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Abstract— Symbolic regression is a powerful technique to
discover analytic equations that describe data, which can lead to
explainable models and the ability to predict unseen data. In con-
trast, neural networks have achieved amazing levels of accuracy
on image recognition and natural language processing tasks, but
they are often seen as black-box models that are difficult to
interpret and typically extrapolate poorly. In this article, we use a
neural network-based architecture for symbolic regression called
the equation learner (EQL) network and integrate it with other
deep learning architectures such that the whole system can be
trained end-to-end through backpropagation. To demonstrate the
power of such systems, we study their performance on several
substantially different tasks. First, we show that the neural
network can perform symbolic regression and learn the form
of several functions. Next, we present an MNIST arithmetic
task where a convolutional network extracts the digits. Finally,
we demonstrate the prediction of dynamical systems where an
unknown parameter is extracted through an encoder. We find
that the EQL-based architecture can extrapolate quite well
outside of the training data set compared with a standard neural
network-based architecture, paving the way for deep learning to
be applied in scientific exploration and discovery.

Index Terms— Discovery, kinematics, neural network, ordinary
differential equation (ODE), simple harmonic oscillator (SHO),
symbolic regression.

I. INTRODUCTION

MANY complex phenomena in science and engineer-
ing can be reduced to general models that can be
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described in terms of relatively simple mathematical equations.
For example, classical electrodynamics can be described by
Maxwell’s equations and nonrelativistic quantum mechanics
can be described by the Schrödinger equation. These models
elucidate the underlying dynamics of a particular system
and can provide general predictions over a very wide range
of conditions. On the other hand, modern machine learning
techniques have become increasingly powerful for many tasks,
including image recognition and natural language processing,
but the neural network-based architectures in these state-of-
the-art techniques are black-box models that often make them
difficult for use in scientific exploration. In order for machine
learning to be widely applied to science, there needs to be
interpretable models that can extract meaningful information
from complex data sets and extrapolate outside of the training
data set.

Symbolic regression is a type of regression analysis that
searches the space of mathematical expressions to find the
best model that fits the data and can thus fit a much wider
range of data sets than other models such as linear regression.
Assuming that the resulting mathematical expression correctly
describes the underlying model for the data, it is easier to
interpret and can extrapolate better than black-box models
such as neural networks. Symbolic regression is typically
carried out using techniques such as genetic programming,
in which the structure of the mathematical expression is found
using evolutionary algorithms to best fit the data [1]. This
approach has been used to extract the underlying laws of
physical systems from experimental data [2]. However, due to
the combinatorial nature of the problem, genetic programming
does not scale well to large systems and can be prone to
overfitting.

Alternative approaches to finding the underlying laws of
data have been explored. For example, sparsity has been com-
bined with regression techniques and numerically evaluated
derivatives to find partial differential equations (PDEs) that
describe dynamical systems [3]–[5].

There has also been significant work on designing neural
network architectures that are either more interpretable or
contain inductive biases that make them more suitable for
scientific exploration. Neural networks with unique activation
functions that correspond to functions common in science and
engineering have been used for finding mathematical expres-
sions that describe data sets [6], [7]. A deep learning archi-
tecture called the PDE-Net has been proposed to predict the
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Fig. 1. Example of the EQL network for symbolic regression using a neural
network. Here, we show only four activation functions (identity or “id,” square,
sine, and multiplication) and two hidden layers for visual simplicity, but the
network can include more functions or more hidden layers to fit a broader
class of functions.

dynamics of spatiotemporal systems and produce interpretable
differential operators through constrained convolutional fil-
ters [8], [9]. Trask et al. [10] proposed a neural network
module called the neural arithmetic logic unit (NALU) that
introduces inductive biases toward arithmetic operations so
that the architecture can extrapolate well on specific tasks.
Neural network-based architectures have also been used to
extract relevant and interpretable parameters from dynamical
systems and use these parameters to predict the propagation
of a similar system [11], [12]. In addition, Chari et al. [13]
used symbolic regression as a separate module to discover
kinematic equations using parameters extracted from videos
regarding various types of motion.

Here, we present a neural network architecture for sym-
bolic regression that is integrated with other deep learning
architectures so that it can take advantage of powerful deep
learning techniques while still producing interpretable and
generalizable results. Because this symbolic regression method
can be trained through backpropagation, the entire system can
be trained end-to-end without requiring multiple steps.

Source code is made publicly available.1

II. EQL ARCHITECTURE

The symbolic regression neural network we use is similar to
the equation learner (EQL) network proposed in [6] and [7].
As shown in Fig. 1, the EQL network is based on a fully
connected neural network where the i th layer of the neural
network is described by

gi = Wi hi−1

hi = f (gi)

where Wi is the weight matrix of the i th layer and h0 = x
is the input data. The final layer does not have an activation
function, so for a network with L hidden layers, the output of

1https://github.com/samuelkim314/DeepSymReg

the network is described by

y = hL+1 = WL+1hL .

The activation function f (g), rather than being the usual
choices in neural networks such as ReLU or tanh, may consist
of a separate function for each component of g (such as sine
or the square function) and may include functions that take
two or more arguments while producing one output (such as
the multiplication function)

f (g) =

⎡
⎢⎢⎢⎣

f1(g1)
f2(g2)
...

fnh (gng−1, gng)

⎤
⎥⎥⎥⎦. (1)

Note that an additive bias term can be absorbed into f (g) for
convenience. These activation functions in (1) are analogous to
the primitive functions in symbolic regression. Allowing func-
tions to take more than one argument allows for multiplicative
operations inside the network.

