
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Parameter Efficient Deep Neural Networks with
Bilinear Projections

Litao Yu, Yongsheng Gao, Senior Member, IEEE, Jun Zhou, Senior Member, IEEE,
Jian Zhang, Senior Member, IEEE

Abstract—Recent research on deep neural networks (DNNs)
has primarily focused on improving the model accuracy. Given
a proper deep learning framework, it is generally possible to
increase the depth or layer width to achieve a higher level
of accuracy. However, the huge number of model parameters
imposes more computational and memory usage overhead and
leads to the parameter redundancy. In this paper, we address
the parameter redundancy problem in DNNs by replacing
conventional full projections with bilinear projections. For
a fully-connected layer with D input nodes and D output
nodes, applying bilinear projection can reduce the model space
complexity from O(D2) to O(2D), achieving a deep model
with a sub-linear layer size. However, structured projection
has a lower freedom of degree compared to the full projection,
causing the under-fitting problem. So we simply scale up the
mapping size by increasing the number of output channels,
which can keep and even boosts the model accuracy. This
makes it very parameter-efficient and handy to deploy such
deep models on mobile systems with memory limitations.
Experiments on four benchmark datasets show that applying
the proposed bilinear projection to deep neural networks can
achieve even higher accuracies than conventional full DNNs,
while significantly reduces the model size.1

Index Terms—Bilinear Projections; Convolutional Neural
Networks; Recurrent Neural Networks.

I. INTRODUCTION

With the brilliant re-design of neural networks and a
significant improvement in the training efficiency with
GPUs, deep learning models have gained a huge success in
the research areas of computer vision and natural language
processing. Training on a collection of large-scale and
well-labelled data, deep architectures have the ability to
learn features without the need of feature engineering. This
property has the most profound effect on the end results of
different learning tasks.

In visual content analysis tasks, convolutional neural
networks (CNNs) have achieved the state-of-the-art perfor-
mance. They can be used in a variety of applications such
as object detection [1], semantic segmentation [2], visual
place localisation [3] and video tracking [4]. Starting from

Litao Yu (litao.yu@griffith.edu.au), Yongsheng Gao (yong-
sheng.gao@griffith.edu.au) and Jun Zhou (jun.zhou@griffith.edu.au)
are with the Institute for Integrated and Intelligent Systems,
Griffith University, Nathan, 4111, QLD, Australia. Jian Zhang
(jian.zhang@uts.edu.au) is with Global Big Data Technologies Centre,
University of Technology Sydney, Ultimo, 2007, NSW, Australia. This
work was supported by the Australian Research Council under Discovery
Grants DP140101075 and DP180100958.

Manuscript received March 4, 2019.
1The demo code is available at https://github.com/yutao1008/Bi-DNNs.

LeNet for handwritten digits recognition [5], CNNs have
been evolving very fast in recent years. The deep models
pre-trained on very large image dataset (e.g., ImageNet) can
be directly used for visual feature processing in most cases.
It is commonly believed that the wider and deeper models
are, the better accuracies can be achieved, where Inception
network [6] and Deep Residual network [7] are the most
representative architectures. Inception-Residual network is
a hybrid architecture to boost the performance for visual
pattern recognition [8]. Deep models also perform very well
on recurrent learning tasks, for example, image captioning
[9], machine translation [10], named entity recognition
[11], Q&A systems [12]. In these applications, recurrent
networks exhibit temporal dynamic behaviour to analyse
the context information. The most used deep recurrent
model is the long short-term memory (LSTM) [13], which
has additional stored states implemented by several fully-
connected modules, and the memory can be directly con-
trolled by the neural network.

When large DNNs are designed with a high number of
layers and wide structure in each layer, reducing their model
sizes to make them more parameter-efficient becomes criti-
cal to meet the requirements of many practical applications.
So how to design a parameter-efficient learning framework
becomes an open problem. Given an equivalent accuracy
level, a smaller DNN with fewer parameters has the fol-
lowing advantages: (1) they are less prone to over-fitting;
(2) they require fewer hardware communications; (3) they
are easy to be transferred among different devices; (4) they
can be better deployed for embedded deployment such as
FPGA.

With this in mind, we directly focus on the problem
of identifying a proper structure with fewer parameters,
but with equivalent accuracy, compared to the well-known
models. Specifically, we design a novel microstructure
with bilinear projections to replace the conventional full
projection modules. Given a dense layer with D input
channels and D output channels, applying bilinear pro-
jection can reduce the space complexity from O(D2) to
O(2D). However, the structured projection has less free-
dom, leading to the under-fitting issue. This problem can be
alleviated by proper scaling up the feature map size, which
will be discussed later in this paper. With such settings,
the parameter efficiency and model accuracy can be well
balanced.

We experimented several well-known deep architectures
with the proposed microstructure on four datasets. These

ar
X

iv
:2

01
1.

01
39

1v
1 

 [
cs

.C
V

] 
 3

 N
ov

 2
02

0

https://github.com/yutao1008/Bi-DNNs


2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

datasets covered three image classification tasks and one
recurrent image captioning task. The results prove the
effectiveness of our method and its generalisation capability
to various deep architectures.

The rest of the paper is organised as follows. Section
II introduces the related work. In section III we elaborate
the proposed bilinear projection based microstructure that
can be used to replace the conventional neural layers.
Experimental results and analysis are presented in section
IV. Finally, section V concludes the paper.

II. RELATED WORK

In this section, we review the latest techniques for small-
size DNNs. These techniques can be categorised into two
disjoint classes: (1) given a large-sized network structure,
how to compress the deep model; and (2) how to directly
design light-weight deep architectures.

