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Attention 1in Natural Language Processing

Andrea Galassi™~, Marco Lippi~, and Paolo Torroni

Abstract— Attention is an increasingly popular mechanism
used in a wide range of neural architectures. The mechanism
itself has been realized in a variety of formats. However,
because of the fast-paced advances in this domain, a systematic
overview of attention is still missing. In this article, we define
a unified model for attention architectures in natural language
processing, with a focus on those designed to work with vector
representations of the textual data. We propose a taxonomy of
attention models according to four dimensions: the representation
of the input, the compatibility function, the distribution function,
and the multiplicity of the input and/or output. We present the
examples of how prior information can be exploited in attention
models and discuss ongoing research efforts and open challenges
in the area, providing the first extensive categorization of the
vast body of literature in this exciting domain.

Index Terms—Natural language processing (NLP), neural
attention, neural networks, review, survey.

I. INTRODUCTION

N MANY problems that involve the processing of natural

language, the elements composing the source text are
characterized by having each a different relevance to the task
at hand. For instance, in aspect-based sentiment analysis, cue
words, such as “good” or “bad,” could be relevant to some
aspects under consideration, but not to others. In machine
translation, some words in the source text could be irrelevant in
the translation of the next word. In a visual question-answering
task, background pixels could be irrelevant in answering a
question regarding an object in the foreground but relevant to
questions regarding the scenery.

Arguably, effective solutions to such problems should factor
in a notion of relevance, so as to focus the computational
resources on a restricted set of important elements. One
possible approach would be to tailor solutions to the specific
genre at hand, in order to better exploit known regularities
of the input, by feature engineering. For example, in the
argumentative analysis of persuasive essays, one could decide
to give special emphasis to the final sentence. However, such
an approach is not always viable, especially if the input is
long or very information-rich, such as in text summarization,
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where the output is the condensed version of a possibly lengthy
text sequence. Another approach of increasing popularity
amounts to machine learning the relevance of input elements.
In that way, neural architectures could automatically weigh the
relevance of any region of the input and take such a weight
into account while performing the main task. The commonest
solution to this problem is a mechanism known as attention.

Attention was first introduced in natural language process-
ing (NLP) for machine translation tasks by Bahdanau et al. [2].
However, the idea of glimpses had already been proposed in
computer vision by Larochelle and Hinton [3], following the
observation that biological retinas fixate on relevant parts of
the optic array, while resolution falls off rapidly with eccentric-
ity. The term visual attention became especially popular after
Mnih et al. [4] significantly outperformed the state of the art in
several image classification tasks as well as in dynamic visual
control problems such as object tracking due to an architecture
that could adaptively select and then process a sequence of
regions or locations at high resolution and use a progressively
lower resolution for further pixels.

Besides offering a performance gain, the attention mecha-
nism can also be used as a tool for interpreting the behavior of
neural architectures, which are notoriously difficult to under-
stand. Indeed, neural networks are subsymbolic architectures;
therefore, the knowledge they gather is stored in numeric
elements that do not provide any means of interpretation
by themselves. It then becomes hard if not impossible to
pinpoint the reasons behind the wrong output of a neural
architecture. Interestingly, attention could provide a key to
partially interpret and explain neural network behavior [5]-[9],
even if it cannot be considered a reliable means of explana-
tion [10], [11]. For instance, the weights computed by attention
could point us to relevant information discarded by the neural
network or to irrelevant elements of the input source that have
been factored in and could explain a surprising output of the
neural network.

Therefore, visual highlights of attention weights could be
instrumental in analyzing the outcome of neural networks,
and a number of specific tools have been devised for such a
visualization [12], [13]. Fig. 1 shows an example of attention
visualization in the context of aspect-based sentiment analysis.

For all these reasons, attention has become an increasingly
common ingredient of neural architectures for NLP [14], [15].
Table I presents a nonexhaustive list of neural architectures
where the introduction of an attention mechanism has brought
about a significant gain. Works are grouped by the NLP
tasks they address. The spectrum of tasks involved is remark-
ably broad. Besides NLP and computer vision [16]-[18],
attentive models have been successfully adopted in many
other different fields, such as speech recognition [19]-[21],
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Task: Hotel location

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was EXGEIIBHL , let us book in at 8:30am ! for and , this ca n’t be , but it is

Task: Hotel cleanliness

you get what you pay for . not the IO but bed was
though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it

is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

and so was [FEEHFGGHA . bring your own towels

Task: Hotel service

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thifi . service was EXEEIEHE § let Us book in at 8:30am ! for location and price , this ca n’t be beaten , but it is cheap
for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Fig. 1.

Example of attention visualization for an aspect-based sentiment analysis task, from [1, Fig. 6]. Words are highlighted according to attention scores.

Phrases in bold are the words considered relevant for the task or human rationales.

TABLE I

NONEXHAUSTIVE LIST OF WORKS THAT EXPLOIT ATTENTION, GROUPED
BY THE TASK(S) ADDRESSED

Task Addressed

Related Works

Machine Translation
Translation Quality Estimation

Text Classification

[2, 6, 8, 29-48, 48-50]
[51]

[7, 8, 10, 11, 52, 53]

Abusive content detection [54]

Text Summarization [41, 55-58]
Language Modelling [59-61]
Question Answering [10, 47, 59, 62-75]
Question Answering over Knowledge Base  [76]
Morphology

Pun Recognition [77]
Multimodal Tasks [78]

Image Captioning [16, 79]
Visual Question Answering [80-82]
Task-oriented Language Grounding [83]
Information Extraction

Coreference Resolution [84, 85]
Named Entity Recognition [51, 86]
Optical Character Recognition Correction [87]
Semantic

Entity Disambiguation [88]

Natural Language Inference [8, 10, 47, 89-96]
Semantic Relatedness [93]
Semantic Role Labelling [97, 98]
Sentence Similarity [96]

Textual Entailment [75, 99, 100]
Word Sense Disambiguation [101]
Syntax

Constituency Parsing [102, 103]

Dependency Parsing

Sentiment Analysis
Agreement/Disagreement Identification

[51, 104, 105]

[1, 7,93, 95, 100, 106-120]
[121]

Argumentation Mining [57, 122-125]
Emoji prediction [126]
Emotion Cause Analysis [127, 128]

Emotion Classification

[115]

recommendation [22], [23], time-series analysis [24], [25],
games [26], and mathematical problems [27], [28].

In NLP, after an initial exploration by a number of seminal
papers [2], [59], a fast-paced development of new attention
models and attentive architectures ensued, resulting in a highly

diversified architectural landscape. Because of, and adding to,

the overall complexity, it is not unheard of different authors
who have been independently following similar intuitions lead-
ing to the development of almost identical attention models.
For instance, the concepts of inner attention [68] and word
attention [41] are arguably one and the same. Unsurprisingly,
the same terms have been introduced by different authors to
define different concepts, thus further adding to the ambiguity
in the literature. For example, the term context vector is used
with different meanings by Bahdanau er al. [2], Yang et al
[52], and Wang et al. [129].

In this article, we offer a systematic overview of attention
models developed for NLP. To this end, we provide a general
model of attention for NLP tasks and use it to chart the
major research activities in this area. We also introduce a
taxonomy that describes the existing approaches along four
dimensions: input representation, compatibility function, dis-
tribution function, and input/output multiplicity. To the best
of our knowledge, this is the first taxonomy of attention
models. Accordingly, we provide a succinct description of each
attention model, compare the models with one another, and
offer insights on their use. Moreover, we present the examples
regarding the use of prior information in unison with attention,
debate about the possible future uses of attention, and describe
some interesting open challenges.

We restrict our analysis to attentive architectures designed
to work with vector representation of data, as it typically is
the case in NLP. Readers interested in attention models for
tasks where data have a graphical representation may refer to
Lee et al. [130].

