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Shattering Distribution for Active Learning
Xiaofeng Cao and Ivor W. Tsang

Abstract—Active learning (AL) aims to maximize the learning
performance of the current hypothesis by drawing as few labels
as possible from an input distribution. Generally, most existing
AL algorithms prune the hypothesis set via querying labels
of unlabeled samples and could be deemed as a hypothesis-
pruning strategy. However, this process critically depends on
the initial hypothesis and its subsequent updates. This paper
presents a distribution-shattering strategy without an estimation
of hypotheses by shattering the number density of the input
distribution. For any hypothesis class, we halve the number
density of an input distribution to obtain a shattered distribution,
which characterizes any hypothesis with a lower bound on VC
dimension. Our analysis shows that sampling in a shattered dis-
tribution reduces label complexity and error disagreement. With
this paradigm guarantee, in an input distribution, a Shattered
Distribution-based AL (SDAL) algorithm is derived to continu-
ously split the shattered distribution into a number of represen-
tative samples. An empirical evaluation on benchmark datasets
further verifies the effectiveness of the halving and querying
abilities of SDAL in real-world AL tasks with limited labels.
Experiments on active querying with adversarial examples and
noisy labels further verify our theoretical insights on the perfor-
mance disagreement of the hypothesis-pruning and distribution-
shattering strategies. Our code: https://github.com/XiaofengCao-
MachineLearning/Shattering-Distribution-for-Active-Learning.

Index Terms—Active learning, distribution, shattering, adver-
sarial examples, noisy labels.

I. INTRODUCTION

Active learning (AL) [1], leveraging abundant unlabeled
data to improve the generalization performance of a classifier,
has been widely adopted in various machine learning tasks,
such as regression analysis [2], label-scarce classification [3],
dynamic data stream processing [4], multi-task learning [5]
[6], curriculum learning [7], etc. By employing an AL algo-
rithm, human experts strategically query “highly informative”
data [8] to reduce the error rate of the current learning model in
different classification tasks. However, a natural question that
arises is the following: if we increase the size of the active
query set, does the error rate of prediction keep decreasing?
Furthermore, can we finally find a hypothesis whose error rate
is close to what we desire?

This question has been considered by the agnostic AL com-
munity [9], which presents a series of algorithmic paradigms
with a fixed or bounded version space [10] covering a possible
hypotheses class [11]. Candidates from this class is assigned
with a goal of minimizing the queries from the unlabeled
pool, where the desired one is with the optimal querying
budget. To build a near-optimal querying algorithm in real
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(b) Distribution-shattering

Fig. 1. A binary classification issue over a unit sphere with a radius of
R, where +,− denote the class labels. (a) The hypothesis-pruning strategy
prunes the hypothesis set (reduce the number of candidate hypotheses, i.e.,
the diameters across the colored regions) via querying data distributed in the
colored pool. (b) Distribution-shattering halves the number density of an input
distribution w.r.t. 12

πR2 into a shattered distribution w.r.t. 6
πR2 . Any hypothesis

generated from the original distribution is charactered with a lower bound on
VC dimension. Thereby, we can find a representation structure that induces
a tighter label complexity without estimating the hypothesis.

world, agnostic AL [12] [9] improved the generalization
of a realizable-theoretical model with prior labels selected
from various distributions and diverse noise conditions [13].
Those generalized AL algorithms involved with pruning the
hypothesis set of the version space can be regarded as a
hypothesis-pruning strategy. For example, halfspace learning
[14] is one AL problem over a unit sphere to explore the
theoretical guarantees on error rate and label complexity1 [14].
Its goal is to learn a halfspace which accurately classifies
binary classes (see Fig. 1(a)).

Fig. 1(a) describes a binary classification task in a two-
dimensional sphere (circle) with a uniform distribution and an
arbitrary halfspace can generate a linear classifier. To reduce
the error rate of the initial hypothesis, an AL algorithm usually
samples a number of informative points from the colored
candidate pools that can largely update the current classifier.

From the perspective of version space, the querying pro-
cess is equivalent to searching a subspace that character-
izes the same hypothesis with a lower bound on the Vap-
nik–Chervonenkis (VC) dimension [15] [16]. With each query,
the disagreement between the initial and desired hypotheses is
expected to shrink. Thus, the disagreement between the initial
and optimal hypotheses can be used as a measure to determine
the distribution of the candidate hypothesis class in a version
space. However, the label complexity of querying unseen
samples is sensitive to this measure. That is, a poor initial
hypothesis, which is far from the desired hypothesis, results
in an increase of their generalized disagreement. The label
complexity of querying increases rapidly as well. Therefore,
the query samples heavily depend on the initial hypothesis.

