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Graph Motif Entropy For Understanding
Time-Evolving Networks

Zhihong Zhang, Dongdong Chen, Lu Bai*, Jianjia Wang and Edwin R Hancock, Fellow, IEEE

Abstract—The structure of networks can be efficiently represented using motifs, which are those subgraphs that recur most frequently.
One route to understanding the motif structure of a network is to study the distribution of subgraphs using statistical mechanics. In this
paper, we address the use of motifs as network primitives using the cluster expansion from statistical physics. By mapping the network
motifs to clusters in the gas model, we derive the partition function for a network and this allows us to calculate global thermodynamic
quantities, such as energy and entropy. We present analytical expressions for the numbers of certain types of motifs, and compute their
associated entropy. We conduct numerical experiments for synthetic and real-world data-sets and evaluate the qualitative and
quantitative characterizations of the motif entropy derived from the partition function. We find that the motif entropy for real-world
networks, such as financial stock market networks, is sensitive to the variance in network structure. This is in line with recent evidence
that network motifs can be regarded as basic elements with well defined information-processing functions.

Index Terms—Cluster Expansion, Motif, Network Entropy

1 INTRODUCTION

OMPLEX networks can be succinctly described using
C simple statistical models which describe their global
properties. Examples include the Erdos-Renyi, small-world
and scale-free models. The parameters of these models can
in turn be used to characterize network structure [1], [2].
Moreover, these parametric characterizations implicitly rep-
resent the key structural mechanisms determining the global
features of a network [3]. Recently, though network motifs
have provided a powerful alternative route to the statistical
analysis of network characteristics and structure. They em-
phasize the importance of studying the small scale aspects
of network structure in order to gain a better understanding
of their global structure and function [4], [5]. According
to this picture, recurring patterns, termed network motifs,
provide the basic building blocks for different subgraphs
which perform specific functional roles in a larger network
structure [6]. Moreover,these motifs reflect the underlying
physical processes or interactions that generate each type
of network [7]. For example, in gene requlation network
motifs (or different functional subgraphs) have a variable
frequency of occurrence during different phases of develop-
ment. Large Scale Evolving Graphs, on the other hand, where
edges and vertices are appended to the network as they
arrive in time, sometimes contain bursty links. These links
which aim characterize anomalous objects and relationships
[8]. Graph structure can also be used in adversarial training
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[9].

Although several algorithms and graph-theoretic tools
have been developed for efficiently detecting and counting
network motifs [10], [11], there is little analysis of the
statistical features of networks from the motif perspective.
This task requires an understanding of the basic structural
elements constituting the motifs and the processes which
give rise to them from a microscope point of view [5], [6].
To embark on this type of analysis, tools from statistical me-
chanics provide a convenient route to the characterization of
network structure [12]. Thermodynamic characterizations,
such as entropy, total energy and temperature, derived from
a partition function, can be used to succinctly describe the
network statistics [13]. By adopting an analogy in which
the network consists of a statistical system of interacting
particles with a partition function, the cluster expansion
provides deep insights into network behavior related to the
occurrence of different motifs.

The cluster expansion is a powerful computational tool
which can be used to express the partition function in
terms of an approximating series [14]. It allows us to write
the grand-canonical thermodynamic potential as a conver-
gent perturbation over the interactions between particles.
Commencing from the general principles of perturbation
theory for particle systems, the cluster expansion allows
us to understand complex systems of interactions in terms
of the motif topologies in a diagrammatic expansion of
the partition function. The cluster expansion is a general
integral expression posed at the motif level [15]. For a graph,
the partition function can be written as the exponential of a
sum over connected subgraphs, namely the network motifs
[16]. Thus the interactions present in the partition function
are expressed in terms of motifs and these in turn express
the statistical properties of the network.

Here, we use the motif content of a network and the
corresponding partition function to compute the thermody-
namic entropy as a statistical characterization of network



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

structure. We first outline the link between the partition
function, the thermodynamic characterization and the clus-
ter expansion formalism. Then we review the classical clus-
ter expansion method in the gas model with particle interac-
tions. We present an analytical solution for the numbers of
network motifs and the scaling of all types of motifs with the
partition functions. Finally, we find invariants that can be
used to represent the statistical topology of networks. This
specifically focuses on entropy for the cluster expansion in
terms of network motifs.

2 RELATED WORK
2.1 Network Motifs

There is a substantial literature on analysing network mo-
tifs, starting from a subgraph description of the frequently
occurring patterns within a network structure. It has been
shown that motifs are recurring patterns that can be used
in representation of of complex structure [6]. Indeed, motifs
reflect not only the structural properties of a network, but
can also capture its functional properties too. They thus
provide an efficient way to uncover the structural design
principles of a system represented by a complex network.
Examples include positive and negative autoregulation [5],
positive and negative cascades [17], positive and negative
feedback loops [18], feedforward loops (FFLs) [19], single
input modules [20], and combinations of these too [21].
Motifs can be regarded as the fundamental building blocks
of complex networks, since identical network motifs exist in
diverse network structures fields as diverse as biology and
sociology. For example in the biological domain, network
motifs have been implicated in signalling [22] and neuronal
activities [23], and also account for the integration of tran-
scriptional regulation and protein-protein interactions [24].

Although network motifs provide deep insights into the
characterisation of network structure and function, their
detection is a computationally challenging problem. There
are a variety of techniques for solving the motif discovery
problem. These algorithms include exact counting meth-
ods, sampling methods, pattern growth methods, and have
been developed under a number of different paradigms.
Network-motif patterns can be identified when the nodes
and edges in a network are annotated with quantitative fea-
tures. The expected number of appearances of a motif can be
determined using a Null-model [25], which is an ensemble
of random networks with some of common properties with
the original network.

2.2 Cluster Expansion

In statistical mechanics, the cluster expansion is usually a
power series expansion of the partition function. It describes
the pattern of interactions in a system with large number of
particles. Mayer and his collaborators [26] first carried out a
systematic study of alternative expansions, in the case of real
gases obeying classical statistics. Kahn and Uhlenbeck [27]
generalise the cluster expansion to gases obeying quantum
statistics. Lee and Yang [28] have explored the application
of these ideas to real world application.

