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Continual Learning Using Bayesian Neural
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Abstract—Continual learning models allow them to learn and
adapt to new changes and tasks over time. However, in continual
and sequential learning scenarios in which the models are
trained using different data with various distributions, neural
networks tend to forget the previously learned knowledge. This
phenomenon is often referred to as catastrophic forgetting. The
catastrophic forgetting is an inevitable problem in continual
learning models for dynamic environments. To address this
issue, we propose a method, called Continual Bayesian Learn-
ing Networks (CBLN), which enables the networks to allocate
additional resources to adapt to new tasks without forgetting
the previously learned tasks. Using a Bayesian Neural Network,
CBLN maintains a mixture of Gaussian posterior distributions
that are associated with different tasks. The proposed method
tries to optimise the number of resources that are needed to
learn each task and avoids an exponential increase in the number
of resources that are involved in learning multiple tasks. The
proposed method does not need to access the past training data
and can choose suitable weights to classify the data points during
the test time automatically based on an uncertainty criterion.
We have evaluated our method on the MNIST and UCR time-
series datasets. The evaluation results show that our method can
address the catastrophic forgetting problem at a promising rate
compared to the state-of-the-art models.

Index Terms—Catastrophic forgetting, continual learning, in-
cremental learning, Bayesian neural networks, uncertainty

I. INTRODUCTION

DEEP learning models provide an effective end-to-end
learning approach in a variety of fields. One common

solution in deep neural networks to solve a complex task
such as ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [1] is to increase the depth of the network [2].
However, as the depth increases, it becomes harder for the
training model to converge. On the other hand, a shallower
network is not able to solve a complex classification task at
once, but it may be able to find a solution for a smaller set of
classes and converges much faster. If a model can continually
learn several tasks, then it can solve a complex task by dividing
it into several simple tasks. In online learning scenarios [3],
the model repeatedly receives new data, and the training data
is not complete at any given time. If we re-train the entire
model whenever there are new instances, it would be very
inefficient, and we have to store the trained samples [4]. The
key challenge in such continual learning scenarios in changing
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Fig. 1. The network architectures. In Continual Bayesian Learning networks,
the weights are Gaussian mixture distributions with an arbitrary number of
components. e.g. As shown above, two Bayesian Neural Networks which
have learned Task A and B respectively. Each of them contains multiple
Gaussian distributions. The CBLN merges these Gaussian distributions into
one Gaussian mixture distribution. The number of components in the mixture
distribution in this example can be 2, which means task A and task B have
different weight distributions (shown in red and blue), or it could be 1, which
means tasks A and B have the same weight distributions (shown in green).

environments is how to incrementally and continually learn
new tasks without forgetting the previous or creating highly
complex models that may require accessing the entire training
data.

Most of the common deep learning models are not capable
of adapting to different tasks without forgetting what they
have learned in the past. These models are often trained via
back-propagation where the weights are updated based on
a global error function. Updating and altering tasks of an
already learned model leads to the loss of the previously
learned knowledge as the network is not able to maintain the
important weights for various distributions. If hard constraints
are applied to the model to prevent the forgetting, it can retain
the previously learned knowledge. However, the model will not
be able to acquire new information efficiently. This scenario
is referred to as the stability-plasticity dilemma [5], [6]. The
attempt to sequentially or continuously learn and adapt to
various distributions will eventually result in a model collapse.
This phenomenon is referred as catastrophic forgetting or in-
terference [7], [8]. The catastrophic forgetting problem makes
the model inflexible. Furthermore, the need for a complete set
of training samples during the learning process is very different
from the normal biological systems which can incrementally
learn and acquire new knowledge without forgetting what is
learned in the past [9], [10].

Terminology: In this paper, the term task refers to the
overall function of a model; e.g. classification, clustering and
outlier detection. A task has an input distribution and an output
distribution. A dataset is used to train and evaluate a model for
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a task. A dataset follows a certain distribution. The distribution
of a dataset that is used to train a specific task can change over
time. We can train a model with different tasks. Each task
can be trained on its own individual dataset. In other words,
each task can be trained based on different input and output
distribution.

