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Finite-Horizon Optimal Control of Boolean Control
Networks: A Unified Graph-Theoretical Approach

Shuhua Gao, Changkai Sun, Cheng Xiang∗, Kairong Qin, Tong Heng Lee

Abstract—This paper investigates the finite-horizon optimal
control (FHOC) problem of Boolean control networks (BCNs)
from a graph theory perspective. We first formulate two general
problems to unify various special cases studied in the literature:
(i) the horizon length is a priori fixed; (ii) the horizon length
is unspecified but finite for given destination states. Notably,
both problems can incorporate time-variant costs, which are
rarely considered in existing work, and a variety of constraints.
The existence of an optimal control sequence is analyzed under
mild assumptions. Motivated by BCNs’ finite state space and
control space, we approach the two general problems in an
intuitive and efficient way under a graph-theoretical framework.
A weighted state transition graph and its time-expanded variants
are developed, and the equivalence between the FHOC problem
and the shortest path problem in specific graphs is established
rigorously. Two custom algorithms are developed to find the
shortest path and construct the optimal control sequence with
lower time complexity, though technically a classical shortest-
path algorithm in graph theory is sufficient for all problems.
Compared with existing algebraic methods, our graph-theoretical
approach can achieve the state-of-the-art time efficiency while
targeting the most general problems. Furthermore, our approach
is the first one capable of solving Problem (ii) with time-variant
costs. Finally, the Ara operon genetic network in E. coli is used
as a benchmark example to validate the effectiveness of our
approach, and results of two tasks show that our approach can
dramatically reduce the running time.

Keywords—Boolean control networks, Finite-horizon optimal
control, Shortest path problem, Dynamic programming, Dijk-
stra’s algorithm

I. INTRODUCTION

Boolean network (BN) was first proposed by Kauffman
[1] to model gene regulatory networks, where each gene is
assigned a Boolean variable to represent its expression state.
The BN model has thereafter attracted increasing research
interest in various fields, including studies on biomolecular
networks in systems biology [2], therapeutic interventions in
clinical treatment [3], and the contagion dynamics during a
financial crisis [4], just to name a few. In a BN, the binary
variables interact with each other through Boolean functions,
and exogenous (binary) inputs can be injected into these
functions to affect the network dynamics, which is commonly
referred to as a Boolean control network (BCN) [5]. In this
study, we focus on finite-horizon optimal control (FHOC) of
BCNs, which is useful for optimal therapeutic intervention
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strategy design in medical applications [3]. Note that we view
the finite horizon in a more general sense: either a fixed
horizon length, or an unknown but finite horizon length with
respect to a given destination state. These two types of FHOC
problems are referred to as fixed-time optimal control and
fixed-destination optimal control respectively in this paper.

In the last decade, a new matrix product called the semi-
tensor product (STP), which can convert a BN (BCN) into
an algebraic state-space representation (ASSR), has been
developed by Daizhan Cheng et al. [6], [7]. The ASSR
provides a systematic framework to study a wide range of
control-theoretical problems related to BCNs, such as their
controllability [5], observability [5], [8], stabilization [9], and
various controller synthesis problems [10], [11], among others.
A number of optimal control problems for BCNs have been
investigated in recent years using the STP and ASSR tools
as well. In [12], the Mayer-type optimal control problem
(i.e., only terminal cost is considered) for single-input BCNs
is addressed, and a necessary condition analogous to the
Pontryagin’s maximum principle is derived, which has been
later extended to multi-input BCNs [13]. The minimum-energy
control and minimum-time control of BCNs are investigated
in [14] and [15] respectively. More general FHOC problems
involving both stage cost and terminal cost are considered
in [16], and the solution is given by a recursive algorithm
as an analogy to the difference Riccati equation for discrete-
time linear systems. More recently, Ref. [17] targets the time-
discounted stage cost and introduces a recursive algorithm
based on a data structure called the optimal input-state transfer
graph. The same problem is also investigated in [18], and a
recursive solution for receding horizon optimal control of mix-
valued probabilistic logical networks is obtained. In parallel to
the study of FHOC problems, the more challenging infinite-
horizon counterparts have also been attempted recently in
several contributions using STP-based algebraic methods. For
example, infinite-horizon optimal control with average cost is
studied in [16], [19], [20], and the time-discounted cost case
is examined in [17], [21], [22].

While we appreciate the above successes achieved with
algebraic methods powered by the STP theory, one issue is
that distinct methods are developed to solve different prob-
lems as reviewed above, even if we only consider FHOC.
It appears that most existing work only deals with certain
special cases of FHOC, for example, the minimum-energy
control [14], the minimum-time control [15], the Mayer-type
problem [12], the two kinds of Lagrange-type problems [23],
and the time-discounted finite-horizon problem [18], though
they may share a lot in common. As mentioned in [16] and
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[24], there are many other types of FHOC problems as well
as lots of practical limitations, for instance, optimal control
subject to various constraints [24], [25], and more challenging
problems with general time-variant costs. Consequently, a
versatile approach instead of fragmented methods to solve
all these common problems is highly desirable, which partly
motivates this research. One goal of our study is to unify
various tasks into an integrated framework and to develop
systematic algorithms to handle the most general problems.

One serious concern about the algebraic approaches in BCN
studies is the high computational complexity, since the number
of operations grows exponentially with respect to the network
size [5], [7], [11]. As a result, these approaches may quickly
become computationally intractable as the number of state
variables increase. In fact, most control-theoretical problems
of BCNs are NP-hard [15] due to the combinatorial nature of
Boolean state variables, i.e., a BCN with n variables has up
to N := 2n states, a phenomenon well-known as the curse of
dimensionality, such as NP-hardness of controllability [26] and
observability [8]. However, this doesn’t mean we are hopeless:
many algebraic approaches run in a high-order polynomial
time in terms of N (see Table I for more details), which still
leaves vast room for improvement by designing more efficient
algorithms to decrease the order of the polynomial [9], [27].
This forms another objective of this research: we aim to reduce
the computational complexity of FHOC for BCNs.

To pursue more efficient algorithms, we notice that a BCN is
characterized by its finite state space, finite control space, and
deterministic state transitions. A direct consequence of this
property is that the dynamics of a BCN can be adequately
described by a state transition graph (STG). Going further,
methods originating from graph theory appear to be promising
for investigations of BCNs. For example, computationally
efficient methods for controllability [27], [28] and stabilization
[9] of BCNs all resort to certain graph-theoretical algorithms.
Regarding the optimal control of BCNs, a couple of pioneering
studies exist that attempt to combine the ASSR with tools from
graph theory to improve computational efficiency. A typical
example is the employment of Floyd-like algorithms, inspired
by the Floyd-Warshall algorithm in graph theory, in both finite-
horizon minimum-energy control [14] and infinite-horizon
problems [20], [21]. An update-to-date study [23] handles two
kinds of Lagrange-type optimal control problems using the
Dijkstra’s algorithm instead. The above two algorithms are
both initially developed to find shortest paths in a weighted
graph. One limitation of both [14] and [23] is that they only
consider time-invariant costs and a special class of FHOC
problems. Motivated by these pioneering work borrowing tools
from graph theory, we attempt to advance further and unify all
common FHOC problems into an elegant and efficient graph-
theoretical framework.

The contributions of this paper are listed in three folds.
First, we unify all common types of FHOC problems, in-
cluding time-variant costs and various constraints, into two
general problems depending on whether the horizon length is
prespecified, which are subsequently reduced to shortest path
problems by constructing particular variants of the STG. The
correctness of this reduction is proved rigorously. Existence

of an optimal control sequence is analyzed under mild con-
ditions for both problems. Second, we develop two intuitive
algorithms to solve the above shortest path problems with
superior efficiency. To be specific, only one algebraic method
can achieve the same worst-case time complexity as ours, but
our approach still tends to have better practical performance,
which is demonstrated by two optimal control tasks for a
genetic network in the bacteria E. coli. Third, as far as we
know, there are currently no published results on the fixed-
destination optimal control problem with time-variant costs,
and our approach can handle it effectively using the identical
graph-theoretical methodology.

The remainder of this paper is organized as follows. In
Section II, we present some background knowledge about
the STP, the ASSR, and the shortest path problem in graph
theory. Section III introduces two general problems that can
incorporate all specific FHOC problems studied in the current
literature. In Section IV, the construction of the STG from
a given initial state is discussed. After that, we detail the
equivalence between the two FHOC problems and the shortest
path problem in dedicated graphs and propose two efficient
algorithms to solve them in Section V and VI respectively.
The time complexity of our approach is compared with that
of existent work in Section VII, and the practical running time
of various methods to complete two tasks for the Ara operon
network of E. coli is measured in Section VIII. Finally, Section
IX gives some concluding remarks.

II. PRELIMINARIES

A. Notations

For statement ease, the following notations [6], [7] are used.
1) |S| denotes the size (i.e., cardinality) of a set S.
2) Let R and N denote the set of real numbers and nonnega-

tive integers respectively. [l, r] := {l, l+1, · · · , r−1, r}.
3) f ≥ B means a function f is bounded below by B.
4) Mp×q denotes the set of all p× q matrices. Given A ∈
5) Coli(M) denotes i-th column of a matrix M , and Mij

denotes the (i, j)-th entry of M .
6) δin := Coli(In), where In ∈ Mn×n is the identity

matrix. ∆n := {δin|i = 1, 2, · · · , n}, and ∆ := ∆2.
7) A matrix M = [δi1n δi2n · · · δ

iq
n ] ∈ Mn×q with δikn ∈

∆n,∀k ∈ [1, q], is called a logical matrix. Let Ln×q
denote the set of all n× q logical matrices.

8) A matrix A ∈ Mn×mn can be rewritten into a block
form A = [Blk1(A) Blk2(A) · · · Blkm(A)], where
Blki(A) ∈Mn×n is the i-th square block of A.

9) Logical operators [6]: ∧ for conjunction, ∨ for disjunc-
tion, ¬ for negation, and ⊕ for exclusive disjunction.