The cluster expansion has become a standard tool in
the analysis of solid state structures. Examples include

TABLE 1
Important notation used in this paper and their descriptions.

Symbol | Definition

N number of particles or nodes

U.) energy of the network motif of type v

Sy entropy of the motif of type v

Q configuration integral of the entire network

Jo] B = % inverse temperature

3 A= M, average de Broglie wavelength
of the particles

fis interaction strength of Mayer function

“J between nodes ¢ and j

l the number of particles in an [-cluster

my the number of [-clusters of type [

b the classical cluster integral for I*"cluster type
index set of nodes that constitute

Xi the network motif that consists of [ nodes

v the individual motif index

ny frequency of occurrence of the v** motif

Qv the configuration integral for the v** motif

Iy the number of nodes in the vt* motif

Cv configuration integral of motif

Z the partition function for the entire network

2y the partition function associated with the Vil

the theory of two-dimensional solids, which are a kind of
regular network structure. The seminal work of Peierls and
Landau [29] use to the cluster expansion to how harmonic
thermal fluctuations can destroy the long-range crystalline
order in solids, and this idea has provided the foundation
for an abundant literature on using the cluster expansion
in understanding solids from a lattice or regular network
perspective. [30], [31].

3 PRELIMINARIES

The underlying aim of our method is to explore how
microscopic characterisations can be used to describe the
macroscopic structure of a network. The algorithm com-
mences by detecting the motifs and describing their entropic
properties. Such a mechanism is a novel way to describe
the statistical characteristics of time-varying networks from
a more microscopic perspective. In order to make our de-
scription clearer, we list the notation used in this paper in
Table 1. The individual quantities will be defined in more
detail as we develop our motif analysis.

3.1 Network Motif Representation

Motifs are representative subgraphs that frequently appear
in a graph. They can be regarded as the basic building blocks
of networks, which provide a better understanding of the
global network structure from a statistical point of view [5].
Typically there are numerous network motifs corresponding
to small sub-graph structures but which appear more fre-
quently than would be expected in random networks [6].
Motifs can define the properties of broad classes of net-
works, each with a specific type of elementary structure [16].
Fig.1 illustrates typical types of motifs for graphs, which
are n-node subgraphs (n = 2,3,4 in the figure). The number
of occurrences of each subgraph is the motif frequency
which are used as the basic structural pattern decomposition
of a network [32]. Different types of motifs have specific
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Fig. 1. Typical motifs for graph

functions as elementary patterns of interaction and allow us
to interpret the structural properties of the overall network
[33]. This similarity of the motifs reflects a fundamental
similarity in the organization of network structure, and the
statistical significance of different motifs can be regarded as
a unifying property of networks too [5]. Thus, we use the
network motifs as the elementary structural constructs to
interpret the local and global topological information in a
network.

3.2 Cluster Expansion and the Classical Gas

We characterize the statistical content of the different motif
structure of the network using a partition function sug-
gested by an analogy with the particle gas in statistical me-
chanics [13]. Specifically, we use motifs in a manner similar
to groups of interacting particles in the thermodynamic gas
model [6].

We begin by briefly reviewing the cluster expansion for
the classical gas [34]. To commence we consider a system
of N identical non-interacting particles occupying a volume
V for which the Hamiltonian is composed purely of kinetic
energy terms and is given by

N

72
3
™ @
il
where p; is the momentum of particle indexed ¢ and y is the
mass of each particle. The partition function for this system

of particles is given by

1 AN
- - 3~ 73 _ Pi
Zy = NIV /d pid°T 5 {exp[ ﬁz 2;1}}
i=1
VN [2mu 3N/2
~ NI [ B ]
where h is Planck’s constant, 7 ; is the vector separation
between particles i and j and 8 = 1/T, where T is the
temperature.
To introduce interactions between pairs of particles we
add a potential energy term into the Hamiltonian.

N N

v = Y )= Y

i=1,i<j i=1,i<j

u(fiy) G

where 7 is the position vector of the particle indexed .
With the interaction potential included in the Hamiltonian,
the partition function takes on the modified form

Z = 7ZyQ 4)

where () is the configuration integral given by integral over
the positions for all the particles,
(7,5 } ®)

/ Hd% exp{

d. v

1<i<j<N

3

The sum inside the exponential can be replaced by a
product over exponentials, with the result that

= v [ 11

Unfortunately, the configuration integral is intractable
for general pairwise potentials. To overcome this problem,
the Boltzmann factor [35] exp[—fv(7; ;)] appearing in the
configuration integral is re-expressed in terms of the Mayer
function f;

exp{/avm,j)} ®)

1<i<j<N

exp[—pu(ri )] =1+ fi )

The Mayer function incorporates a hard core repulsion
where the particles are forbidden from approaching closer
than a fixed distance by imposing an infinite potential [14].
As a result the configuration integral can be rewritten as:

= [

The product over 1 + f; ; can be expanded as a poly-
nomial in Mayer functions on different edges. So grouping
terms of different order together, we have the expansion

f/]:[d?’ {1+ fig+ fiz+--0)

“+ fiafiz-- ~fN—1,N}
©)

We can interpret the terms of each order in the above
expansion as a graph representing particle interactions. Each
edge represents an interaction between a pair of particles,
determined by the strength of the interaction potential as
determined by the Mayer function. So ) can be interpreted
as the sum of all possible graphs representing the different
combinations of pairwise interactions of N particles.

To proceed we separate the configuration integral from
the set of particle interaction configurations and write

1+ fiy) 8)

1<z<7<N

+ (fiofis+ fiefia+-)+

%/Hdi’)ﬁf (10)
where
={1+(fig+tfig+-)+(fizhs+ fiafiat+-)
+- 4+ fiofiz.. fyoint

is the sum of products of Mayer functions over the edge
configurations forming the sets of admissible pairwise in-
teractions.