While the schematic in Fig. 1 only shows four activa-
tion functions in each hidden layer for visual simplicity,
f (g) in 1 can include other functions, including exp (g) and
sigmoid(g) = (1/(1 + e−g)). In addition, we allow for activa-
tion functions to be duplicated within each layer (i.e., multiple
components in g can use the same activation function). This
reduces the system’s sensitivity to random initializations and
creates a smoother optimization landscape so that the network
does not get stuck in local minima as easily. This also allows
the EQL network to fit a broad range of functions. More details
can be found in Appendix A.

By stacking multiple layers (i.e. L ≥ 2), the EQL archi-
tecture can fit complex combinations and compositions of a
variety of primitive functions. Note that L is analogous to
the maximum tree depth in genetic programming approaches
and sets the upper limit on the complexity of the resulting
expression. While this model is not as general as conventional
symbolic regression, it is powerful enough to represent most
functions that are typically seen in science and engineering.
More importantly, because the EQL network can be trained
by backpropagation, it can be integrated with other neural
network-based models for end-to-end training.

A. Sparsity

A key ingredient of making the results of symbolic regres-
sion interpretable is enforcing sparsity regularization such that
the system finds the simplest possible equation that fits the
data. The goal of sparsity is to set as many weight parameters
to 0 as possible such that those parameters are inactive
and can be removed from the final expression. Enforcing
sparsity in neural networks is an active field of research as
modern deep learning architectures using millions of para-
meters start to become computationally prohibitive [14]–[16].
Sahoo et al. [17] evaluated several recent developments in
neural network sparsity techniques.

A straightforward and popular way of enforcing sparsity
is adding to the loss function a regularization term that is a
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function of the neural network weight matrices

Lq =
L+1∑
i=0

Lq(Wi ) (2)

where i indexes the layer. Lq acts elementwise on the matrix
as follows:

Lq(W) =
∑

j,k

Lq
(
w j,k

) =
∑

j,k

∣∣w j,k

∣∣q

where j, k indexes the elements in the weight matrix W.
Setting q = 0 in (2) results in L0 regularization, which

penalizes weights for being nonzero regardless of the magni-
tude of the weights and thus drives the solution toward sparsity.
However, L0 regularization is equivalent to a combinatorics
problem that is NP-hard and is not compatible with gradi-
ent descent methods commonly used for optimizing neural
networks [18]. Recent works have explored training sparse
neural networks with a relaxed version of L0 regularization
through stochastic gate variables, allowing this regularization
to be compatible with backpropagation [14], [19].

A much more popular and well-known sparsity technique
is L1 regularization, which was used in the original EQL
network [6]. Although it does not push solutions toward
sparsity as strongly as L0 regularization, L1 regularization
is a convex optimization problem that can be solved using
a wide range of optimization techniques, including gradient
descent to drive the weights toward 0. However, since L1

also penalizes the magnitude of the weights, L0.5 has been
proposed to enforce sparsity more strongly without penalizing
the magnitude of the weights as much as L1 [20], [21].
L0.5 regularization is still compatible with gradient descent
(although it is no longer convex) and has been applied to neural
networks [22], [23]. Experimental studies suggest that L0.5

regularization performs no worse than other Lq regularizers
for 0 < q < 0.5, implying that L0.5 is optimal for enforcing
sparsity [21]. Our experiments with L0.3 and L0.7 regularizers
show no significant overall improvement compared with the
L0.5 regularizer, in agreement with this study. In addition, our
experiments show that L0.5 drives the solution toward sparsity
more strongly than L1, producing simpler expressions.

However, L0.5 regularization has a singularity in the gradient
as the weights go to 0, which can make training difficult
for gradient descent-based methods. To avoid this, we use a
smoothed version of L0.5 proposed in [23], which we label as
L∗

0.5. The L∗
0.5 regularizer uses a piecewise function to smooth

out the function at small magnitudes

L∗
0.5(w) =

⎧⎪⎨
⎪⎩

|w|1/2 |w| ≥ a(
− w4

8a3
+ 3w2

4a
+ 3a

8

)1/2

|w| < a
(3)

where a ∈ R
+ is the transition point between the standard L0.5

function and the smoothed function.
A plot of the L0.5 and L∗

0.5 regularization is shown in Fig. 2.
The smoothed L∗

0.5 regularization avoids the extreme gradient
values to improve training convergence. In our experiments,
we set a = 0.01. When the EQL network is integrated with

Fig. 2. (a) L0.5 and (b) L∗
0.5 regularization, as described in (2) and (3),

respectively. The threshold for the plot of (3) is set to a = 0.1 for easy
visualization, but we use a threshold of a = 0.01 in our experiments.

other deep learning architectures, the regularization is only
applied to the weights of the EQL network.

We have also implemented an EQL network with the relaxed
L0 regularization proposed in [14], the details of which can
be found in Appendix B.