B. STP of Matrices and ASSR of BCNs

This section revisits some necessary background knowledge
about the STP and the ASSR of BCNs developed by Daizhan
Cheng et al. [5]–[7].

Definition 1: [19] The STP of two matrices A ∈ Mm×n
and B ∈Mp×q is defined by

AnB = (A⊗ I s
n

)(B ⊗ I s
p
),
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where ⊗ denotes the Kronecker product, and s is the least
common multiple of n and p.

Remark 1: The STP is essentially a generalization of the
standard matrix product, and all major properties of the
standard matrix product remain valid under STP [19]. Thus,
we will omit the symbol n in the remainder when no confusion
is caused. That is, all matrix products refer to STP by default.

A logical function can be conveniently expressed in a
multilinear form via STP. In this form, a Boolean value is
identified by a vector as TRUE ∼ δ12 and FALSE ∼ δ22 .

Lemma 1: [6] Given any Boolean function
f(x1, x2, · · · , xn) : ∆n → ∆, there exists a unique
matrix Mf ∈ L2×2n , called the structure matrix, such that

f(x1, x2, · · · , xn) = Mfx1x2 · · ·xn. (1)

Interested readers may refer to [6] for computation of Mf .
For simplicity, set nni=1Ai := A1 n · · ·nAn.

A general BCN Σ with n state variables (i.e., n nodes in
the network) and m control inputs can be described as

Σ :


x1(t+ 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))

x2(t+ 1) = f2(x1(t), · · · , xn(t), u1(t), · · · , um(t))
...
xn(t+ 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

(2)
where xi(t) ∈ ∆ denotes the value of the i-th variable at time
t, and fi : ∆n+m → ∆ is the i-th Boolean function, i ∈ [1, n].
Additionally, uj(t) ∈ ∆ denotes the j-th control input at time
t, j ∈ [1,m]. Set x(t) := nni=1xi(t) and u(t) := nmj=1uj(t).
Clearly, we have x(t) ∈ ∆N and u(t) ∈ ∆M , where N := 2n

and M := 2m. N and M will be used through the whole text.
The ASSR of the BCN in (2) is given by [6], [14]:

x(t+ 1) = Lu(t)x(t), (3)

where L ∈ LN×MN , named the network transition matrix,
is computed by Colj(L) = nni=1Colj(Mfi),∀j ∈ [1,MN ],
where Mfi ∈ L2×MN is the structure matrix of fi in (2).

C. Shortest Path Problem
The core of our graph-theoretical approach for FHOC is to

transform the original problem into a shortest path problem in
a particular graph and then locate the shortest path efficiently.
We brief the shortest path problem in graph theory below.

Given a directed graph G = (V,E), where V =
{v1, v2, · · · , vn} is a set of vertices, and E = {(vi, vj)|vi, vj ∈
V } is a set of directed edges, we assign each edge a real value,
called its weight or cost. Denote the weight of the edge from
vi to vj by w(vi, vj). Such a graph is known as a weighted
directed graph. A path from a source vertex vi0 ∈ V to a
destination vertex vik ∈ V is a sequence of vertices connected
by edges, denoted by p = 〈vi0 , vi1 , · · · , vik〉. Let ε(p) and |p|
denote the number of edges and vertices in p respectively. If
vi0 = vik , p is a cycle. ε(p) is also called the length of p.

Definition 2: The weight w(p) of a path p is the sum of the
weights of its constituent edges:

w(p) =

k−1∑
j=0

w(vij , vij+1
). (4)

A shortest path (SP) from vi0 to vik is any path from vi0 to
vik with the minimum weight among all possible paths.

III. PROBLEM FORMULATION

Despite the variety of FHOC problems of BCNs studied in
the literature [12]–[18], [23], they can essentially be classified
into two general types according to whether the horizon
length is a priori fixed or not. This section will detail the
mathematical formulation of both general problems.

A. Fixed-Time Optimal Control

Roughly speaking, our objective is to construct a fixed-
length control sequence for the BCN (3) to optimize a given
performance index [16], [25]. The scenario can become much
more complicated in practice because of various constraints
when designing control strategies. For example, we have to
avoid dangerous states in therapeutic intervention [3], [25].
Besides, not all theoretical control inputs are practically real-
izable, e.g., we may still lack effective means to manipulate
specific genes in a GRN, or a medical treatment is possibly
unaffordable. Consequently, certain control inputs can be un-
available or just prohibited in specific states [24]. Finally, it is
common that we may want to steer the network to a particular
state, e.g., to lead a gene regulatory network from a cancerous
state (initial state) to a healthy state (terminal state) [29], [30].
Thus, we further enrich the fixed-time optimal control problem
by constraining the terminal states.

A general problem reflecting the above intention subject to
various constraints is formulated mathematically as follows.

Problem 1: Consider the BCN (3), an initial state x0 ∈ ∆N ,
and a fixed horizon length T ∈ N. Fixed-time optimal control
of a BCN is to determine an optimal control sequence of length
T to the following optimization problem:

min
u
JT(u) = hT(x(T )) +

T−1∑
t=0

g(x(t), u(t), t),

s.t.



x(t+ 1) = Lu(t)x(t)

x(t) ∈ Cx
u(t) ∈ Cu(x(t))

x(0) = x0

x(T ) ∈ Ω

, (5)

where u := (u(0), u(1), · · · , u(T − 1)) ∈ ∆T
M is a control

sequence; g : ∆N ×∆M ×N→ R is the stage cost function;
and hT : ∆N → R is the terminal cost function. Cx denotes the
allowed states; Cu represents the state-dependent constraints
on control inputs; and the terminal set Ω ⊆ ∆N denotes the
set of desirable terminal states at time T .

Remark 2: The horizon length T denotes a finite treatment
window in therapeutic applications [3], [25]. Thus, optimal
therapeutic intervention strategies can be developed within a
treatment window by setting up a proper optimality criterion
JT in (5) by domain expert knowledge.

Remark 3: Most existing studies only deal with time-
invariant stage cost, that is, the function g in (5) doesn’t
really depend on time t (see [15], [20], [23] for examples).
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Few studies consider a time-dependent g but only in restricted
forms such as the time-discounted cost in [17] and [18]. We
intend to investigate the most general form (5) directly, where
the stage cost g can incorporate time t in any form.

Problem 1 represents a very general setting of fixed-time
optimal control problems. A variety of specific finite-horizon
problems investigated in existing work can be rewritten easily
into this general form. We demonstrate in the sequel how
to specialize Problem 1 to some specific fixed-time optimal
control problems with different characteristics in the literature.

1) No terminal state constraints [16], [17], [23]. If the
terminal state is not specified, we only need Ω = ∆N .

2) A single desired terminal state [14], [15]. Set Ω = {xd},
where xd is the single desired terminal state.

3) Only stage cost [14], [18], [23]. To remove the terminal
cost, simply nullify it by hT(·) ≡ 0.

4) Only terminal cost (also known as the Mayer problem)
[12], [13]. Just set zero stage costs: g(·, ·, ·) ≡ 0.

5) Special terminal or stage cost functions [14], [16], [18].
For example, [17] and [18] consider the time-discounted
finite-horizon optimal control, which can be expressed
by (5) with g(x(t), u(t), t) = λtcg(u(t), x(t)), where
0 < λ < 1 is the discount factor, and cg(·, ·) is a time-
invariant stage cost. As another example, the energy
function in [14] is obtained through g(x(t), u(t), t) =
u>(t)Qu(t), and the more general quadratic cost func-
tion in [16] can be implemented straightforwardly by

hT(x(T )) = x(T )>Qhx(T ),

g(x(t), u(t), t) =
[
x(t)>u(t)>

] [ Q S
S> R

] [
x(t)
u(t)

]
,

where Qh, Q, S, and R are proper weight matrices.

B. Fixed-Destination Optimal Control

A common task that Problem 1 cannot cover is time-optimal
control, which aims to find a control sequence to drive the
BCN from a given initial state x0 to another destination
state xd in minimum time. Such time-optimal control has
been widely studied for traditional linear time-invariant (LTI)
discrete-time systems, such as the famous deadbeat controller
(see [31] for a review). In [15], the minimum-time control of
BCNs is first investigated, and the same problem is considered
again in [32] but with impulsive disturbances. Such optimality
concept can be generalized to other criteria, for example, the
minimum-energy control studied in [14], which attempts to
steer the BCN to a target state using minimum energy.

Note that although the horizon length is not a priori fixed,
it must be finite for a well-posed problem, that is, the specified
destination state xd should be reachable from the initial state
x0 in finite steps. It is the main reason we consider such
problems as another class of FHOC problems in a general
sense. To further generalize this problem, just like Problem
1, we make it admit a set of destination states and subject to
various constraints, which is formalized as follows.

Problem 2: Consider the BCN (3), an initial state x0 ∈ ∆N ,
and a terminal set Ω ⊆ ∆N . The fixed-destination optimal

control problem of a BCN is to determine an optimal control
sequence of a variable length to the optimization problem,

min
u
J(u) = h(x(K),K) +

K−1∑
t=0

g(x(t), u(t), t),

s.t.



x(t+ 1) = Lu(t)x(t)

x(t) ∈ Cx
u(t) ∈ Cu(x(t))

x(0) = x0

x(K) ∈ Ω

, (6)

where u = (u(0), u(1), · · · , u(K − 1)) ∈ ∆K
M represents a

control sequence, and K ∈ N indicates an unknown but finite
horizon length. The terminal cost function h : ∆N × N → R
and the stage cost function g : ∆N ×∆M × N → R can be
time-dependent. Cx, Cu, and Ω denote the state constraint, the
control constraint, and desirable destination states respectively.

Remark 4: Despite the apparent similarity in mathematical
forms between Problem 1 and Problem 2, they will be treated
by distinctly different means to maximize the computational
efficiency of each problem. In existing work like [14] and
[23], only specific problems with a time-independent stage
cost function and a single destination state are investigated,
and no terminal cost is considered. However, we argue that it
is sensible to set different costs if the desired terminal state is
reached at different time, for example, when the desired state
refers to a good state of physical health.