To establish the link with motifs we consider a connected
graph representing the interactions between [ particles,
which we refer to as a [-cluster. Every N particle graph
can be represented as the decomposition involving several
l-clusters. Each [-cluster is a configuration of edges repre-
senting the interactions existing between the [ component
particles. The set of possible node combinations that can
form an [-cluster is obtained by permuting the node labels.
As a result the configuration integral is a sum over all
cluster configurations and a product over the edges con-
tained within them. This leads to a potentially exponential
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growth in the summation. To simplify matters we note
that in practice the edge configurations on different sets of
particles of the same size are topologically identical. These
constitute the set of motifs used to represent the network
in hand. The edge configurations of each subgraph is only
decided by the topological structure of the graph instead of
by specific labelled nodes configurations. So it is easy for
us to detect topologically equivalent edge configurations.
As a result we can rewrite the sum over configurations as a
sum over topologically equivalent motif edge configurations
weighted by their frequency of occurrence.

The topologically equivalent edge configurations are the
motifs for the network of particle interactions.

Suppose that the set of motifs is x. The individual motif
index is v and the v" motif has node-set £, and edge-set
M,,. Since the cluster configuration integral for each particle
graph is independent of its node or particle labels, the
number of terms in the multiple summation in the partition
function is thus

N!

H1N1{mz!(“)ml}

where [ is the number of particles in the [th-cluster and m;
is the number of [-clusters in the network, and we have the
constraint ), Im; = N. As a result the normalisation of the
expansion is given by

C(N) =

N
H (VA3 =3,

1=

—

where A = /2802 g the average de Broglie wavelength
of the particles, and b; is the cluster integrals as is given in

terms of the co-efficients.
1<j<

For example, the first three cluster integrals can be calcu-
lated based on Eq. 11

1
=— [ dr=1
Vv / '
ba - / frad® P dPTy = . / frad®71
2103V 2X3
=300 /(f12f23 + fizf13 + fi3fos + fr2f23f13)
7 dPryd T
Here for by, the cluster has only one particle when [ = 1.
For by the cluster is composed of two connected particles
when | = 2. For b3 the cluster consists of three particles and
the three particles are connected to each other to form four
different connected graphs topologies, and so on.

As a result the configuration integral becomes the prod-
uct of the number of items and each item:

(12)

bs

o Mzﬁ%“”ﬁm

vex l=1
my

(13)
1£.

_N|)\3NZH

vex =1

4

Finally, the motif-based partition function can be ob-
tained by combining Eq.4 and Eq.13

1£.

oL

vex =1

(14)

When specified in this way, the various global ther-
modynamic characterizations of the gas can be computed.
For instance, the average energy of the network can be
expressed in terms of the Hamiltonian operator and the
partition function as

0
(U) = —%IHZ (15)
and the thermodynamic entropy by
S:k{an—kb’(U)} (16)

where kp s the Boltzman constant, which later on we set to
unity since it is a property of matter, i.e. a physical constant,
which does not apply to the analogy exploited here.

Both the energy and the entropy can be regarded as
characterizations of the network structure having different
properties. In the following sections, we will explore these
statistical properties in more detail, and in particular the
entropy corresponding to the network motif decomposition.

4 CLASSICAL CLUSTER EXPANSION AND NET-
WORK MOTIFS

The classical cluster expansion described above can be used
to describe the motif structure of a network using the terms
in the expansion to represent different interaction topologies
between particles. In the case of motif-based graph represen-
tation, we can interpret the term f; ; as the weight between
two nodes i and j. The different terms in the configuration
integral can thus be expressed in terms of subgraphs.

Therefore, we map the network motifs to the classical
cluster expansion. We do this by treating the motifs as the
expansion coefficients of the partition function of network
structure [4]. We simplify the partition function to the one-
dimensional case by replacing the multiple volume integrals
by a single scalar radial variable r and by ignoring the
dependence on A which is a constant related to the physical
properties of particles. We let n,, be the number of motifs
of type v analogously to the number of edges m; in the
classical cluster expansion. The corresponding motif config-
uration integral ¢, as the configuration integral for the v-th
motif, and this plays a similar role to b; in cluster expansion.
The partition function Z for the network can be written as a
sum over the individual motif contributions z, as,

VI A

which is the sum of all possible motifs for the N particles.
The global motif-based partition function Z is simply the
sum of partition function contributions from all motifs with
different index values v, denoted by z,. The motif partition
function is obtained through a product of the integrals for all
possible configurations. Consider the partition function con-
tribution from the motif indexed v. We can view the nodes

17)
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of the graph as being drawn from a binomial distribution,
i.e. those belonging to the v motif type and those that are
disjoint, i.e. singleton nodes. We combine their contributions
to the network partition function by calculating the motif
configuration integral and the single node integral respec-
tively. As a result the configuration integral contribution
from the v*" set of motif configurations is

1 n
w0

where n, is the frequency of the occurrence of the v
motif, r is the radial variable, ¢, is the configuration integral
for the v*" motif, which plays a similar role to b; in the
cluster expansion. For disjoint nodes, on the other hand,
the frequency of occurrence is N — [,n, where [, is the
number of nodes in the " motif. The configuration integral
for the singleton node is ¢y which we set to unity to allow
such nodes without penalty. As a result, the configuration
integral for the non-disjoint nodes is

o
(N —1,ny,)!

. The partition function for motif v is thus

th

(rqO)Nfl”"”, ifN —l,n, >0

1

(rqu)ny/

1 N—1 .
_ - - vy fN —
! N =Ly ) .

lyn, >0
(18)
According to the classical cluster expansion, b; represents
the configuration integral of [-th cluster in Eq.11, and ¢, is
the configuration integral of the v-th motif in the network.
In this setting the quantity analogous to b; defined above is

qv l 'r/ /Z H fzgd37“1d37“2 d3 C

i<j<l
(19)
where (, is the configuration integral obtained through the
product over all edges connecting nodes in the v-th motif.

Zy =

4.1 Motif Expansion

For graphs, we use symbol d, to represent the number
of edges in the v-th motif, thus the number of the nodes
without connecting edges is [, — d,. Since the (, is the
integral over all edges in the v-th motif, we separate the
configuration integral into contributions from those nodes
connected by edges and those that are disjoint. The value of
the integral for the edges is ¢, while that for disjoint nodes
is €. We allow the disjoint nodes without penalty. The main
reason for this is that balancing an additional parameter
proves difficult, and can lead to over fragmented networks
with many disjoint nodes. So we operate with ¢y = 1. So the
motif configuration integral is:

CG=eq (O™
= (™

According to the Mayer function in Eq.7, the configuration
integral € for an edge is given by

€= /Ooo(exp[—ﬁv(r)] — )dr

(20)

21)

where

5

is the Lennard-Jones potential function, and d,, and [, are
the number of edges and nodes in the motif indexed v
respectively.