III. EXPERIMENTS

A. Symbolic Regression on Analytic Expressions

To validate the EQL network’s ability to perform symbolic
regression, we first test the EQL network on data generated by
analytic expressions, such as exp

(−x2
)

or x2
1+sin (2πx2). The

data are generated on the domain xi ∈ [−1, 1]. Because of the
network’s sensitivity to random initialization of the weights,
we run 20 trials for each function. We then count the number
of times that the network has converged to the correct answer
ignoring small terms and slight variations in the coefficients
from the true value. In addition, equivalent answers (such as
sin(4π + x) instead of sin(2π + x)) are counted as correct.
These results are shown in Appendix A.

The network only needs to be able to find the correct answer
at least once over a reasonable number of trials, as one can
construct a system that picks out the desired equation from
the different trials using a combination of equation simplicity
and extrapolation ability. We find that when we measure the
extrapolation ability by measuring the equation error evaluated
on the domain xi ∈ [−2, 2], this extrapolation error of the
correct equation tends to be orders of magnitude lower than
that of other equations that the network may find, making it
simple to pick out the correct answer.

The network is still able to find the correct answer when
10% noise is added to the data. We also test an EQL network
with three hidden layers, which still finds the correct expres-
sion and is able to find even more complicated expressions
such as (x1 + x2x3)

3.

B. MNIST Arithmetic

In the first experiment, we demonstrate the ability to com-
bine symbolic regression and image recognition through an
arithmetic task on MNIST digits. MNIST, a popular data set
for image recognition, can be notated as D = {χ,ψ}, where
χ are 28 × 28 grayscale images of handwritten digits and
ψ ∈ {0, 1, . . . , 9} is the integer-value label. Here, we wish
to learn a simple arithmetic function, y = ψ1 + ψ2, with
the corresponding images {χ1, χ2} as inputs, and train the
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Fig. 3. Schematic of the MNIST addition architecture. An encoder consisting
of convolutional layers and fully connected layers operates on each MNIST
image and extracts a single-dimensional latent variable. The two encoders
share the same weights. The two latent variables are then fed into the EQL
network. The entire system is fed end-to-end and without pretraining.

system end-to-end such that the system learns how to “add”
two images together.

The deep learning architecture is shown in Fig. 3. The
input consists of two MNIST digits, x = {χ1, χ2}. During
training, χi is randomly drawn from the MNIST training data
set. Each of {χ1, χ2} is fed separately into an encoder to
produce single-dimensional latent variables {z1, z2} that are
not constrained and can take on any real value, zi ∈ R.
Alternatively, one can think of the architecture as having a
separate encoder for each digit, where the two encoders share
the same weights, as shown in Fig. 3. The encoder consists
of two convolutional layers with max-pooling layers, followed
by two fully connected layers and a batch normalization layer
at the output. More details on the encoder can be found in
Appendix C. The latent variables {z1, z2} then feed into the
EQL network. The EQL network has a single scalar output ŷ,
which is trained on the true label y = ψ1 + ψ2.

The entire network is trained end-to-end using a
mean-squared error (MSE) loss between the predicted label ŷ
and the true label y. In other words, the encoder is not trained
separately from the EQL network. Note that the encoder
closely resembles a simple convolutional neural network used
for classifying MNIST digits except that it outputs a scalar
value instead of logits that encode the digit. While there is
no constraint on the properties of z1,2, we expect it to map
one-to-one to the true label ψ1,2.

C. Dynamical System Analysis

In the next set of experiments, we apply the EQL network
to analyzing physical time-varying systems. A potentially
powerful application of deep learning in science exploration
and discovery is discovering parameters in dynamical systems
in an unsupervised setting and using these parameters to
predict the propagation of similar systems. For example, Zheng
et al. [11] used multilayer perceptrons to extract relevant
properties from a system of bouncing balls (such as the mass
of the balls or the spring constant of a force between the
balls) and simultaneously predicted the trajectory of a different
set of objects. Lu et al. [12] accomplished a similar goal
but using a dynamics encoder (DE) with convolutional layers
and a propagating decoder (PD) with deconvolutional layers

Fig. 4. (a) Architecture to learn the equations that propagate a dynamical
system. (b) Each EQL cell in the PD consists of a separate EQL network for
each dimension of y to be predicted. In our case, y = {u, v} where u is the
position and v is velocity, so there are two EQL networks in each EQL cell.

to enable analysis and prediction of spatiotemporal systems,
such as those governed by PDEs. This DE-PD architecture is
designed to analyze spatiotemporal systems that may have an
uncontrolled dynamical parameter that varies among different
instances of the data set, such as the diffusion constant in the
diffusion equation. The parameters encoded in a latent variable
are fed into the PD along with a set of initial conditions,
in which the PD propagates forward in time based on the
extracted physical parameter and learned dynamics.

Here, we present a deep learning architecture shown
in Fig. 4, which is based on the DE-PD architecture. The DE
takes in the full input series {xt}Tx

t=0 over Tx time steps and
outputs a single-dimensional latent variable z. Unlike the orig-
inal DE-PD architecture presented in [12], the DE here is not
a VAE. The DE here consists of several convolutional layers
followed by fully connected layers and a batch normalization
layer. More details are given in Appendix C. The parameter z
and a set of initial conditions y0 are fed into the PD, which
predicts the future time steps {ŷt}Ty

t=1 based on the learned
dynamics. The PD consists of an “EQL cell” in a recurrent
structure such that each step in the recurrent structure predicts
a single time step forward. The EQL cell consists of separate
EQL networks for each feature, or dimension, in ŷt .