What this survey does not offer is a comprehensive account
of all the neural architectures for NLP (for an excellent
overview, see [131]) or of all the neural architectures for NLP
that uses an attention mechanism. This would be impossible
and would rapidly become obsolete because of the sheer
volume of new articles featuring architectures that increasingly
rely on such a mechanism. Moreover, our purpose is to
produce a synthesis and a critical outlook rather than a flat
listing of research activities. For the same reason, we do not
offer a quantitative evaluation of different types of attention
mechanisms since such mechanisms are generally embedded
in larger neural network architectures devised to address
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specific tasks, and it would be pointless in many cases to
attempt comparisons using different standards. Even for a
single specific NLP task, a fair evaluation of different attention
models would require experimentation with multiple neural
architectures, extensive hyperparameter tuning, and validation
over a variety of benchmarks. However, attention can be
applied to a multiplicity of tasks, and there are no data
sets that would meaningfully cover such a variety of tasks.
An empirical evaluation is thus beyond the scope of this
article. There are, however, a number of experimental studies
focused on particular NLP tasks, including machine transla-
tion [37], [42], [48], [132], argumentation mining [125], text
summarization [58], and sentiment analysis [7]. It is worth-
while remarking that, on several occasions, attention-based
approaches enabled a dramatic development of entire research
lines. In some cases, such a development has produced an
immediate performance boost. This was the case, for example,
with the transformer [36] for sequence-to-sequence annotation,
as well as with BERT [60], currently among the most popular
architectures for the creation of embeddings. In other cases,
the impact of attention-based models was even greater, paving
the way to radically new approaches for some tasks. This
was the influence of Bahdanau er al.’s work [2] to the field
of machine translation. Likewise, the expressive power of
memory networks [59] significantly contributed to the idea
of using deep networks for reasoning tasks.

This survey is structured as follows. In Section II, we define
a general model of attention and describe its components.
We use a well-known machine-translation architecture intro-
duced by Bahdanau et al. [2] as an illustration and an instance
of the general model. In Section III, we elaborate on the
uses of attention in various NLP tasks. Section IV presents
our taxonomy of attention models. Section V discusses how
attention can be combined with knowledge about the task or
the data. Section VI is devoted to open challenges, current
trends, and future directions. Section VII concludes this article.

II. ATTENTION FUNCTION

The attention mechanism is a part of a neural architecture
that enables to dynamically highlight relevant features of the
input data, which, in NLP, is typically a sequence of textual
elements. It can be applied directly to the raw input or to its
higher level representation. The core idea behind attention is to
compute a weight distribution on the input sequence, assigning
higher values to more relevant elements.

To illustrate, we briefly describe a classic attention archi-
tecture, called RNNsearch [2]. We chose RNNsearch because
of its historical significance and for its simplicity with respect
to other structures that we will describe further on.

A. Example for Machine Translation and Alignment

RNNsearch uses attention for machine translation. The
objective is to compute an output sequence y that is a
translation of an input sequence x. The architecture consists
of an encoder followed by a decoder, as shown in Fig. 2.

The encoder is a bidirectional recurrent neural network
(BiRNN) [133] that computes an annotation term k; for every
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Fig. 2. Architecture of RNNsearch [2] (left) and its attention model (right).
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The decoder consists of two cascading elements: the atten-
tion function and an RNN. At each time step ¢, the attention
function produces an embedding ¢; of the input sequence,
called a context vector. The subsequent RNN, characterized
by a hidden state s;, computes from such an embedding
a probability distribution over all possible output symbols,
pointing to the most probable symbol y;

.,hT) ZBiRNN()Cl, ...,)CT). (1)

P(YI|y19~«~,ytflax)ZRNN(Ct)~ (2)

The context vector is obtained as follows. At each time
step ¢, the attention function takes as input the previous hidden
state of the RNN s;_; and the annotations k1, ..., Ar. Such
inputs are processed through an alignment model [see (3)]
to obtain a set of scalar values e;; that score the matching
between the inputs around position i and the outputs around
position 7. These scores are then normalized through a softmax
function, so as to obtain a set of weights a;; [see (4)]

erj = f(s¢-1,hi) (3)

g = ) @

7 .
Zj:l exp(er;)
Finally, the context vector ¢; is computed as a weighted
sum of the annotations k; based on their weights a;;

Cr = Za,ihi. (5)
i

Quoting Bahdanau et al. [2], the use of attention “relieve[s]
the encoder from the burden of having to encode all informa-
tion in the source sentence into a fixed-length vector. With this
new approach, the information can be spread throughout the
sequence of annotations, which can be selectively retrieved by
the decoder accordingly.”

B. Unified Attention Model

The characteristics of an attention model depend on the
structure of the data whereupon they operate and on the desired
output structure. The unified model we propose is based on
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TABLE 11
NOTATION
Symbol Name Definition
x Input sequence Sequence of textual elements constituting the raw input.
K Keys Matrix of dj, vectors (k;) of size nj, whereupon attention weights are computed: K € Rk *dk,
\ % Values Matrix of dj, vectors (v;) of size m,, whereupon attention is applied: V' € R™v X9k, Each v; and its
corresponding k; offer two, possibly different, interpretations of the same entity.
q Query Vector of size ng, or sequence thereof, in which respect attention is computed: g € R™4.
kaf qgaf  Annotation functions Functions that encode the input sequence and query, producing K, g and V respectively.
vaf
e Energy scores Vector of size dj, whose scalar elements (energy “scores”, e;) represent the relevance of the corresponding k;,
according to the compatibility function: e € R%.
a Attention weights Vector of size dj,, whose scalar elements (attention “weights”, a;) represent the relevance of the corresponding
k; according to the attention model: a € R .
f Compatibility function  Function that evaluates the relevance of K with respect to g, returning a vector of energy scores: e = f(K, q).
g Distribution function Function that computes the attention weights from the energy scores: a = g(e).
zZ Weighted values Matrix of dj, vectors (z;) of size m.,, representing the application of @ to V: Z € R™v X%k
c Context vector Vector of size n,, offering a compact representation of Z: ¢ € R™v.
background knowledge, and so on. It can also take the form of
a matrix rather than a vector. For example, in their document
attentive reader, Sordoni et al. [67] made use of two query
k; vectors.
From the keys and query, a vector e of di energy scores e;
o R ] ) is computed through a compatibility function f
K e Rwxdr | Compatibility Distribution Attention weights
Keys e= f(q.K). ©6)
Fig. 3. Core attention model. Function f corresponds to RNNsearch’s alignment model

and extends the models proposed by Vaswani et al. [36] and
Daniluk et al. [61]. It comprises a core part shared by almost
the totality of the models found in the surveyed literature,
as well as some additional components that, although not
universally present, are still found in most literature models.

Fig. 3 shows the core attention model, which is part of the
general model shown in Fig. 4. Table II lists the key terms
and symbols. The core of the attention mechanism maps a
sequence K of dj vectors k;, the keys, to a distribution a
of dy weights a;. K encodes the data features whereupon
attention is computed. For instance, K may be word or
character embeddings of a document, or the internal states
of a recurrent architecture, as it happens with the annotation
h; in RNNsearch. In some cases, K could include multiple
features or representations of the same object (e.g., both
one-hot encoding and embedding of a word) or even—if the
task calls for it—representations of entire documents.

More often than not, another input element ¢, called query,l
is used as a reference when computing the attention distribu-
tion. In that case, the attention mechanism will give emphasis
to the input elements relevant to the task according to ¢. If no
query is defined, attention will give emphasis to the elements
inherently relevant to the task at hand. In RNNsearch, for
instance, ¢ is a single element, namely, the RNN hidden state
s¢—1. In other architectures, ¢ may represent different entities:
embeddings of actual textual queries, contextual information,

IThe concept of “query” in attention models should not be confused with
that used in tasks like question answering or information retrieval. In our
model, the “query” is part of a general architecture and is task-independent.

and to what other authors call energy function [43]. Energy
scores are then transformed into attention weights using what
we call a distribution function g

a=ge). (7

Such weights are the outcome of the core attention mech-
anism. The commonest distribution function is the softmax
function, as in RNNsearch, which normalizes all the scores to
a probability distribution. Weights represent the relevance of
each element to the given task, with respect to ¢ and K.