We employ Simpson’s Method [36] to evaluate the edge-
integral numerically. as follows

Tmawx

e= > (exp[-Bu(r)] — 1)

T=Tmin (22)

Tmax

el 3 o)

T=Tmin

— Tmin

Ar

Tmaa:

where Ar — 0 is the increment size for r and [rmin, "maz]
is the interval of integration. As a result the Simpson rule
approximation is

e=pexp[f]+ R (23)
where .
p= exp[—v(r)]
and (24)
Tmaz — T"min
R=-
Ar

Taking the first three motifs in Fig.1 as examples, the
motif cluster integrals based on Eq. 19 Eq. 20 and Eq. 21 are

1 [ 1
- Ao = =
2/0 f12dr12 26

1 [ o
q2 = @/ (fr2fos + fr2f13 + fi3fa3)dPidiadrs
0

1 o N
q1 = 2*/ frodridiy =
™ Jo

3 o0 N . 1 oo . 1
= */ f12 f23driadras = *(/ fr2diia)? = =€2
6 Jo 2°Jo 2
1 (o)
43 = */ (fi2f23 f13)drydifadis
0

/ f12d7”12 :*6

In the case of gy, the first motif is composed of two nodes
connected to each other by an edge. For ¢, the second motif
contains three nodes connected by two edges. For g3, the
third motif is a fully connected graph with three nodes and
three edges.

We render the floating point calculations tractable and
avoid overflows in the computation of the partition function
in Eq.(18) by taking logarithms

(25)

log z, = —logn,! + n,(logr + log q,) — log(N — I, n,)!

+ (N —1I,n,)logr

(26)
where we have ¢p=1, since we do not penalise disjoint
single nodes. We use Stirling’s approximation [37] to find
the approximate value of the logarithms of factorials of large
numbers (log N! ~ Nlog N). This approximation scheme
applied to compute log n, ! and log(N — [, n,,)!. Substituting
for ¢, we find after algebra

log z, = nl,{log rq, — logn,,} + (N —=1I,n,)log N
— LNy

(27)
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Substituting Equation (20) for ¢,, into Equation (19) for g,
we find ¢, = ¢ /(l,!r), and hence

log 2z, = nu{(d,, loge —1,logl, — log ny)}
(28)

+ (N —=1I,n,)log

_r
N —1l,n,

The only quantity in the above expression for the log-
partition function which depends on (3 is €. As a result, from
Eq.(15) the average energy of the vth motif is given by

Olnz, nud,pe’
(Uy) = — =

038  peP+R

So the average motif energy is proportional to d,, the
number of edges in the motif. When the temperature is
low, ie. § is large, then (U,) =~ v In other words it
depends on the number of edges in the motif and the edge-
strength parameter p derived from the potential. When the
temperature is large, i.e. J is small, then (U,) ~ pi—VR. So
as temperature increases the average energy of the motif
decreases, and in the case of large networks is n, /R, which
is independent of the potential strength.

Turning our attention to the corresponding entropy from
the vth motif, from Eq.(16)

Sy =logz, + B(U)

= nl,{(du loge —1,logl, — lognl,)}

r nydl,peﬂ

N~ lyn,)l
T =l log g B R

(29)

(30)

Letting ¢y = rqo, and writing € for e’ + R and € = R for ¢,
this becomes

S, = nu{ly log “© +d, {log £ 5(61%)} — logn,,}
lu €0 €

"do
N —-1l,n,)log ———
+( nw) log -
1)
We can re-express the entropy in terms of the number of
nodes appearing in motifs of type v, i.e. V,, = n,[, and the
total number of edges E, = n,d, appearing in the motif,
with the result
N -V,
+V, log [60
ll/ 4o

qo
N -V,

N O 1

S, = N log

] —n, logn,

(32)

There are four terms appearing in this expression for
the network entropy. The first three terms are independent
of temperature. The first of these terms is proportional to
the number of nodes in the network and increases as the
number of nodes in the motif of type v increases. The second
term is proportional to the number of nodes contained
within the clique of type v, and decreases as the size [,
of the motif increases. The third term decreases with the
increasing frequency of the motif of type v and controls
the distribution of motif frequencies. Finally, the fourth
term is proportional to the number of edges contained in
motifs of the type v, and is controlled by the reciprocal
temperature 5 and the value of the edge-strength ¢ which

6

is itself temperature dependant. As 3 approaches zero, i.e.
the temperature becomes large € = p + R and the fourth
term approaches E, In %OR, while as 3 becomes large and
the temperature approaches zero, then the term approaches
the lower value E, log £. Entropy is hence minimised by
an equitable distribution of nodes and edges among the
available motifs, and an equitable population of different
motifs type. The effect of the distribution of edges among
motifs weakens with increasing temperature. In other words
at low temperature the variations in the distributions of
edges among different motifs is more important than at high
temperature.

Algorithm
method.

1 gives the pseudocode for the overall

Algorithm 1: Summary of the Graph Motif Entropy
Method
Input: graph G = (V, E), type of motifs m, inverse
temperature /3, scale parameter o
Output: a set of motif entropy for each graph
Gi={S_1,..,5,,..,5_m}

1 initialization, Adjacency matrix of the Graph A4,
Node number of the Graph: IV, Node number of
the v*" motif: [, Edge number of the v*" motif: d,;

2 Detecting graph motifs(Detailed algorithm in
Appendix A). Get a set of motif number for each
type of motif {n1,...,ny, ..., n };