Compared with the fixed-time optimal control (Problem 1),
there are fewer studies on Problem 2. As far as we know, only
the following two custom problems have been investigated in
the literature, both with a single destination state, i.e., Ω =
{xd}, and a time-invariant stage cost function.

1) Minimum-time control [15], [32]. This kind of control
is often referred to as time-optimal control. In Problem
2, simply set g(·, ·, ·) ≡ 1 and h(·, ·) = 0, and we have
J(u) = K. Thus, we are indeed minimizing the number
of steps to steer the BCN (3) from x0 to xd.

2) Minimum-energy control [14]. Let g(x(t), u(t), t) =
u>(t)Qu(t) and h(·, ·) = 0, where Q is a positive
definite diagonal matrix measuring energy consumption.

IV. STATE TRANSITION GRAPH

In this section,we introduce the state transition graph (STG)
of a BCN, which is useful for both Problem 1 and 2. An
efficient algorithm based on bread-first search (BFS) [33] in a
graph is developed to construct the STG.

A. Reachability of a BCN

To construct the STG, we need to first discuss the reacha-
bility of a BCN [5], [7], especially the reachable set of a given
intial state, whose definition is given as follows.

Definition 3: The set of states that can be reached from
x(0) = x0 ∈ ∆N at time t = d is Rd(x0). Given a
set X ⊆ ∆N , let Rd(X) := ∪x∈XRd(x) for notational
simplicity. The complete reachable set of a given state x0 is
R(x0) := ∪d∈NRd(x0).
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R(x0) can be obtained algebraically by calculating powers
of the network transition matrix L [5], [7]. However, from
a graph-theoretical view, a computationally economical way
is to adopt the standard bread-first search (BFS) procedure
to build R(x0) iteratively [9], [33]. More interestingly, this
method is closely related with the adjacency-list representation
of a graph [33], and only requires successive computation of
the one-step reachable set R1(·). Recall that u(t) ∈ ∆M and
x(t) ∈ ∆N are both logical vectors with all zero entries except
a single entry of value 1. Thus, given u(t) = δkM , we have
Lu(t) = Blkk(L). The following lemma follows immediately.

Lemma 2: The one-step reachable set of a state δiN for a
BCN (3) with no constraints is

R1(δiN ) = {Coli(Blkk(L))|k ∈ [1,M ]}, (7)

and, if there are constraints like Problem 1 (or Problem 2),

R1(δiN ) = {Coli(Blkk(L))|k ∈ [1,M ], δkM ∈ Cu(δiN )} ∩ Cx.
(8)

Note that we ignore the terminal constraint in (8) and will
handle it later when building specific graphs. It is possible that
more than one control input can attain the transition from δiN
to δjN . Collect these qualified control inputs into a set U ij :

U ij = {δkM ∈ Cu(δiN )|k ∈ [1,M ],Coli(Blkk(L)) = δjN}.
(9)

By Definition 3 and Lemma 2, the d−step reachable set of
a state δiN is obtained efficiently with the recursion:

Rd(δiN ) = R1(Rd−1(δiN )), d ≥ 2. (10)

B. Construction of an STG

As aforementioned, a BCN is characterized by its finite
state space, where the finite control inputs coordinate the state
transitions deterministically. This feature makes it possible to
capture the complete dynamics of a BCN with a directed
graph, called the state transition graph (STG).

Definition 4: Consider the BCN (3). Its state transition graph
(STG) is a directed graph G = (V,E), where V = ∆N is the
vertex set, i.e., one vertex for each state, and the edge set is

E = {(δiN , δjN )|δiN ∈ V, δjN ∈ R1(δiN )}, (11)

i.e., one edge for each one-step transition between states.
In this study, we only care about states reachable from an

initial state x0. We denote such an STG by G = (V,E, x0)
with V = R(x0). Hereafter we will use the terms vertex and
state interchangeably when no ambiguity is caused.

In addition, we may assign a weight to each edge of the
STG corresponding to the cost of the each state transition,
which will be detailed in following sections.

Remark 5: The input-state graph (in a matrix form), pro-
posed by [7], [21], uses an input-state pair (δiM , δ

j
N ) as an

vertex, leading to MN vertices in total. Our STG with only N
or R(x0) vertices is potentially more space and time efficient.

Note from (11) that R1(δiN ) essentially denotes the succes-
sors of the vertex δiN in the STG. We thus can build the STG
following a BFS procedure and get R(x0) at the same time.
BFS is a graph traversal algorithm where the neighbors of a

Algorithm 1 Construction of State Transition Graph via BFS
Input: a BCN (3) and relevant constraints if any
Output: Adjacency-list representation of an STG

1: Initialize a FIFO queue Q and a set R
2: Append x0 to Q and R
3: while Q is not empty do
4: δiN ← dequeue(Q)
5: for all δjN ∈ R1(δiN ) do . See Lemma 2
6: if δjN /∈ R then
7: Append δjN to Q and R

vertex are visited in a FIFO (first-in-first-out) order. Algorithm
1 details the construction of an STG. Running Algorithm 1,
we get the reachable set R(x0), i.e., R in the algorithm, and
the adjacency list of each vertex, R1(x),∀x ∈ R(x0), which
effectively gives the STG G = (V,E, x0) by Definition 4.

Time complexity analysis of Algorithm 1. For each state
δiN ∈ R(x0), Eq. (7) or (8) needs M operations, and obviously
|R1(δiN )| ≤ M . The for loop has at most M iterations; and
the while loop runs |V | times because each vertex is enqueued
and dequeued exactly once. Thus, the time complexity of
Algorithm 1 is O(M |V |), which is equivalent to O(MN)
since there are at most N states (vertices). This conforms to the
celebrated theorem that BFS runs in linear time with respect
to the number of edges and vertices [33], i.e., O(|V | + |E|),
because the STG has at most MN edges.

Remark 6: Algorithm 1 implies that, any state x ∈ R(x0)
can be reached from x0 in less than N steps, i.e., R(x0) =
∪0≤d<NRd(x0). This result is intuitive: if a trajectory from
x0 to x contains more than N states, there must be repetitive
ones, and we can remove such cycles to shorten the trajectory.

Example 1: Consider a BCN with m = 2 control inputs and
n = 3 state variables [14] as follows:

Σ1 :


x1(t+ 1) = x2(t) ∧ (u1(t)⊕ x3(t))

x2(t+ 1) = ¬x1(t)

x3(t+ 1) = u2(t)⊕ x2(t)

. (12)

Its ASSR (3) has a 8×32 transition matrix L, which is omitted
here to conserve space. For illustration purpose, we set up the
state constraints and control constraints arbitrarily below:

Cx = ∆8 \ {δ88}

Cu(x) =

{
{δ34 , δ44}, if x = δ68
∆4 \ {δ24}, otherwise

(13)

i.e., the state δ88 is forbidden; the control δ24 is unavailable to
all states; and only control {δ34 , δ44} is applicable to state δ68 .

The STG G = (V,E, x0) of Σ1 with states reachable from
x0 = δ18 subject to the given constraints (13) is obtained by
Algorithm 1 and shown in Fig. 1.

V. SOLVE PROBLEM 1 VIA DYNAMIC PROGRAMMING

In this section, we first validate the existence of optimal
solutions to Problem 1, and then we introduce a time-expanded
variant of the STG and develop an efficient algorithm via
dynamic programming to solve Problem 1 based on that graph.
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Fig. 1. STG of the BCN (12) in Example 1. Each circle labeled i represents
a state δi8, and the arrows denote state transitions.

A. Existence of Optimal Solutions

As we will discuss next, the stage costs and the terminal
costs in (5) are mapped to edge weights of a graph to reduce
Problem 1 to an SP problem. It is known that the SP problem
is well defined only if the graph contains no negative-weight
cycles [33]. Nonetheless, since the length of a path in Problem
1 is fixed due to the fixed horizon, this condition is no longer
required. Only the following assumption is needed for Problem
1 to avoid an optimal value of negative infinity.

Assumption 1: The stage cost function g and the terminal
cost function hT in Problem 1 are both bounded from below.

Now we are ready to present the following conclusion about
the existence of optimal solutions to Problem 1.

Proposition 1: Consider Problem 1 under Assumption 1.
An optimal control sequence u∗ to (5) exists if and only if
Ω ∩RT (x0) 6= ∅.

Proof: (Necessity) RT (x0) includes all states reachable
from x0 at t = T subject to the constraints in (5) (except
Ω), i.e., x(T ) ∈ RT (x0),∀u ∈ ∆T

M . If Ω ∩ RT (x0) = ∅,
no feasible solutions exist for Problem 1, i.e., Problem 1 is
infeasible. Thus, the necessity of Ω∩RT (x0) 6= ∅ is obvious.

(Sufficiency) Note that the solution space U of Problem 1 is
of finite size, which contains at most MT candidate solutions.
Besides, Ω ∩ RT (x0) 6= ∅ implies that at least one feasible
solution u ∈ U exists which can steer the BCN from x0 to a
terminal state xf ∈ Ω at time T under constraints. Moreover,
Assumption 1 ensures that JT(u) is bounded from below, ∀u ∈
U. A straightforward exhaustive enumeration of U can yield
the optimal solution u∗ satisfying JT(u∗) = minu∈U JT(u).

Remark 7: If there are no constraints in Problem 1, i.e.,
Cx ≡ ∆N , Cu(·) ≡ ∆M ,Ω ≡ ∆N , an optimal control
sequence always exists, which is widely studied in existing
work, e.g., [17], [23]. Note additionally that the optimal
control sequence u∗ may not be unique.