The computation of these weights may already be sufficient
for some tasks, such as the classification task addressed by Cui
et al. [70]. Nevertheless, many tasks require the computation
of new representation of the keys. In such cases, it is common
to have another input element; a sequence V of di vectors
v;, the values, representing the data whereupon the attention
computed from K and ¢ is to be applied. Each element of V
corresponds to one and only one element of K, and the two can
be seen as different representations of the same data. Indeed,
many architectures, including RNNsearch, do not distinguish
between K and V. The distinction between keys and values
was introduced by Daniluk et al. [61], who use different repre-
sentations of the input for computing the attention distribution
and the contextual information.

V and a are thus combined to obtain a new set Z of
weighted representations of V [see (8)], which are then
merged together so as to produce a compact representation
of Z usually called the context vector ¢ [see (9)].> The

2Although most authors use this terminology, we shall remark that Yang
et al. [52], Wang et al. [129], and other authors used the term context vector
to refer to other elements of the attention architecture.
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Fig. 4. General attention model.

commonest way of obtaining ¢ from Z is by summation.
However, alternatives have been proposed, including gating
functions [93]. Nevertheless, ¢ will be mainly determined by
values associated with higher attention weights

Zi = a;v; (8)
di
c = Zz,-. 9)

What we described so far was a synthesis of the most
frequent architectural choices made in the design of attentive
architectures. Other options will be explored in Section IV-D.

C. Deterministic Versus Probabilistic Attention

Before we proceed, a brief remark about some relevant
naming conventions is in order. The attention model described
so far is sometimes described in the literature as a mapping
with a probabilistic interpretation since the use of a softmax
normalization allows one to interpret the attention weights
as a probability distribution function (see [91]). Accordingly,
some recent literature defines as deterministic attention mod-
els [134], [135] and those models where context words,
whereupon attention is focused, are deterministically selected,
for example, by using the constituency parse tree of the
input sentence. However, other authors described the first
model as deterministic (soft) attention, to contrast it with
stochastic (hard) attention, where the probability distribution
over weights is used to hardly sample a single input as context
vector ¢, in particular following a reinforcement learning
strategy [16]. If the weights a encode a probability distrib-
ution, the stochastic attention model differs from our general
model for the absence of (8) and (9) that are replaced by the
following equations:

§ ~ Multinoulli({a;}) (10)
dk
¢ =Y §v; with§ € {0,1}. (11)

i=1
To avoid any potential confusion, in the remainder of this arti-

cle, we will abstain from characterizing the attention models
as deterministic, probabilistic, or stochastic.

TABLE III
POSSIBLE USES OF ATTENTION AND EXAMPLES OF RELEVANT TASK

Use Tasks

Multimodal tasks

Visual question answering
Semantic role labelling

Feature selection
Auxiliary task

Machine Translation
Sentiment Analysis
Information Extraction

Contextual embedding creation

Sequence-to-sequence annotation Machine Translation

Word selection Dependency Parsing
Cloze Question Answering

Multiple input processing Question Answering

III. USES OF ATTENTION

Attention enables us to estimate the relevance of the input
elements as well as to combine said elements into a com-
pact representation—the context vector—that condenses the
characteristics of the most relevant elements. Because the
context vector is smaller than the original input, it requires
fewer computational resources to be processed at later stages,
yielding a computational gain.

We summarize possible uses of attention and the tasks in
which they are relevant in Table III.

For tasks such as document classification, where usually
there is only K in input and no query, the attention mechanism
can be seen as an instrument to encode the input into a compact
form. The computation of such an embedding can be seen as
a form of feature selection, and as such, it can be applied
to any set of features sharing the same representation. This
applies to cases where features come from different domains
as in multimodal tasks [78] or from different levels of a neural
architecture [38] or where they simply represent different
aspects of the input document [136]. Similarly, attention can
also be exploited as an auxiliary task during training so
that specific features can be modeled via a multitask setting.
This holds for several scenarios, such as visual question
answering [137], domain classification for natural language
understanding [138], and semantic role labeling [97].
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When the generation of a text sequence is required, as in
machine translation, attention enables us to make use of a
dynamic representation of the input sequence, whereby the
whole input does not have to be encoded into a single vector.
At each time step, the encoding is tailored according to the
task, and in particular, g represents an embedding of the
previous state of the decoder. More generally, the possibility to
perform attention with respect to a query g allows us to create
representations of the input that depend on the task context,
creating specialized embeddings. This is particularly useful in
tasks, such as sentiment analysis and information extraction.

Since attention can create contextual representations of an
element, it can also be used to build sequence-to-sequence
annotators, without resorting to RNNs or convolutional neural
networks (CNNs), as suggested by Vaswani er al [36],
who rely on an attention mechanism to obtain a whole
encoder/decoder architecture.

Attention can also be used as a tool for selecting specific
words. This could be the case, for example, in dependence
parsing [97] and in cloze question-answering tasks [66], [70].
In the former case, attention can be applied to a sentence in
order to predict dependences. In the latter, attention can be
applied to a textual document or to a vocabulary to perform a
classification among the words.

Finally, attention can come in handy when multiple inter-
acting input sequences have to be considered in combination.
In tasks such as question answering, where the input consists
of two textual sequences—for instance, the question and
the document or the question and the possible answers—an
input encoding can be obtained by considering the mutual
interactions between the elements of such sequences, rather
than by applying a more rigid a priori defined model.

IV. TAXONOMY FOR ATTENTION MODELS

Attention models can be described on the basis of the
following orthogonal dimensions: the nature of inputs (see
Section IV-A), the compatibility function (see Section IV-B),
the distribution function (see Section IV-C), and the number
of distinct inputs/outputs, which we refer to as “multiplic-
ity” (see Section IV-D). Moreover, attention modules can
themselves be used inside larger attention models to obtain
complex architectures such as hierarchical-input models (see
Section IV-A2) or in some multiple-input coattention models
(see Section I1V-D2).

A. Input Representation

In NLP-related tasks, generally, K and V are representations
of parts of documents, such as sequences of characters, words,
or sentences. These components are usually embedded into
continuous vector representations and then processed through
key/value annotation functions (called kaf and vaf in Fig. 4),
so as to obtain a hidden representation resulting in K and V.
Typical annotation functions are RNN layers such as gated
recurrent units (GRUs), long short-term memory networks
(LSTMs), and CNN:ss. In this way, k; and v; represent an input
element relative to its local context. If the layers in charge of
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annotation are trained together with the attention model, they
can learn to encode information useful to the attention model.

Alternatively, k;/v; can be taken to represent each input
element in isolation, rather than in context. For instance, they
could be a one-hot encoding of words or characters or a
pretrained word embedding. This results in an application of
the attention mechanism directly to the raw inputs, which
is a model known as inner attention [68]. Such a model
has proven to be effective by several authors, who have
exploited it in different fashions [36], [41], [54], [116]. The
resulting architecture has a smaller number of layers and
hyperparameters, which reduces the computational resources
needed for training.

K can also represent a single element of the input sequence.
This is the case, for example, in the work by Bapna et al. [38],
whose attention architecture operates on different encodings
of the same element, obtained by the subsequent application
of RNN layers. The context embeddings obtained for all
components individually can then be concatenated, producing
a new representation of the document that encodes the most
relevant representation of each component for the given task.
It would also be possible to aggregate each key or value with
its neighbors, by computing their average or sum [128].

We have so far considered the input to be a sequence of
characters, words, or sentences, which is usually the case.
However, the input can also be other things, such as a
juxtaposition of features or relevant aspects of the same textual
element. For instance, Li et al. [56] and Zadeh et al. [78]
considered the inputs composed of different sources, and in
[136] and [139], the input represents different aspects of the
same document. In that case, embeddings of the input can be
collated together and fed into an attention model as multiple
keys, as long as the embeddings share the same representation.
This allows us to highlight the most relevant elements of the
inputs and operate a feature selection, leading to a possible
reduction of the dimensionality of the representation via the
context embedding ¢ produced by the attention mechanism.
Interestingly, Li et al. [120] proposed a model in which the
textual input sequence is mixed with the output of the attention
model. Their truncated history-attention model iterates the
computation of attention on top of a bi-LSTM. At each step,
the bi-LSTM hidden states are used as keys and values, while
the context vectors computed in the previous steps act as a
query.