The full architecture is trained end-to-end using an MSE
loss between the predicted dynamics {ŷt}Ty

t=1 and the target
series {yt}Ty

t=1. Similar to the architecture in Section III-B,
the DE and PD are not trained separately, and there is no
restriction or bias placed on the latent variable z. We explore
two different physical systems [kinematics and simple har-
monic oscillator (SHO)] as described in the following.

1) Kinematics: Kinematics describes the motion of objects
and is used in physics to study how objects move under an
applied force. A schematic of a physical scenario described
by 1-D kinematics is shown in Fig. 5(a) in which an object
on a frictionless surface has a force applied to it where the
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Fig. 5. (a) Kinematics describes the dynamics of an object where a force
F is applied to a mass m. (b) SHO describes a mass m on a spring with
spring constant k. In both cases, u is the displacement of the mass and v is
the velocity.

direction of the force is parallel to the surface. The relevant
parameter to describe the object’s motion can be reduced to
a = (F/m) for a constant force F and object mass m. Given
position ui and velocity vi at time step i , the object’s state at
time step i + 1 is given by

ui+1 = ui + vi�t + 1

2
�t2

vi+1 = vi + a�t (4)

where �t is the time step.
Acceleration a varies across different time series in the

data set. In our simulated data set, we draw initial state and
acceleration from uniform distributions

u0, v0, a ∼ U(−1, 1).

We set �t = 1. The initial parameters u0 and v0 are fed into
the PD, and z is expected to correlate with a.

2) Simple Harmonic Oscillator: The second physical sys-
tem we analyze is the SHO, a ubiquitous model in physics
that can describe a wide range of physical systems, including
springs, pendulums, quantum potentials, and electric circuits.
In general, the dynamics of the SHO can be given by the
coupled first-order ordinary differential equation (ODE)

du

dt
= v

dv

dt
= −ω2u (5)

where u is the position, v is the velocity, and ω is the resonant
frequency of the system. In the case of a spring as shown
in Fig. 5(b), ω = (k/m)1/2, where k is the spring constant and
m is the mass of the object on the end of the spring.

The SHO system can be numerically solved using a
finite-difference approximation for the time derivatives. For
example, the Euler method for integrating ODEs gives

ui+1 = ui + vi�t

vi+1 = vi − ω2ui�t . (6)

In our experiments, we generate data with parameters drawn
from uniform distributions

u0, v0 ∼ U(−1, 1)

ω2 ∼ U(0.1, 1).

The state variables u and v are measured at a time step of�t =
0.1 to allow the system to find the finite-difference solution.

Fig. 6. Ability of the encoder to differentiate between digits as measured
by the latent variable z versus the true digit ψ for digits χ drawn from the
MNIST (a) training data set and (b) test data set. The correlation coefficients
are −0.985 and −0.988, respectively. The ability of the entire architecture to
fit the label y as measured by the predicted sum ŷ versus the true sum y for
digits χ drawn from the MNIST (c) training data set and (d) test data set.

Because of this small time step, we also need to propagate
the solution for more time steps to find the right equation
(otherwise, the system learns the identity function). To avoid
the recurrent architecture predictions exploding toward ±∞,
we start the training by propagating only one time step and add
more time steps as the training continues. A similar strategy
is used in [9] except that we are not restarting the training.

The initial parameters u0 and v0 are fed into the PD, and z
is expected to correlate with ω2.

D. Training
The neural network is implemented in TensorFlow [24]. The

network is trained using backpropagation with the RMSProp
optimizer [25] and the following loss function:

L = 1

N

∑
(yi − ŷi)

2 + λL∗
0.5

where N is the size of the training data set and λ is a
hyperparameter that balances the regularization versus the
MSE.

Similar to [6], we introduce a multiphase training schedule.
In an optional first phase, we train with a small value of λ,
allowing for the parts of the network apart from the EQL to
evolve freely and extract the latent parameters during training.
In the second phase, λ is increased to a point where it forces
the EQL network to become sparse. After this second phase,
weights in the EQL network below a certain threshold α are set
to 0 and frozen such that they stay 0, equivalent to fixing the
L0 norm. In the final phase of training, the system continues
training without L∗

0.5 regularization (i.e. λ = 0) and with
a reduced maximum learning rate in order to fine-tune the
weights.

Specific details for each experiment are listed in
Appendix C.

IV. RESULTS

A. MNIST Arithmetic

Fig. 6(b) shows the latent variable z versus the true label
ψ for each digit after the entire network has been trained.
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TABLE I

MNIST ARITHMETIC EXPECTED AND EXTRACTED EQUATIONS

Note that while the system is trained on digits drawn from
the MNIST training data set, we also evaluate the trained
network’s performance on digits drawn from the MNIST test
data set to confirm the encoder’s generalizability. We see a
strong linear correlation for both data sets, showing that the
encoder has successfully learned a linear relation between z
and ψ despite not having access to the digit label ψ . Also,
note that there is a scaling factor between z and ψ due to the
lack of constraint on z. A simple linear regression shows that
the relation is

ψ = −1.788z + 4.519. (7)

The extracted equation from the EQL network for this
result is shown in Table I. The “encoder” equation is what
we expect based on the encoder result in (7). From these
results, we conclude that the EQL network has successfully
extracted the additive nature of the function. Fig. 6(c) and (d)
shows the predicted sums ŷ versus the true sums y. The mean
absolute errors of prediction for the model drawing digits from
the MNIST training and test data sets are 0.307 and 0.315,
respectively.