To address the catastrophic forgetting problem, there are
mainly three approaches [11]:

Regularisation Approaches: Regularisation based ap-
proaches re-train the model with trading off the learned
knowledge and new knowledge. Kirkpatrick et. al [12] propose
Elastic Weights Consolidation (EWC), which uses sequential
Bayesian inference to approximate the posterior distribution
by taking the learned parameters as prior knowledge. EWC
finds the important parameters to the learned tasks according
to Fisher Information and mitigates their changes by adding
quadratic items in the loss function. Similarly, Zenke et. al [13]
inequitably penalise the parameters in the objective function.
Zenke et. al define a set of influential parameters by using the
information obtained from the gradients of the model. The idea
of using a quadratic form to approximate the posterior function
is also used in Incremental Moment Matching (IMM) [14]. In
IMM, there are three transfer techniques: weight-transfer, L2-
transfer and drop-transfer to smooth the loss surface between
the different tasks. The IMM method approximates the mix-
ture. Recently, the variational inference has drawn attention
to solving the continual learning problem [15]. The core idea
of this method is to approximate the intractable true posterior
distribution by variational learning. Regularisation approach
can continually learn new tasks without saving the trained
samples or adding new neuron resources. However, when the
number of tasks increases, regulating the model becomes very
complex.

Memory Replay: The core idea of memory replay is to
interleave the new training data with the previously learned
samples. The recent developments in this direction reduce
the memory of the old knowledge by leveraging a pseudo-
rehearsal technique [16]. Instead of explicitly storing the entire
training samples, the pseudo-rehearsal technique draws the
training samples of the old knowledge from a probabilistic
distribution model. Shin et. al [17] propose an architecture
consisting of a deep generative model and a task solver.
Similarly, Kamra et. al [18] use a variational autoencoder to
regenerate the previously trained samples. The performance of
memory replay approaches is high [17], [18]. However, it is a
memory consuming approach. Furthermore, the computational
resources required to train a generative model can also be very
high.

Dynamic Networks: Dynamic Networks allocate new neu-
ron resources to learn new tasks. For example, ensemble
methods build a network for each task. As a result, the number
of models grows linearly with respect to the number of tasks
[19]–[21]. This is not always a desirable solution because of
its high resource demand and complexity [22]. One of the key
issues in the dynamic methods is that whenever there is a new
task, new neuron resources will be created without considering
the possibility of generating redundant resources. In [23], the
exponential parameter and resource increases are avoided by

selecting part of the existing neurons for training new tasks.
However, during the test process, the model has to be aware of
which test task is targeted to choose the appropriate parameters
to perform the desired task [24]. In the most dynamic methods
[23], [24], the model will not forget the learned knowledge
because of the trained parameters are fixed. However, the
major issues in dynamic networks are how to prevent the
parameters growing exponentially and how to decide which
parameters should be used at the testing stage.

The works mentioned above focus on supervised-learning.
There are also other exiting works that concentrate on unsuper-
vised learning methods. For example, Bianchi et. al [25] mix a
supervised Convolutional Neural Network (CNN) with a bio-
inspired unsupervised learning component. Similarly, Muñoz-
Martı́n et. al [26] present a novel architecture that combines
CNN with unsupervised learning by spike-timing-dependent
plasticity (STDP) to overcome the forgetting problem in
learning models.

In this paper, we propose a Continual Bayesian Learning
Network (CBLN) to address the forgetting problem and to
allow the model to adapt to new distributions and learn new
tasks. The CBLN trains an entirely new model for each task
and merges them into a master model. The master model finds
the similarities and distinctions among these sub-models. For
the similarities, the master model merges them and produces
a general representation. For the distinctive parameters, the
master model does not merge them and retains them. CBLN is
based on Bayesian Neural Networks (BNNs) [27], see Figure
1. Based on BNNs, we assume that the weights in our BNN
model have a Gaussian distribution and the covariance matrix
is diagonal. The distribution of the weights in different tasks
are independent of each other. Based on this assumption, we
can assume that the combined posterior distribution of all
the training tasks is a mixture of Gaussian distributions. We
then use an Expectation-Maximisation (EM) [28] algorithm to
approximate the posterior mixture distributions and remove
the components that are redundant or less significant. The
final distribution of the weights can be a Gaussian mixture
distribution with an arbitrary number of components. At the
test stage, we produce an epistemic uncertainty [29] measure
for each set of components. The set which has minimal
uncertainty will be used to give the final prediction.