We shall now explain in more detail two successful struc-
tures, which have become well-established building blocks
of neural approaches for NLP, namely, self-attention and
hierarchical-input architectures.

1) Self-Attention: We made a distinction between two input
sources: the input sequence, represented by K and V, and
the query, represented by g. However, some architectures
compute attention only based on the input sequence. These
architectures are known as self-attentive or intraattentive mod-
els. We shall remark, however, that these terms are used
to indicate many different approaches. The commonest one
amounts to the application of multiple steps of attention to
a vector K, using the elements k; of the same vector as
query at each step [18], [36]. At each step, the weights a!
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Fig. 5. Example of use of attention in a sequence-to-sequence model.

represent the relevance of k; with respect to k;, yielding
dg separate context embeddings, ¢, one per key. Attention
could thus be used as a sequence-to-sequence model, as an
alternative to CNNs or RNNs (see Fig. 5). In this way, each
element of the new sequence may be influenced by elements of
the whole input, incorporating contextual information without
any locality boundaries. This is especially interesting since
it could overcome a well-known shortcoming of RNNs: their
limited ability of modeling long-range dependences [140]. For
each element k;, the resulting distribution of the weights a’
should give more emphasis to words that strongly relate to
k;. The analysis of these distributions will, therefore, provide
information regarding the relationship between the elements
inside the sequence. Modern text-sequence generation systems
often rely on this approach. Another possibility is to construct
a single query element ¢ from the keys through a pooling
operation. Furthermore, the same input sequence could be
used both as keys K and query @, applying a technique
we will describe in Section IV-D2, known as coattention.
Other self-attentive approaches, such as [52] and [100], are
characterized by the complete absence of any query term
¢, which results in simplified compatibility functions (see
Section IV-B).

2) Hierarchical-Input Architectures: In some tasks, portions
of input data can be meaningfully grouped together into higher
level structures, where hierarchical-input attention models can
be exploited to subsequently apply multiple attention modules
at different levels of the composition, as shown in Fig. 6.

Consider, for instance, data naturally associated with a
two-level semantic structure, such as characters (the “micro”
elements) forming words (the “macro” elements) or words
forming sentences. Attention can be first applied to the rep-
resentations of micro elements k;, so as to build aggregate
representations k; of the macro elements, such as context
vectors. Attention could then be applied again to the sequence
of macroelement embeddings, in order to compute an embed-
ding for the whole document D. With this model, attention
first highlights the most relevant micro elements within each
macro element and, then, the most relevant macro elements in
the document. For instance, Yang et al. [52] applied attention
first at word level, for each sentence in turn, to compute
sentence embeddings. Then, they applied attention again on
the sentence embeddings to obtain a document representation.
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With reference to the model introduced in Section II, embed-
dings are computed for each sentence in D, and then, all
such embeddings are used together as keys K to compute the
document-level weights a and eventually D’s context vector c.
The hierarchy can be extended further. For instance, Wu et al.
[141] added another layer on top, applying attention also at
the document level.

If representations for both micro- and macro-level elements
are available, one can compute attention on one level and
then exploit the result as a key or query to compute atten-
tion on the other, yielding two different microrepresenta-
tion/macrorepresentation of D. In this way, attention enables
us to identify the most relevant elements for the task at both
levels. The attention-via-attention model by Zhao and Zhang
[43] defines a hierarchy with characters at the micro level and
words at the macro level. Both characters and words act as
keys. Attention is first computed on word embeddings Kw,
thus obtaining a document representation in the form of a
context vector cy, which in turn acts as a query ¢ to guide the
application of character-level attention to the keys (character
embeddings) K¢, yielding a context vector ¢ for D.

Ma et al. [113] identified a single “target” macro-object T
as a set of words, which do not necessarily have to form a
sequence in D, and then used such a macro-object as keys,
K7. The context vector ¢t produced by a first application of
the attention mechanism on K7 is then used as query ¢ in
a second application of the attention mechanism over D, with
the keys being the document’s word embeddings K.

B. Compatibility Functions

The compatibility function is a crucial part of the attention
architecture because it defines how keys and queries are
matched or combined. In our presentation of compatibility
functions, we will consider a data model where ¢ and k;
are monodimensional vectors. For example, if K represents
a document, each k; may be the embedding of a sentence,
a word, or a character. In such a model, ¢ and k; may have
the same structure and, thus, the same size, although this is
not always necessary. However, in some architectures, ¢ can
consist of a sequence of vectors or a matrix, a possibility we
explore in Section IV-D2.

Some common compatibility functions are listed
in Table IV. Two main approaches can be identified.
The first one is to match and compare K and ¢q. For
instance, the idea behind the similarity attention proposed by
Graves et al. [142] is that the most relevant keys are the
most similar to the query. Accordingly, the authors present a
model that relies on a similarity function (sim in Table IV) to
compute the energy scores. For example, they rely on cosine
similarity, a choice that suits cases where the query and the
keys share the same semantic representation. A similar idea
is followed by the widely used multiplicative or dot attention,
where the dot product between ¢ and K is computed. The
complexity of this computation is O (nxdy). A variation of
this model is scaled multiplicative attention, where a scaling
factor is introduced to improve performance with large
keys [36]. General attention, proposed by Luong et al. [29],
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Fig. 6. Hierarchical input attention models defined by Zhao and Zhang [43] (center), Yang et al. [52] (left), and Ma et al. [113] (right). The number inside
the attention shapes indicates the order of application. Different colors highlight different parts of the inputs.

TABLE IV
SUMMARY OF COMPATIBILITY FUNCTIONS FOUND IN THE LITERATURE.

W, Wy, Wy, ..., AND b ARE LEARNABLE PARAMETERS
Name Equation Ref.
similarity flg, K) = sim(q, K) [142]
multiplicative  f(q, K) =q"K [29]
or dot
TK

scale'd o flg, K) = ‘\J/W [36]
multiplicative
general or  f(q,K)=q"WK [29]
bilinear
biased flg, K)=KT(Wgq+b) [67]
general
activated flg,K) = act(qTWK + b) [111)
general
concat (@, K) = wimpTact(W[K; q] + b) [29]
additive flq, K) = wimpTact(W1 K + Waqg +b) [2]
deep (@, K) = wimp T EE=1 4 bk [54]

E® = act(W,EC=D + bt)

EM — act(WlK + Woq + bl)
convolution- flg, K) = [eo; - - - €qy] [119]
based

1 J
€ =7 Z €j,i
i=j—1

€ji = act('wimp"'[ki; e ki—{-l] + b)
location- flg,K) = f(q) [29]
based

extends this concept in order to accommodate keys and queries
with different representations. To that end, it introduces a
learnable matrix parameter W. This parameter represents the
transformation matrix that maps the query onto the vector

space of keys. This transformation increases the complexity of
the operation to O (ngnidy). In what could be called a biased
general attention, Sordoni et al. [67] introduced a learnable
bias, so as to consider some keys as relevant independently
of the input. Activated general attention [111] employs a
nonlinear activation function. In Table IV, act is a placeholder
for a nonlinear activation function, such as hyperbolic tangent,
tanh, rectifier linear unit, ReLU [143], or scaled exponential
linear unit, SELU [144]. These approaches are particularly
suitable in tasks where the concept of relevance of a key is
known to be closely related to that of similarity to a query
element. These include, for instance, tasks where specific
keywords can be used as a query, such as abusive speech
recognition and sentiment analysis.

