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Abstract— This article focuses on the design of an adaptive
event-triggered sampled-data control (ETSDC) mechanism for
synchronization of reaction–diffusion neural networks (RDNNs)
with random time-varying delays. Different from the exist-
ing ETSDC schemes with predetermined constant thresholds,
an adaptive ETSDC mechanism is proposed for RDNNs. The
adaptive ETSDC mechanism can be promptly adaptively adjusted
since the threshold function is based on the current sampled and
latest transmitted signals. Thus, the adaptive ETSDC mechanism
can effectively save communication resources for RDNNs. By tak-
ing the influence of uncertain factors, the random time-varying
delays are considered, which belongs to two intervals in a prob-
abilistic way. Then, by constructing an appropriate Lyapunov–
Krasovskii functional (LKF), new synchronization criteria are
derived for RDNNs. By solving a set of linear matrix inequal-
ities (LMIs), the desired adaptive ETSDC gain is obtained.
Finally, the merits of the adaptive ETSDC mechanism and the
effectiveness of the proposed results are verified by one numerical
example.

Index Terms— Adaptive event-triggered mechanism, ran-
dom time-varying delays, reaction–diffusion neural net-
works (RDNNs), sampled-data control.

I. INTRODUCTION

BECAUSE of the superiorities in learning algorithms and
estimating data, neural networks (NNs) have provoked

the increasing interests of many researchers. In recent years,
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NNs have been successfully applied to diverse areas includ-
ing cryptography, decryption, stock market prediction, signal
processing, and model identification [1]–[7]. As an exten-
sion of NNs, reaction–diffusion NNs (RDNNs) have attracted
much attention since they have been successfully applied to
secure communication, population control, and artificial loco-
motion [8]–[12]. For example, reaction–diffusion cellular NNs
have been successfully applied to artificial locomotion [10].
In [11], RDNNs have been applied to image encryption.
In [12], RDNNs can effectively describe the different pop-
ulation densities of species, which are useful for better pro-
tecting and controlling the population. By taking the influence
of reaction and diffusion of neurons into account, RDNNs
can be represented by partial differential equations (PDEs),
in which the neuron states are dependent on both time and
space. Compared with traditional NNs, RDNNs exhibit more
complicated and unpredictable behaviors. Hence, it is of great
importance to study the dynamical behaviors of RDNNs.

Up until now, various dynamical behaviors of RDNNs, such
as passivity [13], stability [14], and synchronization [15], have
been investigated. Since the surprising discovery of synchro-
nization in chaotic systems [16], synchronization has aroused
substantial attention. It is motivated by the fact that the syn-
chronization is ubiquitous in real systems and has many impor-
tant engineering applications, including mechatronic systems,
power systems, and secure communication [16]–[18]. Mean-
while, due to congestions of signal transmission and the finite
switching speeds of amplifiers, time delays [19] inevitably
exist in RDNNs. However, time delays have a great influence
on the dynamical behaviors of RDNNs since they may result
in oscillation, poor performance, or even instability. Moreover,
due to the influence of uncertain factors and the limitations of
equipment, random time-varying delays are often existent in
natural and artificial systems. For example, in a shipboard gun
fire control system, missynchronization between samples of
the actual position and the inertial sensor and radar data sam-
ples results in the random time-varying delays [20]. Because
of the asynchronous time-division-multiplexed networks, ran-
domly varying distributed delays have been considered for
the flight control system [21]. Using the statistical technique,
random time-varying delays have been taken into account for
power systems [22]. In recent years, random time-varying
delays have been widely studied for many systems [23]–[25].
Thus, it is necessary to introduce random time-varying delays
to RDNNs, and the investigation of synchronization control
of RDNNs with random time-varying delays is particularly
important.
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Up until now, many control approaches have been pro-
posed for synchronization of RDNNs with time delays,
which includes impulsive control [26], pinning impulsive con-
trol [27], adaptive control [28], and feedback control [29]. For
instance, in [27], by pinning impulsive control, the exponential
synchronization problem has been considered for RDNNs
with time delays. In [28], the antisynchronization of RDNNs
with time delays has been studied by distributed adaptive
control. In [29], by state feedback control, the asymptotic
synchronization has been investigated for Markovian RDNNs
with time delays. With the rapid growing of digital and
communication technologies, sampled-data control is in the
spotlight [30]–[32]. Compared with the forenamed control
schemes, sampled-data control shows more merits, such as
high reliability, easy installation, and low control cost. Thus,
based on sampled-data control, the synchronization of RDNNs
with time delays has been extensively investigated, and many
interesting results are available in the literature [33]–[35].
Notice that all the aforesaid sampled-data control schemes
are based on a time-triggered mechanism, which is assumed
that all the signals are transmitted to the controllers without
any data processing. However, the communication resources
and computing capability of RDNNs are often limited. Hence,
it is very important to save communication resources for
RDNNs.

Recently, wide attention has been drawn to event-triggered
sampled-data control (ETSDC) [36]–[39], where the sam-
pled signals are not transmitted only if a predetermined
threshold condition is violated. Thus, ETSDC can effec-
tively reduce the number of transmission signals. Nowadays,
adaptive event-triggered control has fascinated considerable
research interests [40]–[43]. For example, in [40], an adap-
tive event-triggered mechanism with continuous control input
signals has been considered for multiagent systems, which
needs to test the triggered condition continuously. In [41],
an adaptive ETSDC method has been proposed for networked
control systems, where the threshold is a time-dependent
continuous function. Similar scheme is adopted in [42]. How-
ever, the adaptive ETSDC schemes in [41] and [42] may not
be appropriate since only sampled signals can be input the
scheme. In [43], a new adaptive ETSDC mechanism has been
given for network-based power systems, where the threshold
function is dependent on the discrete sampled signals. Notice
that the scheme in [43] is based on the past and latest
transmission signals, which may not update the threshold
promptly. Thus, how to improve the existing adaptive ETSDC
mechanism is still challenging. These issues motivate this
work.

The objective of this study is to develop a novel
adaptive ETSDC mechanism for the synchronization of
RDNNs with time delays. The main contributions are as
follows.

1) An improved adaptive ETSDC mechanism is proposed
for RDNNs for the first time. The adaptive ETSDC
mechanism is based on the current sampled and lat-
est transmitted signals, which can be promptly adap-
tively adjusted and effectively save the communication
resources for RDNNs.