A. Model compression

Model compression aims to effectively reduce the model
size with a tolerable information loss, which is mainly
achieved by pruning, low-rank estimation and quantisation.
Given a CNN model, filter pruning is the most straight-
forward way to reduce the redundancy, since many filters
are unnecessary in the online predictions. Along this line,
Han et al. proposed to remove the connections with small
weights by using sparsity regularisation [14]. This strategy
is extended by Wen et al. who use structured sparsity
learning method [15] to regularise filters. Furthermore, the
weight pruning technique can be combined with knowledge
distillation [16]. Although filter-level pruning has also been
developed [17], [18], how to evaluate the importance of
filters for specific tasks remains an open problem. Low-
rank estimation is another way for deep model compression.
The key idea is to apply matrix factorisation to decompose
the large weight matrices into small ones [19], [20]. Quan-
tisation is a general data encoding method that uses the
discrete representations to approximate complex structures,
which has been used to compress deep learning models
[21], [22], [23]. The basic property of model compression
is it does not change the deep learning architectures. Given
a fixed DNN framework, nearly all of the above approaches
lead to accuracy degradation due to the information loss.

B. Light-weight deep architectures

Simple or light architectures do not necessarily have
worse performance than complex deep models. Some re-
searchers pursue the goal of developing better intuitions
about the operation and usage of some structural properties
to guide the design of light-weight DNNs. Iandola et al.
[24] designed a novel SqueezeNet with 50 times fewer pa-
rameters than AlexNet but achieves a comparable accuracy
on ImageNet. To reduce the redundancy of parameters, the
authors used two separable low-rank convolution filters in-
stead of a full-rank filter, and designed a bottleneck module
to reduce the input channels before convolution. Another

light-weight deep structure is MobileNet, which is specifi-
cally designed for fast computation, but not necessarily for
smaller model size [25]. Replacing traditional convolution
with depth-wise separable convolution, MobileNet is able
to halve the trainable parameters and accelerate the compu-
tation, although parameter-efficiency is not the priority for
the model design. Later, an inverted residual with a linear
bottleneck was introduced to improve the performance
without increasing the memory cost [26]. Recently, Huang
et al. proposed the densely connected network (DenseNet)
that has very compact layer structure while keeping the
model accuracy [27]. It has a narrow layer-structure and
is very parameter-efficient. Further, they adopted filter-
pruning in the training procedure to further balance the
model size and accuracy [28]. In [29], Cheng et al. proposed
to use circulant projections to replace the linear mapping
for CNNs to achieve a sub-linear layer size. However, in
these models the accuracy can be hardly maintained even
if the number of output channels is significantly increased.
Furthermore, it only works during the network shrinkage
phase, i.e., the output dimension is lower than the input
dimension.

III. PROPOSED METHOD

A. Bilinear projection for non-linear mapping

The matrix form is a specific case of multi-way arrays
(tensors) data representation. In fact, all kinds of digital
images render the 2D structures with multiple channels
such as hyperspectral image [30]. Besides, in processing
images, visual feature descriptors are also quantised into a
matrix format such as fisher vector (FV) [31] and vector
of locally aggregated descriptors (VLAD) [32]. Therefore,
matrix data analysis has become one of the fundamental
research topics in image processing. With the success of
deep neural networks on large-scale image classification,
our intuition is to directly apply bilinear projection on
computing 2D structure data as an alternative mapping
function to make it more parameter-efficient.

The most basic function of neural networks is to apply
an affine transformation with an activation function to map
a vector from its original data space to a new feature space:

h(x) = φ(xW + b), (1)

where x ∈ RD is the input feature vector, W ∈ RD×K
is the weight matrix, b ∈ RK is the bias vector, and φ(·)
is an element-wise activation function. The computational
complexity and space complexity of the above operation is
O(DK). Assume D < K, the complexity of such affine
transformation is at least O(D2).

We propose to use bilinear projection to replace con-
ventional full linear projection in the basic neural layer
structure. When D is the multiplication of two positive
integers, i.e., D = d1 × d2, the vector x can be reshaped
(either row-wise or column-wise) into a matrix x ∈ Rd1×d2
with an operation r:

x = r(x). (2)



YU et al.:PARAMETER EFFICIENT DEEP NEURAL NETWORKS WITH BILINEAR PROJECTIONS 3

Correspondingly, x can be recovered by flattening x:

x = r−1(x). (3)

Similarly, the dimension of the output K can be decom-
posed by two factors k1 and k2, i.e., K = k1× k2. Instead
of applying a full weight matrix W and a bias vector b
to map the feature vector x, bilinear projection is to use
two small weight matrices w1 ∈ Rk1×d1 , w2 ∈ Rd2×k2
and a bias matrix b = r(b) ∈ Rk1×k2 to map the feature
matrix x. So in a single neural layer, the mapping function
becomes:

h(x) = φ(w1xw2 + b). (4)

The structured bilinear projection is a special case of
full linear projection. When the weight matrix W satisfies
the condition W = w>1 ⊗w2, where ⊗ is the Kronecker
product, bilinear projection is equivalent to full linear
projection:

h(x) = r−1(φ(w1xw2 + b))

= φ(r−1(x)(w>1 ⊗w2) + b)

= φ(r−1(x)W + b). (5)

The space complexity of bilinear projection is O(D +
K) compared to O(DK) for full linear projection, thus
the number of trainable parameters is significantly reduced.
However, the ideal conditions d1 = d2 =

√
D and k1 =

k2 =
√
K can hardly be satisfied, so the bilinear factors

should be selected as the closest positive integers.
Now let’s consider the expected output vector y ∈ RK ,

which can also be reshaped as y = r(y) ∈ Rk1×k2 . If
we use the mean-squared-error cost as the objective, the
stochastic loss function is:

J(w1,w2,b) =
1

2
‖h(x)−y‖2+ λ

2
(‖w1‖2+‖w2‖2). (6)

The first term is a mean-squared-error cost and the
second term is a weight decay. Our goal is to minimise
J(w1,w2,b) as a function of w1,w2 and b. To train
the single layer, these parameters are initialised with small
random values with a pre-defined data distribution, e.g.,
zero-centred normal distribution with 0.01 covariance, then
a batch gradient descent algorithm is applied in the back-
propagation. One iteration of gradient descent updates
w1,w2 and b as follows:

w1 → w1 − η
∂J

∂w1
, (7)

w2 → w2 − η
∂J

∂w2
, (8)

b→ b− η ∂J
∂b

, (9)

where η is the learning rate. The partial derivatives of the
objective function in Eq. (6) with respect to w1,w2 and b

are computed as follows:

∂J

∂w1
= ((h(x)− y) ◦ ∇φ)(xw2)

> + λw1, (10)

∂J

∂w2
= (w1x)

>((h(x)− y) ◦ ∇φ) + λw2, (11)

∂J

∂b
= (h(x)− y) ◦ ∇φ. (12)

where ∇φ is the derivative of the activation function, and
◦ is the element-wise multiplication.