A different approach amounts to combining rather than
comparing K and ¢, using them together to compute a joint
representation, which is then multiplied by an importance
vector’ Wimp, Which has to adhere to the same semantic
of the new representation. Such a vector defines, in a way,
relevance and could be an additional query element, as offered
by Ma et al. [113] or a learnable parameter. In that case,
we speculate that the analysis of a machine-learned importance
vector could provide additional information on the model. One
of the simplest models that follows this approach is the concat
attention by Luong et al. [29], where a joint representation
is given by juxtaposing keys and queries. Additive attention
works similarly, except that the contribution of ¢ and K can
be computed separately. For example, Bahdanau et al. [2]
precomputed the contribution of K in order to reduce the
computational footprint. The complexity of the computation,
ignoring the application of the nonlinear function, is thus
O (nyngdy), where n,, indicates the size of w;,. Moreover,
additive attention in principle could accommodate queries
of different size. In additive attention and concat attention,
the keys and the queries are fed into a single neural layer.
We speak instead of deep attention if multiple layers are

3Part of our terminology. As previously noted, wimp is termed context
vector by Yang et al. [52] and other authors.
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employed [54]. Table IV shows a deep attention function with
L levels of depth, 1 < [ < L. With an equal number of
neurons for all levels and reasonably assuming L to be much
smaller than any other parameter, the complexity becomes
O (nknidy). These approaches are especially suitable when
a representation of “relevant” elements is unavailable or it is
available but encoded in a significantly different way from the
way that keys are encoded. This may be the case, for instance,
with tasks such as document classification and summarization.

A similar rationale lead to convolution-based atten-
tion [119]. It draws inspiration from biological models,
whereby biological attention is produced through search tem-
plates and pattern matching. Here, the learned vector w;up
represents a convolutional filter, which embodies a specific
relevance template. The filter is used in a pattern-matching
process obtained by applying the convolution operation on key
subsequences. Applying multiple convolutions with different
filters enables a contextual selection of keys that match specific
relevance templates, obtaining a specific energy score for
each filter. Since each key belongs to multiple subsequences,
each key yields multiple energy scores. Such scores are
then aggregated in order to obtain a single value per key.
Aggregation could be achieved by sum or average. Table IV
illustrates convolution-based attention for a single filter of
size I. The complexity of such an operation is O (1% nidy).
These approaches are especially suitable when a representation
of “relevant” elements is unavailable or it is available but
encoded in a significantly different way from the way that
keys are encoded. This may be the case, for instance, with
tasks such as document classification and summarization.

Finally, in some models, the attention distribution ignores
K and only depends on g. We then speak of location-
based attention. The energy associated with each key is thus
computed as a function of the key’s position, independently of
its content [29]. Conversely, self-attention may be computed
only based on K, without any ¢. The compatibility functions
for self-attention, which are a special case of the more general
functions, are omitted from Table IV.

For an empirical comparison between some compatibility
functions (namely, additive and multiplicative attention) in the
domain of machine translation, we suggest the reader to refer
to Britz et al. [37].

C. Distribution Functions

Attention distribution maps energy scores to attention
weights. The choice of the distribution function depends on
the properties that the distribution is required to have—for
instance, whether it is required to be a probability distribution,
a set of probability scores, or a set of Boolean scores—on the
need to enforce sparsity, and on the need to account for the
keys’ positions.

One possible distribution function g is the logistic sigmoid,
as proposed by Kim et al. [47]. In this way, each weight a;
is constrained between 0 and 1, thus ensuring that the values
Vi and their corresponding weighted counterparts Z; share
the same boundaries. Such weights can thus be interpreted as
probabilities that an element is relevant. The same range can
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also be forced on the context vector’s elements c;, by using
a softmax function, as it is commonly done. In that case, the
attention mechanism is called soft attention. Each attention
weight can be interpreted as the probability that the corre-
sponding element is the most relevant.

With sigmoid or softmax alike, all the key/value elements
have a relevance, small as it may be. Yet, it can be argued
that in some cases, some parts of the input are completely
irrelevant, and if they were to be considered, they would likely
introduce noise rather than contribute with useful information.
In such cases, one could exploit attention distributions that
altogether ignore some of the keys, thereby reducing the
computational footprint. One option is the sparsemax dis-
tribution [91], which truncates to zero the scores under a
certain threshold by exploiting the geometric properties of
the probability simplex. This approach could be especially
useful in those settings where a large number of elements
are irrelevant, such as in document summarization or cloze
question-answering tasks.

It is also possible to model structural dependences between
the outputs. For example, structured attention networks [47]
exploit neural conditional random fields to model the (con-
ditional) attention distribution. The attention weights are thus
computed as (normalized) marginals from the energy scores,
which are treated as potentials.

In some tasks, such as machine translation or image cap-
tioning, the relevant features are found in a neighborhood of
a certain position. In those cases, it could be helpful to focus
the attention only on a specific portion of the input. If the
position is known in advance, one can apply a positional mask,
by adding or subtracting a given value from the energy scores
before the application of the softmax [93]. Since the location
may not be known in advance, the hard attention model by
Xu et al. [16] considers the keys in a dynamically determined
location. Such a solution is less expensive at inference time,
but it is not differentiable. For that reason, it requires more
advanced training techniques, such as reinforcement learning
or variance reduction. Local attention [29] extends this idea
while preserving differentiability. Guided by the intuition that
in machine translation at each time step, only a small segment
of the input can be considered relevant, and local attention
considers only a small window of the keys at a time. The
window has a fixed size, and the attention can be better
focused on a precise location by combining the softmax
distribution with a Gaussian distribution. The mean of the
Gaussian distribution is dynamic, whereas its variance can
either be fixed, as done by Luong er al. [29] or dynamic,
as done by Yang et al. [39]. Selective attention [17] follows
the same idea; using a grid of Gaussian filters, it considers
only a patch of the keys, whose position, size, and resolution
depend on dynamic parameters.

Shen et al. [94] combined soft and hard attention, by apply-
ing the former only on the elements filtered by the latter.
More precisely, softmax is only applied among a subset of
selected energy scores, whereas for the others, the weight is
set to zero. The subset is determined according to a set of
random variables, with each variable corresponding to a key.
The probability associated with each variable is determined
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through soft attention applied to the same set of keys. The
proper “softness” of the distribution could depend not only
on the task but also on the query. Lin er al. [44] defined a
model whose distribution is controlled by a learnable, adaptive
temperature parameter. When a “softer” attention is required,
the temperature increases, producing a smoother distribution
of weights. The opposite happens when a “harder” attention
is needed.

Finally, the concept of locality can also be defined according
to semantic rules, rather than the temporal position. This
possibility will be further discussed in Section V.

D. Multiplicity

We shall now present variations of the general unified model
where the attention mechanism is extended to accommodate
multiple, possibly heterogeneous, inputs or outputs.

1) Multiple Outputs: Some applications suggest that the
data could, and should, be interpreted in multiple ways.
This can be the case when there is ambiguity in the data,
stemming, for example, from words having multiple meanings
or when addressing a multitask problem. For this reason,
models have been defined that jointly compute not only one
but multiple attention distributions over the same data. One
possibility presented by Lin ef al. [100] and also exploited
by Du er al. [145] is to use additive attention (seen in
Section IV-B) with an importance matrix, instead of a vector,
Wimp € R"™*" yielding an energy scores matrix where
multiple scores are associated with each key. Such scores
can be regarded as different models of relevance for the
same values and can be used to create a context matrix
C € R™*" Such embeddings can be concatenated together,
creating a richer and more expressive representation of the
values. Regularization penalties can be applied so as to enforce
the differentiation between models of relevance (for example,
the Frobenius norm). In multidimensional attention [93],
where the importance matrix is a square matrix, attention
can be computed featurewise. To that end, each weight q; ;
is paired with the jth feature of the ith value v;;, and a
featurewise product yields the new value z;. Convolution-
based attention [119] always produces multiple energy scores
distributions according to the number of convolutional filters
and the size of those filters. Another possibility explored
by Vaswani et al. [36] is multihead attention. There, multiple
linear projections of all the inputs (K, V, and ¢) are performed
according to learnable parameters, and multiple attention func-
tions are computed in parallel. Usually, the processed context
vectors are then merged together into a single embedding.
A suitable regularization term is sometimes imposed so as to
guarantee sufficient dissimilarity between attention elements.
Li et al. [34] proposed three possibilities: regularization on the
subspaces (the linear projections of V), the attended positions
(the sets of weights), or on the outputs (the context vectors).
Multihead attention can be especially helpful when combined
with nonsoft attention distribution since different heads can
capture local and global contexts at the same time [39].
Finally, labelwise attention [126] computes a separate attention
distribution for each class. This may improve the performance
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as well as lead to a better interpretation of the data because it
could help isolate data points that better describe each class.
These techniques are not mutually exclusive. For example,
multihead and multidimensional attention can be combined
with one another [95].