2) Taking the influence of uncertain factors, the random
time-varying delays are considered for RDNNs, which
make the derived results more applicable.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Notations

Let In denote the n × n identity matrix, 0n and 0n,m

the n × n and n × m zero matrices, �n the n-dimensional
Euclidean space, and �n×n the set of all n × n real matrices.
diag{· · · } and col{· · · } mean a block-diagonal matrix and
a column vector, respectively. λmin(·) stands for the min-
imum eigenvalue of a real symmetric matrix. E {·} repre-
sents the mathematical expectation with respect to the given
probability measure P. Sym{H} = H + HT . C([−d2, 0] ×
�,�n) means all continuous functions from [−d2, 0] × �
to �n . For ψ ∈ C([−d2, 0] × �,�n), the norm is defined
by �ψ(s, x)� = sup−d2≤s≤0{(

�
� ψ

T (s, x)ψ(s, x)dx)(1/2)}.
For the vector �(t, x) ∈ �n , let ��(t, x)�L2 =
(
�
� �

T (t, x)�(t, x)dx)(1/2).

B. Problem Formulation

Consider the following RDNNs with a random time-varying
delay:

∂�(t, x)

∂ t
=

m�
l=1

∂

∂xl

�
Al
∂�(t, x)

∂xl

�
− C�(t, x)

+W1g(�(t, x))+ W2g(�(t − d(t), x))

+ J, (t, x) ∈ �
t∗0 ,+∘�×� (1)

�(t, x) = 0, (t, x) ∈ �
t∗0 − d2,+∘�× ∂� (2)

�
�
s + t∗0 , x

� = ψ1(s, x) ∈ C([−d2, 0] ×�,�n) (3)

where l = 1, 2, . . . ,m, and x = col{x1, x2, . . . , xm} ∈ �.
� � {x |�

l
≤ xl ≤ �̄l} with ∂� being its boundary,

and �
l

and �̄l are constants. Al = diag{al1, al2, . . . , aln},
in which ali > 0 (i = 1, 2, . . . , n) stands for the transmission
diffusion coefficient. C = diag{c1, c2, . . . , cn} with ci >
0 (i = 1, 2, . . . , n). W1 ∈ �n×n and W2 ∈ �n×n are the
nondelayed and delayed connection weight matrices, respec-
tively. �(t, x) = col{�1(t, x),�2(t, x), . . . ,�n(t, x)} ∈ �n

is the state vector at time t and in space x . g(�(·, x)) =
col{g1(�1(·, x)), g2(�2(·, x)), . . . , gn(�n(·, x))} ∈ �n is the
neuron activation function. J ∈ �n is an external input vector.
d(t) is the random time-varying delay being in [0, d1] or
(d1, d2] with

P{d(t) ∈ [0, d1]} = γ, P{d(t) ∈ (d1, d2]} = 1 − γ (4)

where 0 ≤ d1 ≤ d2, 0 ≤ γ ≤ 1, and d1 and d2 are constants.
Equations (2) and (3) are, respectively, the Dirichlet boundary
condition and the initial condition.

Define stochastic variable β(t) =
	

1, d(t) ∈ [0, d1]
0, d(t) ∈ (d1, d2]. We

find

P{β(t) = 1} = P{d(t) ∈ [0, d1]} = γ

P{β(t) = 0} = P{d(t) ∈ (d1, d2]} = 1 − γ. (5)
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Let the time-varying delays di (t) (i = 1, 2) satisfy d(t) =	
d1(t), d(t) ∈ [0, d1]
d2(t), d(t) ∈ (d1, d2], and ḋi (t) ≤ μi (i = 1, 2). Then,

RDNN (1) can be rewritten as

∂�(t, x)

∂ t
=

m�
l=1

∂

∂xl

�
Al
∂�(t, x)

∂xl

�
− C�(t, x)

+W1g(�(t, x))+ β(t)W2g(�(t − d1(t), x))

+ (1 − β(t))W2g(�(t − d2(t), x))+ J. (6)

Viewing system (6) as the drive system, the corresponding
controlled response system is described as

∂z(t, x)

∂ t
=

m�
l=1

∂

∂xl

�
Al
∂z(t, x)

∂xl

�
− Cz(t, x)

+W1g(z(t, x))+ β(t)W2g(z(t − d1(t), x))

+ (1 − β(t))W2g(z(t − d2(t), x))

+U(t, x)+ J, (t, x) ∈ �
t∗∗
0 ,+∘�×�

(7)

z(t, x) = 0, (t, x) ∈ �
t∗∗
0 − d2,+∘�× ∂� (8)

z
�
s + t∗∗

0 , x
� = ψ2(s, x) ∈ C([−d2, 0] ×�,�n) (9)

where U(t, x) ∈ �n is the control signal.
Let the error signal ϑ(t, x) = z(t, x) − �(t, x) =

col{ϑ1(t, x), ϑ2(t, x), . . . , ϑn(t, x)} ∈ �n . From (6) and (7),
we have the error system as

∂ϑ(t, x)

∂ t
=

m�
l=1

∂

∂xl

�
Al
∂ϑ(t, x)

∂xl

�
− Cϑ(t, x)

+W1 f (ϑ(t, x))+ β(t)W2 f (ϑ(t − d1(t), x))

+ (1 − β(t))W2 f (ϑ(t − d2(t), x))

+U(t, x), (t, x) ∈ [t̃0,+∘)×� (10)

ϑ(t, x) = 0, (t, x) ∈ [t̃0 − d2,+∘)× ∂� (11)

ϑ(s + t̃0, x) = ψ(s, x) ∈ C([−d2, 0] ×�,�n) (12)

where f (ϑ(t, x)) = g(z(t, x)) − g(�(t, x)) and t̃0 =
max{t∗0 , t∗∗

0 }.
In order to save the limited communication resources of

RDNNs, an adaptive event-triggered generator with aperiodic
sampled-data signals will be introduced, in which the threshold
function can be promptly adaptively adjusted based on the
current sampled and latest transmitted signals.

Let the input signals be generated by a zero-order-hold
(ZOH) function with the holding times 0 = t0 < t1 < t2 <
· · · < tk < · · · . The nonuniform sampling interval hk satisfies
the following condition:

hk = tk+1 − tk ≤ h̃

where h̃ > 0 is a constant.
Then, we propose the following adaptive event-triggered

communication mechanism:
i p = tσp−1, p ∈ N

σp−1 =

⎧⎪⎪⎨
⎪⎪⎩

0, p = 0
p−1�
k=0

τk, p ∈ N+

τk = inf
�
τ | δ(tσk−1+τ )

��B 1
2
1 ϑ(tσk−1 , x)

��2
L2

<
��B 1

2
2 e(tσk−1+τ , x)

��2
L2, τ ∈ N+�, k ∈ N

(13)

to determine whether the newly sampled signal should be
transmitted, where B1 > 0 ∈ �n×n and B2 > 0 ∈
�n×n are weighting matrices, and e(tσk−1+τ , x) is defined
as e(tσk−1+τ , x) � ϑ(tσk−1+τ , x) − ϑ(tσk−1 , x), which is the
state error between the current instant and latest transmitted
instant. The event-triggered transmission sequence is described
by �1 = {i0, i1, i2, . . . , i p, . . .} ⊆ �2 = {t0, t1, t2, . . . , tk, . . .}.