To train a single layer with bilinear projection, we can
now repeatedly take steps of gradient descent to reduce the
value of the cost function in Eq. (6) by feeding data batches
into the layer. In a multi-layer neural network, the gradients
of different layers are computed with the chain rule.

B. Comparing bilinear projection with other structured
mappings

In signal processing, structured mapping functions are
usually used to encode or decode signals to reduce the
parameter redundancy. To mimic the unstructured full pro-
jection, there are various structured mapping functions. For
example, we can use Hadamard matrices along with a
sparse Gaussian matrix for the fast Johnson-Lindenstrauss
transform [33], [34]. Such mapping can be used for the
embedding is at least Lipschitz, which is at most equivalent
to an orthogonal projection. Similarly, circulant projection
can replace full projections, and it has been used for binary
embedding [35] and video encoding [36]. In the neural
network design, circulant projection can sometimes replace
the conventional full projections to reduce the parameter
redundancy [29]. To achieve this, Discrete Fourier Transfor-
mation (DFT) and its inverse (IDFT) are applied to facilitate
the computation of gradient descent. Thus, the layers can
be optimised in the frequency domain rather than in the
time domain.

However, both fast Johnson-Lindenstrauss transform and
circulant projection working on large-scale training data
tend to become bogged down very quickly as dimension
increases [37], so they are only available in the network
shrinkage phase or orthogonal-like mappings, i.e., the di-
mension of the output is no higher than the input of a layer.
For a fully-connected layer without bias, assume the input
dimension is D and the output dimension is K, applying
unstructured mapping requires the matrix W ∈ RD×K ,
which has the freedom degree of DK. Using bilinear
projection by replacing W with two smaller matrices w1

and w2, the freedom degree becomes 2
√
DK. In fast

Johnson-Lindenstrauss transform and circulant projection,
the structured mapping matrix is derived from a vector
r ∈ RD, which has the freedom degree of D. Based on
the above analysis, only when D ≥ 4K, the above two
mappings can have the same freedom degree with bilinear
projection. Consequently, when the forward propagation is
in the expansion phase, i.e., the lower-dimensional input
is mapped to a higher-dimensional feature space for non-
linear mapping, neither fast Johnson-Lindenstrauss trans-
form nor circulant mapping can be used to replace the full



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

projection. In contrast, bilinear projections are much more
flexible, which can be used in both shrinkage and expansion
phase in the forward pass.

We now illustrate how to equip popular neural layers with
bilinear projection in DNNs for different learning tasks.

C. Fully-connected (dense) layers with bilinear projection

Multi-layer neural networks usually contain at least
two fully-connected layers: the first layer maps the input
variable to a latent feature space, and the last layer is
a classifier or a regressor w.r.t. the objective values. It
is commonly known that more hidden nodes can better
fit the non-linearity in the latent feature space, yet more
computational resource is required. Intuitively, we can
directly use bilinear projection with the minimum number
of parameters to replace full linear projection. However,
the structured mapping in an intermediate layer has less
freedom compared to the unstructured mapping, leading to
the under-fitting issue. Thus, we introduce a parameter α
to scale up the number of output nodes, i.e., the output
dimension of the layer is set to αK for bilinear projection.
If the number of output channels is multiplied by α, the
layer size with bilinear projection becomes O(D + αK),
which is still sub-linear to the space complexity of full
projection. Scaling up the number of output dimensionality
in bilinear projection is equivalent to the multiple rank
strategy used for 2D classification [38] or regression [39].
Given a proper α, the number of trainable parameters can
be substantially decreased while keeping sufficient freedom
to fit the potential data distribution.

Fully-connected layers have huge numbers of parameters
in some early CNN architectures. For example, the three
fully-connected layers occupy 89% of the total trainable
parameters in the whole VGG19 network [40], which
means it is very parameter-redundant. Considering an in-
termediate layer with 4,096 nodes for both input and
output, it requires 4, 096 × (4, 096 + 1) = 16, 784, 312
parameters when applying the full linear projection on
it. If we use bilinear projections and set α = 1, the
number of trainable parameters is substantially reduced to
2 × 64 × 64 + 4, 096 = 12, 288. Even if we scale up the
output dimension of the intermediate layer, e.g., setting
α = 3, the total number of trainable parameters is only
64 × 64 + 64 × 64 × 3 + 4, 096 × 3 = 28, 672, achieving
an over 99.8% reduction of the layer size. In recent CNN
models such as residual networks [7], [41] and dense nets
[27], fully-connected layers are replaced by global average
pooling layers.

D. Convolution layers with bilinear projection

Natural objects such as images and videos have the
property of “stationary”, which means the statistics of one
patch from one object are the same as other patches. The
basic idea of convolution operation is to apply K small
filters on all possible patches to obtain a feature map,
so convolution is a parameter sharing scheme to control
the model size, which also alleviates the over-fitting issue

effectively. A convolution filter is essentially a small affine
transformation with an activation function that processes a
small fixed patch as the receptive field.

Here we only focus on the application of bilinear projec-
tion on the 2D convolution layer, which is one of the most
basic operators in image processing. The 1D and 3D con-
volution layers can follow the same rules for the parameter-
efficient layer design. In a 2D convolution layer, assume a
receptive field in an input image is w× h× c, where w, h
and c are the width, the height and the number of channels
of the receptive field, respectively. Thus we can consider
each receptive field is essentially a small data cubic with
the shape w × h × c. Applying a convolution kernel with
c′ filters on an image patch means the number of channels
is extended from c to c′ to acquire new knowledge, where
each channel in c′ acts as a particular interpretation of the
receptive field. In this mapping, convolution operation is to
use a weight matrix W ∈ R(w×h×c)×(w×h×c′) to map the
flattened 2D receptive field to a new space then reshape
the output vector to a new data cubic, so basically the
convolution mapping is a flatten → affine transformation
→ reshaping process.