In general, there are two main challenges while solving the
continual learning problem with dynamic methods: 1). How to
prevent the exponential increase in the number of parameters;
2). How to choose the parameters corresponding to the test
task. Firstly, we address the issue of the exponential increase
in the number of parameters by using variational learning and
a clustering algorithm. These allow us to decrease the number
of parameters significantly. Secondly, we address the issue
of choosing the parameters by using an uncertainty criterion.
Instead of averaging the prediction of different models cor-
responding to different tasks, or explicitly indicating the task
identified in the test state, the proposed model can evaluate
the uncertainty of the test points.
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II. CONTINUAL BAYESIAN LEARNING NETWORKS
(CBLN)

A. Training Process

The training process in CBLN is similar to BNNs. At the
beginning of the training for each task, we initialise all the
training parameters and train the model. However, at the end
of the training for each task, we store the solution for the
current task. We used the loss function shown in Equation
(1):

L(D, θ) = Eq(w|θ)[logP (D|w(i)]−
λ

2
∗DKL[q(w(i)|θ)|| logP (w(i)]

(1)

Where θ refers to the training parameters, w(i) is the ith
Monte Carlo sample [30] drawn from the variational posterior
q(w(i)|θ), D is the training data, λ is a hyper-parameter to
regular the training of models. The common used λ is 1.
We attempt to obtain weight parameters that have a similar
Gaussian distribution, which is close to the prior knowledge.
After training K tasks, we can obtain K sets of parameters
that construct the posterior mixture Gaussian distribution in
which each component is associated with a different task.

B. Merging Process

The merging process in this method reduces the components
in the posterior mixture distribution. Taking one mixture Gaus-
sian distribution as an example, we approximate the posterior
mixture distribution with an arbitrary number of Gaussian
distributions, see Equation (2), where K is the number of
tasks, n is the number of components in the final posterior
mixture distribution, q1:K is the posterior mixture distribution
with the component qk associated with kth task, α and β are
the weight parameters where α = 1

K , β = 1
n . In the extreme

case, when n = 1, this process can be interpreted as a special
case of IMM which merges several models into a single one.
When n = K, this process can be interpreted as a special
case of ensemble methods since there are K set of parameters
without being merged.

q1:K =

K∑
j

αqj ≈ q1:n =

n∑
j

βqj where n <= K (2)

To obtain the final posterior distribution q1:n and restrict the
sudden increase in the number of parameters, we approximate
the q1:K by using a Gaussian Mixture Model (GMM) [31]
with EM algorithm to get q∗1:K . We then remove the redundant
distributions in q∗1:K .

The EM algorithm contains an Estimation step (E-step) and
a Maximisation step (M-step). For each weight, we first sample
N data points x[1:N ] from the posterior mixture distribution
and initialise a GMM model with K components. Then, the
E-step estimates the probability of each data point generated
from each K random Gaussian distribution, see Equation (3).
For the ith data point xi, we assume that it is generated from
the mth Gaussian distribution and calculate the probability
πm. We can obtain a matrix of membership weights after
applying Equation (3) to each data point and determine the

mixture of Gaussian distributions. The M-step modifies the
parameters of these K random Gaussian distributions by
maximising the likelihood according to the weights generated
from the first step; see Equation (4).

πm(xi) =
αmN(xi|µm,Σm)∑K
j=1 αjN(xi|µj ,Σj)

(3)

αj =
1

N

N∑
i=1

πm(xi),

µj =

∑N
i=1 πm(xi)xi∑N
i=1 πm(xi)

,

Σ =

∑N
i=1 πm(xi)(xi − µj)(xi − µj)T∑N

i=1 πm(xi)

(4)

After the algorithm is converged, we can obtain an approxi-
mated posterior mixture distribution q∗1:K =

∑K
j α
∗q∗j , where∑K

j α
∗
j = 1. We then remove q∗j , if α∗j is smaller than a

threshold which is set to t = 1
2K . These distributions can be

regarded as redundant components which overfit the model.
Since the EM algorithm clusters similar data points into one
cluster, we can merge the distributions if they are similar to
each other and get the final posterior mixture distribution q1:n.
We use the trained GMM to cluster the mean value of each
component in q1:K . If the mean values of two distributions
are in the same cluster, these two distributions are merged
into a single Gaussian distribution. The training and merging
processes are recursive. In other words, the model saves
information about learned mixture distributions after learning
several tasks. When there is a new task, the model learns the
new tasks and then merges the new distributions with existing
Gaussian mixture distributions.