It is noted that the threshold δ(tσk−1+τ ) in (13) is time-
varying, which can be adaptively adjusted based on the current
sampled and latest transmitted signals, that is, for τ ∈ N+

δ(tσk−1+τ ) = (1 + α(tσk−1+τ ))δ(tσk−1+τ−1) (14)

where

α(tσk−1+τ )

=

⎧⎪⎪⎨
⎪⎪⎩

δ0

δ(tσk−1+τ−1)
−1, �ϑ(tσk−1+τ , x)�L2 ≥ �ϑ(tσk−1 , x)�L2

θ
�ϑ(tσk−1 , x)�L2 − �ϑ(tσk−1+τ , x)�L2

�ϑ(tσk−1 , x)�L2
, otherwise

where θ is a positive scalar.
Proposition 1: Give the initial value of δ(t) as δ(t0) = δ0.

For ∀τ ∈ N+, k ∈ N, the inequalities

δ(tσk−1+τ ) ≥ δ0

hold.
Proof: From δ(tσk−1+τ ) = (1 + α(tσk−1+τ ))δ(tσk−1+τ−1)

and the definition of α(tσk−1+τ ) in (14), one gets

δ(t1) = δ0 or δ(t1) > δ0

which implies that δ(t1) ≥ δ0. To continue this process, one
can derive for ∀τ ∈ N+, k ∈ N

δ(tσk−1+τ ) ≥ δ0.

This completes the proof. �
Remark 1: It is worth mentioning that the adaptive

event-triggered communication mechanism (13) is newly
designed for RDNNs. By adaptively adjusting the threshold
δ(tσk−1+τ ), the mechanism (13) can effectively reduce the
number of transmission signals. When �ϑ(tσk−1+τ , x)�L2 ≥
�ϑ(tσk−1 , x)�L2 , one can derive δ(tσk−1+τ ) = δ0, which implies
that the mechanism (13) uses the smaller threshold δ0 to
produce a higher transmission frequency to strengthen the
control. When �ϑ(tσk−1+τ , x)�L2 < �ϑ(tσk−1 , x)�L2 , one finds
δ(tσk−1+τ ) > δ(tσk−1+τ−1), which implies that the mecha-
nism (13) uses the larger value of δ(tσk−1+τ ) to produce a
lower transmission frequency to attenuate the control.

Remark 2: In [40], the adaptive event-triggered scheme is
designed with continuous input signals, which requires to test
the trigger condition continuously. In [41] and [42], a con-
tinuous time-dependent threshold function is introduced to
the adaptive event-triggered schemes. However, these schemes
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may not be appropriate since only discrete sampled informa-
tion can be used. In [43], based on the past and latest trans-
mission signals, an adaptive event-triggered scheme subject to
periodic sampling is considered. It should be pointed out that
the adaptive event-triggered communication mechanism (13)
is based on the current sampled and latest transmitted signals.
Thus, compared with the adaptive event-triggered schemes
with continuous threshold functions in [40]–[42], the adaptive
event-triggered communication mechanism (13) with discrete
threshold function needs less calculation cost. Compared with
the scheme in [43], (13) is more effective to promptly adjust
the threshold.

Based on the communication mechanism (13), the adaptive
event-triggered sampled-data controller is designed by

U(t, x) = Kϑ(i p, x), i p ≤ t < i p+1 (15)

where K ∈ �n×n is the feedback gain to be designed.
Divide the holding interval [i p, i p+1) into the subintervals

as

[i p, i p+1) =
τp−1�
j=0

� j

where � j = [tσp−1+ j , tσp−1+ j+1), j = 0, 1, . . . , τp − 1, and
p ∈ N. Then, the controller (15) is changed into

U(t, x) = K(ϑ(tσp−1+ j , x)− e(tσp−1+ j , x))

= K(ϑ(t − h(t), x)− e(t − h(t), x)), t ∈ � j

(16)

where h(t) = t − tσp−1+ j with 0 ≤ h(t) ≤ hσp−1+ j ≤ h̃.
Then, from (10) and (16), one gets

∂ϑ(t, x)

∂ t
=

m�
l=1

∂

∂xl

�
Al
∂ϑ(t, x)

∂xl

�
− Cϑ(t, x)

+W1 f (ϑ(t, x))+ β(t)W2 f (ϑ(t − d1(t), x))

+ (1 − β(t))W2 f (ϑ(t − d2(t), x))

+K(ϑ(t − h(t), x)− e(t − h(t), x))

t ∈ � j , x ∈ � (17)

ϑ(t, x) = 0, (t, x) ∈ [t̃0 − d2,+∘)× ∂� (18)

ϑ(s + t̃0, x) = ψ(s, x) ∈ C([−d2, 0] ×�,�n). (19)

C. Assumption and Lemmas

Assumption 1 [29]: For any y1, y2 ∈ �, there exist scalars
l−i and l+i , i = 1, 2, . . . , n, such that the activation function
gi (·) in (1) satisfies l−i ≤ ((gi(y1)− gi(y2))/(y1 − y2)) ≤ l+i ,
and y1 �= y2.

Lemma 1 [44]: For a matrix D ≥ 0 ∈ �n×n and
all continuously differentiable function y in [ςa, ςb] →
�n , the following inequality holds:

� ςb
ςa

ẏT (s)D ẏ(s)ds ≥
(1/(ςb − ςa))(Y T

1 DY1+3Y T
2 DY2), where Y1 = y(ςb)− y(ςa)

and Y2 = y(ςb)+ y(ςa)− (2/(ςb − ςa))
� ςb
ςa

y(s)ds.
Lemma 2 [45]: For N ≥ 0 ∈ �n×n and

u ∈ C(�,�n) with u(x)|∂� = 0, and l =
1, 2, . . . ,m, it is true that

�
� uT (x)N u(x)dx ≤

(((�̄l − �
l
)2)/π2)

�
�(∂u(x)/∂xl)

T N (∂u(x)/∂xl)dx .

Remark 3: Under Assumption 1 and Al > 0 (l =
1, 2, . . . ,m), similar to the proofs in [46], the existence and
uniqueness of the solution to system (17) can be ensured by
the semigroup theory and contraction mapping principle.

III. MAIN RESULTS

In this section, by designing the sampled-data controller (16)
subject to the adaptive event-triggered mechanism (13),
we study the synchronization of the RDNNs (1) and (7). We
first derive sufficient conditions to synchronize RDNNs (1)
and (7), which is equivalent to the stability of error sys-
tem (17). Then, we propose a design method for the adaptive
event-triggered sampled-data controller (16).