While the architecture is trained as a regression problem
using an MSE loss, we can still report accuracies as if it is a
classification task since the labels y are integers. To calculate
accuracy, we first round the predicted sum ŷ to the nearest
integer and then compare it to the label y. The trained system
achieves the accuracies of 89.7% and 90.2% for digits drawn
from the MNIST training and test data sets, respectively.

To demonstrate the generalization of this architecture to data
outside of the training data set, we train the system using a
scheme where MNIST digit pairs χ1, χ2 are randomly sampled
from the MNIST training data set and used as a training data
point if they follow the condition ψ1 + ψ2 < 15. Otherwise,
the pair is discarded. In the test phase, MNIST digit pairs
χ1, χ2 are randomly sampled from the MNIST training data
set and kept in the evaluation data set if ψ1 + ψ2 ≥ 15. Oth-
erwise, the pair is discarded. For comparison, we also test the
generalization of the encoder by following the abovementioned
procedures but drawing MNIST digit pairs χ1, χ2 from the
MNIST test data set. Generalization results of the network are
shown in Table II. In this case, the EQL network has learned
the equation ŷ = −1.56z1 − 1.56z2 + 8.66.

First, note the difference between the accuracy evaluated
on pairs y < 15 and pairs y ≥ 15. For the architecture with
the EQL network, the accuracy drops by a few percentage
points. However, for the architecture where the EQL network
is replaced by the commonly used fully connected network
with ReLU activation functions (which we label as “ReLU”),
the accuracy drops to below 1% showing that the results of
the EQL are able to generalize reasonably well in a regime

TABLE II

MNIST ARITHMETIC GENERALIZATION RESULTS

Fig. 7. (a) Latent parameter z of the dynamic encoder architecture after
training plotted as a function of the true parameter a. We see a strong linear
correlation. (b) and (c) Predicted propagation {ŷi } = {ûi , v̂i } with the EQL
cell and a conventional network using ReLU activations. “True” refers to the
true propagation {yi }.

where the ReLU cannot generalize at all. Note that this is not
a result of the encoder since the system sees all digits 0–9.

Second, the accuracy drops slightly when digits are drawn
from the MNIST test data set versus when the digits are drawn
from the MNIST training data set, as expected. We did not
optimize the hyperparameters of the digit extraction network
since the drop in accuracy is small, so the architecture could
be optimized further if needed.

Finally, the accuracy drops slightly for pairs y < 15 when
using the EQL versus the ReLU network. This is unsurprising
since the larger size and symmetric activation functions of the
ReLU network constrain the network less than the EQL and
may make the optimization landscape smoother.

B. Kinematics

Fig. 7(a) shows the extracted latent parameter z plotted as
a function of the true parameter a. We see a linear correlation
with correlation coefficient close to −1, showing that the DE
has extracted the relevant parameter of the system. Again,
there is a scaling relation between z and a, which we can
extract through linear regression

a = −0.884z − 0.091. (8)

An example of the equations found by the EQL cell after
training is shown in Table III. The “DE” equations are what
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TABLE III

KINEMATICS EXPECTED AND EXTRACTED EQUATIONS

Fig. 8. Results of training on the SHO system. (a) Latent parameter z of the
dynamic encoder architecture after training plotted as a function of the true
parameter ω2. We see a good linear correlation. (b) Position u and (c) velocity
v as a function of time for various models. “True” refers to the analytical
solution. “EQL” refers to the propagation equation discovered by the EQL
network. “ReLU” refers to propagation by a conventional neural network that
uses ReLU activation functions. “Euler” refers to the finite-difference solution
using the Euler method.

we expect based on the true equation and the extract relation
in (8). We can see that the EQL equations match closely with
what we expect.

The predicted propagation {ŷi} is plotted in Fig. 7(b) and (c).
“True” is the true solution that we want to fit, and “EQL” is
the solution propagated by the EQL network. For comparison,
we also train a neural network with a similar architecture to
the one shown in Fig. 4 but where the EQL cell is replaced
by a standard fully-connected neural network with two hidden
layers of 50 neurons each and ReLU activation functions
(which we label as “ReLU”). While both networks match the
true solution very closely in the training regime (left of the
dotted line), the ReLU network quickly diverges from the true
solution outside of the training regime. The EQL cell is able
to match the solution reasonably well for several more time
steps, showing how it can extrapolate beyond the training data.

C. SHO

The plot of the latent variable z as a function of the true
parameter ω2 after training on the SHO system is shown
in Fig. 8(a). Note that there is a strong linear correlation
between z and ω2 as opposed to between z and ω. This
reflects the fact that using ω2 requires fewer operations in
the propagating equations than ω, the latter of which would

TABLE IV

SHO EXPECTED AND EXTRACTED EQUATIONS

require a squaring function. In addition, the system was able to
find that ω2 is the simplest parameter to describe the system
due to the sparsity regularization on the EQL cell. We see
a strong linear correlation with a correlation coefficient of
−0.995, showing that the DE has successfully extracted the
relevant parameter of the SHO system. A linear regression
shows that the relation is

ω2 = −0.927z + 0.464. (9)

The equations extracted by the EQL cell are shown
in Table IV. The “DE” equation is what we expect based on
the DE result in 9. Immediately, we see that the expression for
ûi+1 and the first three terms of v̂i+1 match closely with the
Euler method approximation using the latent variable relation
extracted by the DE.