B. Time-Expanded Fixed-Time State Transition Graph

Fig. 1 shows that each edge in the STG corresponds to
a state transition of the BCN, whose weight indicates the
transition cost. This fact motivates us to connect Problem 1
to the shortest-path (SP) problem on the STG. However, in
contrast to the standard SP problem in graph theory, Problem
1 poses three substantial challenges. First, the number of time
steps is fixed to T , that is, we want only T -edge paths. Second,
the stage cost function g is time-dependent, indicating that
the edge weights may vary with time. Finally, there is an
additional terminal cost given by hT. Consequently, the classic

SP algorithms can no longer be applied. To overcome these
obstacles, we get inspiration from the space-time network in
dynamic transportation network studies [34] and propose a
new graph called the Time-Expanded fixed-Time State Tran-
sition Graph (TET-STG), which attaches timestamp to state
transitions by stretching the STG along the time dimension.
Besides, we introduce a pseudo-state δ0N to handle terminal
states and their costs. A formal definition is given below.

Definition 5: Consider Problem 1. The TET-STG Gtet =
(V,E, x0, T ) is a weighted directed graph constructed by:
• V = ∪T+1

t=0 Vt, where Vt = Rt(x0),∀t ∈ [0, T − 1], VT =
RT (x0) ∩ Ω, and VT+1 = {δ0N}.

• E = ∪Tt=0Et, where Et = {(δiN , δjN )|δiN ∈ Vt, δ
j
N ∈

Vt+1 ∩R1(δiN )},∀t ∈ [0, T − 1], and
ET = {(δiN , δ0N )|δiN ∈ VT }.

Note that a state may appear at multiple time points, but they
are treated as distinctive vertices from a graph perspective.
Denote the vertex representing the state δiN at time t by δiN,t.
The weight of the edge (δiN,t, δ

j
N,t+1) ∈ Et is

w(δiN,t, δ
j
N,t+1) =

{
minδkM∈Uij g(δiN , δ

k
M , t), t ∈ [0, T − 1]

hT(δiN ), t = T
(14)

where U ij is given in (9), and the unique vertex at time T +
1 refers to the pseudo-state δ0N,T+1. Denote the control that
achieves the weight (cost) in (14) by uijt :

uijt = arg min
δkM∈Uij

g(δiN , δ
k
M , t), t ∈ [0, T − 1]. (15)

Remark 8: We note a slight abuse of notations in the above:
Rt(x0) includes time information implicitly, and thus Vi ∩
Vj = ∅,∀i 6= j. Besides, recall Eq. (9): among the possibly
nonunique control inputs that enable a state transition, we pick
definitely the one of lowest cost in (14) for optimal control
purpose. The role of the pseudo-state δ0N,T+1 is to incorporate
the terminal cost into the graph at the pseudo-time T + 1.

Despite its seemingly complex definition, the TET-STG
can be built handily by acquiring V0, E0, V1, · · · , ET−1, VT
successively similar to the BFS in Algorithm 1. In practical
implementation, the one-step transition between states need to
computed only once: supposing there is a transition (δiN , δ

j
N )

in the STG, i.e., δjN ∈ R1(δiN ), if we have a vertex δiN,t ∈ Vt,
then there exists a succeeding vertex δjN,t ∈ Vt+1 and an edge
(δiN,t, δ

j
N,t+1) ∈ Et in the TET-STG.

Example 2: Consider the BCN Σ1 (12) in Example 1 again.
In addition to the constraints (13), Problem 1 is set up by
T = 4, x0 = {δ18}, and Ω = {δ28 , δ68}. The costs are:

g(x(t), u(t), t) = u(t)>Qu(t)+t, hT(x(T )) = x(T )>Rx(T ),

where Q = diag(2, 3, 1, 0) and R = diag(3, 5, 4, 0, 1, 3, 6, 0).
Take the transition (δ38 , δ

7
8) as an example. We have U37 =

{δ14 , δ34}, which justifies the use of (15). The obtained TET-
STG is shown in Fig. 2. Now it is clear that, though the stage
cost function g itself is time-dependent, the weight of each
edge in the TET-STG becomes time-invariant after we expand
the STG along the time axis.
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Fig. 2. TET-STG in Example 2 with the initial state x0 = δ18 (the orange
circle). A circle labeled i at time t denotes a vertex δi8,t. We highlight the
terminal states in Ω by gray circles and the pseudo-state δ08 by a dashed
circle and dashed edges. The annotation of each edge (k,w) means that this
transition is achieved with control δk4 at a cost of w (i.e., the edge’s weight).
Note that the dashed edges going into the pseudo-state need no control.

Recall Proposition 1. From the construction of the TET-
STG, it is clear that an optimal control sequence exists if VT 6=
∅, because each path from δi0N,0 to δ0N,T+1 yields a feasible
solution to Problem 1, where δi0N = x0.

As aforementioned, we will transform Problem 1 into an
SP problem in the TET-STG. First, note that each one-step
transition in the TET-STG is already attained with a minimum
cost thanks to (14) and (15). A direct consequence is the
following lemma whose correctness is intuitive.

Lemma 3: Consider Problem 1 under Assumption 1. For
any feasible control sequence u = (δk0M , δ

k1
M , · · · , δ

kT−1

M ) that
steers the BCN along a state trajectory s = (δi0N , δ

i1
N , · · · , δiTN )

with x0 = δi0N and δiTN ∈ Ω, there holds JT(u) ≥ w(p), where
p is the corresponding path in the associated TET-STG,

p =
〈
δi0N,0, δ

i1
N,1, · · · , δiTN,T , δ0N,T+1

〉
, (16)

and JT(u) = w(p) holds if δktM = u
itit+1

t ,∀t ∈ [0, T − 1].
Proof: According to edge weights in (14) and the optimal

one-step control in (15), the weight of the path p in (16) is

w(p) = hT(δiTN ) +

T−1∑
t=0

g(δitN , u
itit+1

t , t).

From the definition of JT in (5), we have

JT(u) = hT(δiTN ) +

T−1∑
t=0

g(δitN , δ
kt
M , t).

We can see that the correctness of Lemma 3 is obvious.
The following theorem establishes the connection between

fixed-time optimal control and the SP in the TET-STG.
Theorem 1: Consider Problem 1 under Assumption 1 and

suppose it is feasible. Given x0 = δi0N , if an SP from δi0N,0 to
δ0N,T+1 in the TET-STG Gtet = (V,E, x0, T ) is

p∗ =
〈
δi0N,0, δ

i∗1
N,1, · · · , δ

i∗T
N,T , δ

0
N,T+1

〉
, (17)

then the minimum value of the cost function (5) is J∗T =
w(p∗), and an optimal control sequence is

u∗ = {ui0i
∗
1

0 , u
i∗1i
∗
2

1 , · · · , ui
∗
T−1i

∗
T

T−1 }. (18)

Proof: Suppose the solution space of Problem 1 is U 6=
∅, and the set of paths from δi0N,0 to δ0N,T+1 in Gtet is P.
There holds P 6= ∅ because each state trajectory driven by
u ∈ U corresponds to a path in P. Moreover, we have |P| ≤

|U| since different control sequences may lead to identical
state trajectories (see (9)). As we have shown in the proof of
Proposition 2, |U| is finite, which implies |P| is also finite.
Additionally, Assumption 1 and Eq. (14) ensures that all edge
weights in Gtet are bounded from below, which guarantees
w(p) is bounded from below for any p ∈ P because p has
exactly T +1 edges. Thus, there must exist a shortest path p∗.

Given any u ∈ U, Lemma 3 tells that there exists p ∈ P
such that JT(u) ≥ w(p) ≥ w(p∗). Furthermore, for the control
sequence u∗ ∈ U in (18) that attains p∗, it leads to a state
trajectory s∗ = (δi0N , δ

i∗1
N , · · · , δ

i∗T
N ) with δi

∗
T

N ∈ Ω according to
the TET-STG in Definition 5. Thus, u∗ is a feasible solution
to Problem 1. Furthermore, Lemma 3 states JT(u∗) = w(p∗).
Hence, we have JT(u) ≥ JT(u∗), ∀u ∈ U.

C. Dynamic Programming (DP) in TET-STG

The problem following Theorem 1 immediately is how to
locate an SP from δi0N,0 to δ0N,T+1 in the TET-STG efficiently
(see (17)). Since the layered structure of the TET-STG doesn’t
contain any cycles, the classic SP algorithms [33] such as the
Floyd-Warshall algorithm and the Dijkstra’s algorithm can be
applied directly. However, in view of the fixed horizon length
in Problem 1, we propose a custom method based on dynamic
programming (DP) to achieve better time efficiency, which can
even beat the state-of-the-art Dijkstra’s algorithm (Remark 10).

The intuition behind our DP approach is that any sub-path of
an SP is itself an SP as well [33]. Such optimal sub-structure
is a strong indicator that DP based methods are applicable.
The following theorem formalizes this idea.