A. Synchronization for Reaction–Diffusion Neural Networks
With Adaptive Event-Triggered Sampled-Data Control

In this section, by introducing an appropriate Lyapunov–
Krasovskii functional (LKF), a new synchronization crite-
rion will be established for RDNNs (1) and (7). Denote
Ii = [0n,(i−1)n In 0n,(10−i)n], (i = 1, . . . , 10), F− =
diag{l−1 , l−2 , . . . , l−n }, F+ = diag{l+1 , l+2 , . . . , l+n }, ξ3(t, x) =	
(1/(t − tσp−1+ j ))

� t
tσp−1+ j

ϑ(s, x)ds, t �= tσp−1+ j ,

ϑ(tσp−1+ j , x), t = tσp−1+ j ,
, and

η(t, x) = col

�
ϑ(t, x), ϑ(t−h(t), x), f (ϑ(t, x)),

∂ϑ(t, x)

∂ t
,

ξ3(t, x), ϑ(t − d1(t), x), ϑ(t − d2(t), x),

f (ϑ(t − d1(t), x)), f (ϑ(t − d2(t), x)),

e(t − h(t), x)

�
.

Theorem 1: For given scalars 0 ≤ γ ≤ 1, μi (i =
1, 2), h̃ > 0, δ0, κ , and and controller gain K ∈ �n×n ,
the response RDNN (7) is asymptotically synchronized to
the drive RDNN (1) if there exist matrices P > 0 ∈ �n×n ,
Qi > 0 ∈ �2n×2n (i = 1, 2), T > 0 ∈ �n×n , R > 0 ∈ �n×n ,
and Bi > 0 ∈ �n×n (i = 1, 2), diagonal matrices Di > 0 ∈
�n×n (i = 1, 2, 3), and any matrices S ∈ �n×n , H1 ∈ �n×2n ,
and H2 ∈ �n×3n satisfying SAl ≥ 0 and

�(0; 0, 0) < 0 (20)

�(0; h̃, 0) < 0 (21)⎡
⎣�(0; h̃, h̃)

�
h̃
�
IT

1 ,IT
2

�
HT

1

�
3h̃
�
IT

1 ,IT
2 ,IT

5

�
HT

2∗ −R 0
∗ ∗ −R

⎤
⎦

< 0 (22)

where �(ρ; hσp−1+ j , h(t)) = �5
i=1 �i (ρ; hσp−1+ j , h(t)) with

�1(ρ; hσp−1+ j , h(t))

= δ0(I2 − I10)
TB1(I2 − I10)− IT

10B2I10,

�2(ρ; hσp−1+ j , h(t))

= Sym{(I3 − F−I1)
T D1(F+I1 − I3)}

+ Sym{(I8 − F−I6)
TD2(F+I6 − I8)}

+ Sym{(I9 − F−I7)
TD3(F+I7 − I9)}

�3(ρ; hσp−1+ j , h(t))
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= Sym
�
IT

1 PI4
�+ γ

�
IT

1 ,IT
3

�
Q1
�
IT

1 ,IT
3

�T

− γ (1 − μ1)
�
IT

6 ,IT
8

�
Q1
�
IT

6 ,IT
8

�T

+ (1 − γ )
�
IT

1 ,IT
3

�
Q2

�
IT

1 ,IT
3

�T

− (1 − γ )(1 − μ2)
�
IT

7 ,IT
9

�
Q2

�
IT

7 ,IT
9

�T

�4(ρ; hσp−1+ j , h(t))

= (hσp−1+ j − h(t))Sym{(I1 − I2)
T T I4}

−(I1 − I2)
T T (I1 − I2)

+ (hσp−1+ j − h(t))IT
4 RI4

− Sym
�
(I1 − I2)

TH1
�
IT

1 ,IT
2

�T �
+ ρh(t)

�
IT

1 ,IT
2

�
HT

1 R−1H1
�
IT

1 ,IT
2

�T

− 3Sym
�
(I1 + I2 − 2I5)

TH2
�
IT

1 ,IT
2 ,IT

5

�T �
+ 3ρh(t)

�
IT

1 ,IT
2 ,IT

5

�
HT

2 R−1H2
�
IT

1 ,IT
2 ,IT

5

�T

�5(ρ; hσp−1+ j , h(t))

= Sym
��
IT

4 + κIT
1

�
S(−I4 − CI1 + W1I3 + γW2I8

+ (1 − γ )W2I9)
�− 2κ

m�
l=1

π2

(�̄l − �
l
)2
IT

1 SAlI1

+ Sym
��
IT

4 + κIT
1

�
SK(I2 − I10)

�
.

Proof: Choose an LKF candidate for system (17) as

V (t) =
5�

i=1

Vi (t), t ∈ � j (23)

where

V1(t) =
�
�
ϑT (t, x)Pϑ(t, x)dx

V2(t) = γ

�
�

� t

t−d1(t)
ξT

1 (s, x)Q1ξ1(s, x)dsdx

+ (1 − γ )

�
�

� t

t−d2(t)
ξT

1 (s, x)Q2ξ1(s, x)dsdx

V3(t) = (hσp−1+ j − h(t))
�
�
ξT

2 (t, x)T ξ2(t, x)dx

V4(t) =
�
�

m�
l=1

∂ϑT (t, x)

∂xl
SAl

∂ϑ(t, x)

∂xl
dx

V5(t) = (hσp−1+ j − h(t))

·
�
�

� t

tσp−1+ j

∂ϑT (s, x)

∂s
R∂ϑ(s, x)

∂s
dsdx

with ξ1(t, x) = col{ϑ(t, x), f (ϑ(t, x))} and ξ2(t, x) =
ϑ(t, x)− ϑ(t − h(t), x).

It is noted that limt→tσp−1+ j Vi (t) = 0 (i = 3, 5), which
means that Vi (t) (i = 3, 5) vanish before and after tσp−1+ j .
Thus, V (t) is continuous in time. In the meantime, one finds
that

V (tσp−1+ j ) =
�

i=1,2,4

Vi (tσp−1+ j ) ≥ 0. (24)

Let L be the infinitesimal operator [47] along error sys-
tem (17). Then, L {V (t)} is calculated as

E {L V (t)} =
5�

i=1

E {L Vi (t)} (25)

where E {L Vi (t)} (i = 1, 2, . . . , 5) are listed as

E {L V1(t)}
= E

�
2
�
�
ϑT (t, x)P ∂ϑ(t, x)

∂ t
dx

�
(26)

E {L V2(t)}
≤ E

�
γ

�
�
ξT

1 (t, x)Q1ξ1(t, x)dx − γ (1 − μ1)

·
�
�
ξT

1 (t − d1(t), x)Q1ξ1(t − d1(t), x)dx

+ (1 − γ )