Most previous works regarding hypothesis-pruning either

1The number of labels requested before achieving a desired error.
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makes strong distribution assumptions such as halfspace learn-
ing [14], or else it is computationally prohibitive [17]. For
any data distribution, [15] removes the hypotheses whose con-
nected edges are labeled with any disagreements larger than a
given threshold. Their goal is to decrease the dependence of
the initial hypothesis by a group of representative hypotheses.
In their work, the version space [10] which includes all feasible
hypotheses, is embedded as a graph in a high-dimensional
space. After pruning with this graph, any hypothesis in the
original version space would be characterized with a lower
bound on VC dimension. Then, the upper bound of the label
complexity is reduced. However, hypothesis-pruning strategy
has the following limitations:

1) performing hypothesis-pruning in the candidate data
pool could reduce the influence of the initial hypothesis
but it does not completely eradicate its dependence;

2) hypothesis-pruning strategies with the hypothesis class
need a special distribution assumption, but it cannot
be applied in arbitrary input distributions, though this
theoretical description has attracted a lot of attention
from researchers.

Therefore, it is desirable to develop a novel shattering strategy
which achieves the same goal as the hypothesis-pruning strat-
egy and deals with the input distribution in real-world tasks.
To this end, we attempt to bridge the connection between the
version space and input distribution.

As discussed in [18], the VC dimension with respect to the
optimal hypothesis in the version space affects the number of
querying candidate hypotheses, and plays an important role
in its distribution description. We propose a fresh proposition
that the version space could be shattered by the number
density 2 of the input distribution. Then, any hypothesis can be
characterized with a lower bound on VC dimension. Especially
for any input distribution with a bounded space, the more
data located in the input space, the more hypotheses the
version space would have. Moreover, the input distribution
induces a natural topology on the version space, and a local
hypothesis would easily capture its relevant local distribution
[12]. Hereafter, we would perform the shattering on the
number density of the input distribution (see Fig. 1(b)) with
the following advantages:

1) it provides theoretical guarantees in relation to reducing
the generalized bounds of label complexity and error
disagreement as hypothesis-pruning;

2) it breaks the curse of the initial hypothesis;
3) it provides model guidance for distribution-shattering

algorithms in real-world AL tasks.
Based on the above insights, this paper generalizes the

distribution-shattering strategy in an input distribution. Firstly,
we halve the number density of the input distribution to
obtain a shattered distribution. We then compare the gener-
alization bounds between the shattered distribution and input
distribution on error disagreement and label complexity for
any hypothesis class under arbitrary data distributions. Our

2https://en.wikipedia.org/wiki/Number density

theoretical results show that the shattered distribution has
lower generalization bounds in terms of the above two prop-
erties. Thus, we continuously split the shattered distribution
to find a representation structure. This process is guided by
a derived algorithm termed Shattered Distribution-based AL
(SDAL), which optimizes a group of local sphere centers as
representative samples. Based on the analysis of the perfor-
mance disagreement over hypothesis-pruning and distribution-
shattering, we explore a series of scenarios including active
querying with a limited labeled set, adversarial examples and
noisy labels, where the first scenario is in regard to the poor
initial hypothesis, and the last two scenarios are involved with
the hypothesis update. The contributions of this paper are
described as follows.
• We model the version space and input distribution by

number density, which characterizes the generalized ca-
pacity of any hypothesis in a natural and direct way.

• We present a theoretical guarantee of the improvement
on error disagreement and label complexity for shattering
the number density of the input distribution. A derived
algorithm named SDAL, which is independent of the
initial labeled set and classifier, achieves lower error per-
formance than the hypothesis-pruning algorithms when
querying with limited labels, adversarial examples and
noisy labels.

The outline of the paper is as follows. The related work
is introduced in Section II. Section III presents the main
theoretical insights. The theoretical motivation of the hypoth-
esis and distribution is presented in Section IV. The proposed
distribution-shattering strategy and the advantages of shattered
distribution are reported in Section V. The experimental results
are presented in Section VI. Conclusions are drawn in Sec-
tion VII. (Proofs and discussions are presented in Appendix.)