2) Multiple Inputs: Coattention: Some architectures con-
sider the query to be a sequence of d; multidimensional
elements, represented by a matrix Q € R"™*%_ rather than
by a plain vector. Examples of this setup are common in
architectures designed for tasks where the query is a sentence,
as in question answering, or a set of keywords, as in abusive
speech detection. In those cases, it could be useful to find
the most relevant query elements according to the task and
the keys. A straightforward way of doing that would be to
apply the attention mechanism to the query elements, thus
treating @ as keys and each k; as query, yielding two inde-
pendent representations for K and Q. However, in that way,
we would miss the information contained in the interactions
between elements of K and Q. Alternatively, one could apply
attention jointly on K and @, which become the “inputs”
of a coattention architecture [80]. Coattention models can be
coarse-grained or fine-grained [112]. Coarse-grained models
compute attention on each input, using an embedding of the
other input as a query. Fine-grained models consider each
element of an input with respect to each element of the other
input. Furthermore, coattention can be performed sequentially
or in parallel. In parallel models, the procedures to compute
attention on K and Q symmetric, and thus, the two inputs are
treated identically.

a) Coarse-grained coattention: Coarse-grained models
use a compact representation of one input to compute attention
on the other. In such models, the role of the inputs as
keys and queries is no longer focal, and thus, a compact
representation of K may play as a query in parts of the
architecture and vice versa. A sequential coarse-grained model
proposed by Lu et al. [80] is alternating coattention, as shown
in Fig. 7 (left), whereby attention is computed three times
to obtain embeddings for K and Q. First, self-attention is
computed on Q. The resulting context vector is then used
as a query to perform attention on K. The result is another
context vector Cg, which is further used as a query as attention
is again applied to Q. This produces a final context vector,
Cg. The architecture proposed by Sordoni et al. [67] can
also be described using this model with a few adaptations.
In particular, Sordoni er al. [67] omitted the last step and
factor in an additional query element ¢ in the first two attention
steps. An almost identical sequential architecture is used by
Zhang et al. [86], who use ¢ only in the first attention step.
A parallel coarse-grained model is shown in Fig. 7 (right).
In such a model, proposed by Ma et al. [111], an average (avg)
is initially computed on each input and then used as a query
in the application of attention to generate the embedding of
the other input. Sequential coattention offers a more elaborate
computation of the final results, potentially allowing to discard
all the irrelevant elements of Q and K, at the cost of a
greater computational footprint. Parallel coattention can be
optimized for better performance, at the expense of a “simpler”
elaboration of the outputs. It is worthwhile noticing that the
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averaging step in Ma et al. [111]’s model could be replaced
by self-attention, in order to filter out irrelevant elements from
Q and K at an early stage.

b) Fine-grained coattention: In fine-grained coattention
models, the relevance (energy scores) associated with each
key/query element pair (k;/q ) is represented by the elements
E;; of a coattention matrix E € R4 >4 computed by a
cocompatibility function.

Cocompatibility functions can be straightforward adapta-
tions of any of the compatibility functions listed in Table IV.
Alternatively, new functions can be defined. For example,
Fan et al. [112] defined cocompatibility as a linear transfor-
mation of the concatenation between the elements and their
product [see (12)]. In decomposable attention [89], the inputs
are fed into neural networks, whose outputs are then multiplied
[see (13)]. Delaying the product to after the processing by
the neural networks reduces the number of inputs of such
networks, yielding a reduction in the computational footprint.
An alternative proposed by Tay et al. [75] exploits the Her-
mitian inner product. The elements of K and Q are first
projected to a complex domain, then, the Hermitian product
between them is computed, and finally, only the real part of the
result is kept. Being the Hermitian product noncommutative,
E will depend on the roles played by the inputs as keys and
queries

E;ji = W(ki; qj;: kiq;1)
Ej; = (act(W1 Q + b1))T(act(W2 K + b3)).

(12)
13)

Because E;; represent energy scores associated with
(ki/qj) pairs, computing the relevance of K with respect to
specific query elements, or, similarly, the relevance of Q with
respect to specific key elements, requires extracting informa-
tion from E using what we call an aggregation function. The
output of such a function is a pair ag/ag of weight vectors.

The commonest aggregation functions are listed in Table V.
A simple idea is the attention pooling parallel model adopted
by dos Santos et al. [69]. It amounts to considering the highest
score in each row or column of E. By attention pooling, a key
k; will be attributed a high attention weight if and only if it
has a high coattention score with respect to at least one query
element g ;. Key attention scores are obtained through rowwise
max pooling, whereas query attention scores are obtained
through columnwise max pooling, as shown in Fig. 8 (left).
Only considering the highest attention scores may be regarded
as a conservative approach. Indeed, low-energy scores can
only be obtained by keys whose coattention scores are all
low and thus likely to be irrelevant to all query elements.
Furthermore, the keys that are only relevant to a single query
element may obtain the same or even higher energy score
than keys that are relevant to all the query elements. The
same reasoning applies to query attention scores. This is a
suitable approach, for example, in tasks where the queries are
keywords in disjunction, such as in abusive speech recognition.
Conversely, the approaches follow to compute the energy score
of an element by accounting for all the related attention scores,
at the cost of a heavier computational footprint.
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TABLE V

AGGREGATION FUNCTIONS. IN MOST CASES, ag AND @9 ARE OBTAINED
BY APPLYING A DISTRIBUTION FUNCTION, SUCH AS THOSE SEEN IN
SECTION IV-C, TO eg AND e, AND ARE THUS OMITTED FROM
THIS TABLE IN THE INTEREST OF BREVITY. AS CUSTOMARY,

Act IS A PLACEHOLDER FOR A GENERIC NONLINEAR
ACTIVATION FUNCTION, WHEREAS Dist INDICATES
A DISTRIBUTION FUNCTION SUCH AS SOFTMAX

Name Equations Ref.
li R E.:
pooling eKxi = | g;ég;q( i) [69]
— E. .
cQj = max (Eji)
perceptron ex = WaTact(W1 K + W2QE) [80]
eqQ = WaTact(Wa K + W1 QET)
linear exk =WhE [127]
transformation eqg = W2 E
attention over axg = Mi-aq [70]
attention aqQ = average(Ma ;)
1<i<dy
Mo ; = dist (Ej;
2,1 lgjl%dq( 5,i)
My,; = lsfgi%tdk(Ej,i)
perceptron with  ex = WaTact(W1 K + (W2QT)Mz) [88]

eqQ = W4Tact(W2Q + (WlKT)MlT)
M2,i = 1§%’igdq(Ej’i)

nested attention

Mlyj: dist (Ej,i)

1<i<dy,

Lu et al. [80] used a multilayer perceptron in order to learn
the mappings from E to ex and e g. In [127], the computation
is even simpler since the final energy scores are a linear
transformation of E. Cui et al. [70] instead applied the nested
model shown in Fig. 8 (right). First, two matrices M1 and
M, are computed by separately applying a rowwise and a
columnwise softmax on E. The idea is that each row of
M represents the attention distribution over the document
according to a specific query element—and it could already be
used as such. Then, a rowwise average over M3 is computed so
as to produce an attention distribution @ over query elements.
Finally, a weighted sum of M according to the relevance of
query elements is computed through the dot product between
My and ag, obtaining the document’s attention distribution
over the keys, ag. An alternative nested attention model is
proposed by Nie et al. [88], whereby M1 and M are fed to
a multilayer perceptron, as is done by Lu et al. [80]. Further
improvements may be obtained by combining the results of
multiple coattention models. Fan er al. [112], for instance,
computed coarse-grained and fine-grained attention in parallel
and combined the results into a single embedding.