Theorem 2: Consider Problem 1 under Assumption 1 and
suppose it is feasible. In its associated TET-STG Gtet =
(V,E, x0, T ) with x0 = δi0N , let F (δjN,t) denote the weight
of an SP from vertex δi0N,0 to vertex δjN,t, ∀t ∈ [0, T + 1], and
let P (δjN,t) denote the predecessors of δjN,t in Gtet:

P (δjN,t) = {δiN,t−1|(δiN,t−1, δjN,t) ∈ E}, t ∈ [1, T + 1] (19)

Then F (δjN,t) can be obtained by the following recursion:

F (δjN,t) = min
δiN,t−1∈P (δjN,t)

F (δiN,t−1) +w(δiN,t−1, δ
j
N,t), (20)

for t ∈ [1, T +1], and the base condition is F (δi0N,0) = 0. If p∗

is an SP from δi0N,0 to δ0N,T+1, we have w(p∗) = F (δ0N,T+1).
Proof: We first show the correctness of the recursion (20)

by induction. Due to the layered structure of Gtet, any vertex
δjN,t ∈ V can only be reached from a certain vertex δiN,t−1 ∈
V in one step, t ≥ 1. Assume F (δiN,t−1), t ≥ 1, represents the
minimum weight from vertex δi0N,0 to vertex δiN,t−1. For any
path from δi0N,0 to δjN,t that passes δiN,t−1, its minimum weight
is obviously F (δiN,t−1) + w(δiN,t−1, δ

j
N,t). Eq. (20) examines

all such predecessors of δjN,t, and the minimum value F (δjN,t)

is clearly the minimum weight of any path from δi0N,0 to δjN,t.
Besides, for t = 0, the base case F (δi0N,0) = 0 is clearly true.
Thus, we have verified that F (δjN,t) is the minimum weight of
any path from δi0N,0 to δjN,t. It implies directly that F (δ0N,T+1)

is the weight of the SP p∗ from δi0N,0 to δ0N,T+1.
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Algorithm 2 Fixed-Time Optimal Control via DP
Input: L, T, hT, g, Cx, Cu,Ω, and x0 in Problem 1
Output: The optimal control sequence u∗ and J∗T

1: Build the TET-STG Gtet according to Definition 5
2: function SHORTESTPATH(t, j,M, F )
3: if t = 0 then . Base condition
4: return 0
5: if F has the key (t, j) then . Memoization
6: return F [(t, j)]

7: i∗ ← 0, d∗ ←∞
8: for all δiN,t−1 ∈ P (δjN,t) do . Recursion (20)
9: d← SHORTESTPATH(t− 1, i,M, F ) +

w(δiN,t−1, δ
j
N,t)

10: if d < d∗ then
11: i∗ ← i, d∗ ← d

12: F [(t, j)]← d∗

13: M[(t, j)]← i∗ . Record the minimizer of (20)
14: return d∗

O Call the recursive function SHORTESTPATH
15: Initialize two dictionaries (i.e., hash tables) M and F
16: J∗T ← SHORTESTPATH(T + 1, 0,M, F )
17: Create an array u∗ of length T
18: j ←M[(T + 1, 0)], t← T
19: while t > 0 do
20: i←M[(t, j)], u∗[t− 1]← uijt−1 . See (15)
21: j ← i, t← t− 1

Remark 9: Eq. (20) is essentially a form of the Bellman
optimality equation, a widely applied tool in optimal control
[3], though we state it from a graph-theoretical perspective.

Combing Theorem 1 and 2, we get the minimum cost J∗T for
Problem 1 by J∗T = w(p∗) = F (δ0N,T+1). Nonetheless, we are
more interested in the optimal control sequence u∗ that attains
J∗T . The key is to record the minimizer to (20): if δjN,t is in
an SP, then the minimizer δi

∗

N,t−1 must be in the SP as well.
At last, p∗ can be reconstructed accordingly, followed by u∗

acquired with (18). Algorithm 2 implements the DP method
by Theorem 2 to solve F (δjN,t) and to reconstruct the optimal
control sequence. Note that, for maximal time efficiency, the
predecessors (19) of each vertex are stored while building Gtet.

Time complexity analysis of Algorithm 2. Gtet has T + 2
layers with at most Z := |R(x0)| vertices per layer and at most
MZ edges between any two successive layers. Like Algorithm
1, Gtet is constructed via BFS in linear time O(TMZ). The
core function of Algorithm 2, SHORTESTPATH, implements
top-down DP via the memoization technique [33], i.e., storing
results into F and retrieving the cached results if same inputs
recur. Memoization can avoid repetitive computation [33],
and accordingly each edge of Gtet is processed only once.
SHORTESTPATH in Line 16 thus takes time O(TMZ). The
remaining construction of u∗ runs in O(T ). The overall worst-
case time complexity of Algorithm 2 is hence O(TMZ), or
equivalently, O(TMN), because we always have Z ≤ N .

Remark 10: The recent work [23] establishes a weighted di-
rected graph to formulate the k-edge shortest path problem as
well. However, neither the time-dependent stage cost function

nor the terminal constraint set is considered in [23]. Moreover,
the work [23] directly applies the standard Dijkstra’s algo-
rithm, which is designed for general SP problems and less
efficient than our Algorithm 2 in solving Problem 1, whose
running time is O(TMN + TN log(TN)) instead.

Example 3: Recall Example 2. Running Algorithm 2, we
get the minimum value of the cost function J∗T = 11,
and the optimal control sequence u∗ = (δ44 , δ

3
4 , δ

4
4 , δ

3
4). The

correctness of this result can be easily verified by inspecting
Fig. 2 and enumerating all paths from δ14,0 to δ04,5.

VI. SOLVE PROBLEM 2 VIA DIJKSTRA’S ALGORITHM

In this section, the existence of optimal solutions to Problem
2 is first examined. Then, we divide Problem 2 into two cases
depending on whether cost functions are time-dependent. Both
cases will be conquered by Dijkstra’s algorithm, but different
graph structures are constructed to maximize efficiency.

A. Existence of Optimal Solutions

Like Problem 1, we use the terminal costs and the stage
costs of Problem 2 as the edge weights of specific graphs.
However, the major difference is that the number of state
transitions in Problem 2 is not fixed. Consequently, the condi-
tion that no negative-weight cycles exist in any state trajectory
from x0 to xd ∈ Ω is mandatory [33]; otherwise, the cost J
can always be reduced by repeating a negative-weight cycle,
and no SP exists. We thus require the following conditions to
guarantee existence of optimal solutions to Problem 2.

Assumption 2: The cost functions in Problem 2 satisfy
three conditions: (i) h is bounded from below; (ii) g is
nonnegative; (iii) h and g are both nondecreasing with respect
to time t, i.e., h(δiN , t2) ≥ h(δiN , t1),∀t2 > t1,∀δiN ∈ Ω,
and g(δiN , δ

k
M , t2) ≥ g(δiN , δ

k
M , t1),∀t2 > t1,∀(δiN , δkM ) ∈

∆N ×∆M .
The rationality of condition (i) is obvious, just like Problem

1, to ensure a finite optimal value. Condition (ii) can be
technically relaxed to the nonexistence of negative-weight
cycles, though it would be quite difficult to verify such a
condition in practice because edge weights (i.e., stage costs)
can vary with time. We can justify condition (iii) intuitively
by imaging a special scenario. Suppose a state trajectory from
x0 to xd ∈ Ω contains a cycle of zero weight. Then a possible
result is that the more cycling the BCN does along this cycle,
the more the cost criterion J can be reduced, once g or h
can decrease as time passes. Consequently, the optimal control
sequence does not have a finite length. Note that if g and h
do not depend on t, which is the most common case in the
literature, condition (iii) is satisfied naturally.

Remark 11: Following [16], [17], we can always assume h is
nonnegative without affecting the optimal solution. Supposing
h is bounded from below by a constant Bh, the optimal control
sequence to (6) is the same one that minimizes J ′(u) = J(u)−
Bh, and we have a nonnegative terminal cost function now:
h′(x(K),K) = h(x(K),K)−Bh ≥ 0.

The following proposition confirms the existence of an
optimal solution to Problem 2 under the above conditions.
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Proposition 2: Consider Problem 2 under Assumption 2.
There exists an optimal control sequence u∗ satisfying |u∗| <
|R(x0)| that minimizes (6) if and only if Ω ∩R(x0) 6= ∅.

Proof: (Necessity) Since R(x0) denotes all states reach-
able from x0, no state xd ∈ Ω can be reached if Ω∩R(x0) = ∅.

(Sufficiency) If Ω ∩ R(x0) 6= ∅, there must exist control
sequences that steer the BCN from x0 to a state xd ∈ Ω.
Suppose such a control sequence is u =

(
u(t)

)k−1
t=0

, and the
resultant trajectory is s =

(
x(t)

)k
t=0

, where x(0) = x0 and
x(k) = xd. Furthermore, we claim that if |u| = k ≥ |R(x0)|,
there must exist a shorter control sequence ū such that |ū| <
|R(x0)| and J(ū) ≤ J(u). This claim is proved below.
|u| ≥ |R(x0)| implies that |s| > |R(x0)|, which means

that s contains repetitive states because x ∈ R(x0) for any
state x in s. Assume one such pair of repetitive states is
x(i) = x(j), 0 ≤ i < j ≤ k, and thus c = (x(i), x(i +
1), · · · , x(j)) is a circular sub-trajectory. We can remove this
cycle (except x(j)) from s, and obviously the remaining states
s′ = (x(0), · · · , x(i− 1), x(j), x(j + 1), · · · , x(k − 1), x(k))
still constitute a trajectory from x0 to xd driven by a short-
ened control sequence u′ = (u(0), · · · , u(i − 1), u(j), u(j +
1), · · · , u(k − 1)). Let r := j − i > 0, and it follows that

J(u)− J(u′) = h(xd, k)− h(xd, k − r) +

j−1∑
t=i

g(x(t), u(t), t)

+

k−1∑
t=j

[
g(x(t), u(t), t)− g

(
x(t), u(t), t− r

)]
. (21)

Condition (ii) and (iii) in Assumption 2 guarantee (21) is
nonnegative, i.e., J(u′) ≤ J(u). The above cycle elimination
procedure can be repeated until a control sequence ū satisfying
|ū| < |R(x0)| is obtained. We have certainly J(ū) ≤ J(u).

The above claim implies that it is enough to consider the
candidate set Ū = {u||u| < |R(x0)|, u ∈ U} for an optimal
solution, where U is the feasible set of Problem 2. Obviously,
the set Ū is finite, and Assumption 2 guarantees J(u) is
bounded from below, ∀u ∈ Ū. Therefore, an optimal solution
u∗ ∈ Ū to Problem 2 must exist such that |u∗| < |R(x0)|.

B. Case 1: Time-Invariant Stage Cost and Terminal Cost

In this case, neither g nor h of (6) depends on time t: the
STG becomes a static graph, whose edge weights are perma-
nently fixed. Furthermore, if there is only one destination state
with zero terminal cost, Problem 2 degrades to a standard SP
problem in the STG. This simplest case has been solved in
[14], [15], [23]. We address the more general problems here,
where multiple destination states with non-zero terminal costs
are allowed. Following the same idea in solving Problem 1,
we introduce an extra pseudo-state δ0N as well as the terminal
set into the STG and term the new graph STG+.