A typical CNN consists of convolution layers, down-
sampling (pooling) layers and optional fully-connected lay-
ers. The shallower convolution layers focus on detecting
certain edges, textures and fundamental shapes, while the
deeper convolution layers mainly detect more abstract and
more general features. Usually, more filters are set in the
deeper convolution layers to capture the abstract semantic
properties to facilitate the classification.

We use the bilinear projection in convolution layers in the
same way as that in fully-connected layers, except a slightly
different setting of the scaling parameter α. To improve the
performance, we apply α on both small weight matrices in
the bilinear projection, i.e., in a single convolution layer,
w1 ∈ Rαk1×d1 and w2 ∈ Rd2×αk2 , respectively. When
α > 1, the convolution layer has more freedom to fit
the potential data distribution, but it also increases the
computational cost (FLOPs and memory usage) because
the intermediate feature size is larger.

Note that in [42], the authors named their model as
“bilinear CNN” for fine-grained visual recognition, which
is a macro deep architecture that comprises of two parallel
CNN streams. Their model is completely different from our
microstructure for the layer-design of neural networks.

E. Word embedding layers with bilinear projection

Word embedding is one of the most popular representa-
tion of document vocabulary. It is capable of capturing con-
text of a word in a document, semantic and syntactic sim-
ilarity, relation with other words, etc. In natural language
processing, learning word embeddings is implemented by
Word2Vec model [43]. With the consideration of the doc-
ument or sentence context, the objective of Word2Vec is
to have words with similar context occupy close spatial
positions. The word embedding layer is often used as the
first layer in a DNN to process the discrete word sequences



YU et al.:PARAMETER EFFICIENT DEEP NEURAL NETWORKS WITH BILINEAR PROJECTIONS 5

(sentences), which turns the word indices into dense vectors
with a fixed size. The basic operation behind the embedding
layer is essentially a linear mapping function, which is
to project the sparse and high dimensional vectors into a
dense and low dimensional feature space. Thus, bilinear
projection can be easily used to alternate the full linear
mapping in this case, i.e., the large kernel matrix for linear
mapping can be simply calculated by the Kronecker product
of two small matrices according to Eq. (5).

F. Recurrent layers with bilinear projection
In some machine learning tasks, time-distributed patterns

are usually learned via Recurrent Neural Network (RNN),
which is a natural extension of feed-forward networks on
modeling sequence. Here we elaborate on how to use
bilinear projections in Long Short-Term Memory (LSTM),
which is known to learn patterns with wider ranges of
temporal dependencies.

The core part of LSTM is a memory cell ct at the time
step t that records the history of input sequence observed up
to that time step [44]. The behaviour of the cell is controlled
by three gates computed by fully-connected layers: an input
gate it, a forget gate ft and an output gate ot. These
layers control whether to forget the current cell value if
it should read its input and whether to output a new cell
value. Specifically, the input gate it controls whether LSTM
considers the current input xt, the forget gate ft controls
whether LSTM forgets the previous memory ct−1, and
the output gate ot controls how much information will be
read from memory ct to the current hidden state ht. The
definition of these gates, the cell update and output are as
follows:

it = σ(xtWix + ht−1Wih + bi), (13)
ft = σ(xtWfx + ht−1Wfh + bf ), (14)
ot = σ(xtWox + ht−1Woh + bo), (15)
gt = tanh(xtWgx + ht−1Wgh + bg), (16)
ct = ft ◦ ct−1 + it ◦ gt, (17)
ht = ot ◦ tanh(ct), (18)

where σ(·) is the sigmoid function. The weight matrices
W∗x and W∗h are the LSTM state and recurrent trans-
formations, and b∗ are bias vectors. An LSTM needs 8
full projection matrices, which is not paratemer-efficient.
To implement an LSTM with bilinear projections, we first
transform the input vector xt at the time step t, and use the
matrix representations of the hidden state and all gates, then
replace W∗ and b∗ with w

(1)
∗ , w(2)

∗ and b∗, respectively.
The new computation stream becomes:

it = σ(w
(1)
ix xtw

(2)
ix +w

(1)
ih ht−1w

(2)
ih + bi), (19)

ft = σ(w
(1)
fxxtw

(2)
fx +w

(1)
fhht−1w

(2)
fh + bf ), (20)

ot = σ(w(1)
ox xtw

(2)
ox +w

(1)
oh ht−1w

(2)
oh + bo), (21)

gt = tanh(w(1)
gx xtw

(2)
gx +w

(1)
gh ht−1w

(2)
gh + bg), (22)

ct = ft ◦ ct−1 + it ◦ gt, (23)
ht = ot ◦ tanh(ct). (24)

Similar to the fully-connected layer introduced in Section
III-C, we use the scaling parameter α to control the size of
the hidden state vector ht, which can be recovered by ht.

IV. EXPERIMENTS AND ANALYSIS

We apply bilinear projection on different neural layers
to build deep learning models, then test their performances
for image classification and image captioning tasks on
four public datasets. Although it is not the main goal to
obtain the state-of-the-art accuracies on these datasets, we
empirically show that with a proper scaling up of the layer
size, DNNs with bilinear projections can still outperform
those using traditional unstructured full projections.

A. Datasets

We conducted experiments of image classification on
ILSVRC ImageNet 2012, CIFAR-10 and SVHN datasets.

The ILSRVC ImageNet is one of the largest image
datasets for classification and object localisation, which
contains 1,281,167 and 50,000 samples for training and
validation, respectively. All images in this dataset are with
high resolution and are well labelled with 1,000 categories.

The CIFAR-10 dataset is a subset of 80M tiny image
collections, which consists of 60,000 low-resolution colour
images with 32 × 32 pixels. The training and testing sets
contain 50,000 and 10,000 images respectively. In the
training procedure, we held out 5,000 images in the training
set as a validation set.