V. COMBINING ATTENTION AND KNOWLEDGE

According to LeCun et al. [146], a major open challenge
in artificial intelligence (AI) is combining connectionist (or
subsymbolic) models, such as deep networks, with approaches
based on symbolic knowledge representation, in order to
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Fig. 8. Fine-grained coattention models presented by dos Santos et al. [69] (left) and by Cui et al. [70] (right). Dashed lines show how max-pooling/distribution

functions are applied (columnwise or rowwise).

perform complex reasoning tasks. Throughout the last decade,
filling the gap between these two families of Al methodologies
has represented a major research avenue. Popular approaches
include statistical relational learning [147], neural-symbolic
learning [148], and the application of various deep learning
architectures [149], such as memory networks [59], neural
Turing machines [142], and several others.

From this perspective, attention can be seen both as an
attempt to improve the interpretability of neural networks
and as an opportunity to plug external knowledge into them.
As a matter of fact, since the weights assigned by attention
represent the relevance of the input with respect to the given
task, in some contexts, it could be possible to exploit this
information to isolate the most significant features that allow
the deep network to make its predictions. On the other
hand, any prior knowledge regarding the data, the domain,
or the specific task, whenever available, could be exploited to
generate information about the desired attention distribution,
which could be encoded within the neural architecture.

In this section, we overview different techniques that can
be used to inject this kind of knowledge in a neural network.
We leave to Section VI further discussions on the open chal-
lenges regarding the combination of knowledge and attention.

A. Supervised Attention

In most of the works we surveyed, the attention model is
trained with the rest of the neural architecture to perform a

specific task. Although trained alongside a supervised proce-
dure, the attention model per se is trained in an unsupervised
fashion* to select useful information for the rest of the
architecture. Nevertheless, in some cases, knowledge about the
desired weight distribution could be available. Whether it is
present in the data as a label or it is obtained as additional
information through external tools, it can be exploited to
perform a supervised training of the attention model.

1) Preliminary Training: One possibility is to use an exter-
nal classifier. The weights learned by such a classifier are
subsequently plugged into the attention model of a different
architecture. We name this procedure as preliminary training.
For example, Zhang et al. [53] first trained an attention
model to represent the probability that a sentence contains
relevant information. The relevance of a sentence is given
by rationales [150], which are snippets of text that sup-
ports the corresponding document categorizations. In work by
Long et al [118], a model is preliminarily trained on
eye-tracking data sets to estimate the reading time of words.
Then, the reading time predicted by the model is used as an
energy score in a neural model for sentiment analysis.

2) Auxiliary Training: Another possibility is to train the
attention model without preliminary training, but by treating
attention learning as an auxiliary task that is performed jointly
with the main task. This procedure has led to good results

4Mea.ning that there is no target distribution for the attention model.
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in many scenarios, including machine translation [30], [35],
visual question answering [137], and domain classification for
natural language understanding [138].

In some cases, this mechanism can also be exploited to
have attention model-specific features. For example, since the
linguistic information is useful for semantic role labeling,
attention can be trained in a multitask setting to represent the
syntactic structure of a sentence. Indeed, in LISA [97], a mul-
tilayer multiheaded architecture for semantic role labeling, one
of the attention heads is trained to perform dependence parsing
as an auxiliary task.

3) Transfer Learning: Furthermore, it is possible to perform
transfer learning across different domains [1] or tasks [115].
By performing a preliminary training of an attentive architec-
ture on a source domain to perform a source task, a mapping
between the inputs and the distribution of weights will be
learned. Then, when another attentive architecture is trained
on the target domain to perform the target task, the pretrained
model can be exploited. Indeed, the desired distribution can be
obtained through the first architecture. Attention learning can,
therefore, be treated as an auxiliary task as in the previously
mentioned cases. The difference is that the distribution of the
pretrained model is used as ground truth, instead of using data
labels.

B. Attention Tracking

When attention is applied multiple times on the same
data, as in sequence-to-sequence models, a useful piece of
information could be how much relevance has been given to
the input along different model iterations. Indeed, one may
need to keep track of the weights that the attention model
assigns to each input. For example, in machine translation, it is
desirable to ensure that all the words of the original phrase
are considered. One possibility to maintain this information
is to use a suitable structure and provide it as an additional
input to the attention model. Tu er al. [33] exploited a piece
of symbolic information called coverage to keep track of the
weight associated with the inputs. Every time attention is
computed, such information is fed to the attention model as
a query element, and it is updated according to the output of
the attention itself. In [31], the representation is enhanced by
making use of a subsymbolic representation for the coverage.

C. Modeling the Distribution Function by
Exploiting Prior Knowledge

Another component of the attention model where prior
knowledge can be exploited is the distribution function. For
example, constraints can be applied to the computation of the
new weights to enforce the boundaries on the weights assigned
to the inputs. In [46] and [51], the coverage information is
exploited by a constrained distribution function, regulating the
amount of attention that the same word receives over time.

Prior knowledge could also be exploited to define or to
infer a distance between the elements in the domain. Such
domain-specific distance could then be considered in any
position-based distribution function, instead of the positional
distance. An example of distance could be derived by the

4303

syntactical information. Chen et al. [40] and He et al. [109]
used distribution functions that consider the distance between
two words along the dependence graph of a sentence.

VI. CHALLENGES AND FUTURE DIRECTIONS

In this section, we discuss open challenges and possible
applications of the attention mechanism in the analysis of
neural networks, as a support of the training process and as an
enabling tool for the integration of symbolic representations
within neural architectures.

A. Attention for Deep Networks Investigation

Whether attention may or may not be considered as a
mean to explain neural networks is currently an open debate.
Some recent studies [10], [11] suggest that attention cannot be
considered a reliable mean to explain or even interpret neural
networks. Nonetheless, other works [6]-[9] advocate the use
of attention weights as an analytic tool. Specifically, Jain
and Wallace [10] proved that attention is not consistent with
other explainability metrics and that it is easy to create local
adversarial distributions (distributions that are similar to the
trained model but produce a different outcome). Wiegreffe and
Pinter [9] pushed the discussion further, providing experiments
that demonstrate that creating an effective global adversarial
attention model is much more difficult than creating a local one
and that attention weights may contain information regarding
feature importance. Their conclusion is that attention may
indeed provide an explanation of a model, if by explanation,
we mean a plausible, but not necessarily faithful, recon-
struction of the decision-making process, as suggested by
Rudin [151] and Riedl [152].

In the context of a multilayer neural architecture, it is fair to
assume that the deepest levels will compute the most abstract
features [146], [153]. Therefore, the application of attention
to deep networks could enable the selection of higher level
features, thus providing hints to understand which complex
features are relevant for a given task. Following this line of
inquiry in the computer vision domain, Zhang et al. [18]
showed that the application of attention to middle-to-high level
feature sets leads to better performance in image generation.
The visualization of the self-attention weights has revealed that
higher weights are not attributed to proximate image regions,
but rather to those regions whose color or texture is most
similar to that of the query image point. Moreover, the spatial
distribution does not follow a specific pattern, but instead,
it changes, modeling a region that corresponds to the object
depicted in the image. Identifying abstract features in an input
text might be less immediate than in an image, where the
analysis process is greatly aided by visual intuition. Yet, it may
be interesting to test the effects of the application of attention
at different levels and to assess whether its weights correspond
to specific high-level features. For example, Vaswani et al
[36] analyzed the possible relation between attention weights
and syntactic predictions, Voita et al. [49] did the same with
anaphora resolutions, and Clark et al. [6] investigated the
correlation with many linguistic features. Voita er al. [50]
analyzed the behavior of the heads of a multihead model,
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discovering that different heads develop different behaviors,
which can be related to specific position or specific syntactical
element. Yang et al. [39] seemed to confirm that the deeper
levels of neural architectures capture nonlocal aspects of
the textual input. They studied the application of locality at
different depths of an attentive deep architecture and showed
that its introduction is especially beneficial when it is applied
to the layers that are closer to the inputs. Moreover, when
the application of locality is based on a variable-size window,
higher layers tend to have a broader window.