An interesting point is that while we normally use the
first-order approximation of the Euler method for integrating
ODEs

vi+1 = vi +�t
dv

dt

∣∣∣∣
t=i

+ O(�t2)

it is possible to expand the approximation to find higher order
terms. If we expand the Euler method to its second-order
approximation, we get

vi+1 = vi +�t
dv

dt

∣∣∣∣
t=i

+ 1

2
�t2 d2v

dt2

∣∣∣∣
t=i

+ O(�t3)

≈ vi −�tω2 ui − 1

2
�t2ω2 vi .

The expected equation based on the DE result and assuming
the second-order expansion is labeled as “DE, 2nd Order”
in Table IV. It appears that the EQL network, in this case, has
not only found the first-order Euler finite-difference method
but it has also added on another small term that corresponds to
the second-order term in the Taylor expansion of vi+1. The last
term found by the EQL network 0.0133z2 is likely from either
cross terms inside the network or a lack of convergence to
exactly 0 and would likely disappear with another thresholding
process.

The solution propagated through time is shown in Fig. 8(b)
and (c). As before, “ReLU” is the solution propagated by an
architecture where the EQL network is replaced by a conven-
tional neural network with 4 hidden layers of 50 units each
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and ReLU activation functions. For an additional comparison,
we have also calculated the finite-difference solution using
Euler’s method to integrate the true ODEs which is labeled as
“Euler.”

Within the training regime, all of the methods fit the true
solution reasonably well. However, the conventional neural
network with ReLU activation functions completely fails to
extrapolate beyond the training regime. The Euler method
and the EQL network are both able to extrapolate reasonably
well beyond the training regime, although they both start to
diverge from the true solution due to the large time step and
the accumulated errors from numerical integration. A more
accurate method, such as the Runge–Kutta method, almost
exactly fits the analytical solution, which is not surprising due
to its small error bound. However, it is more complex than the
Euler method and would likely require a larger EQL network
to find an expression similar to the Runge–Kutta method.
Interestingly, the EQL network solution has a smaller error
than the Euler solution, demonstrating that the EQL network
was able to learn higher order corrections to the first-order
Euler method. This could possibly lead to discovery of more
efficient integration schemes for differential equations that are
difficult to solve through finite-difference methods.

V. CONCLUSION

We have shown how we can integrate symbolic regression
with deep learning architectures and train the entire system
end-to-end to take advantage of the powerful deep learning
training techniques that have been developed in recent years.
Namely, we show that we can learn arithmetic on MNIST
digits where the system must learn to identify the images in
an image recognition task while simultaneously extracting the
mathematical expression that relates the digits to the answer.
In addition, we show that we can simultaneously extract an
unknown parameter from a dynamical system and extract the
propagation equations. In the SHO system, the results suggest
that we can discover new techniques for integrating ODEs,
potentially paving the way for improved integrators, such as
integrators for stiff ODEs that may be difficult to solve with
numerical methods.

One direction for future work is to study the role of random
initializations and make the system less sensitive to random
initializations. As seen by the benchmark results of the EQL
network in Appendix A, the EQL network is not always able
to find the correct mathematical expression. This is because
there are a number of local minima in the EQL network that
the network can get stuck in, and gradient-based optimization
methods are only guaranteed to find local minima rather than
global minima. Local minima are not typically a concern
for neural networks because the local minima are typically
close enough in performance to the global minimum [26].
However, for the EQL network, we often want to find the
true global minimum. In this work, we have alleviated this
issue by increasing stochasticity through large learning rates
and by decreasing the sensitivity to random initializations by
duplicating activation functions. In addition, we run multiple
trials and find the best results, either manually or through an

automated system [6], [7]. In future work, it may be possible
to find the true global minimum without resorting to multiple
trials as it has been shown that overparameterized neural
networks with certain types of activation functions are able to
reach the global minimum through gradient descent in linear
time regardless of the random initialization [27].

Other directions for future work include expanding the
types of deep learning architectures that the EQL network
can integrate with. For example, supporting spatiotemporal
systems can lead to PDE discovery. The spatial derivatives
could be calculated using known finite-difference approxi-
mations or learnable kernels [8]. Another possible extension
is to introduce parametric dependence in which unknown
parameters have a time dependence, which has been studied
in PDE discovery using group sparsity [28]. In addition,
the encoder can be expanded to capture a wider variety of data,
such as videos [13], audio signals, and text. These capabilities
will allow deep learning to be applied in scientific exploration
and discovery.

APPENDIX A
EQL NETWORK DETAILS

The activation functions in each hidden layer consist of

[1(×2), g(×4), g2(×4), sin(2πg)(×2),

eg(×2), sigmoid(20g)(×2), g1 ∗ g2(×2)]
where the sigmoid function is defined as

sigmoid(g) = 1

1 + e−g

and the (×i) indicated the number of times each activa-
tion function is duplicated. The sin and sigmoid functions
have multipliers inside so that the functions more accurately
represent their respective shapes inside the input domain of
x ∈ [−1, 1]. Unless otherwise stated, these are the activation
functions used for the other experiments as well. The exact
number of duplications is arbitrary and does not have a sig-
nificant impact on the system’s performance. Future work may
include experimenting with a larger number of duplications.

