014 0.384 ± 0.032
Focal loss 0.832 ± 0.018 0.470 ± 0.054

Wα
Full 0.829 ± 0.016 0.472 ± 0.035
Diagonal 0.832 ± 0.018 0.470 ± 0.054

C. Ablation Studies

In this study, we conducted a set of ablation experiments
to investigate the influence of different experimental design
options of our method, evaluated on the PhysioNet dataset
under the 5% masking scenario.
• Effect of the VRNN: To validate our stochastic recurrent

imputation, we compared the case of using a VAE and
an RNN separately. Whereas the VAE only considers
the dependencies among variables during the imputation
process, the VRNN generates a time-series considering
the variable and temporal-based dependencies simulta-
neously. Table IV summarizes the classification perfor-
mances of two masking scenarios, (VAE+vanilla GRU)
[20] versus (VRNN+vanilla GRU) and (VAE+GRU-U)
versus (VRNN+GRU-U). Interestingly, the performances
improved under both scenarios, particularly when using
vanilla GRU with a large margin. Although both ap-
proaches provide a stochastic imputation, the experimen-
tal results highlight the effectiveness of simultaneously

https://github.com/iskandr/fancyimpute
https://github.com/iskandr/fancyimpute


UNDER REVIEW 9

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 28 32 36 40 44
Time points (t)

1
0
1
2
3
4

M
ea

su
re

m
en

ts
 (x

)

0.496

(a)

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 28 32 36 40 44
Time points (t)

1.0
0.5
0.0
0.5
1.0
1.5
2.0

M
ea

su
re

m
en

ts
 (x

)

0.016

0.769 0.773

0.824

(b)

Fig. 3: Visualization of imputation estimates for PhysioNet dataset under both (a) 5% and (b) 10% masking scenarios. Blue
filled dots are observed measurements, blue lines blue shades with hollow dots are the imputations and uncertainties estimated
from our model, respectively, and red x marks are masked ground-truth observations. In addition, the number above the red
dashed vertical line represents the exact MAE values between masked ground-truth observation values and model predictions.
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Fig. 4: Visualization of uncertainty values depending on MAE values for PhysioNet dataset under both (a) 5% and (b) 10%
masking scenarios. Each pink dot represents a pairing of the MAE and the uncertainties for masked observations from a single
sample, and the slope of the grey line represents the correlation coefficient.

modeling the underlying temporal dependencies and re-
constructing the imputation estimates.

• Effect of the GRU-U: To verify the effectiveness of
our proposed GRU-U cell, we compared the experi-
mental results using the vanilla GRU cell and GRU-
U cell. From the prediction results of (VAE+vanilla
GRU) versus (VAE+GRU-U) and (VRNN+vanilla GRU)
versus (VRNN+GRU-U) in Table IV, we noticed that
both results show significant performance improvements;
however, in particular, leveraging the GRU-U cell with
the VAE is relatively more critical to the predictive
task. These experimental findings validate the efficacy of
uncertainty-gated attention.

• Effect of the focal loss: The binary cross-entropy (BCE)
loss is widely used in binary classification. By comparing

the performance of BCE loss with that of the focal loss in
Table IV, we found that the focal loss obtained a better
performance than the BCE loss in terms of both AUC
and AUPRC. Thus, we can conclude that the focal loss
is sufficient for capturing the minority samples in our
prediction task.

• Weight matrix Wα in uncertainty-gated attention: The
method for propagating uncertainty is determined by
Wα, where the diagonal matrix effectively makes the
decay rate of each variable independent from the others
and a full weight matrix makes it dependent. As shown
in Table IV, AUPRC was higher when using the full
weight matrix, whereas AUC was higher when using the
diagonal matrix. This suggests that the dependencies of
the medical variables in the calculation of uncertainty-
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gated attention do not show a significant difference in
the performance of the downstream tasks.

VI. DISCUSSION

A. Visualization of Imputation Estimates

Fig. 4 compares actual observations and our model predic-
tions with their uncertainties on the PhysioNet dataset under
both 5% and 10% masking scenarios. Our model tends to
produce temporally smooth curves and also exhibits different
levels of uncertainty over the time-series. It is noteworthy that
the uncertainty estimates correlate qualitatively with the miss-
ingness of the features and the noise levels of the observations.
This helps clinicians make informed decisions regarding the
fidelity they should have in the model.

B. Analysis of Model Behavior

In the results of the missing value imputation described
in Section V-B, our proposed method showed slightly higher
MAE scores. However, it should be noted that the ultimate
goal of our study is to correctly predict the mortality by
leveraging a missing value imputation. Further, owing to the
noisy observations in practice, we explicated the uncertain
noisy factors in imputing the missing values and exploited such
uncertain factors into our prediction model. Thus, whereas
the MAE score of our method is higher than that of the
competing methods, by better reflecting the noisy factors or
imputation values in terms of uncertainty, we could achieve a
better mortality prediction performance, which is imperative
in a clinical setting.

Hence, we further investigated the behavior of our model
to represent the uncertainties for the imputation estimates.
For this, we calculated the Pearson’s correlation between
the MAE and the uncertainty values using a testset of the
PhysioNet dataset under both 5% and 10% masking scenarios.
For each data instance, we obtained the MAE between the
ground truth and predicted imputations with the corresponding
uncertainties.

Fig. 4 shows a scatter plot of the uncertainty values de-
pending on the MAE values under 5% and 10% masking
scenarios, respectively. For the 5% masking scenario, the
average correlation coefficient is 0.406 with p = 1.299e−7 for
null hypothesis that there is no correlation between MAE and
uncertainty, and for the 10% masking scenario, the correlation
coefficient is 0.338 with p = 1.406e−5. These experimental
results indicate that our model can provide sufficient informa-
tion regarding the fidelity of the model by largely predicting
the uncertainty, depending on the MAE value, even if the
estimated imputations are far from the actual observation.

VII. CONCLUSION

In this work, we proposed a novel uncertainty-gated stochas-
tic sequential imputation method that extends the VRNN for
mortality prediction with EHR data. By leveraging VRNN as
our base model, we handle representation learning, missing
value imputation, and in-hospital mortality prediction in a
single stream. In addition, we proposed the novel GRU cell,

in which temporal information encoding in hidden states is
updated by propagating the uncertainty for the inferred distri-
bution over the variables. We validated the effectiveness of our
method over the public MIMIC-III and PhysioNet challenge
2012 datasets by comparing with and outperforming to the
state-of-the-art methods considered in our experiments for
mortality prediction. Furthermore, we identified the behavior
of the model that well represented the uncertainties for the
imputed estimates, which indicated a high correlation between
the calculated MAE and the uncertainty.
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