A popular way of investigating whether an architecture
has learned high-level features amounts to using the same
architecture to perform other tasks, as it happens with transfer
learning. This setting has been adopted outside the context of
attention, for example, by Shi et al. [154], who perform syn-
tactic predictions by using the hidden representations learned
with machine translation. In a similar way, attention weights
could be used as input features in a different model, so as
to assess whether they can select relevant information for a
different learning task. This is what happens, for example,
in attention distillation, where a student network is trained
to penalize the most confusing features according to a teacher
network, producing an efficient and robust model in the task of
machine reading comprehension [155]. Similarly, in a transfer
learning setting, attentional heterogeneous transfer [156] has
been exploited in heterolingual text classification to selectively
filter input features from heterogeneous sources.

B. Attention for Outlier Detection and Sample Weighing

Another possible use of attention may be for outlier detec-
tion. In tasks such as classification or the creation of a
representative embedding of a specific class, attention could be
applied over all the samples belonging to that task. In doing so,
the samples associated with small weights could be regarded
as outliers with respect to their class. The same principle could
be potentially applied to each data point in a training set,
independently of its class. The computation of a weight for
each sample could be interpreted as assessing the relevance
of that specific data point for a specific task. In principle,
assigning such samples a low weight and excluding them
from the learning could improve a model’s robustness to noisy
input. Moreover, a dynamic computation of these weights
during training would result in a dynamic selection of different
training data in different training phases. While attention-less
adaptive data selection strategies have already proven to be
useful for efficiently obtaining more effective models [117],
to the best of our knowledge, no attention-based approach has
been experimented to date.

C. Attention Analysis for Model Evaluation

The impact of attention is greatest when all the irrelevant
elements are excluded from the input sequence, and the
importance of the relevant elements is properly balanced.
A seemingly uniform distribution of the attention weights
could be interpreted as a sign that the attention model has been
unable to identify the more useful elements. This, in turn, may
be due to the data that do not contain useful information for
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the task at hand or it may be ascribed to the poor ability of the
model to discriminate information. Nevertheless, the attention
model would be unable to find relevant information in the
specific input sequence, which may lead to errors. The analysis
of the distribution of the attention weights may, therefore, be a
tool for measuring an architecture’s confidence in performing
a task on a given input. We speculate that a high entropy in
the distribution or the presence of weights above a certain
threshold may be correlated with a higher probability of
success of the neural model. These may, therefore, be used as
indicators, to assess the uncertainty of the architecture, as well
as to improve its interpretability. Clearly, this information
would be useful to the user, to better understand the model
and the data, but it may also be exploited by more complex
systems. For example, Heo et al. [157] proposed to exploit
the uncertainty of their stochastic predictive model to avoid
making risky predictions in healthcare tasks.

In the context of an architecture that relies on multiple
strategies to perform its task, such as a hybrid model that relies
on both symbolic and subsymbolic information, the uncer-
tainty of the neural model can be used as a parameter in the
merging strategy. Other contexts in which this information may
be relevant are multitask learning and reinforcement learning.
Examples of exploitation of the uncertainty of the model,
although in contexts other than attention and NLP, can be
found in works by Poggi and Mattoccia [158], Kendall et al.
[159], and Blundell et al. [160].

D. Unsupervised Learning With Attention

To properly exploit unsupervised learning is widely recog-
nized as one of the most important long-term challenges of
Al [146]. As already mentioned in Section V, attention is
typically trained in a supervised architecture, although without
a direct supervision on the attention weights. Nevertheless,
a few works have recently attempted to exploit attention within
purely unsupervised models. We believe this to be a promising
research direction, as the learning process of humans is indeed
largely unsupervised.

For example, in work by He er al. [161], attention is
exploited in a model for aspect extraction in sentiment analy-
sis, with the aim to remove words that are irrelevant for
the sentiment and to ensure more coherence of the predicted
aspects. In work by Zhang and Wu [162], attention is used
within autoencoders in a question-retrieval task. The main
idea is to generate semantic representations of questions, and
self-attention is exploited during the encoding and decoding
phases, with the objective to reconstruct the input sequences,
as in traditional autoencoders. Following a similar idea, Zhang
et al. [163] exploited bidimensional attention-based recursive
autoencoders for bilingual phrase embeddings, whereas Tian
and Fang [164] exploited attentive autoencoders to build sen-
tence representations and performed topic modeling on short
texts. Yang et al. [165] instead adopted an attention-driven
approach to unsupervised sentiment modification in order to
explicitly separate sentiment words from content words.

In computer vision, attention alignment has been proposed
for unsupervised domain adaptation, with the aim to align the
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attention patterns of networks trained on the source and target
domain, respectively [166]. We believe that this could be an
interesting scenario also for NLP.

E. Neural-Symbolic Learning and Reasoning

Recently, attention mechanisms started to be integrated
within some neural-symbolic models, whose application to
NLP scenarios is still at an early stage. For instance, in the
context of neural logic programming [167], they have been
exploited for reasoning over knowledge graphs, in order
to combine parameter and structure learning of first-order
logic rules. They have also been used in logic attention
networks [168] to aggregate information coming from graph
neighbors with both rule- and network-based attention
weights. Moreover, prior knowledge has also been exploited
by Shen et al. [169] to enable the attention mechanism to
learn the knowledge representation of entities for ranking
question—answer pairs.

Neural architectures exploiting attention performed well
also in reasoning tasks that are also addressed with symbolic
approaches, such as textual entailment [99]. For instance, Hud-
son and Manning [170] recently proposed a new architecture
for complex reasoning problems, with NLP usually being
one of the target sub-tasks, as in the case of visual question
answering. In such an architecture, attention is used within
several parts of the model, for example, over question words
or to capture long-range dependences with self-attention.

An attempt to introduce constraints in the form of logical
statements within neural networks has been proposed in [171]
where rules governing attention are used to enforce word align-
ment in tasks, such as machine comprehension and natural
language inference.

VII. CONCLUSION

Attention models have become ubiquitous in NLP applica-
tions. Attention can be applied to different input parts, different
representations of the same data, or different features, to obtain
a compact representation of the data as well as to highlight
the relevant information. The selection is performed through a
distribution function, which may consider locality in different
dimensions, such as space, time, or even semantics. Attention
can be used to compare the input data with a query element
based on measures of similarity or significance. It can also
autonomously learn what is to be considered relevant, by cre-
ating a representation encoding what the important data should
be similar to. Integrating attention in neural architectures may
thus yield a significant performance gain. Moreover, attention
can be used as a tool for investigating the behavior of the
network.

In this article, we have introduced a taxonomy of attention
models, which enabled us to systematically chart a vast portion
of the approaches in the literature and compare them to one
another. To the best of our knowledge, this is the first system-
atic, comprehensive taxonomy of attention models for NLP.

We have also discussed the possible role of attention in
addressing fundamental Al challenges. In particular, we have
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shown how attention can be instrumental in injecting knowl-
edge into the neural model, so as to represent specific features,
or to exploit previously acquired knowledge, as in transfer
learning settings. We speculate that this could pave the way
to new challenging research avenues, where attention could be
exploited to enforce the combination of subsymbolic models
with symbolic knowledge representations to perform reasoning
tasks or to address natural language understanding. Recent
results also suggest that attention could be a key ingredient of
unsupervised learning architectures, by guiding and focusing
the training process where no supervision is given in advance.
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