�
�
ξT

1 (t, x)Q2ξ1(t, x)dx − (1 − γ )(1 − μ2)

·
�
�
ξT

1 (t − d2(t), x)Q2ξ1(t − d2(t), x)dx

�
(27)

E {L V3(t)}
= E

�
2(hσp−1+ j − h(t))

�
�
ξT

2 (t, x)T ∂ϑ(t, x)

∂ t
dx

−
�
�
ξT

2 (t, x)T ξ2(t, x)dx

�
(28)

E {L V4(t)}
= E

	
2
�
�

m�
l=1

∂2ϑT (t, x)

∂xl∂ t
SAl

∂ϑ(t, x)

∂xl
dx

�
(29)

E {L V5(t)}
= E

	
−
�
�

� t

tσp−1+ j

∂ϑT (s, x)

∂s
R∂ϑ(s, x)

∂s
dsdx

+ (hσp−1+ j − h(t))
�
�

∂ϑT (t, x)

∂ t
R∂ϑ(t, x)

∂ t
dx

�
.

(30)

When the current sampled signal is not transmitted to the
controller, from (13) and Proposition 1, one gets the following
inequality:
δ0
��B 1

2
1 (ϑ(t − h(t), x)− e(t − h(t), x))

��2
L2

− ��B 1
2
2 e(t − h(t), x)

��2
L2 ≥ 0 (31)

which is equivalent to

δ0

�
�
(ϑ(t − h(t), x)− e(t − h(t), x))T B1

· (ϑ(t − h(t), x)− e(t − h(t), x))dx

−
�
�

eT (t − h(t), x)B2e(t − h(t), x)dx ≥ 0. (32)

According to Lemma 1, from (30), we have

−
�
�

� t

tσp−1+ j

∂ϑT (s, x)

∂s
R∂ϑ(s, x)

∂s
dsdx

≤ − 1

h(t)

�
�
ξT

2 (t, x)Rξ2(t, x)dx

− 3

h(t)

�
�
ξT

4 (t, x)Rξ4(t, x)dx (33)

where ξ4(t, x) = ϑ(t, x)+ ϑ(t − h(t), x)− 2ξ3(t, x).
For any matrices H1 ∈ �n×2n and H2 ∈ �n×3n , we find

that �
�

1

h(t)
(Rξ2(t, x)− h(t)H1ξ5(t, x))TR−1
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· (Rξ2(t, x)− h(t)H1ξ5(t, x))dx ≥ 0 (34)�
�

1

h(t)
(Rξ4(t, x)− h(t)H2ξ6(t, x))TR−1

· (Rξ4(t, x)− h(t)H2ξ6(t, x))dx ≥ 0 (35)

from which one can obtain

− 1

h(t)

�
�
ξT

2 (t, x)Rξ2(t, x)dx

≤ −2
�
�
ξT

2 (t, x)H1ξ5(t, x)dx

+ h(t)
�
�
ξT

5 (t, x)HT
1 R−1H1ξ5(t, x)dx (36)

− 3

h(t)

�
�
ξT

4 (t, x)Rξ4(t, x)dx

≤ −6
�
�
ξT

4 (t, x)H2ξ6(t, x)dx

+ 3h(t)
�
�
ξT

6 (t, x)HT
2 R−1H2ξ6(t, x)dx (37)

where ξ5(t, x) = col{ϑ(t, x), ϑ(t − h(t), x)} and ξ6(t, x) =
col{ϑ(t, x), ϑ(t − h(t), x), ξ3(t, x)}.

From the error system (17), one has the following zero
equality:

0 = E

	
2
�
�

�
∂ϑ(t, x)

∂ t
+ κϑ(t, x)

�T

S

×
�
−∂ϑ(t, x)

∂ t
+

m�
l=1

Al
∂2ϑ(t, x)

∂x2
l

− Cϑ(t, x)

+W1 f (ϑ(t, x))+ γW2 f (ϑ(t − d1(t), x))

+ (1 − γ )W2 f (ϑ(t − d2(t), x))

+K(ϑ(t − h(t), x)− e(t − h(t), x))

 
dx

�
. (38)

Based on the Green formula, the Dirichlet boundary condi-
tion (18), and (38), we can find that

2
�
�

∂ϑT (t, x)

∂ t
S

m�
l=1

Al
∂ϑ2(t, x)

∂x2
l

dx

= 2
�
∂�

m�
l=1

∂ϑT (t, x)

∂ t
SAl

∂ϑ(t, x)

∂xl
dx

− 2
�
�

m�
l=1

∂2ϑT (t, x)

∂xl∂ t
SAl

∂ϑ(t, x)

∂xl
dx

= −2
�
�

m�
l=1

∂2ϑT (t, x)

∂xl∂ t
SAl

∂ϑ(t, x)

∂xl
dx . (39)

Similarly, one derives from Lemma 2 that

2κ
�
�
ϑT (t, x)S

m�
l=1

Al
∂ϑ2(t, x)

∂x2
l

dx

= −2κ
�
�

m�
l=1

∂ϑT (t, x)

∂xl
SAl

∂ϑ(t, x)

∂xl
dx

≤ −2κ
�
�

m�
l=1

π2

(�̄l − �
l
)2
ϑT (t, x)SAlϑ(t, x)dx . (40)

According to Assumption 1, for any diagonal matrices Di >
0 ∈ �n×n(i = 1, 2, 3), one obtains�
�

2( f (ϑ(t, x))− F−ϑ(t, x))TD1

· (F+ϑ(t, x)− f (ϑ(t, x)))dx ≥ 0�
�

2( f (ϑ(t − d1(t), x))− F−ϑ(t − d1(t), x))TD2

· (F+ϑ(t − d1(t), x)− f (ϑ(t − d1(t), x)))dx ≥ 0�
�

2( f (ϑ(t − d2(t), x))− F−ϑ(t − d2(t), x))T D3

· (F+ϑ(t − d2(t), x)− f (ϑ(t − d2(t), x)))dx ≥ 0.

(41)

Combining (25)–(41), for t ∈ � j , we obtain

E {L V (t)}
≤ E

��
�
ηT (t, x)�(1; hσp−1+ j , h(t))η(t, x)dx

�

= E

��
�
ηT (t, x)

�
hσp−1+ j − h(t)

h̃
�(1; h̃, 0)+ h(t)

h̃

×�(1; h̃, h̃)+ h̃ − hσp−1+ j

h̃
�(1; 0, 0)

 
η(t, x)dx

�
.