Definition 6: Consider Case 1 of Problem 2. The extended
state transition graph STG+, denoted by G+ = (V,E, x0), is
an extension of the STG constructed as follows:

1) Build the STG G = (V,E, x0) by Definition 4, and the
weights are assigned like (14), though time-independent:

w(δiN , δ
j
N ) = min

δkM∈Uij
g(δiN , δ

k
M , α), (δiN , δ

j
N ) ∈ E.

1

2

3

7 4

6 5

0

Fig. 3. STG+in Example 4 with the initial state x0 = δ78 (in orange) and two
destination states {δ38 , δ48} (in gray). The weight and the control associated
with each edge are not shown here for clarity. Note that the dashed edges
going into the pseudo-state δ08 need no control.

2) Add into G the pseudo-state δ0N and its incoming edges,

V ← V ∪ {δ0N}, E ← E ∪ E0

where E0 = {(δiN , δ0N )|δiN ∈ V ∩ Ω} with weights:

w(δiN , δ
0
N ) = h(δiN , α), (δiN , δ

0
N ) ∈ E0

Here α ∈ N is an arbitrary integer used as a placeholder.
Since all edge weights of G+ are time-invariant, we denote

the weight and the associated control input of each edge
(δiN , δ

j
N ) ∈ E by wij and uij respectively. Of course, the

incoming edges of δ0N needs on control input.
Example 4: Consider Example 1 again: the BCN (12) is

subject to the constraints (13). Suppose the desired terminal
states are Ω = {δ38 , δ48}, and the initial state is x0 = δ78 . We
assign the following time-invariant cost:

g(x(t), u(t), t) = x(t)>Qx(t)+u(t)>Ru(t), h(x(K),K) ≡ 0,

where Q = diag(2, 5, 1, 4, 1, 3, 6, 0) and R = diag(0, 3, 1, 4).
The STG+of this case can be easily built on basis of the STG
in Fig. 1 following Definition 6, which is shown in Fig. 3. As
we see, the STG+is akin to the STG but with an additional
pseudo-state and edge weights assigned.

To transform Problem 2 in this case into an SP problem in
the STG+, we first give the following lemma.

Lemma 4: Consider Case 1 of Problem 2 under Assumption
2 with time-independent g and h. Given any control sequence
u = (δk0M , δ

k1
M , · · · , δ

kK−1

M ) of an unknown length K that steers
the BCN along a state trajectory s = (δi0N , δ

i1
N , · · · , δiKN ) with

x0 = δi0N and δiKN ∈ Ω, there holds J(u) ≥ w(p), where p is
the corresponding path in the associated STG+,

p =
〈
δi0N , δ

i1
N , · · · , δiKN , δ0N

〉
, (22)

and J(u) = w(p) holds if δktM = uitit+1 ,∀t ∈ [0,K − 1].
Proof: With the edge weights given by Definition 6, the

weight of the path p is

w(p) = h(δiKN ,K) +

K−1∑
t=0

g(δitN , u
itit+1 , t).

Note that uitit+1 is the optimal control input to transit the
BCN from δitN to δ

it+1

N in one step, i.e., g(δitN , u
itit+1 , t) ≤

g(δitN , δ
kt
M , t),∀t ∈ [0,K − 1]. Comparing w(p) with the cost

J(u) in (6), Lemma 4 is obviously true.
The following theorem relates Case 1 of Problem 2 to the

SP problem in an STG+.
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Theorem 3: Consider Case 1 of Problem 2 under Assump-
tion 2 with time-independent g and h, and suppose it is
feasible. In the STG+ G+ = (V,E, x0), x0 = δi0N , there exists
an SP p∗ =

〈
δi0N , δ

i∗1
N , δ

i∗2
N , · · · , δ

i∗K−1

N , δ
i∗K
N , δ0N

〉
,K ≤ |V | − 2,

such that the minimum value of the cost function (6) is
J∗ = w(p∗). The corresponding optimal control sequence is
u∗ = {ui0i∗1 , ui∗1i∗2 , · · · , ui∗K−1i

∗
K}.

Proof: Since the problem is feasible, there exists control
sequences that steers the BCN from the initial state x0 to a
destination state xd ∈ Ω, implying that there exist paths from
δi0N to δ0N in G+. Note that G+ has no negative cycles because
(i) Assumption 2 states g is nonnegative and (ii) the pseudo-
state δ0N has only incoming edges, whose weights assigned by
h may be negative though. With this fact, we can easily show
that an SP p∗ from δi0N to δ0N with at most |V | vertices exists
following the cycle elimination procedure in Proposition 2. In
fact, this is a fundamental theorem in graph theory [33].

Recall Lemma 4: given any feasible control sequence u,
there exists a path p from δi0N to δ0N in G+ such that J(u) ≥
w(p) ≥ w(p∗) = J(u∗). The above theorem holds clearly.

Theorem 3 has reduced Problem 2 with time-invariant costs
to a regular single-pair SP problem [33] from x0 to δ0N in the
STG+. Since g is nonnegative and the pseudo-state δ0N has
only incoming edges, We have discussed in Remark 11 that we
can always assume h is nonnegative without loss of generality,
though it is not mandatory. Since g is also nonnegative, the
STG+has only nonnegative edge weights. The fastest known
SP algorithm for such graphs is Dijkstra’s algorithm [33].

We make two modifications to the normal implementation
of Dijkstra’s algorithm for this optimal control problem. First,
like Algorithm 2, the vertices that compose the SP are recorded
to reconstruct the optimal control sequence later. Second, we
terminate the search process once vertex δ0N is reached because
we are only interested in the SP from x0 to δ0N . Algorithm 3
presents the modified Dijkstra’s algorithm to solve Case 1 of
Problem 2. Since Dijkstra’s algorithm is a well-established SP
algorithm in graph theory (see [33, Chapter 24] for details),
the proof of its correctness is omitted here.

Time complexity analysis of Algorithm 3. A key data struc-
ture in Dijkstra’s algorithm is the priority queue [33], in
which each item has a priority and the one with highest
(or lowest) priority is first served. If the priority queue is
implemented with a Fibonacci heap, Dijkstra’s algorithm has
a running time of O(|E|+ |V | log |V |) [33]. In the beginning,
just like the STG, the construction of the STG+takes time
O(M |V |). The more complicated Dijkstra’s part (Line 2 to
14) runs in O(M |V |+ |V | log |V |) accordingly. Finally, since
the SP found by Dijkstra’s algorithm contains at most |V |
vertices, the construction of u∗ (Line 15 to 20) runs in O(|V |).
Overall, the worst-case time complexity of Algorithm 3 is
O(M |V |+ |V | log |V |), or equivalently, O(MN +N logN).

Example 5: We test Algorithm 3 with Example 4. The
optimal value is J∗ = 13 and the optimal control sequence
is u∗ = (δ14 , δ

3
4 , δ

1
4). The state trajectory of the BCN is thus

s∗ = (δ78 , δ
5
8 , δ

2
8 , δ

4
8). It is easy to verify in Fig. 3 that an SP

from δ78 to δ08 is p∗ =
〈
δ78 , δ

5
8 , δ

2
8 , δ

4
8 , δ

0
8

〉
and w(p∗) = 13.

Algorithm 3 Fixed-destination optimal control with time-
invariant costs using modified Dijkstra’s algorithm

Input: L, h, g, Cx, Cu,Ω, and x0 = δi0N in Problem 2
Output: The optimal control sequence u∗ and J∗

1: Build the STG+ G+ = (V,E, x0) by Definition 6
2: Create a min-priority queue Q and two dictionariesM,D
3: for all δiN ∈ V do . Set initial distances
4: if i = i0 then D[i]← 0 else D[i]←∞ end
5: Add i into Q with its priority D[i]

6: while |Q| > 0 do . Continue until we reach δ0N
7: i← extract the minimum-priority item from Q
8: if i = 0 then break end . Early termination
9: for all j ∈ {j′|(δiN , δj

′

N ) ∈ E} do
10: d← D[i] + wij

11: if d < D[j] then
12: D[j]← d, M[j]← i
13: Update the priority of j in Q to d
14: J∗ ← D[0] . Minimum weight from δi0N to δ0N
15: Create an empty array u∗, and j ← 0
16: while j 6= i0 do
17: i←M[j] . Edge (δiN , δ

j
N ) is in the SP

18: Append uij (15) to u∗ except j = 0
19: j ← i

20: Reverse u∗ in place

C. Case 2: Time-Variant Stage Cost and Terminal Cost

As aforementioned, the classic SP algorithms will not work
once the edge weights may vary with time. To the best
of knowledge, there are still no published studies on fixed-
destination optimal control of BCNs with time-varying costs.
Recall the TET-STG proposed in Section V, and we naturally
attempt to handle this time-variant case for Problem 2 in a
similar way. However, one immediate difficulty is that, unlike
Problem 1, the horizon length is not known beforehand, which
prevents the reuse of the DP-based Algorithm 2 directly.

Hopefully, we may resort to Proposition 2 to overcome this
obstacle: it is sufficient to consider only control sequences
of size less than |R(x0)| to find the optimal one, though the
exact length remains unknown. On the other hand, Algorithm
2 works once a horizon length T is given. A straightforward
workaround that reuses Algorithm 2 to solve this case thus
comes to our mind as follows.

Procedure 1: Solve Case 2 by Reusing Algorithm 2.

• Step 1. Given T ∈ [1, |R(x0)| − 1], transform this case
into Problem 1 by setting hT(x(T )) = h(x(T ), T ).

• Step 2. Solve the problem obtained above with Algorithm
2 to get an optimal control sequence u∗T , |u∗T | = T .

• Step 3. Repeat Step 1 and Step 2 for all possible T ’s,
and finally yield u∗ = arg minu∗T (J(u∗T )).