C. Testing Process

After the training and merging processes, we obtain sets of
parameters to construct the mixture posterior distribution with
several components. Since the CBLN contains the informa-
tion from different learned tasks, we need to identify which
information is suitable to give a prediction in the test state. We
obtain several Monte Carlo samples of the weights drawn from
the variational posterior to determine the uncertainty. For this
purpose, we calculate the variance of the predictive scores. The
set of parameters which has minimal uncertainty is chosen to
give the final prediction. We use the epistemic uncertainty in
our calculation. There are also other uncertainty measurements
such as computing the entropy of the predictive scores [32]
or Model Uncertainty as Measured by Mutual Information
(MUMMI) [33], see Equation (5). The trade-off between these
uncertainty measures is discussed in Section IV.

Entropy = H[y∗|x,D]

MUMMI = H[y∗|x,D] + Eq(w(i)|θ)[H[y∗|x,w(i)]]
(5)

Where y∗ is the predicted distribution, q(w(i)|θ) is the
variational posterior distribution, and x is the test input.
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III. EXPERIMENTS

We evaluated our method on the MNIST [34] image datasets
and the UCR Two Patterns time-series dataset [35]. MNIST is
a handwritten dataset consist of 10 digits. UCR is an archive
that contains batches of time-series datasets. The MNIST and
Two Patterns contain 60000 and 1000 training samples, 10000
and 4000 test samples, 10 and 4 classes respectively.

In our experiments, we do not re-access the samples after
the first training but let the model know that it needs to train for
a new task. However, the difference in our method compared
with the existing works is that we do not tell the model which
task is being tried. Furthermore, the output nodes refer to
the appropriate number of classes that the task is trained for.
The overlap between the output classes, which are trained at
different times, are also taken into consideration. This means
that at the time of the training for each task, we do not know
which other tasks the new samples could also be associated
with. The settings in our experiments are similar to [14], which
is more strict than other settings in the existing works. For
example, in contrast to our experiments, the other existing
experiments are allowed to re-access the training samples [17],
tell the model which task is the test data comes from [24], or
use different classifiers for different tasks [15].

In CBLN, we randomly choose 200 test data from the test
task and draw 200 Monte Carlo samples from the posterior
distribution and measured the uncertainty to decide which
parameters should be used in the model for each particular
task.

We compare our model with state-of-the-art methods includ-
ing Neural Networks (NN), Incremental Moment Matching
(IMM) [14] and Synaptic Intelligence (SI) [13]. In the IMM
model, we perform all the IMM algorithms combining with
all the transfer techniques mentioned in [14]. We also search
for the best hyper-parameters and choose the best accuracy
according to [14]. In the SI model, we search the best hyper-
parameters as well. For the SI, Multiple-Head (MH) approach
is used in the original paper. The MH approach is used to
divide the output layer into several sections. For different
tasks, each section will be activated in which the overlap
between different classes in different tasks is also avoided. MH
approach requires the model to be told about the test tasks.
We perform our evaluation based on the SI approach with and
without using the MH approach. In CBLN, we search for the
best model that can distinguish the test data. Since CBLN is
based on BNN, we use the BNN as a baseline for comparison.

A. Split MNIST

The first experiment is based on the split MNIST dataset.
This experiment is to evaluate the ability of the model to learn
new tasks continually. In this experiment, we split the MNIST
dataset into several sub-sets; e.g. when the number of tasks is
one, the networks are trained on the original MNIST; when the
number of tasks is two, the network is trained on the digits
0 to 4, 5 to 9 sequentially. The rest of the process follows
the same manner. As the number of tasks increasing, we keep
splitting the MNIST into multiple sub-sets. To implement the
other methods, we follow the optimal architecture described