The Street View House Numbers (SVHN) dataset con-
tains 32 × 32-pixel coloured digit images. In the whole
set, 73,257 images are used for training and 26,302 images
are used for testing, respectively. In our experiment, we
randomly selected 6,000 images from the training set for
validation.

To test the effectiveness of LSTM with bilinear pro-
jections, we conducted the experiment of recurrent image
captioning on Flickr8k dataset [45]. This dataset is a bench-
mark for sentence-based image description, which contains
6,000 images for training, 1,000 images for validation, and
1,000 images for testing. Each image has been annotated
with 5 sentences that are relatively visual and unbiased.

B. Models

On the ILSRVC ImageNet dataset, we tested the VGG19
model [40]. Since it is extremely time-consuming to train
the VGG19 model from random initialisation of parame-
ters, we used the pre-trained convolution models but only
optimised the 2 fully-connected layers.

On CIFAR-10 and SVHN datasets, we tested four dif-
ferent deep classification models. Specifically, we tested
two “heavy” networks, a small VGG net (S-VGG) and
deep residual network (ResNet-56), and two “light” models,
SqueezeNet [25] and MobileNet v2 [26], respectively.

We built a small VGG net consisting of 3 convolution
blocks, 1 fully-connected layer and 1 soft-max layer. Each



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

convolution block has 3 convolution layers and a max-
pooling layer for down-sampling. Following the 3 convolu-
tion blocks, the feature maps are flattened then connected
with a 1,024-D dense layer. The last layer is with the soft-
max activation, and the output dimension is the same with
the number of classes.

The idea of ResNets is to learn the addictive residual
functions w.r.t the identity mappings, which is implemented
by attaching identity skip connections. We followed [41] to
construct the ResNet-56 network. It begins with a residual
block, followed by 3 computational stages, each of which
containing 9 residual blocks. At the beginning of the stages,
the feature map size is down-sampled by a convolution
layer with strides = 2, while the number of filter maps
is up-sampled. Within each stage, the layers have the same
number of filters and the same filter map sizes. Following
the residual blocks, a batch-normalisation layer with the
Rectified Linear Unit (ReLU) activation, and a 2D average
pooling layer are applied. The last soft-max layer is for
classification.

We also experimented with two light-weight deep mod-
els: SqueezeNet [25] and MobileNet v2 [26]. Both models
are designed for efficient computation. We constructed
a small SqueezeNet with 5 fire modules. Each module
contains 3 convolution layers with ReLU activations. The
MobileNet v2 was built in the same way as it was intro-
duced in the original paper, and both of its width and depth
multipliers were set to 1. Applying bilinear projections on
these two light deep networks can further reduce the models
and boost the computational efficiency.

The Recurrent Image Captioning model was proposed
in [9], which is comprised by three components: a CNN
image encoder, a natural language processor and a recurrent
decoder. We used the pre-trained VGG19 model (the last
soft-max layer is removed) as the image encoder, with the
output dimension 4,096. The natural language processor
contains a word embedding layer, an LSTM layer, and a
time-distributed dense layer. In the decoder, an LSTM is
employed to generate captions. It takes the image feature
vector and partial captions at the current time-step as input,
and generates the next most probable word as output.

C. Implementation details, evaluation metrics and experi-
mental settings

We implemented the bilinear projection based fully-
connected layer, word embedding layer, 2D convolution
layer and LSTM layer with Keras backend on Tensorflow,
by replacing the full weight matrix with two small matrices.
Specifically, the bilinear projection was implemented by
two tensor dot operations. The APIs of the layers with
bilinear projections can be used in a similar way as the
original ones, so all macrostructures of these models were
kept without any changes. An additional scale hyper-
parameter α can be optionally set to control the output
feature map size. We used the models with full projections
as benchmarks, and set different values of α ranging from
1 to 3 for bilinear projections, until the best performance

was met. We found that simply setting α = 3, the deep
models with structured bilinear projections can achieve the
same or even higher accuracies than that of unstructured
full projections. We also conducted the experiment using
channel pruning (CP) [18] and low-rank expansion (LR)
[20] to reduce the parameter redundancy in convolution
layers thus accelerate the computation.

We used accuracy to evaluate the performance of image
classification on ILSVRC ImageNet, CIFAR-10, and SVHN
datasets. For image captioning, we used BLEU score [46],
which is the most commonly used metric in image descrip-
tion tasks.

For image preprocessing, we normalised the data using
the channel means and standard deviations. In the training
process, we adopted online image augmentation meth-
ods including random rotation, cropping, flipping, channel
swapping, etc. In image classification tasks, all models were
trained using Adam optimiser with the learning rate 0.001,
β1 = 0.9, and β2 = 0.999. In the image captioning task,
we applied the RMSprop optimiser with the learning rate
of 0.001 and ρ = 0.9. We set different batch sizes ranging
from 32 to 256 for the models to maximise the usage of
GPU memory. We used the categorical cross-entropy as the
loss function, and chose the best models with the lowest
cross-entropy values on validation sets for model selection.

Our experiments were conducted on a workstation
equipped with two NVIDIA Titan Xp GPU cards.

D. Model size comparisons

The static model size of DNN is mainly dependent on the
number of trainable parameters. In Table I, we summarise
the numbers of trainable parameters of the small DNNs
we tested. From the table, we see that applying bilinear
projections (BP) on CNNs can significantly reduce the
number of parameters. For example, when α = 3, applying
bilinear projections, the S-VGG net and ResNet-56 are
29.2x and 5.4x more parameter-efficient, respectively. Also,
heavier CNNs with bilinear projections are substantially
smaller than SqueezeNet and MobileNet v2. From this
perspective, using sub-linear layer structures needs fewer
trainable parameters than designing a macro light-weight
deep architecture. When α = 3, two models MobileNet v2
and image captioner implemented by bilinear projections,
are less parameter-efficient than original models with full
projections. In MobileNet v2, the depth-wise convolution
(as a generic and low-level operation in Tensorfow) was not
implemented in our settings. Consequently, when scaling
up the feature map size in convolution layers, the kernel
mapping sizes in depth-wise convolution layers are also
significantly increased. In the image captioning model, the
vocabulary size is 8,256, leading to a very large soft-max
layer for word generation. Ignoring the last soft-max layer,
applying bilinear projections for word embedding, LSTM
and dense layers is 153.5x and 108.8x more parameter-
efficient when α = 2 and α = 3, respectively. However,
considering the doubled output dimension of LSTM, the
whole size of the model is slightly larger.