3 Compute the edge configuration integral with
formula(20): (,;

4 Get the configuration integral of the " motif with
formula(19):q,;

5 Calculate the partition function of the graph i in v/*
motif with formula(18):7,;

6 Compute the average energy with partition function
in formula(15): < U, >;

7 Get motif entropy S, with formula(16);

8 Compute each type of motif entropy for graph ¢ and
get{S_1,...,5,,...,S_m},;

9 return G_3;

h

5 EXPERIMENTS

In this section, we use the thermodynamic expressions for
the motif energy and entropy to analyse data for the motif
representation of time-evolving complex networks. There
are four aspects to our experimental evaluation. First, we
construct principle component analysis for motif entropy
vectors. Second, we perform entropy component analysis on
the vector of motif entropies computed using our method.
Third, we apply the C-SVM to the motif entropy kernel and
then compare it with the results obtained with alternative
kernel methods. Finally, we evaluate the influence of the
physical parameters of our method on the motif entropy
and the influence of the motif frequency on the final network
entropy.
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5.1 Principal Component Analysis for Motif Entropy
Vectors

5.1.1 DataSets

Synthetic Networks: We generate synthetic graphs accord-
ing to three different and widely studied complex network
models, namely, a) the Erdés-Rényi random graph model,
b) the Watts-Strogatz small-world model, c) the Barabasi-
Albert scale-free model. These graphs are created with a
fixed number of vertices with time varying network param-
eters. For the Erd6s-Rényi random graph, the connection
probability monotonically increases at the uniform rate of
0.005 per unit time over an interval of 200 time units.
Similarly, the link rewiring probability in the small-world
model increases uniformly between 0 to 1 as the network
evolves over the time interval studied. For scale-free model,
one vertex is added to the connection at each time step.
The aim in this study is to explore whether our method
can distinguish graphs generated by the different network
models.

AIDS Networks: The AIDs dataset [38] consists of
2000 graphs constructed from the AIDS Antiviral Screen
Database. The compound molecules are converted into
graphs in a straightforward manner by representing atoms
as nodes and the covalent bonds as edges. Each graph can
be classified into one of two classes, namely a) active and b)
inactive, which respectively represent molecules with and
without activity against HIV. Our method has also been
tested to determine whether it can accurately classify the
compound data into the two activity classes.

Finacial Networks: We test our method on dataset ex-
tracted from the New York Stock Exchange (NYSE) database
[39]. This encapsulates the performance of 347 stock using
their associated daily closing prices over 6004 trading days
from January 1986 to February 2011. To extract the network
representations, we use a time window of 28 days and
move this window along time to obtain a sequence (from
day 29 to day 6004), in which each time window contains
a series of daily stock prices over a period of 28 days.
For each time window, we compute the cross correlation
coefficients between the closing price time series for each
pair of stock. We create connections between pairs of stock
if the maximum absolute value of the correlation coefficient
is among the highest 5 % of the cumulative cross correlation
coefficient distribution. By doing this, the trades between
different stock are represented as a network with a fixed
number of 347 nodes and varying edge structure for each
of 5976 trading days [40]. Here, the nodes in the network
corresponds to the stock of companies trading in the stock
market over the complete 6000 days period. In our dataset,
the 347 stocks contained in the NYSE database are the stocks
of listed companies that have existed from January 1986 to
February 2011. Therefore, the time series financial networks
that we construct with these 347 stocks as nodes has a fixed
number of 347 nodes. The set of stock considered, i.e. the
node set of the financial network is constant over time,
and stock (nodes) neither appear or disappear. The edge-
structure on the other hand varies with time, and edges ap-
pear and disappear between different pairs of stock. In real-
world applications, the financial market can be considered
as a complex time-varying system consisting of multiple in-
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teracting financial components. To analyze the time-varying
financial market crisis or risk, change point detection has
played an important role to identify abrupt changes in the
time series properties. Unfortunately, detecting such crucial
points remains challenging, since it is difficult to detect
the changes that cannot be easily observed for a system
consisting of complex interactions between its constituent
co-evolving time series. One way to overcome this problem
is to represent multiple co-evolving financial time series as
a family of dynamic time-varying networks [41], [42]. The
aim in this study is to determine whether our network
characterisation can be used to detect fluctuations in trading
network structure due to global political or economic events,
such as the attacks on the World Trade Centre or the Lehman
Brothers collapse.

5.2 Entropy Component Analysis

We use the motif entropies to compute a feature vector for
each graph, and then perform principal components analy-
sis (PCA) on the set of vectors for a sample of graphs. These
samples are generated by network time series. Here, we
choose PCA [43] not only to reduce the dimensionality of the
data, but also to facilitate the visualization of the embedding
results. PCA is a standard and easy way to analyse the data.
To be more formal for each graph we construct a feature
vector ¥ = (51, ...,S,,...)T whose components S, are the
total entropies of the different kinds of motifs occurring in a
graph. Suppose we have a sample of M graphs Gy, ..., Gy
and that the total motif entropy vector for the graph G; is
Z;. The mean motif total entropy vector is 7= ﬁ Zf\il Z;,
and the sample covariance matrix is

<1

1
_ - T
Ef—igl(:cl—x)(xz— ).

The eigen-decomposition of the covariance matrix is
¥ = ®APT, where A is a diagonal eigenvalue matrix with
ordered eigenvalues on the diagonal and ® the eigenvector
matrix with the correspondingly ordered eigenvectors as
columns. We project the centred feature vectors onto the
space spanned by the covariance matrix eigenvectors. This
gives rotated feature vectors z; = ®7(#; — &), and display
the leading three components of the centred and rotated
vectors.

5.2.1 Experimental Settings

To count the frequencies of the motif types shown in Fig.1,
we use the method outlined in [5]. We compute the motif
entropy for different datasets, and the parameter settings
used are listed in Table 2. The two physical parameters
of the model are the inverse temperature 8 and the scale
parameter o appearing in the potential.