The enumeration of all possible horizon lengths like Proce-
dure 1 is essentially the idea underlying the algebraic approach
[14] for minimum-energy control towards a given target state,
though it only considers time-invariant stage cost. A similar
idea is also adopted in [20] to detect the minimum average-
weight cycle in the input-state space. However, such a some-
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what brute-force method is still inevitably computationally
expensive, e.g., the running time is O(N4) in [14], [20]. In
our case, even though each subproblem for a specific T can
be solved by the more efficient Algorithm 2, the overall time
complexity of Procedure 1 is still as high as O(MN3).

Since we only care about control sequences that has a size
less than |R(x0)|, to further reduce the computational burden,
we devise another approach by adapting the TET-STG to
an unknown but limited horizon length. More interestingly,
Algorithm 3 initially developed for Case 1 can be reused on
the resultant graph. We call this new graph a Time-Expanded
fixed-Destination State Transition Graph (TED-STG). It con-
struction is similar to the TET-STG detailed as follows.

Definition 7: Consider Case 2 of Problem 2. The TED-STG
Gted = (V,E, x0) is a weighted directed graph constructed by:
• V = ∪Zt=0Vt, where Vt = Rt(x0),∀t ∈ [0, Z − 1], VZ =
{δ0N}, and Z := |R(x0)| is the reachable set size.

• E = ∪Z−2t=0 Et ∪ E0, where Et = {(δiN , δjN )|δiN ∈
Vt, δ

j
N ∈ Vt+1 ∩ R1(δiN )},∀t ∈ [0, Z − 2], and connect

the terminal states in each layer to the pseudo-state δ0N
by E0 = {(δiN,t, δ0N )|δiN ∈ Ω ∩ Vt, t ∈ [0, Z − 1]}.

A vertex δiN,t above refers to the state δiN at time t. The weight
of the edge (δiN,t, δ

j
N,t+1) ∈ Et,∀t ∈ [0, Z − 2], is

w(δiN,t, δ
j
N,t+1) = min

δkM∈Uij
g(δiN , δ

k
M , t), (23)

and the control enabling the transition from δiN to δjN at time
t is also uijt in (15). The weight of edges in E0 is

w(δiN,t, δ
0
N ) = h(δiN , t), (δiN,t, δ

0
N ) ∈ E0. (24)

Remark 12: Since the destination (terminal) states may be
reached at any time in an optimal trajectory, we package all
such possibilities into E0. This greatly simplifies the problem:
we only need to find an optimal path from δi0N,0 to δ0N .
Accordingly, the time to reach the pseudo-state δ0N is not
known in advance, and that is why it has no time subscript.

Example 6: We use the BCN (12) in Example 1 to illustrate
the TED-STG. Problem 2 is set up by x0 = {δ18} and Ω =
{δ68}. The time-variant stage cost and terminal cost are:

g(x(t), u(t), t) = u(t)>Qu(t) + t, h(x(t), t) = x(t)>Rx(t),

where Q = diag(2, 3, 1, 5 + t) and R = diag(3, 2t, 4, 0, 1, 5 +
t, 6, 0). The TED-STG of this task is shown in Fig. 4. Note
that the size of R(x0) is Z = 7 here. We consider only one
destination state to facilitate illustration.

Just like the TET-STG, the edge weights in a TED-STG do
not change with time, though the cost functions g and h are
themselves time-dependent. The cost of a state trajectory is
related with the weight of a path in the TED-STG as follows.

Lemma 5: Consider Case 2 of Problem 2 under Assumption
2. Given any control sequence u = (δk0M , δ

k1
M , · · · , δ

kK−1

M )
of length K < |R(x0)| that steers the BCN along a state
trajectory s = (δi0N , δ

i1
N , · · · , δiKN ) with x0 = δi0N and δiKN ∈ Ω.

There holds J(u) ≥ w(p), where p is the corresponding path
from δi0N,0 to δ0N in the associated TED-STG,

p =
〈
δi0N,0, δ

i1
N,1, · · · , δiKN,K , δ0N

〉
, (25)

1
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Fig. 4. TED-STG in Example 6 with an initial state x0 = δ18 and a
destination state δ68 . The weight and the control associated with each edge
are not shown here for clarity. Note that the pseudo-state δ08 has no fixed
timestamp.

and J(u) = w(p) holds if δktM = u
itit+1

t ,∀t ∈ [0,K − 1].
Lemma 5 can be proved easily in almost the same way as

Lemma 3, which is omitted here. Now we are ready to solve
Case 2 of Problem 2 by converting it to an SP problem in the
TED-STG through the following theorem.

Theorem 4: Consider Case 2 of Problem 2 under As-
sumption 2 with time-dependent g and h, and suppose it is
feasible. Given the initial state x0 = δi0N , there exists an SP
p∗ =

〈
δi0N,0, δ

i∗1
N,1, · · · , δ

i∗K−1

N,K−1, δ
i∗K
N,K , δ

0
N

〉
,K < |R(x0)|, in

the TED-STG Gted = (V,E, x0) such that the minimum value
of the cost function (6) is J∗ = w(p∗). The corresponding
optimal control sequence is u∗ = {ui0i

∗
1

t , u
i∗1i
∗
2

t , · · · , ui
∗
K−1i

∗
K

t }.
Proof: Since the problem is feasible, Proposition 2 im-

plies there exists an optimal control sequence shorter than
|R(x0)|. Thus, we can search U′ = {u||u| < |R(x0)|, u ∈ U}
for an optimal one, where U is the feasible set of Problem 2.
Now recall Lemma 5: given any u ∈ U′, there exists a path p
from δi0N,0 to δ0N in the TED-STG such that J(u) ≥ w(p) ≥
w(p∗). Besides, with the weight given by Definition 7, it is
obvious that w(p∗) = J(u∗). Thus, the proof is complete.

Theorem 4 transforms Problem 2 with time-dependent cost
functions into a standard single-pair (i.e., δi0N,0 to δ0N ) SP
problem in the TED-STG. As discussed in Remark 11, we
assume that h ≥ 0 without loss of generality. Since all edges of
this graph have nonnegative weights, we can apply Dijkstra’s
algorithm again to identify the SP, which is the same as
Algorithm 3 except that the TED-STG is used instead of the
STG+. We detail this algorithm in the online supplementary
material on ArXiv1 (Algorithm S1) to conserve space here.

Time complexity analysis of Algorithm S1. Definition 7 tells
that there are Z := |R(x0)| layers in the TED-STG. Each
layer has at most Z vertices, and at most MZ edges exist
between two consecutive layers. Besides, there are typically
only few destination states, i.e., the number of incoming edges
of the pseudo-state δ0N is O(Z). We thus have |V | = O(Z2)
and |E| = O(MZ2). Like a TET-STG, the TED-STG can be
built quickly in linear time, i.e., O(|V | + |E|) = O(MZ2).
Thus, the time complexity of Algorithm S1 is dominated by
the Dijkstra’s SP part. To conclude, Algorithm S1 runs in time
O(MZ2 +Z2 logZ2) = O(Z2(M+2 logZ)), which is much

1Refer to https://arxiv.org/abs/1908.02019 for the supplementary material.

https://arxiv.org/abs/1908.02019
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faster than the naive Procedure 1. Since we have Z ≤ N , the
time complexity is equivalent to O(N2(M + 2 logN)).

Example 7: Recall Example 6 and its TED-STG in Fig.
4. Algorithm S1 yields the following results: J∗ = 14 and
u∗ = (δ34 , δ

3
4 , δ

3
4 , δ

1
4). The corresponding SP in the TED-STG

is p∗ = (δ18,0, δ
4
8,1, δ

7
8,2, δ

5
8,3, δ

6
8,4, δ

0
8).

VII. COMPARISON WITH RELATED WORK

As we have reviewed in Section I, unlike our algorithms
which target the most general problems, most existing methods
are developed for certain special cases of Problem 1 or
Problem 2. We therefore categorize various optimal control
tasks according to their characteristics to facilitate comparison.
Their time complexity is summarized in Table I, where, as
always, N = 2n and M = 2m for a n-state, m-input BCN,
and T denotes the fixed horizon length in Problem 1.

To better interpret Table I, note that we can always assume
M ≤ N because a state can transit to at most N succeeding
states regardless of the number of control inputs. In fact, we
usually have m < n and thus M � N in practice especially
for large networks. For example, it can be enough to steer
the whole network by controlling only a fraction of the nodes
[30], [35]. In short, Table I shows that our graph-theoretical
approach can accomplish higher time efficiency than most
existing approaches, and only methods in [16] and [23] share
the same time complexity as ours for particular problems.
Notably, if there are time-variant costs in Problem 2, only
Algorithm S1 can handle it to the best of our knowledge. In
summary, though we target FHOC problems ambitiously in
their most general form, the computational efficiency of our
approach is still superior to that of most existing work.

Note that the time complexity listed in Table I refers to
the worst-case one, which indicates the longest running time
of an algorithm given any possible input. By convention, the
worst-case running time is used to measure the efficiency of
algorithms [17], [22], [33]. A noteworthy point is that all
the algebraic approaches in Table I, i.e., all existent work
except [23], have their average-case time complexity equal
to the worst-case one, because they essentially operate on
matrices of identical sizes irrespective of the initial state x0
and the size of its reachable set R(x0). By contrast, as shown
in time complexity analysis of our algorithms, the actual
size of the graph depends on R(x0), which is typically a
small subset of the state space, while the algebraic methods
always consider all the N states. Additionally, in constraint
handling, our approach excludes the undesirable states and
transitions completely from the graph, but most algebraic
approaches simply assign them infinitely large cost values and
still involve them in subsequent operations. Consequently, our
graph-theoretical approach attains potentially lower average-
case time complexity than algebraic methods in practice, like
[16], even though they share the same worst-case complexity.