(42)

Using the Schur complement to (22) and from (20)–(22)
and (42), one finds that

E {L V (t)} ≤ 0, t ∈ � j (43)

from which we derive

E {L V (t)} ≤ −εE
��

�
ηT (t, x)η(t, x)dx

�
≤ −εE ��ϑ(t, x)�2

L2

�
, t ∈ � j (44)

where ε = min{λmin(−�(1; h̃, 0)), λmin(−�(1; h̃, h̃),
λmin(−�(1; 0, 0)}.

For η(t, x) �= 0, we have from (24) and (43) that

V (t) > V (t−σp−1+ j+1) = V (tσp−1+ j+1) > 0

t ∈ � j , j = 0, 1, 2, . . . , τp − 1 (45)

which implies that V (t) is positive definite.
By the Itô’s formula, one gets

E {V (t)} − E
�
V (t̃0)

� = E

�� t

t̃0
L V (s)ds

�
. (46)

Then, from (23) and (44)–(46), there exists a scalar ι > 0
such that

ιE
��ϑ(t, x)�2

L2

� ≤ E {V (t)}
= E {V (t̃0)} + E

�� t

t̃0
L V (s)ds

�

≤ E {V (t̃0)} − ε

� t

t̃0
E
��ϑ(s, x)�2

L2

�
ds.

(47)

Thus, the error system (17) is asymptotically stable. This
completes the proof. �
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Remark 4: Based on the Lyapunov stability theory,
it is crucial to choose an appropriate LKF for
deriving stability criteria. In this article, (23) is
chosen as the LKF. V1(t) is the basic term. V4(t) is
constructed to counteract the reaction–diffusion term
2
�
�((∂ϑ

T (t, x))/∂ t)S
�m

l=1 Al ((∂ϑ
2(t, x))/∂x2

l )dx in (38).
It is well known that delay information and sampling
information is effective to reduce the conservatism of stability
criteria. Thus, V2(t) is introduced to capture the information
of the time delay d(t). V3(t) and V5(t) are used to capture
the information of sampling.

B. Adaptive Event-Triggered Sampled-Data Controller
Design

When the controller gain K is not given, based on
Theorem 1, the adaptive event-triggered sampled-data con-
troller (16) is designed for synchronization of the RDNNs (1)
and (7) as follows.

Theorem 2: For given scalars 0 ≤ γ ≤ 1, μi (i = 1, 2),
h̃ > 0, δ0, and κ , the response RDNN (7) is asymptotically
synchronized to the drive RDNN (1) if there exist matrices
P > 0 ∈ �n×n , Qi > 0 ∈ �2n×2n (i = 1, 2), T > 0 ∈ �n×n ,
R > 0 ∈ �n×n , and Bi > 0 ∈ �n×n (i = 1, 2), diagonal
matrices Di > 0 ∈ �n×n (i = 1, 2, 3), and any matrices
S ∈ �n×n , H1 ∈ �n×2n , H2 ∈ �n×3n , and K∗ ∈ �n×n

satisfying SAl ≥ 0 and

�∗(0; 0, 0) < 0 (48)

�∗(0; h̃, 0) < 0 (49)⎡
⎣�∗(0; h̃, h̃)

�
h̃
�
IT

1 ,IT
2

�
HT

1

�
3h̃
�
IT

1 ,IT
2 ,IT

5

�
HT

2∗ −R 0
∗ ∗ −R

⎤
⎦

< 0 (50)

where �∗(ρ; hσp−1+ j , h(t)) = �4
i=1 �i (ρ; hσp−1+ j , h(t)) +

�∗
5(ρ; hσp−1+ j , h(t)) with

�∗
5(ρ; hσp−1+ j , h(t))

= Sym
��
IT

4 + κIT
1

�
S(−I4 − CI1 + W1I3 + γW2I8

+ (1 − γ )W2I9)
�− 2κ

m�
l=1

π2

(�̄l − �
l
)2
IT

1 SAlI1

+Sym
��
IT

4 + κIT
1

�
K∗(I2 − I10)

�
and other notations are defined in Theorem 1. The adaptive
event-triggered sampled-data controller gain of (16) is

K = S−1K∗. (51)

Proof: Let SK = K∗. From Theorem 1, we find that
(48)–(50) hold.

C. Synchronization for Reaction–Diffusion Neural Networks
With Event-Triggered Sampled-Data Control

When the event-triggered mechanism (13) is not adaptive,
the threshold functions δ(t0+τ ) and δ(tσk−1+τ ) are reduced
to a determined constant δ∗. Following the similar proof of
Theorem 2, we can obtain the following results.

Fig. 1. Random time-varying delay d(t).

Theorem 3: For given scalars 0 ≤ γ ≤ 1, μi (i = 1, 2),
h̃ > 0, δ∗, and κ , the response RDNN (7) is asymptotically
synchronized to the drive RDNN (1) if there exist matrices
P > 0 ∈ �n×n , Qi > 0 ∈ �2n×2n (i = 1, 2), T > 0 ∈ �n×n ,
R > 0 ∈ �n×n , and Bi > 0 ∈ �n×n (i = 1, 2), diagonal
matrices Di > 0 ∈ �n×n (i = 1, 2, 3), and any matrices S ∈
�n×n , H1 ∈ �n×2n , H2 ∈ �n×3n , and K∗ ∈ �n×n satisfying
SAl ≥ 0 and

�∗∗(0; 0, 0) < 0 (52)

�∗∗(0; h̃, 0) < 0 (53)⎡
⎣�∗∗(0; h̃, h̃)

�
h̃
�
IT

1 ,IT
2

�
HT

1

�
3h̃
�
IT

1 ,IT
2 ,IT

5

�
HT

2∗ −R 0
∗ ∗ −R

⎤
⎦

< 0 (54)

where �∗∗(ρ; hσp−1+ j , h(t)) = �4
i=2 �i (ρ; hσp−1+ j , h(t)) +

�∗
1(ρ; hσp−1+ j , h(t)) +�∗

5(ρ; hσp−1+ j , h(t)) with

�∗
1(ρ; hσp−1+ j , h(t))

= δ∗(I2 − I10)
TB1(I2 − I10)− IT

10B2I10

and other notations are defined in Theorems 1 and 2. Further-
more, the event-triggered sampled-data controller gain is given
as

K = S−1K∗. (55)

D. Synchronization for Reaction–Diffusion Neural Networks
With Sampled-Data Control

When the adaptive event-triggered mechanism (13) is not
considered, the controller (15) is reduced to the following
sampled-data controller:

U(t, x) = Kϑ(tk , x), tk ≤ t < tk+1 (56)

and the error system (17) is transformed into

∂ϑ(t, x)

∂ t
=

m�
l=1

∂

∂xl

�
Al
∂ϑ(t, x)

∂xl

�
− Cϑ(t, x)

+W1 f (ϑ(t, x))+ β(t)W2 f (ϑ(t − d1(t), x))

+ (1 − β(t))W2 f (ϑ(t − d2(t), x))

+Kϑ(tk, x), t ∈ [tk, tk+1), x ∈ � (57)

ϑ(t, x) = 0, (t, x) ∈ [t̃0 − d2,+∘)× ∂� (58)

ϑ(s + t̃0, x) = ψ(s, x) ∈ C([−d2, 0] ×�,�n). (59)
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Fig. 2. Time-space behaviors of error system (10) with U(t, x) = 0. (a) ϑ1(t, x) with ψ(s, x) = 0. (b) ϑ2(t, x) with ψ(s, x) = −1.5�(s, x). (c) ϑ3(t, x)
with ψ(s, x) = −5�(s, x).