In our experiments, these parameters are set to the de-
fault values S = 100 and ¢ = 9. We will discuss the impact
of varying the values of these parameters in detail through
the experiments reported in Section 5.3. We evaluate our
method on synthetic networks and AIDS networks in Sec-
tion 5.2.2 and then further validate it on financial networks
extracted from NYSE time series data in Section 5.2.3.
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TABLE 2
Parameters for different data-sets

Datasets Number of graph | Motifs used Number of nodes B8 | o
Synthetic graph 200 8 500 100 | 9
AIDS 2000 8 Varies in different graphs | 100 | 9
Finance Graph 5976 8 347 100 | 9

5.2.2 Graph characterization for synthetic and AIDS net-
works

We aim to explore whether the motif entropy can be used
to distinguish between graphs using principal components
analysis on samples of motif entropy vectors, i.e. entropy
component analysis. For synthetic networks, i.e. the Erdos-
Renyi, small world and Watts-Strogatz graphs, the embed-
ding corresponding to the leading three eigenvectors is
shown in Figure 2. Here the red points represent the small-
world networks, the green ones scale-free networks and the
blue ones represent the Erdos-Reyni random graphs. The
three populations are clearly distinguished from each other
by the entropy component embedding. In other words, the
three different graph models lead to different populations
with well separated means in the leading three principal
components for the motif entropy vectors.

« Small World
+  Random Graph
. Scale-free Network

PCA for log(Motif Entropy)

-0.06
~0.04 _g.07

0.00 ~
1st 0.02 2
Principle componeny 994 0.06 -0.20 %"

Fig. 2. PCA on the motif entropy vectors for synthetic networks.

For the AIDS dataset, the embedding corresponding to
the first three motif entropy eigenvectors is shown in Figure
3. Here the red points represent the active compounds and
the blue points represent the inactive compounds. The two
classes are clearly separated into two distinct clusters by the
PCA embedding of the motif entropy principal components
representation.

5.2.3 Financial Networks

Thermodynamic measures for network evolution analysis:
We continue our study by exploring whether the motif
entropy can be used for better understanding the time
evolution of realistic complex networks. To this end, we
first compare the evolutionary behavior of motif entropy
and Von Neumann entropy for the NYSE stock market data.
At each time step, we compute both the motif entropy
and Von Neumann entropy. For a graph G' with adjacency
matrix A, according to Passerini and Severini [44] the von-

~Tr[ In L] where

Neumann entropy is S,n(G) 7 In

. Active
+  lnactive PCA for log(Motif Entropy)

5
3rd principle component

20 s

-0 o5

00
1st Principle (umg:nen(

10 g5

Fig. 3. PCA on the motif entropy vectors for the AIDS graphs.

L = D 'Y2(D — A)D~/? is the normalised Laplacian
matrix of the graph.

After processing the original closing price sequence data,
we obtain 5976 different daily samples of the stock corre-
lation network as it evolves with time. At each time step
(or trading day) t, there is a sample of the network. Here,
we calculate the first motif entropy and the von Neumann
entropy for each sample of the graph, and plot the two
entropy values for the stock network as it evolves with
time. The basic idea is to explore whether the resulting motif
entropy can be used to measure the changes in structure of
the stock network and compare this to the corresponding
result obtained using the Von Neumann entropy. Figure
4 shows the time series for the motif entropy(upper) and
the Von Neumann entropy(lower) for 5976 trading days.
When a financial crisis occurs, the stock market network
experiences dramatic structural changes. We have annotated
the plot with labels indicating some of these events. Figure
4 indicates that these structural changes can be effectively
detected by both the time series representations of motif
entropy and Von Neumann entropy, since the fluctuations
in the two time series correspond closely to most of the
well defined financial crises. In addition, the motif entropy
outperforms Von Neumann entropy in the sense that the
motif entropy appears more stable (i.e. is less noisy) during
the intervals between crises.

Time Series Embeddings To better explore the per-
formance of the proposed method for characterizing
time-evolving networks, especially for detecting temporal
anomalies, we perform embeddings of the graph time series.
For the motif entropy vectors, we use PCA and for the Von
Neumann Entropy, we use kernel PCA.

Kernel PCA on Von Neumann Entropy: We use the
graph von Neumann entropies to construct a kernel ma-
trix, and then perform linear kernel principal components
analysis to embed the sample of graphs into a vector
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Fig. 4. The motif entropy (upper, blue) and Von Neumann entropy (lower, green) versus time for the dynamic stock correlation network. The known
financial crisis periods are identified by ellipses. e.g. the Madrod Bombings in 2004.3, the Hurricane Katrina in 2005.8.

space. Let H be the matrix of entropy differences with
element H(i,7) = ||Syn () — Syn(j)|]- We use the entropy
similarity matrix to compute a symmetric kernel matrix
K =-1/2(I - J/M)H(I — J/M) where I is the M x M
identity matrix and J = eel where e = (1,1,...,1)7 is the
all-ones vector of length M. We perform kernel embedding
on the matrix K. To this end let Y be the matrix with the
embedding co-ordinates of the graphs as columns, then K =
XTX. Performing the eigen-decomposition K = UAU7,
the matrix of embedding co-ordinates is X = vAUT. We
visualise the distribution of the graphs using the first three
rows of X corresponding to the leading three eigenvectors
of the kernel matrix.

The results are shown in Figure 5 and Figure 6. Figure
5 shows the entire time series during the 5976 trading
days with the different financial crisis shown with different
coloured markers. However, only the Black Monday event
(black triangles) can be identified in all four embeddings,
while the remaining financial events cannot be detected
easily. When we compare 5 (a) and (b), it is clear that the
motif entropy gives a relatively compact manifold structure
which reflects the characteristics of time evolution. The Von
Neumann entropy, on the other hand, does not give an
easily interpreted manifold structure.

To take our study one step further, we show the em-
beddings during a short time interval around two different
financial crisis to compare the two methods in more detail.
Figure 6 illustrates the structural changes in the embedding
spaces before and after crucial events generated from motif
entropy and Von Neumann entropy, respectively. The blue
star represent the exact day before the crisis occurred while
the red stars represent the period during the crises. From the
figure, it is clear that both types of event can be effectively
detected by the two entropies. However, the embeddings
of the graphs before and after the crisis generated by Von
Neumann entropy are overlapped. On the other hand,

PCA for log(Motif Entropy) KPCA for log(Von Neumann Entropy)

(a) (b)

Fig. 5. PCA embedding plots for the time evolving stock correlation
network characterization. The time series covers the 5976 days. The
financial crisis period is represented by triangular symbols of different
colors, while the remaining periods are represented by green dots, and
these form the background. a) shows the PCA embedding for the 8-
component vector representing the motif entropies for each graph, b) is
obtained from the kernel PCA of Von Neumann entropy.

those generated from motif entropy are clearly separated
into distinct clusters. This indicates that our motif entropy
outperforms Von Neumann entropy in terms of its capacity
to generate a clear manifold structure.