II. RELATED WORK

The AL algorithms aim to find data which have “highly
informativeness or representativeness” for unseen queries.
However, the sampled data heavily depend on the labeled
set and classifiers. In this section, we introduce hypothesis-
pruning from theory to application: Section II.A describes
the fundamental theoretical work involved with hypothesis-
pruning, and Section II.B reviews a number of AL algorithms
that can be generalized with a hypothesis-pruning manner.

A. Hypothesis-pruning in Version Space

To reduce the dependence of the labeled set, AL tries
to find a hardness (near-optimal) [19] [20] hypothesis from
the hypothesis class in the version space. In this theoretical
learning task, learners are given access to a stream of unlabeled
data drawn i.i.d. from a fixed distribution. The proposed
algorithm paradigms, which have already achieved a dramatic
reduction in label complexity, are loosely termed hypothesis-
pruning.

Substantial hypothesis-pruning frameworks under various
assumptions of classifiers and labeled sets were proposed in
past decades. For example, the query by committee algorithm



[21] assumes that a correct Bayesian prior exists on the
hypothesis class. To find a desired hypothesis, the committee
members vote to eliminate the updated hypothesis with maxi-
mal disagreement between them. For any hypothesis class, [22]
presents the sufficient and necessary conditions for AL such as
classifier setting and initial labeled set, etc. When there exists
a perfect separator in classification tasks, any hypothesis-
pruning algorithm could directly improve the current classifier
in a rapid fashion such as uncertainty evaluation [23], expected
error rate change [24], etc. Over this assumption, the learning
algorithms do not need to consider the distribution it induces.
Any inconsistent hypothesis such as a subsequent hypothesis
with higher error can then be pruned by a single or group of
querying samples. With the increase in the number of queries,
the VC bound of any hypothesis in the candidate hypothesis
class would be shrunk continuously, regardless from which
distribution this query comes.

Since the optimal hypothesis is in respect to the input
distribution, some learners generate the distribution under a
fixed case, such as [9], [25], etc. Of these, halfspace learning
[14] becomes a special setting over a unit sphere with uniform
distribution. This problem takes a binary classification issue as
an example to study label complexity and error rate change
after sampling, where a halfspace is either of the two convex
sets into which a hyperplane divides the sphere. The goal is to
find the optimal halfspace over a unit sphere. For example, in
Fig. 1(a), researchers try to reduce the vector angle θ between
the initial and optimal hypotheses as rapidly as possible, in
which θ decides the VC dimension of the current hypothesis.
Under this training assumption, two methods are presented to
reduce the label complexity: (1) halving [26] the volume of
the candidate pool to obtain a sparse space, and (2) binary
search for halving. By halving, the learner can rapidly reduce
the hypothesis capacity of the version space to decrease the
label complexity of querying since a part of the hypotheses
would be removed. Therefore, the hypothesis-pruning strategy
is an effective solution in AL theory. However, most of these
AL algorithms either make strong distribution assumptions
such as separability, uniform input distribution or are generally
computationally prohibitive [12], thus they cannot effectively
be applied in AL tasks with input distribution.

B. Generalized Hypothesis-pruning Algorithms

The hypothesis-pruning AL algorithms sample the data
which significantly improve the generalization performance of
the current learning model. By performing hypothesis-pruning
sampling strategies, even non-domain experts no longer anno-
tate such a large amount of unlabeled data. In this subsection,
we review some generalized algorithms for the hypothesis-
pruning strategy.

In the light of optimizing the querying process, the
membership-query strategy [27] tries to find the most distin-
guished sample in a set by asking subset membership queries.
In the structural data space with margins, the AL algorithm
optimizes the unlabeled data close to the hyperplane under the
support of the SVM theory. These approaches could be loosely

approximated as finding the “highly informative” samples [8]
[28] [29] to improve the performance of the model it learned.
The other sampling criterion is to pick up the representative
samples from the unlabeled data pool. With each query, the re-
searchers want to minimize the distribution difference between
the labeled and original input sets, such as the experimental
design [30] [31] which measures the regression between data
and their labels. To strengthen the sampling performance,
[32] develops the informativeness and representativeness as
a uniform standard with a given evaluation function. Then, a
series of AL algorithms which exploit the data with both the
characteristics is developed [33].