in the original papers. In IMM, we use two hidden layers with
800 neurons each. In SI and NN, we use two hidden layers
with 250 neurons each. We use a BNN, which contains two
hidden layers with 25 neurons in each layer. The total number
of parameters in the BNN is 41070 (the number of parameters
in BNNs is doubled). In CBLN, we use two hidden layers
with only ten neurons each. To evaluate the performance,
we compute the average of test accuracy on all the tasks.
As shown in Figure 2a, the average test accuracy of all the
tasks in CBLN keeps increasing, while the performance of
other methods decreases over time. As long as we divide
the MNIST model training into several simpler tasks, the
performance of CBLN keeps increasing since CBLN can learn
the new tasks without forgetting the previously learned ones.
The accuracy after training five tasks sequentially reaches the
performance of SI with the MH approach. Shown in Figure
2a, the method using the MH approach avoids the interference
between the tasks with different classes at the output layer (i.e.
by interference we mean the situation in which learning a new
task causes changing the parameters in a way that the model
forgets the previously learned ones). However, we need to tell
the model which task the test data refers to in both training
and test processes. The grey line in Figure 2a represents the
accuracy of training a BNN with the original MNIST. The
performance of CBLN which continually learns five different
tasks outperforms the BNN.

The parameters used in CBLN are less than the BNN. Figure
2b illustrates the number of parameters used in CBLN. The
orange line shows the number of parameters before the merg-
ing process. The blue line shows the number of parameters
after the merging process, and the green lines illustrate the
number of merged parameters. The number of parameters used
while training five tasks is 35094, which is significantly lower
than the parameters used in other state-of-the-art methods.
The CBLN only doubles the number of parameters during the
experiment (which is 16140 at the beginning). The more tasks
are trained, the more parameters are merged because CBLN
finds the similarity among the solutions for all the tasks and
merges them.

Figure 2c illustrates the uncertainty measure in the test
process when the number of tasks is five. In each block, the
x-axis shows the prediction score for that particular task; the y-
axis shows the variance. If the density of highlighted points is
close to the lower right corner, the model has low uncertainty
and high prediction score. The blocks shown in the diagonal
line are the results with the lowest level of uncertainty for each
particular task.

B. Permuted MNIST

The second experiment is based on the permuted MNIST
to evaluate the ability of the model to learn new tasks incre-
mentally. This experiment is different from the split MNIST
experiment since the number of classes in each task is always
10. We follow the same setting in the previous work done
by Kirkpatrick et. al, Lee et. al in [12], [14]. The first task
is based on the original MNIST. In the rest of the tasks, we
shuffle all the pixels in the images with different random seeds.
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(a) Test Accuracy

(b) Number of Parameters

(c) Uncertainty

Fig. 2. Split Mnist Experiment. (a) Average of test accuracy of all the tasks.
(b) The number of parameters in CBLN before and after the merging process.
(c) Uncertainty of the model on the test tasks when the number of tasks is
set to 5.

(a) Test Accuracy

(b) Number of Parameters

Fig. 3. Permuted MNIST experiment.

Therefore, each task requires a different solution. However, the
difficulty level of all the tasks is similar. In this experiment,
CBLN contains two hidden layers, with each having 50
neurons.

C. Time-Series data

In the last experiment, we use the Two-Patterns dataset
from UCR time-series archive. In this experiment, CBLN uses
two hidden layers, each containing 200 neurons. The other
methods with two hidden layers, each containing 800 neurons
with Dropout layers. While training the CBLN model with the
entire Two-Patterns dataset, the best accuracy is around 0.8.
If we split the dataset into two parts, the accuracy is above
0.9. The accuracy of CBLN outperforms other methods by
continually learning Two-Patterns dataset divided into smaller
tasks rather than learning it as an entire model.

IV. DISCUSSION

Merged weights: We start the discussion with analysing
how the weights are merged. We visualise the weights in
the Split MNIST experiment that was carried out with two
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(a) Test Accuracy

(b) Number of Parameters

(c) Uncertainty Changes

Fig. 4. Time Series Experiment. (a) Average of test accuracy of all the tasks.
(b) The number of parameters in CBLN before and after the merging process.
(c) Uncertainty changes before and after the merging process.

(a) Task 1

(b) Task 2

(c) Task 1 and Task 2

Fig. 5. From split MNIST experiments. Orange points represent the merged
weights. (a) Scatter plot of the weights in Task 1. (b) Scatter plot of the
weights in Task 2. (c) Density of the merged weights for task 1 and 2.
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(a) Absolute Difference

(b) Time Cost

(c) Variance. Correct: 4/10

Fig. 6. Based on the split MNIST experiment. (a) Absolute difference between
the test accuracy before and after the merging process. The maximum value
in the y-axis is 0.01. (b) The running time of merging and testing process. 10
and 25 are the number of neurons in each layer. (c) Uncertainty of test task
when the number of tasks is ten. Each task contains only one class.