To take the analysis one step further, in Figure 7, we
show a set of points indicating the path of the stock
network in the space spanned by graph entropy graph
energy and time (ordinal number of the graph in the time
series sequence). We explore three time intervals namely
in the proximity of (a) Black Monday(1987.10.19) , (b)
Friday the 13th mini-crash(1989.10.13) and (c) Asian Fi-
nancial Crisis(1997.7-1997.10). The colored bar beside each
plot gives the colour coding of the ordinal numbers of
the days spanned by the time series. The top panel shows
that before Black Monday (blue and green triangles), the
network structure remains stable. During Black Monday,
on the other hand, the network undergoes an abrupt jump
away from the trajectory prior to the crisis in the embedding
space. This is followed by a gradual return after the crisis
which still shows a compact manifold structure. Different
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Fig. 6. Embeddings in the proximity of the Black Monday event. Figure
6 (a) and (b) depict the spatial distribution of embeddings obtained by
PCA of the Motif entropy vectors and kernel PCA on the von Neumann
entropy during Black Monday, respectively. While Figure 6 (c) and (d)
illustrates the distribution around the period of the September 11 attacks.

behaviors can be observed concerning the Friday 13th mini-
Crash and the Asian Financial Crisis. The former gives
rise to a gradual change in the manifold structure, rather
than an abrupt jump (as in the case of Black Monday) and
then returns progressively to its normal state. In the latter
case though, the stock market network suffers a significant
change in structure during the crisis. This is signaled by
a large decrease in both network energy and entropy. The
market crash is followed by a rapid recovery. Hence, in
addition of detecting crucial events, our thermodynamic
motif representation can be utilized to distinguish between
different types of financial crises, and probe their temporal
dependence in more detail.

5.3 C-SVM on Graph Classification

In this section, we use the motif entropy to construct the
entropy kernel for graphs, and compare it with several
kernel methods on graph classification tasks.

5.3.1 DataSets

MUTAG is a data set of 188 chemical compounds where the
class label is as either aromatic or heteroaromatic with seven
node features. PPIs protein-protein interaction (PPI) net-
works, whose structure is represented by undirected graphs.
There are 219 PPIs in this dataset and they are collected
from 5 different kinds of bacteria. We select two kinds
of bacteria, i.e. Proteobacteriad0 PPIs and Acidobacteriad6
PPIs. PTC comprises 344 compounds where the class label
indicates whether they are carcinogenic or not in rats with 19
node features. The NCI1 dataset made publicly available by
the National Cancer Institute (NCI) is a subset of balanced
datasets of chemical compounds screened for the ability to
suppress or inhibit the growth of tumours. It consists of 4100
graphs that represent chemical compounds and each node
is assigned one of 37 possible labels.

10
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Fig. 7. Path of the time-evolving stock correlation network in the entropy-
energy-time space during different financial crises. The panel are for
a) Black Monday, b) Friday the 13th mini Crash and c¢) Asian Financial
Crisis, respectively. The colored bar on the right hand side of each plot
represents the colour code corresponding to positions of graphs in the
time series.

5.3.2 Entropy Kernel

Here, we design the motif entropy kernel based on an en-
tropy kernel associated with dynamic time warping frame-
work. For each graph with index ¢, we have a feature
vector Z; = (Si,...,Ss) whose components are the eight
kinds of motif entropy. We compute kernel matrix through
Ko = fafg where 7, and & is the motif entropy vector
for graph a and b. We perform C-SVM on the output of our
entropy kernel for the purposes of classification, and com-
pare with several alternative state-of-art graph kernels. The
alternative kernels are the dot product kernel (DP)( [45]),
the Jensen-Shannon kernel(JS)( [45]), the Weisfeiler-Lehman
subtree kernel(WLSK)( [46]), the quantum Jensen-Shannon
kernel associated with continues time(QJSK)( [47]), the
quantum Jensen-Shannon kernel associated with discrete
time(QJSKT)( [48]), the shortest path graph kernel(SPGK)(
[49]), the Jensen-Shannon graph kernel(JSGK)( [50]), and the
back-trackless version of the random walk kernel(BRWK)(
[51]). For each kernel, we compute the kernel matrix on each
graph dataset. We perform a 10-fold cross-validation where
the classification accuracy is computed using a C-Support
Vector Machine(C-SVM). In particular, we make use of the
LIBSVM library. For each dataset and each kernel, we com-
pute the optimal C-SVM parameters. We repeat the whole
experiment 10 times and report the average classification
accuracies (+ standard error).

5.3.3 Classification Accuracy

The result of classification accuracy is shown in Table.3
and the corresponding running time is shown in Table.4.
We can find that our method performed better than other
methods in classification accuracy at the expense of a slight
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TABLE 3
Classification accuracy(in %=+ standard error) runtime in second
Datasets Mutag PPIs PTC NCI1
Kpp 82.38 £0.55 88.62 £ 0.86 58.62 £ 0.69 85.03 £0.12
Kig 85.44 £ 0.58 90.62 £ 0.90 60.70 £ 0.62 85.18 £ 0.10
WLSK 82.05 £ 0.57 78.50 £ 1.40 56.05 £ 0.51 80.68 £0.27
QJISK 83.83 £ 0.49 70.57 £ 1.40 58.23 £ 0.80 67.40 £0.20
QJSKT | 81.55+0.53 68.12+0.84 57.44 +0.36 67.00 £0.15
SPGK 83.38 £ 0.81 61.12 £ 1.09 56.55 + 0.53 74.21 %+ 0.30
JSGK 83.11 £0.80 57.87 £ 1.36 57.29 £ 0.41 62.50 £ 0.33
BRWK | 77.50=£0.75 53.50 £ 1.47 53.97 £ 0.31 60.34 £0.17
KE 87.06 £0.77 | 90.83 £1.23 | 61.59£0.74 | 85.76 £ 0.21
TABLE 4
Runtime for various kernels(second)
Datasets Mutag PPIs PTC NCI1
Kpp 2.7 x 10T 5.5 x 10T 2.7 x 10T 5.4 x 102
Kjs 1.2 x 107 1.7 x 10? 2.7 x 107 4.1 x 10%
WLSK 0.4 x 107 1.3 x 10T 1.1 x 10T 1.5 x 102
QJSK 1.2 x 10T 1.4 x 10% 1.1 x 102 1.6 x 107
QJSKT | 2.9x 107 1.5 x 10? 1.7 x 10? 1.4 x 107
SPGK 0.1 x 10T 0.7 x 10T 0.1 x 10T 8.3 x 10T
JSGK 0.1 x 107 0.1 x 107 0.1 x 10T 0.1 x 10T
BRWK | 0.1 x 107 8.6 x 102 0.3 x 10T 4.1 x 107
KE 3.9x 10T | 2.3 x 102 | 3.6 x 102 | 4.4 x 10%