YU et al.:PARAMETER EFFICIENT DEEP NEURAL NETWORKS WITH BILINEAR PROJECTIONS 7

TABLE I: Summary of trainable parameters in different deep models. The EXC columns exclude the last soft-max layer,
and the INC columns show the total numbers of trainable parameters in the models.

Models Full Bilinear projection (BP)
α = 1 α = 2 α = 3

EXC INC EXC INC EXC INC EXC INC
S-VGG 2,578,944 2,589,194 8,548 18,798 29,928 50,418 57,996 88,726

ResNet-56 1,660,768 1,663,338 32,128 34,698 128,416 138,666 299,456 309,706
SqueezeNet 467,370 469,380 10,080 15,210 40,128 60,618 89,196 135,286

MobileNet v2 2,223,872 2,236,682 112,432 125,242 654,056 705,266 3,065,346 3,180,556
Image captioner 7,712,160 15,976,416 26,468 8,290,724 50,224 16,570,480 70,848 24,847,104

TABLE II: Validation error rates of VGG19 on ImageNet.

Models Full BP
α = 1 α = 2 α = 3

Top-1 error 28.5 36.7 32.2 28.9
Top-5 error 9.4 14.3 11.9 10.2

E. Experimental results on image classification

1) Results on ImageNet dataset: We show the loss and
accuracy curves of various VGG19 models in Fig. 1 and
display the validation errors in Table II. We can see that
the optimisation significantly improves the accuracies of
both unstructured full projections and structured bilinear
projections. The performance of VGG19 with bilinear
projections on the two dense layers is quite competitive
compared against the original model, yet with fraction of
the space cost. By tweaking the structure to increase the
value of α, the proposed bilinear dense layers take only a
marginally larger space, but lower the top-1 error rate to
29% and the top-5 error rate to 10%, respectively.

2) Results on CIFAR-10 and SVHN datasets: From Fig.
2 to Fig. 5 we show the training and validation curves
within the first 50 training epochs of S-VGG net and
ResNet-56 on CIFAR-10 and SVHN datasets, respectively.
The loss and accuracy curves of the models with full
projections achieve the fastest convergence on the two
training sets, while the models with bilinear projections
need more training epochs. ResNet-56 is less prone to
overfitting compared to S-VGG. In comparison, the gap
between training loss and validation loss is smaller with
bilinear projections. This is partly because the less freedom
of structured mapping also inhibits the over-fitting issue. If
we set α = 1 for “extreme compression”, all models with
bilinear projections generally under-fit on both datasets,
with inferior validation accuracies than those of full models.
This signifies that we need to scale up the intermediate
dimensions for more freedom of the feature representations.
When α = 3 for S-VGG and ResNet-56, the validation loss
of the models with bilinear projections is quite close or even
smaller than the ones of original models, so it is expected
our reconstructed models with proper intermediate outputs
controlled by α can have a similar performance on test sets.

We thus continued increasing the value of α to 4, 5 and
6 to test the performance of S-VGG. The accuracies are
83.1%, 83.2% and 83.2% on CIFAR-10 dataset, and 93.6%,
93.7% and 93.7% on SVHN dataset, respectively. These
results signify further scaling up the feature map size to

increase the number of channels only marginally improve
the model performance. We also observed that when α ≥ 3,
optimising very deep CNNs with bilinear projections be-
comes very difficult. This bottleneck is further discussed in
Section IV-G.

In Table III and Table IV, we show the test accura-
cies of four deep models, S-VGG, ResNet-56, SqueezeNet
and MobileNet v2, on CIFAR-10 and SVHN datasets,
respectively. The expected results of bilinear projections
with more freedom have been demonstrated for the four
deep models we tested. For the rest three models with
bilinear projections, the accuracies increase when we set
higher intermediate output dimensions on the two datasets.
Empirically, when we set α = 3, the models with bilinear
projections have very similar or even better performance
than the original models with full projections. However,
the original MobileNet v2 obtains the best performance
compared to the bilinear projection based models even
when α = 3. This is mainly because the extensive use
of depth-wise separable convolution in MobileNet v2 is a
highly structured module, therefore further using structured
bilinear projection for 1×1 convolution can hardly increase
the representation capacity. The accuracies obtained by both
channel pruning (CP) and low-rank expansion (LR) suffer
from around 1% degradation on both datasets. Considering
the model sizes illustrated in Table I, it is quite worth
applying our method to deploy CNNs on portable devices
with limited memory.

In Fig. 6, we illustrate the activation maps from ResNet-
56 and its bilinear projection variants using the method
proposed in [47]. From the heat maps, we can see that
when α = 1 the model obtains comparably scattered
activations. However, the models with bilinear projections
can almost localize the discriminative regions in images for
classification.

TABLE III: Classification accuracies on CIFAR-10 test set.

Models Full BP CP LRα = 1 α = 2 α = 3
S-VGG 82.9 68.5 74.3 83.1 81.7 81.8

ResNet-56 92.7 83.4 89.9 93.0 91.3 90.5
SqueezeNet 81.6 66.3 72.5 81.9 - -

MobileNet v2 80.3 70.4 74.0 78.7 - -

F. Experimental results on image captioning

We plotted the loss and accuracy curves of the recurrent
image captioning model on Flickr8k in Fig. 7. In the



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

(a) Loss (b) Accuracy

Fig. 1: Loss and accuracy curves on ImageNet dataset.

TABLE IV: Classification accuracies on SVHN test set.