TABLE I
COMPARISON THE PARALLEL LEARNING WITH SEQUENTIAL LEARNING.

Parallel Sequential
Split MNIST 97.14% 97.69%

Permuted MNIST 96.02% 95.86%

tasks. Shown in Figure 5, the orange points represent the
merged weights. In Figure 5a,5b, the x-axis shows the mean of
weights; the y-axis shows the variance of the weights. Figure
5c shows the density of the merged parameters. If the mean
of the weight distribution is closer to 0, the weight has a
larger chance to be merged because our prior knowledge is
a Gaussian distribution with a mean of 0. For the weights
which the mean values are higher, they have less chance to be
merged because these weights can be regarded as to have larger
contributions to finding the solution for the training tasks. For
each task, the solution could be different. Hence these weights
are the distinctions among different tasks.

Sequential Updating: The settings of experiments above
are the same as described in Lee et. al [14]. These experiments
inform the model about the number of tasks is it will perform.
The experiments also merge all into a single model. This
strategy can be viewed as training the tasks in parallel. We
perform further evaluations on giving the tasks in sequential
order. In this case, the model learns a new task and merges
it with existing knowledge at each time slot. We train the 5
tasks of split MNIST and Permuted MNIST sequentially and
compare to the parallel learning manner. The results are shown
in Table I.

Ablation study: Inspired by [22], we have evaluated our
model with and without the merging process. To evaluate the
performance decreases after merging the models, we calculate
the absolute difference of test accuracy before and after the
merging process. Shown in Figure 6a, the absolute difference
is almost 0. Therefore, all the similar parameters have been
merged perfectly, and the distinct parameters are maintained
very well. To evaluate the uncertainty changes before and after
the merging process, we track the uncertainty changes in the
time-series experiment. Shown in Figure 4c, the uncertainties
are decreased after the merging process, but it can still help
the model to choose the correct parameters to predict the test
data. Furthermore, the merging process significantly decreases
the number of parameters needed to learn a mode for multiple
tasks as shown in Figure 2b,3b,4b. The merging process can
significantly prevent the exponential increase in the number
of parameters required to learn the model without degrading
the performance. The main advantages of CBLN compared
with other dynamic methods are choosing suitable parameters
to classify the test samples and preventing an exponential
increase in the number of parameters. We describe Progressive
Neural Networks (PNNs) as an example. In PNNs, if the initial
number of parameters in the model is N , after learning K
tasks, the number of parameters in the model increases to
N ∗K. The number of parameters needed are shown in orange
lines in Figure 2b,3b,4b. Furthermore, the model needs to be
informed about which task is currently given in advance at the
test stage.
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Complexity: We then evaluate the time complexity of the
merging and testing process with respect to the initial neuron
resources. We ran the experiments on a Macbook Pro (2015)
with 2.7 GHz Intel Core i5. Shown in Figure 6b, where 10
represents the CBLN contains two hidden layers with ten
neurons each, 25 represents the CBLN contains two hidden
layers with 25 neurons each. CBLN is time-consuming during
the test state, especially when the number of trained tasks
grows. To produce the uncertainty measure, the computational
complexity of CBLN is O(n2) while the BNNs are O(n) for
each test data. We assume the model does not know in advance
which task the test data is associated with. This means that the
model needs to identify and chooses the correct solution for
each test task. This is a key advantage of CBLN compared
to other existing methods that assume the model knows in
advance which test task is being performed; e.g. [13], [15],
[24]. The test stage could be the same as a conventional
neural network if we informed the model which task is being
tested. However, in real-world applications, this information
is not available to the model in advance. The CBLN uses the
uncertainty measure to choose the appropriate learned solution
for each particular task. The number of tasks does not have
much effect on the merging process. The main effect on the
merging process is the number of parameters of the model
at the initialisation. According to our experiments, we can
initialise CBLN with a much smaller number of parameters
to solve a complex task as long as it can solve it as a set of
simpler tasks. Furthermore, CBLN does not need to evaluate
the importance of parameters by measures such as computing
Fisher Information (second derivative of loss function) [12],
[14] which are computationally expensive and intractable in
large models. In summary, the testing process of CBLN is
increasing with respect to the number of tasks having been
learned; the merging process of CBLN is increasing with
respect to the initial neuron resources.