increase in computation time. We also study the effect
of Temperature(+) on the classification accuracy and the
results are shown in Fig.8

Graph Classification Accuracy Versus Beta
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Fig. 8. Classification accuracy varying with inverse temperature 3.

5.4 Parameter Settings

The aim in this section is to explore the parameter de-
pendence of the motif model presented in this paper. We
commence by exploring how the entropy is distributed
among motifs of different size. We plot the motif entropies
for the Financial Networks versus time, and observe how
they behave during the different crises. In Fig.9, we vary the
motif size from 1 to 8, and plot the different motif entropies
as a function of time. Each of the motifs is sensitive to the
complete set of crises. However motifs of sizes 1, 2 and 7
performs better when measured in terms of the amplitude
of entropy variation in the proximity of the crises, and the
smoothness in non-crises regions. This may be that motifs 1
and 2 are the most frequent, and can thus represent the vast
majority of the topological information variance residing
in a graph. Motif 7, on the other hand, may vary greatly

in frequency of occurrence in different graphs. It is thus
sensitive to the differences between different graphs. As
for motif 8, there are few occurrences in any of the graphs
studied.

We also explored the effect of varying the temperature.
We varied temperature from 0.01 to 1000, and investigated
the effect on the first motif entropy. From Fig.10, it is clear
that the temperature plays the role of a smoothing param-
eter, controlling the amplitude of the background entropy
variations but not affecting the behaviour in the proximity
of the crises.

In order to explore the relationship between network
energy and entropy, we studied the evolution of energy
and entropy of different motifs in the Financial time series
dataset. As is shown in Fig.11, the behaviour of the energy
of the network follows that of the motif entropy, no matter
the size. Both quantities can identify the financial crisis
events. It also indicates that the motif entropy subsumes
the information contained in the energy and vice-versa.

We further explore whether the detection motif method
that we proposed can effectively reveal the basic mech-
anisms of the networks through the number of different
motifs and their variations over time. As shown in Fig.12,
the number of motifs also exhibits significant variation with
time during the financial crisis. In particular, variation in the
frequencies of the first two motifs is much greater than the
remainder. As expected this coincides with the behaviour of
the motif entropies in Fig.9. We can represent each graph
as a vector X = (S1, .Sy, ...)T, whose components .S, are
the total entropies of the different kinds of motifs occurring
in the graph. As we increase the number of selected motif
types, the dimensionality of the embedding associated with
the graph entropy vector increases. This means that the en-
tropy components more accurately represent the total graph
entropy. Moreover, the crises are more cleanly separated by
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Fig. 9. Lines of eight colors represent the time-varying entropies of the 1-st motif to the 8-th motif, respectively.
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Fig. 10. The first motif entropy on Financial Networks versus time under different temperatures.
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Fig. 13. Energy versus Motif Entropy on AIDS.

the entropies than by the raw motif frequencies.

We also evaluate the effect of parameters 3 and o on the
energy and motif entropy in the AIDS dataset. In Fig.13, the
fitted curve in the scatter plot of energy and motif entropy,
we varied ¢ and [ separately to show their influence to
the energy and entropy. As we can see in Figs.13(b), 13(c)
and Figs.13(a), the fitted curve tends to rise with 8 becomes
larger, which also means that the range of energy becomes
wider. Since the larger the range of energy and entropy
value describing the network, the finer the granularity of
description and the more information it conveys. This is a
desirable effect. These plots also show that at low tempera-
ture(inverse f3) the variations in the distributions of number
of edges is more important than at high temperature (as
expected from our preliminary analysis). When 3 = 100,
the slope of the fitted energy curve is maximum, and even if
B increases significantly it remains unchanged. We continue
by fixing 8 and varying o. Comparing Fig.13(a),Fig.13(d)
and Fig.13(e) when o increases, the spread of entropy for
a fixed value of energy increases. One energy value cor-
responds to a wider range motif entropies, while the re-
gression relationship between energy and entropy becomes
more scattered when o is small.

6 CONCLUSION

In this paper, we have explored how to model the role of
network motifs in determining network energy and entropy.
To do this we make use of an analogy with the cluster ex-
pansion in statistical physics. We capture the motif content
of a network using a partition function. This treatment leads
to expressions for the thermodynamic energy and entropy,
which can be used to characterize the structural properties
of the network. We present an analytical solution for the

log;oMotif[ 1]Entropy

numbers of network motifs and the scaling of all types
of motifs using the partition functions. This allows us to
compute energy and entropy using the cluster expansion
in terms of network motifs. We conduct the experiments
on both synthetic networks and real-world networks. For
real-world networks, we focus on network time-series rep-
resenting stock trades on the NYSE. Our model is capable of
detecting abrupt changes or anomalies in network structure
and distinguishing different types of time-dependency for
different types of anomaly.

The work reported in this paper can clearly be extended
in a number of different ways. First, we acknowledge that
we have explored a relatively limited quantity of real-world
data. It would, for example, be interesting to see if the
thermodynamic variables can be used to detect temporal
anomalies and disturbances in the evolution of networks
on a greater variety of data. Another interesting line of
investigation would be to explore the uses of network
motifs in classification problem to identify different types of
structures. Finally, we plan to extend this work to quantum
statistics to further investigate the properties of network mo-
tifs in the quantum domain, where effects such as particle
spin become important.
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