Models Full BP CP LRα = 1 α = 2 α = 3
S-VGG 93.6 87.3 89.1 93.7 92.3 92.2

ResNet-56 97.3 93.7 95.4 97.3 96.4 96.1
SqueezeNet 92.1 87.4 90.5 92.0 - -

MobileNet v2 94.6 88.6 92.3 94.4 - -

optimisation, the cross-entropy value and accuracy on the
training set converge within a few epochs, but these models
become over-fitting after that. Applying bilinear projections
to reconstruct LSTM and fully-connected layers, there are
very minor differences when α changes. This phenomenon
signifies even using the smallest size of LSTM, the recur-
rent model can still have the capability to remember the
temporal information over a longer period. A comparison
of accuracy and BLEU obtained by bilinear projections and
full projections on the test set of Flickr8k is shown in Table
V. When α = 1, our efficient method obtains an accuracy
of 35.4% and BLEU of 54.3%, compared to an accuracy
of 40.4% and BLEU of 57.8% obtained by the original
model. At the same time, using bilinear projections in the
embedding layer, two LSTM layers and one dense layer
is 1.9x more parameter-efficient than the conventional full
projections. Note that the evaluation metric BLEU is not
directly related to the sequential classification accuracy.
This is because the accuracy per word does not give the
score for the entire generated sentence, so for a partially
generated sequence, it is non-trivial to balance how good as
it is now and the next score as the entire sequence. In fact,
when increasing the scaling parameter α from 1 to 3, the
model does not have a significant improvement to evaluate
the language description.

TABLE V: The performance of image caption generation
on Flickr8k test set.

Metrics Full BP
α = 1 α = 2 α = 3

Accuracy 40.4 35.4 36.7 36.8
BLEU 57.8 54.3 54.9 55.4

G. Discussion
The goal of our proposed method in this paper is to

reduce the layer size with a tolerable decrease of accuracy.
In conventional architectures, many types of neural layers
that contain trainable parameters are basically trained in a
back-propagation manner, and nearly all of them can be
considered as extensions of dense layers. Our proposed
method can reduce the number of trainable parameters to
make the whole model parameter-efficient. With a proper
scaling up of the intermediate output dimensions, bilinear
projections still have sufficient freedom degree to fit com-
plex data distributions.

However, the downside of applying structured mapping
to achieve a similar accuracy level is it requires more
FLOPs (floating point operations per second) and more
GPU memory in the training process. In the design of
the layers we use the scaling parameter α to control the
output dimensions. When α = 1 the models with bilinear
projections have the same FLOPs and GPU memory with
the models of full projection. Scaling up the feature map
size by increasing α can improve the model accuracy in
general, but incurs more FLOPs and memory usage in
the optimisation process. In Table VI and Table VII we
summarised the FLOPs and GPU memory needed for the
four network structures, S-VGG, ResNet-56, SqueezeNet
and MobileNet v2. From the two tables we can see that
when a network becomes very deep (ResNet-56 actually
has 190 layers in total), the optimisation is computationally
expensive when all convolution layers are implemented
with bilinear projections. This constraint indicates that it is
necessary to balance the model accuracy and computational
resources when optimising complex DNNs. However, it
does not affect the deployment of the pre-trained models in
most applications, because the system does not need to pro-
cess very large data batches. Furthermore, the intermediate
feature maps, which are used to compute the gradients and
update the weights, are unnecessary to consume the GPU
memory in the inference procedure.

In real-world applications, we may need complex DNNs
that contain hundreds of millions of parameters to learn
better representations from the increasing amount of data.



YU et al.:PARAMETER EFFICIENT DEEP NEURAL NETWORKS WITH BILINEAR PROJECTIONS 9

(a) Loss (b) Accuracy

Fig. 2: Loss and accuracy curves of S-VGG on CIFAR-10 dataset.

(a) Loss (b) Accuracy

Fig. 3: Loss and accuracy curves of S-VGG on SVHN dataset.

TABLE VI: The FLOPs comparisons of the experimented
models when setting different values of the scaling param-
eter α.

Model α = 1 α = 2 α = 3
S-VGG 34K 91K 159K

ResNet-56 153K 612K 1.4M
SqueezeNet 313K 1.2M 2.7M

MobileNet v2 353K 4.7M 23.0M

TABLE VII: The GPU memory comparisons of the experi-
mented models when setting different values of the scaling
parameter α. The batch size is fixed to 32 and the input
image size is 32× 32× 3 for 32bit float data type.

Model α = 1 α = 2 α = 3
S-VGG 0.02G 0.06G 0.14G

ResNet-56 0.52G 2.09G 4.71G
SqueezeNet 0.03G 0.01G 0.32G

MobileNet v2 0.06G 0.96G 0.48G

In addition to the model compression techniques such as
pruning that linearly reduce the model size, we proposed
an alternative method for high-efficiency of parameters.
We have conducted the image classification and image
captioning experiments, showing that although the DNNs
with bilinear projections have much smaller model sizes,

the performance is not deteriorated and the accuracy can
be even boosted.

V. CONCLUSION

In this paper, we proposed to use bilinear projections to
replace traditional unstructured full projections to optimise
DNNs. Specifically, we illustrated how to reconstruct fully-
connected layer, word embedding layer, convolution layer,
and recurrent layer with such projections. This method
significantly reduces the number of parameters fromO(D2)
to O(2D), achieving a sub-linear layer size of deep models.
To alleviate the under-fitting problem caused by the lower
freedom degree of the structured projection, we properly
scaled up the mapping size to keep or even boost the model
accuracy. We tested popular CNNs and a recurrent image
captioner using bilinear projections on four public datasets,
and proved that our proposed microstructure are highly
parameter-efficient.

ACKNOWLEDGEMENT

We thank the NVIDIA corporation for their kind dona-
tion of a Titan Xp GPU card for our experiments.



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

(a) Loss (b) Accuracy

Fig. 4: Loss and accuracy curves of ResNet-56 on CIFAR-10 dataset.

(a) Loss (b) Accuracy

Fig. 5: Loss and accuracy curves of ResNet-56 on SHVN dataset.

Fig. 6: The heat maps of ResNet-56 on CIFAR-10 dataset.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in NIPS,
2015.

[2] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Learning a
discriminative feature network for semantic segmentation,” in CVPR,
2018.

[3] P. Wang, R. Yang, B. Cao, W. Xu, and Y. Lin, “Dels-3d: Deep
localization and segmentation with a 3d semantic map,” in CVPR,
2018.