Fig. 3. Time responses of error signal �ϑ(t, x)�L2 with U(t, x) = 0.

Denote Îi = [0n,(i−1)n In 0n,(9−i)n], (i = 1, . . . , 9),

ĥ(t) = t − tk , ξ̂3(t, x) =
�
(1/(t − tk))

� t
tk
ϑ(s, x)ds, t �= tk,

ϑ(tk , x), t = tk,
and η̂(t, x) = col{ϑ(t, x), ϑ(t − ĥ(t), x),
f (ϑ(t, x)), (∂ϑ(t, x)/∂ t), ξ̂3(t, x), ϑ(t − d1(t), x), ϑ(t −
d2(t), x), f (ϑ(t − d1(t), x)), f (ϑ(t − d2(t), x))}. Similar to
the proof of Theorem 2, one can derive the following results.

Theorem 4: For given scalars 0 ≤ γ ≤ 1, μi (i = 1, 2),
h̃ > 0, and κ , the response RDNN (7) is asymptotically
synchronized to the drive RDNN (1) if there exist matrices
P > 0 ∈ �n×n , Qi > 0 ∈ �2n×2n (i = 1, 2), T > 0
∈ �n×n , and R > 0 ∈ �n×n , diagonal matrices Di > 0 ∈
�n×n (i = 1, 2, 3), and any matrices S ∈ �n×n , H1 ∈
�n×2n , H2 ∈ �n×3n , and K∗ ∈ �n×n satisfying SAl ≥ 0
and

�̂(0; 0, 0) < 0 (60)

�̂(0; h̃, 0) < 0 (61)⎡
⎣ �̂(0; h̃, h̃)

�
h̃
�
ÎT

1 , ÎT
2

�
HT

1

�
3h̃
�
ÎT

1 , ÎT
2 , ÎT

5

�
HT

2∗ −R 0
∗ ∗ −R

⎤
⎦

< 0 (62)

where �̂(ρ; hσp−1+ j , h(t)) = �5
i=2 �̂i (ρ; hk, ĥ(t)) with

�̂2(ρ; hk, ĥ(t))

= Sym{(Î3 − F−Î1)
TD1(F+Î1 − Î3)}

+ Sym{(Î8 − F−Î6)
TD2(F+Î6 − Î8)}

+ Sym{(Î9 − F−Î7)
TD3(F+Î7 − Î9)}

�̂3(ρ; hk, ĥ(t))

Fig. 4. Threshold function δ(tk) of the adaptive event-triggered communi-
cation mechanism (13).

Fig. 5. Transmission instants and release intervals with δ(tk).
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ÎT

1 , ÎT
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Fig. 6. Spatial behaviors of error signal ϑ(t, x) with U(t, x). (a) ϑ1(t, x). (b) ϑ2(t, x). (c) ϑ3(t, x).

= Sym
��
ÎT

4 + κ ÎT
1

�
S(−Î4 − CÎ1 + W1Î3 + γW2Î8

+ (1 − γ )W2Î9)
�− 2κ

m�
l=1

π2

(�̄l − �
l
)2
ÎT

1 SAl Î1

+ Sym
��
ÎT

4 + κ ÎT
1

�
K∗Î2

�
.

Moreover, the sampled-data controller gain of (56) is

K = S−1K∗. (63)

IV. NUMERICAL EXAMPLE

In this section, a numerical example is provided to verify the
effectiveness and superiorities of the analysis results. In order
to show how to obtain the maximum sampling interval (MSI) h̃
and the corresponding solutions of matrices P , Qi (i = 1, 2),
T , and others in Theorem 2 (Theorem 3 or 4), Algorithm 1 is
given as follows.

Algorithm 1: MSI Search and Feasible Solution Algorithm
Step 1: For given 0 ≤ γ ≤ 1, μi (i = 1, 2), h̃ > 0, δ0, and

κ , specify the ranges h̃ with increments �h̃ > 0. Set h̃ = �h̃.
Step 2: Use MATLAB LMI Toolbox to solve LMIs in

Theorem 2 with specified h̃.
Step 3: If there exists a feasible solution, then let h̃ = h̃ +

�h̃, and go to Step 2. Otherwise, go to Step 4.
Step 4: If h̃ = �h̃, output “No feasible solution satisfying

Theorem 2”. Then reselect values of δ0, κ , go to Step 1.
Otherwise, go to Step 5.

Step 5: Output h̃ = h̃ − �h̃, which is the MSI. With the
output MSI h̃, and using MATLAB LMI Toolbox to solve the
LMIs in Theorem 2, we get the corresponding solutions of
matrices P , Qi (i = 1, 2), T , and others.

Consider the 3-D RDNN (1) with the following
parameters:

A1 = diag{0.01, 0.01, 0.01}, C = I3

W1 =
⎡
⎣ 1.2 −1.6 0

1.24 1 0.9
0 2.2 1.5

⎤
⎦

W2 =
⎡
⎣ 0.1 −0.5 0

0.24 0.21 0.2
0 1.2 0.6

⎤
⎦

� = {x |1 ≤ x ≤ 3}, J = 0

gi(�i (t, x)) = 1

2
(|�i (t, x)+ 1| − |�i (t, x)− 1|)

where i = 1, 2, 3. It is obvious that gi (�i (t, x)) satisfies
Assumption 1 with l−1 = l−2 = l−3 = 0 and l+1 = l+2 = l+3 = 1.

Take γ = 0.7, d1(t) = 0.25 + 0.25 sin(t), and d2(t) =
1 + 0.5 cos(t), from which one obtains μ1 = 0.25, μ2 = 0.5,
and d1 = 0.5. Similar to [20] and [48], assume the random
time-varying delay d(t) be a Markov process with transition

rate matrix (1/T ) ×
�
γ − 1 1 − γ
γ −γ

�
, where the updated

period T = 0.1. The time responses of random time-varying
delay d(t) are displayed in Fig. 1. From Fig. 1, one finds that
the random time-varying delay d(t) switches between d1(t)
and d2(t).