We use two phases of training, where the first phase has a
learning rate of 10−2 and a regularization weight of 5 × 10−3

for 2000 iterations. Small weights are frozen and set to 0 after
the first phase. The second phase of training has a learning rate
of 10−3 for 10 000 iterations.

To benchmark our symbolic regression system, we choose
a range of trial functions that our architecture can feasibly
construct, train the network through 20 trials, and count
how many times it reaches the correct answer. Benchmarking
results are shown in Table V. As mentioned in Section III-A,
we only need the network to find the correct equation at least
once since we can construct a system that automatically picks
out the correct solution based on equation simplicity and test
error.

A. Computational Efficiency

With respect to the task of symbolic regression, we should
note that this algorithm does not offer an asymptotic speedup
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TABLE V

BENCHMARK RESULTS FOR THE EQL NETWORK

over conventional symbolic regression algorithms, as the prob-
lem of finding the correct expression requires a combinatorial
search over the space of possible expressions and is NP-
hard. Rather, the advantage here is that by solving symbolic
regression problems through gradient descent, we can integrate
symbolic regression with deep learning architectures.

Experiments are run on an Nvidia GTX 1080 Ti. Training
the EQL network with two hidden layers (L = 2) for
20 000 epochs takes 37 s, and training the EQL network with
three hidden layers (L = 3) takes 51 s.

In general, the computational complexity of the EQL net-
work itself is the same as that of a conventional fully con-
nected neural network. The only difference is the activation
functions that are applied by iterating over g and thus takes
O(n) time, where n is the number of nodes in each layer.
However, the computational complexity of a neural network
is dominated by the weight matrix multiplication, which takes
O(n2) time for both the EQL network and the conventional
fully connected neural network.

APPENDIX B
RELAXED L0 REGULARIZATION

We have also implemented an EQL network that uses a
relaxed form of L0 regularization for neural networks intro-
duced in [14]. We briefly review the details here, but refer the
reader to [14] for more details.

The weights W of the neural network are reparameterized
as

W = W̃ � z

where ideally each element of z, z j,k , is a binary “gate,” z j,k ∈
{0, 1}. However, this is not differentiable and so we allow
z j,k to be a stochastic variable drawn from the hard concrete
distribution

u ∼ U(0, 1)

s = sigmoid
([

log u − log(1 − u)+ logα j,k
]
/β

)
s̄ = s(ζ − γ )+ γ )

z j,k = min(1,max(0, s̄))

where α j,k is a trainable variable that describes the location
of the hard concrete distribution, and β, ζ, and γ are hyper-
parameters that describe the distribution. In the case of binary
gates, the regularization penalty would simply be the sum of
z (i.e., the number of nonzero elements in W. However, in the
case of the hard concrete distribution, we can calculate an
analytical form for the expectation of the regularization penalty
over the distribution parameters. The total loss function is then

L = 1

N

∑
(yi − ŷi)

2 +
∑

j,k

sigmoid

(
logα j,k − β log

−γ
ζ

)
.

The advantage of L0 regularization is that it enforces spar-
sity without placing a penalty on the magnitude of the weights.
This also allows us to train the system without needing a final
stage where small weights are set to 0 and frozen. While the
reparameterization in [14] requires us to double the number of
trainable parameters in the neural network, the regularization
is only applied to the EQL network, which is small compared
to the rest of the architecture.

In our experiments, we use the hyperparameters for the L0

regularization suggested in [14], although these can be opti-
mized in future work. In addition, while Louizos et al. [14]
applied group sparsity to the rows of the weight matrices
with the goal of computational efficiency, we apply parameter
sparsity with the goal of simplifying the symbolic expression.
We benchmark the EQL network using L0 regularization
with the aforementioned trial functions and list the results
in Table V. The success rates appear to be as good or better
than the network using L0.5 regularization for most of the
trial functions that we have picked. We have also integrated
the EQL network using L0 regularization into the MNIST
arithmetic and kinematics architectures and have found similar
results as the EQL network using the L0.5 regularization.

APPENDIX C
EXPERIMENT DETAILS

A. MNIST Arithmetic

The encoder network consists of a convolutional layer with
32 5 ×5 filters followed by a max-pooling layer, another con-
volutional layer with 64 5×5 filters followed by a max-pooling
layer, and two fully connected layers with 128 and 16 units
each with ReLU activation units. The max-pooling layers
have a pool size of 2 and a stride length of 2. The fully
connected layers are followed by a one-unit layer with batch
normalization. The output of the batch normalization layer is
divided by 2 such that the standard deviation of the output is
0.5. This decreases the range of the inputs to the EQL network
since the EQL network was constructed assuming an input
domain of x ∈ [−1, 1]. In addition, the output of the EQL
network, ŷ∗, is scaled as ŷ = 9ŷ∗ + 9 before being fed into
the loss function so as the normalize the output against the
range of expected y (this is equivalent to normalizing y to the
range [−1, 1]).