[4] Q. Wang, Z. Teng, J. Xing, J. Gao, W. Hu, and S. Maybank,
“Learning attentions: Residual attentional siamese network for high
performance online visual tracking,” in CVPR, 2018.

[5] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker,
H. Drucker, I. Guyon, U. Muller, E. Sackinger et al., “Comparison

of learning algorithms for handwritten digit recognition,” in Int’l
Conf. on artificial neural networks, vol. 60, 1995, pp. 53–60.

[6] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in CVPR,
2016, pp. 2818–2826.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778.

[8] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.”
in AAAI, 2017, pp. 4278–4284.

[9] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in CVPR, 2015, pp. 3156–3164.

[10] Z. Tu, Y. Liu, L. Shang, X. Liu, and H. Li, “Neural machine
translation with reconstruction,” in AAAI, 2017, pp. 3097–3103.

[11] M. Habibi, L. Weber, M. Neves, D. L. Wiegandt, and U. Leser,
“Deep learning with word embeddings improves biomedical named
entity recognition,” Bioinformatics, vol. 33, no. 14, pp. 37–48, 2017.

[12] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated
self-matching networks for reading comprehension and question
answering,” in ACL, 2017, pp. 189–198.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in NIPS, 2015, pp. 1135–
1143.

[15] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in NIPS, 2016, pp. 2074–2082.

[16] S. Zagoruyko and N. Komodakis, “Paying more attention to atten-
tion: Improving the performance of convolutional neural networks
via attention transfer,” arXiv preprint arXiv:1612.03928, 2016.

[17] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A
data-driven neuron pruning approach towards efficient deep archi-
tectures,” arXiv preprint arXiv:1607.03250, 2016.



YU et al.:PARAMETER EFFICIENT DEEP NEURAL NETWORKS WITH BILINEAR PROJECTIONS 11

(a) Loss. (b) Accuracy.

Fig. 7: Loss and accuracy curves on Flickr8k dataset.

[18] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in ICCV, 2017, pp. 1389–1397.

[19] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky,
“Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[20] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convo-
lutional neural networks with low rank expansions,” arXiv preprint
arXiv:1405.3866, 2014.

[21] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Com-
pressing neural networks with the hashing trick,” in ICCV, 2015, pp.
2285–2294.

[22] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized
convolutional neural networks for mobile devices,” in CVPR, 2016,
pp. 4820–4828.

[23] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[24] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” ICLR, 2016.

[25] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in CVPR,
2018, pp. 4510–4520.

[27] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten,
“Densely connected convolutional networks,” in CVPR, 2017, pp.
4700–4708.

[28] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger, “Con-
densenet: An efficient densenet using learned group convolutions,”
pp. 2752–2761, 2018.

[29] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F.
Chang, “An exploration of parameter redundancy in deep networks
with circulant projections,” in ICCV, 2015, pp. 2857–2865.

[30] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal
of biomedical optics, vol. 19, no. 1, pp. 1–9, 2014.

[31] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image
classification with the fisher vector: Theory and practice,” Int’l
journal of computer vision, vol. 105, no. 3, pp. 222–245, 2013.

[32] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” in CVPR, 2010,
pp. 3304–3311.

[33] N. Ailon and B. Chazelle, “Approximate nearest neighbors and the
fast johnson-lindenstrauss transform,” in ACM Symposium on Theory
of computing, 2006, pp. 557–563.

[34] A. Dasgupta, R. Kumar, and T. Sarlós, “Fast locality-sensitive
hashing,” in ACM SIGKDD, 2011, pp. 1073–1081.

[35] F. Yu, S. Kumar, Y. Gong, and S.-F. Chang, “Circulant binary
embedding,” in ICML, 2014, pp. 946–954.

[36] J. Revaud, M. Douze, C. Schmid, and H. Jégou, “Event retrieval in
large video collections with circulant temporal encoding,” in CVPR,
2013, pp. 2459–2466.

[37] J. M. Kleinberg, “Two algorithms for nearest-neighbor search in high
dimensions,” in STOC, vol. 97, 1997, pp. 599–608.

[38] C. Hou, F. Nie, C. Zhang, D. Yi, and Y. Wu, “Multiple rank
multi-linear svm for matrix data classification,” Pattern Recognition,
vol. 47, no. 1, pp. 454–469, 2014.

[39] C. Hou, F. Nie, D. Yi, and Y. Wu, “Efficient image classification via
multiple rank regression,” IEEE Trans. on Image Processing, vol. 22,
no. 1, pp. 340–352, 2012.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint, 2014.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks,” in ECCV, 2016, pp. 630–645.

[42] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear cnn models for
fine-grained visual recognition,” in CVPR, 2015, pp. 1449–1457.

[43] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in NIPS, 2013, pp. 3111–3119.

[44] W. Zaremba and I. Sutskever, “Learning to execute,” arXiv preprint
arXiv:1410.4615, 2014.

[45] C. Rashtchian, P. Young, M. Hodosh, and J. Hockenmaier, “Collect-
ing image annotations using amazon’s mechanical turk,” in NAACL
HLT Workshop, 2010, pp. 139–147.

[46] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in ACL, 2002, pp.
311–318.

[47] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in CVPR,
2016, pp. 2921–2929.


	I Introduction
	II Related work
	II-A Model compression
	II-B Light-weight deep architectures

	III Proposed Method
	III-A Bilinear projection for non-linear mapping
	III-B Comparing bilinear projection with other structured mappings
	III-C Fully-connected (dense) layers with bilinear projection
	III-D Convolution layers with bilinear projection
	III-E Word embedding layers with bilinear projection
	III-F Recurrent layers with bilinear projection

	IV Experiments and analysis
	IV-A Datasets
	IV-B Models
	IV-C Implementation details, evaluation metrics and experimental settings
	IV-D Model size comparisons
	IV-E Experimental results on image classification
	IV-E1 Results on ImageNet dataset
	IV-E2 Results on CIFAR-10 and SVHN datasets

	IV-F Experimental results on image captioning
	IV-G Discussion

	V Conclusion
	References