Uncertainty measure: In this section, we discuss the epis-
temic uncertainty measure that is computed by the model given
test data. The CBLN uses epistemic uncertainty measure to
identify the current task form the distribution of training data.
We evaluate the variance, entropy and MUMMI in different
experiments. To see which measurement of uncertainty is
suitable to be used in CBLN for choosing the learned solution,
we run each experiment for ten times and calculate the average
selection rate. Shown in Table II, in the permuted MNIST
experiments, although the number of tasks is increasing, the
model can choose the correct solutions. In the split MNIST
experiment, the rate of uncertainty decreases, if the number of
tasks increases. In other words, the model cannot distinguish
the tasks that the test data is associated with when the number
of classes in each task decrease. We analyse this as a Rare
Class Scenario in Epistemic Uncertainty (RCSEU). RCSEU
means that when the number of classes in each task is very
small, the model will overfit the training data quickly and will
become over-confident with the result of classifying the test
data.

To illustrate the RCSEU, we visualise the uncertainty in-
formation in the split MNIST experiment, when the number
of tasks is ten. In Figure 6c, the blue blocks are the correct

TABLE II
THE AVERAGE RATE OF CORRECT SELECTION.

Experiment Split MNIST Permuted
Number of Tasks 2 3 4 5 10 10

Variance 1.0 1.0 0.95 0.866 0.3 1.0
Entropy 1.0 0.8 0.7 0.736 0.29 1.0

MUMMI 1.0 0.87 0.925 0.894 0.32 1.0

solution (in the diagonal line), the green blocks represent that
the model identify the test data correctly and the red blocks
represent that the model identifies the test data incorrectly and
the black blocks represent very small uncertainty.

V. CONCLUSIONS

This paper proposes the Continual Bayesian Learning Net-
works (CBLN) to solve the forgetting problem in contin-
ual learning scenarios. CBLN is based on Bayesian Neural
Networks (BNNs). Different from BNNs, the weights in the
CBLN are mixture Gaussian distributions with an arbitrary
number of distributions. The CBLN can solve a complex task
by dividing it into several simpler tasks and learning each
of them sequentially. Since CBLN uses mixture Gaussian
distribution models in its network, the number of addition-
ally required parameters decreases as the number of tasks
increases. The CBLN identifies which solution should be
used for which test data by using an uncertainty measure.
More importantly, our proposed model can overcome the
forgetting problem in learning models without requiring to re-
access previously seen training samples. We have evaluated
our method based on MNIST image and UCR time-series
datasets and have compared the results with the state-of-
the-art models. In the split MNIST experiment, our method
outperforms the Incremental Moment Matching (IMM) model
by 25%, and the Synaptic Intelligence (SI) model by 80%.
In the permuted MNIST experiment, our method outperforms
IMM by 16% and achieves the same accuracy as the SI model.
In the time-Series experiment, our method outperforms IMM
by 40% and the SI model by 47%. The future work will focus
on developing solutions to let the model determine when it
needs to train for a new task given a series of samples. This
will be achieved by analysing the drifts and changes in the
distribution of the training data. The work will also focus on
developing methods to group the neurons during the merging
process to construct regional functional areas in the network
specific to a set of similar tasks. This will allow us to reduce
the complexity of the network and create more scalable and
generalisable models.
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[32] A. Rényi et al., “On measures of entropy and information,” in Proceed-
ings of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Contributions to the Theory of Statistics. The
Regents of the University of California, 1961.

[33] A. Rawat, M. Wistuba, and M.-I. Nicolae, “Adversarial phenomenon in
the eyes of bayesian deep learning,” arXiv preprint arXiv:1711.08244,
2017.

[34] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist,
vol. 2, 2010.

[35] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista, “The ucr time series classification archive,” July 2015, doi:
10.1109/JAS.2019.1911747,.


	I Introduction
	II Continual Bayesian Learning Networks (CBLN)
	II-A Training Process
	II-B Merging Process
	II-C Testing Process

	III Experiments
	III-A Split MNIST
	III-B Permuted MNIST
	III-C Time-Series data

	IV Discussion
	V Conclusions
	References