The ReLU network that is trained in place of the EQL
network for comparison consists of two hidden layers with
50 units each and ReLU activation.
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We use two phases of training, where the first phase uses
a learning rate of 10−2 and a regularization weight λ =
0.05. The second phase uses a learning rate of 10−4 and no
regularization. The small weights are frozen between the first
and second phases with a threshold of α = 0.01. Each phase
is trained for 10 000 iterations.

B. Kinematics

To generate the kinematics data set, we sample 100 values
for a and generate a time series {xt}Tx −1

t=0 and {yt}Ty

t=0 for each a.
The input series is propagated for Tx = 100 time steps.

The DE consists of 2 1-D convolutional layers with 16 filters
of length 5 in each layer. These are followed by a hidden layer
with 16 nodes and ReLU activation function, an output layer
with one unit, and a batch normalization layer with a standard
deviation of 0.5. The ReLU network that is trained in place
of the EQL network for comparison is the same as that of the
MNIST task.

We use two phases of training, where the first phase uses a
learning rate of 10−2 and a regularization weight of λ = 10−3

for a total of 5000 iterations. The system is trained on Ty = 1
time step for the first 1000 iterations and then Ty = 5 time
steps for the remainder of the training. The small weights are
frozen between the first and second phases with a threshold of
α = 0.1. The second phase uses a base learning rate of 10−3

and no regularization for 10 000 iterations.

C. SHO

To generate the SHO data set, we sample 1000 data points
values for ω2 and generate time series {xt}Tx −1

t=0 and {yt}Ty

t=0
for each ω2. The input series is propagated for Tx = 500
time steps with a time step of �t = 0.1. The output series is
propagated for Ty = 25 time steps with the same time step.

The DE is the same architecture as used in the kinematics
experiment. Due to the greater number of time steps that the
system needs to propagate, the EQL network does not dupli-
cate the activation functions for all functions. The functions
in each hidden layer consist of

[1(×2), g(×2), g2, sin(2πg), eg, 10g1 ∗ g2(×2)].
The ReLU network that is trained in place of the EQL network
for comparison consists of four hidden layers with 50 units
each and ReLU activation functions.

We use three phases of training, where the first phase uses
a learning rate of 10−2 and a regularization weight of λ = 4×
10−5 for a total of 2000 iterations. The system starts training
on Ty = 1 time steps for the first 500 time steps and then add
2 more time steps every 500 iterations for a total of Ty = 7
time steps. In the second phase of training, we increase the
number of time steps to Ty = 25, decrease the base learning
rate to 2 × 10−3, and increase the regularization weight to
λ = 2×10−4. The small weights are frozen between the second
and third phases with a threshold of α = 0.01. The third and
final phases of training use a base learning rate of 10−3 and
no regularization.

Fig. 9. Ability of the encoder to differentiate between digits as measured
by the latent variable z versus the true digit ψ for digits χ drawn from the
MNIST (a) training data set and (b) test data set. The ability of the entire
architecture to fit the label y as measured by the predicted sum ŷ versus the
true sum y for digits χ drawn from the MNIST (c) training data set and
(d) MNIST test data set.

APPENDIX D
ADDITIONAL MNIST ARITHMETIC DATA

The results presented in Fig. 6 and Table I are drawn from
one of several trials, where each in each trial the network is
trained from a different random initialization of the network
weights. Due to the random initialization, the EQL does not
reach the same equation every time. Here, we present results
from additional trials to demonstrate the variability in the
system’s behavior as well as the system’s robustness to the
random initializations.

The experimental details are described in Section III-B
where digits χ1,2 are drawn from the entire MNIST training
data set. We refer to the results shown in Fig. 6 and Table I
as Trial 1.

The results for Trial 2 are shown in Fig. 9. Similar to Trial 1,
Trial 2 produces a linear relationship between the true digit φ
and the latent variable z, although there is a positive instead of
negative correlation. As previously mentioned, there is no bias
placed on the latent variable z so whether there is a positive
or negative correlation is arbitrary and depends on the random
initialization of the weights. The trained architecture produced
the following expression from the EQL network:

ŷ = 1.565z1 + 1.558z2 + 9. (10)

Note the positive coefficients in (10), which reflects the
positive correlation shown in Fig. 9(a) and (b). As shown
in Fig. 9(c) and (d), the network is still able to accurately
predict the sum y.

The results for Trial 3 are shown in Fig. 10. Note that
in this case, the relationship between φ and z is no longer
linear. However, the encoder still finds a one-to-one mapping
between φ and z, and the EQL network is still able to extract
the information from z such that it can predict the correct sum,
as shown in Fig. 10(c) and (d).

The equation found by the EQL network is

ŷ = −4.64 sin(2.22z1)− 4.63 sin(2.21z2)+ 9. (11)
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Fig. 10. Ability of the encoder to differentiate between digits as measured
by the latent variable z versus the true digit ψ for digits χ drawn from the
MNIST (a) training data set and (b) test data set. The ability of the entire
architecture to fit the label y as measured by the predicted sum ŷ versus the
true sum y for digits χ drawn from the MNIST (c) training data set and
(d) MNIST test data set.

This is consistent with the insight that the curve in Fig. 10(a)
and (b) represents an inverse sine function. Thus, (11) is first
inverting the transformation from φ to z to produce a linear
mapping and then adding the two digits together. While the
EQL network does not always give the exact equation we
expect, we can still gain insight into the system from analyzing
the latent variable and the resulting equation.
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