Choose the initial conditions as

ψ1(s, x) : col{−�(s, x), 0.5�(s, x),�(s, x)}
ψ2(s, x) : col{−�(s, x),−�(s, x),−4�(s, x)}

where �(s, x) = cos(((2x − 4)π)/4). Then, when U(t, x) =
0, the time-space behaviors of error system (10) are shown
in Fig. 2, and the time responses of error signal �ϑ(t, x)�L2

are plotted in Fig. 3, from which we can find that the
synchronization of RDNNs (1) and (7) cannot be achieved
if there is no control input.

Now, we show the effectiveness and advantages of Theo-
rem 2. Take δ0 = 0.01, θ = 3, γ = 0.7, κ = 3, μ1 = 0.25,
μ2 = 0.5, and set 9δ0B1 > B2. By Algorithm 1, we find the
MSI h̃ = 0.1421 and obtain the solutions of matrices as (to
save space, we only list some of the obtained matrices) the
matrices can be derived, as shown at the bottom of next page.
Then, from (51), the adaptive event-triggered sampled-data
controller gain is

K =
⎡
⎣−1.8999 0.0999 1.1411

−0.8020 −3.3004 −0.7980
0.9529 −2.3492 −3.6566

⎤
⎦ .

With the abovementioned parameters, by the adaptive
event-triggered communication mechanism (13), the threshold
function δ(tk) is displayed in Fig. 4, which shows that δ(tk)
can be dynamically adjusted based on the current sampled
and latest transmitted signals. The transmission instants and
release intervals are plotted in Fig. 5. From Fig. 5, we find
that, when t = 10, the number of transmitted signals (NTSs)
is 29. Fig. 6 represents the controlled spatial behaviors of error
signal ϑ(t, x), and the trajectories of the controlled signal
�ϑ(t, x)�L2 are displayed in Fig. 7. From Figs. 6 and 7,
we find that the synchronization of RDNNs (1) and (7)
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TABLE I

NTSS AND APS FOR VARIOUS SCHEMES

TABLE II

NTSS FOR VARIOUS θ ’S

is realized under the adaptive event-triggered sampled-data
controller U(t, x) in (15), where the adaptive event-triggered
sampled-data controller U(t, x) is shown in Fig. 8.

By various schemes, the number of NTSs and average
periods (APs) is listed in Table I. From Table I, one finds
that, by the adaptive event-triggered scheme in Theorem 2,
the event-triggered scheme in Theorem 3, and the sampled-
data control scheme in Theorem 4, the NTSs are 29, 42,
and 70, and the APs are 0.3448, 0.2380, and 0.1428, respec-
tively. The AP of the adaptive event-triggered scheme in
Theorem 2 improves 44.87% and 141.45% than that of

Fig. 7. Trajectories of the error signal �ϑ(t, x)�L2 with the adaptive
event-triggered sampled-data controller U(t, x).

Theorems 3 and 4, respectively. Thus, compared with the
schemes of Theorems 3 and 4, the adaptive event-triggered
scheme in Theorem 2 can effectively reduce the transmission
signals to save the communication resources. Meanwhile,
by using MATLAB 8.0.0.783 (R2012b) running on a PC with
2.50-GHz Intel Core i7 CPU, 8-GB RAM, and Windows
10 64-bit Ultimate, the calculation costs of the adaptive
event-triggered scheme in Theorem 2, the event-triggered
scheme in Theorem 3, and the sampled-data control scheme
in Theorem 4 are 15.254834, 12.020567, and 11.281892 s,

P =
⎡
⎣ 2.0576 −0.7085 0.7470

−0.7085 1.7663 −0.3834
0.7470 −0.3834 0.7375

⎤
⎦

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2.6257 −0.8719 0.5472 −1.6348 0.9302 0.0430
−0.8719 1.7606 −0.9880 −0.0913 −1.5033 0.7556
0.5472 −0.9880 0.6240 0.2623 0.8968 −0.4241

−1.6348 −0.0913 0.2623 2.3361 0.0075 −0.4813
0.9302 −1.5033 0.8968 0.0075 3.3123 −0.8309
0.0430 0.7556 −0.4241 −0.4813 −0.8309 0.8681

⎤
⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

5.2972 −1.6710 1.0817 −3.3399 1.7325 0.1344
−1.6710 3.5694 −1.9986 −0.2521 −3.0165 1.4823
1.0817 −1.9986 1.2748 0.5970 1.7254 −0.8616

−3.3399 −0.2521 0.5970 4.9238 −0.0552 −1.0963
1.7325 −3.0165 1.7254 −0.0552 6.0008 −1.8674
0.1344 1.4823 −0.8616 −1.0963 −1.8674 1.5572

⎤
⎥⎥⎥⎥⎥⎥⎦

T =
⎡
⎣ 3.3068 −1.0311 1.2505

−1.0311 3.3526 −0.6795
1.2505 −0.6795 1.3331

⎤
⎦

S =
⎡
⎣ 0.6559 −0.2241 0.3114

−0.2148 0.4708 −0.1472
0.2439 −0.1400 0.2236

⎤
⎦

K∗ =
⎡
⎣−0.7696 0.0737 −0.2113

−0.1097 −1.2296 −0.0827
−0.1381 −0.0391 −0.4277

⎤
⎦

B1 =
⎡
⎣64.3921 17.7032 8.1665

17.7032 155.2993 43.6707
8.1665 43.6707 56.9334

⎤
⎦

B2 =
⎡
⎣5.3630 1.6145 0.6230

1.6145 13.6247 4.0925
0.6230 4.0925 5.0247

⎤
⎦
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Fig. 8. Spatial behaviors of the adaptive event-triggered sampled-data controller U(t, x) in (15). (a) u1(t, x). (b) u2(t, x). (c) u3(t, x).

respectively. Compared with the control schemes in Theo-
rems 3 and 4, the control scheme in Theorem 2 increases the
calculation cost since its threshold function is time-varying
and adaptive. Furthermore, for different values of θ , the NTSs
of the adaptive event-triggered mechanism (13) are given
in Table II, from which we find that the values of θ have
some impact on the NTSs.

V. CONCLUSION

In this article, we have studied the synchronization of
RDNNs with random time-varying delays. By designing an
adaptive aperiodic ETSDC scheme and introducing an appro-
priate LKF, we have established some new synchronization
criteria for RDNNs. Different from the existing ETSDC meth-
ods with constant thresholds, our method can be adaptively
adjusted according to the current sampled and latest transmit-
ted signals. In comparison with the existing control methods,
our method can effectively save the communication resources
for RDNNs. Taking the influence of uncertain factors, the ran-
dom time-varying delays have been considered for RDNNs,
which makes the obtained results more applicable. In the end,
we have presented some simulations to show the superiorities
of the adaptive ETSDC mechanism and the effectiveness of
the obtained results.
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