VIII. A BIOLOGICAL BENCHMARK EXAMPLE

In this section, we focus on a larger BCN, i.e., the Ara
operon gene regulatory network in E. coli that is responsible
for sugar metabolism regulation [22], [36]. The main purpose

is to compare the computational efficiency of various ap-
proaches. The Boolean model of this network is given in Table
II, where the target nodes indicate the 9 state variables, and the
4 control inputs are {Ae, Aem, Ara− , Ge}. Interested readers
may consult [36] for the biological meaning of these variables.
Using the STP, we can get the ASSR of this network with a
network transition matrix L ∈ LN×MN , N = 512,M = 16.

To facilitate comparison with existing studies, we consider
two tasks widely studied in the literature, i.e., the minimum-
energy control and the minimum-time control. In both tasks,
no constraints are enforced because only few existing methods
consider state or input constraints. Suppose the initial state is
x0 = δ9512 and the desired state is xd = δ410512 for both tasks.
All algorithms were implemented with Python 3.7. We did
experiments on a desktop PC equipped with a 3.4 GHz Core
i7-3770 CPU, 16 GB RAM, and Windows 10.

A. Task 1: Minimum-Energy Control

In this task, we aim to transfer the BCN from the initial
state x0 to the desired state xd at a prespecified time point
with least energy consumption [14]. This task is presented as
an instance of Problem 1 with T = 10 and Ω = {xd}. Since
most methods can only deal with time-invariant costs, we use
a stage cost function like that in [22] to evaluate the energy
consumed by each state transition, and set zero terminal costs:

g(x(t), u(t), t) = g(n9
i=1xi(t),n4

j=1uj(t)) = AX(t)+BU(t),

where X(t) = [x1(t), x2(t), · · · , x9(t)]> and U(t) =
[u1(t), u2(t), u3(t), u4(t)]>. The two weight vectors are A =
[0, 16, 40, 44, 28, 28, 28, 48, 44], and B = [0, 48, 28, 48].

Running Algorithm 2, we get the following results.
• The reachable set of x0, i.e., R(x0), has only 108 states,

though the complete state state has 512 states in total.
• The minimum value of JT(u) in (5) is J∗T = 1108.
• The optimal control sequence is u∗ =
δ16(16, 16, 16, 16, 16, 16, 8, 5, 6, 14), and
the resultant state trajectory is s∗ =
δ512(9, 457, 463, 480, 480, 480, 480, 352, 312, 288, 410).

We illustrate R(x0) and highlight the above optimal state
trajectory s∗ in Fig. 5. We tested the other methods, and they
all obtained the same optimal value J∗T . The running time of
different methods is listed in Table ??. As we have expected,
the algorithm in [16] takes more time than ours in practice,
though they have identical worst-case time complexity. The
main reason is that the former always evaluates the whole
state space, while our algorithm only focuses on the reachable
states R(x0). Another method [23] shares the same view as
ours, but it depends on the slower Dijkstra’s algorithm rather
than the more efficient DP-based Algorithm 2. Overall, our
approach attains the shortest running time to complete Task 1.

B. Task 2: Minimum-Time Control

This task is also referred to as time-optimal control, that
is, to steer the BCN from x0 to a desired state xd as fast as
possible [15]. It is easy to specialize Problem 2 for this task:
just let g(·, ·, ·) ≡ 1, i.e., unit time for each state transition,
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TABLE I
TIME COMPLEXITY COMPARISON BETWEEN EXISTING WORK AND THE PROPOSED APPROACH ON FINITE-HORIZON OPTIMAL CONTROL

Problem type Task characteristics Time complexity
Existing work Proposed approach

Problem 1

Mayer-type optimal control
(only terminal cost) O(TMN2) [12], [13]

O(TMN)
(Algorithm 2)

Minimum-energy control
(only time-invariant stage cost) O(TN3) [14, Algorithm 3.2]

Time-discounted stage cost
(no terminal cost)

O(MN +N3 log2 T ) [17, Theorem 3]
O(M2N3 + TMN(N +M)) [18, Proposition 4.1]

Both terminal cost and stage cost
(general form, time-invariant)

O(MN +N3 log2 T ) [17, Corollary 2]
O(TMN + TN log(TN)) [23, Theorem 2.14]

Both terminal cost and stage cost
(general form, possibly time-variant) O(TMN) [16]

Problem 2

Time-optimal control
(only constant stage cost equal to 1) O(MN3)† [15], [32]

O(MN +N logN)
(Algorithm 3)Minimum-energy control

(time-invariant stage cost, time not fixed) O(N4) [14, Algorithm 3.3 ]

Time-invariant stage cost
(general form, no terminal cost) O(MN +N logN) [23, Theorem 2.7]

Time-variant stage cost
and (or) terminal cost — O(N2(M + 2 logN))

(Algorithm S1)
† It is O(T ∗MN2) more precisely, where T ∗ is the minimum time actually required. Note that we have T ∗ = N − 1 in the worst case.

TABLE II
BOOLEAN MODEL OF THE ARA OPERON NETWORK

Target node Boolean update rule

A Ae ∧ T
Am (Aem ∧ T ) ∨Ae

Ara+ (Am ∨A) ∧Ara−
C ¬Ge

E Ms

D ¬Ara+ ∧Ara−
MS Ara+ ∧ C ∧ ¬D
MT Ara+ ∧ C
T MT

Fig. 5. The state transition graph of the Ara operon network with the initial
state x0 = δ9512 (in orange) and the desired state xd = δ410512 (in gray).
The state trajectories of minimum-energy and minimum-time control are
highlighted in red and blue respectively. The direction of each state transition
and the label of each state are not shown here for readability.

h(·, ·) ≡ 0, and Ω = {xd}. In this setting, the optimal value
J∗ of (6) is obviously the minimum time taken from x0 to
xd. Since g and h are both time-independent, we can tackle

this task with Algorithm 3. The results are given below.
• The optimal value is J∗ = 3, i.e., the BCN is transferred

from x0 to xd in at least 3 steps.
• The optimal control sequence is u∗ = δ16(1, 2, 14), which

leads to the state trajectory s∗ = δ512(9, 41, 15, 410).
Like Task 1, we sketch the above minimum-time state

trajectory in Fig. 5. The other methods yielded the same
minimum time, and their running time is listed in Table ??.
In this task, the method in [23] is essentially identical to ours,
both depending on Dijkstra’s algorithm to find an SP, and they
are the fastest ones, taking far less time than the other two.
Note that we have optimized it by building the STG efficiently
with Algorithm 1 instead of the expensive algebraic method
originally used in [23]. The algorithm in [14] is extremely
slow here mainly because it examines exhaustively all SP’s of
length ranging from 1 to N to find the shortest one.

Remark 13: The running time of some algebraic approaches,
like [17] and [15], might be further reduced using advanced
numerical routines, since they depend heavily on matrix
operations, and the involved matrices are typically sparse.
Nevertheless, the results in Table ?? still demonstrate the
supreme efficiency of our approach with an advantage of
several orders of magnitude. Besides, the method in [23] is
closest to ours, but it can only solve a small subset of problems
investigated in this study. The Python implementation of the
proposed approach and existing algorithms is available at
GitHub https://github.com/ShuhuaGao/FHOC.

IX. CONCLUSION

This paper focused on FHOC of BCNs from a graph-
theoretical perspective. We unified various kinds of specific
FHOC problems into two general constrained optimization
problems, which can incorporate time-variant costs and a
diverse range of constraints. Then, as a central contribution
of this study, we established equivalence between general
FHOC problems and the SP problem in particular graphs.
Two efficient algorithms were afterwards designed to find

https://github.com/ShuhuaGao/FHOC
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such an SP. As shown by both time complexity analysis and
numerical experiments, our approach can handle the most
general problems while maintaining a competitive advantage
in computational efficiency. Finally, we note that all SP
problems in Problem 1 and 2 can be technically solved by
a single SP algorithm, like Dijkstra’s algorithm, though we
proposed two custom algorithms for efficiency purpose. That’s
why we consider our graph-theoretical approach as a unified
framework, which is characterized by high computational
efficiency and methodological consistency across a wide range
of FHOC problems. Due to the discrete and deterministic
nature of BCNs, we believe it is a promising research direction
to hybridize the newly developed ASSR with the classical
graph theory for more studies on BCNs beyond FHOC. One
future work is to adapt this graph-theoretical approach to
infinite-horizon optimal control problems.
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Algorithm S1 Fixed-destination optimal control with time-variant costs using modified Dijkstra’s algorithm

Input: L, h, g, Cx, Cu,Ω, and x0 = δi0N in Problem 2
Output: The optimal control sequence u∗ and J∗

O Note that the vertex for the virtual state δ0N is labeled δ0N,N in this implementation to facilitate programming
1: Build the TED-STG Gted = (V,E, x0) according to Definition 7
2: Create an empty min-priority queue Q and two dictionaries M and D
3: for all δiN,t ∈ V do
4: if t > 0 then
5: D[(t, i)]←∞
6: else . Initial state x0
7: D[(t, i)]← 0
8: end if
9: Insert (t, i) into Q with its priority D[(t, i)]

10: end for
O The main loop continues until we reach the virtual destination δ0N,N

11: while |Q| > 0 do . Q is not empty
12: (t, i)← extract the one in Q with the minimum priority
13: if i = 0 then . Terminate once δ0N is finished
14: break
15: end if
16: for all δjN,l ∈ successors(δiN,t) do . Adjacency-list
17: d← D[(t, i)] + wij

t . The edge weight is wij
t (see (14))

18: if d < D[(l, j)] then
19: D[(l, j)]← d, M[(l, j)]← (t, i)
20: Update the priority of (l, j) in Q to d
21: end if
22: end for
23: end while
24: J∗ ← D[(N, 0)] . Minimum weight from δi0N,0 to δ0N

O Reconstruct the optimal control sequence
25: Create an empty array u∗

26: j ← 0, l← N
27: while j 6= i0 do
28: (t, i)←M[(l, j)] . Edge (δiN,t, δ

j
N,l) is in the SP

29: Append uijt (15) to u∗ except j = 0 . Incoming edges of the pseudo-state need no control
30: j ← i, l← t
31: end while
32: Reverse u∗ in place
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