However, these strategies heavily depend on the categories
of classifiers and labeled set. For example, the AL algorithms
using the maximum margin of the classification hyperplane
need the support of an SVM classifier. Moreover, the influence
of the size of the input labeled set is underestimated. In our
survey, most researchers usually query sufficient labels as the
initial hypothesis, such as [34] [33] [35]. However, in real-
world AL tasks, the percentage of labeled data may be less
than the expected.

III. MAIN THEORETICAL INSIGHTS

Section III.A presents the preliminaries for one fundamen-
tal learning policy of the hypothesis-pruning strategy, which
uses a disagreement coefficient to control the sampling of
AL. Specifically, the concept of the sparse hypothesis class
that provides the foundation for the distribution-shattering is
introduced in Section III.B. Then, Section III.C analyzes the
hypothesis-pruning and distribution-shattering AL by halfs-
pace learning and discusses their performance disagreements.

A. Error Disagreement of Hypothesis-pruning

The hypothesis-pruning AL algorithm queries the label
of one example based on the empirical rule of error rate
difference after assigning a positive or negative label. To
describe the basic model of hypothesis-pruning, we present
some preliminaries in this section.

Given a data set X with binary class labels, and D is the
distribution over X × {±1}, we divide X into two groups:
L and U , in which L contains the labeled set of X , and
U contains the unlabeled set. Let err(X ,L) denote the error
rate of predicting X by training the labeled set L, {x̂,−1}
and {x̂,+1} denote the queried data with negative or positive
labels, x̂ ∈ X , t denote the tth query, Lt denote the labeled
set in the tth query, and k denote the total number of queries.
We present the policy for querying by the error disagreement
∆t [12],

|err(h−1,Lt ∪ {x̂,−1})− err(h+1,Lt ∪ {x̂,+1})| > ∆t

s.t. {x̂,±1} ⊂ U , t = 1, 2, 3, · · · , k, (1)

where h−1 and h+1 denote the classification hypotheses after
assuming x̂ with a negative and positive label, respectively.
By employing this policy, the active learners pick up those
data whose error disagreements of |err(h−1,Lt ∪ {x̂,−1})−
err(h+1,Lt ∪ {x̂,+1})| are larger than the given coefficient



∆t. If the error disagreement of one data is far greater than the
coefficient, it updates the current classification hypothesis sig-
nificantly. Otherwise, the influence on the current hypothesis
of adding the data to L is insignificant.

The theoretical guarantees for this policy can be expressed
in terms of the generalized disagreement coefficient [36]
over a fixed assumption. Given a hypothesis class H over
X , let h∗ be the optimal hypothesis which satisfies h∗ =
arginfh∈H errD(h), ν = errD(h∗), and h(x) 6= h∗(x), where
errD(h) denotes the error of hypothesis h with respect to
distribution D. Let B(h∗, r) [16] be a ball centered with h∗,
given a radius r limits the volume of the candidate hypotheses
around h∗, we define B(h∗, r) = {h′ ∈ H : `(h∗, h′) < r},
where `(·, ·) denotes the metrical distance between the two
hypotheses. Generally, `(·, ·) can be generalized as the error
disagreement of Eq. (1). Assume there exists a descried error
rate ε, the generalized disagreement coefficient [15] is defined
as the minimum value of θ such that for any r:

θ = sup

{
Prx∼D[∃h ∈ B(h∗, r)]

r
: r ≤ ε+ ν

}
, (2)

where Pr denotes the probability mass in B(h∗, r) such as
the candidate hypothesis disagreement or misclassified data
amount.

The generalized types of Pr are typically used in various
hypothesis-pruning AL: [22] presents an upper bound of
label complexity using maximum disagreement between any
hypothesis in H; [15] tights this bound by using the best-in-
class error disagreement, etc.

B. Sparse Hypothesis Class

To find the instance with the highest informativeness, the
hypothesis-pruning AL algorithms using error disagreement
select the data which maximally split H, and then shrink the
number of candidate hypothesis. However, the general error
disagreements need a linear classifier or fixed distribution and
it is only a special metric over hypothesis disagreement. In
this section, we study the hypothesis distribution which is
independent of the structural assumption of fixed distribution.

Without a given distribution, we assume the hypothesis class
is distributed in an unseen graph structure G and each node
denotes a hypothesis. Then, B(h∗, r) denotes a ball centered
with h∗ and radius r in G. Afterwards, finding a sparse
hypothesis class is the most important splitting factor.

Let ht be the current hypothesis, xi and xj be two can-
didate sampling points in X . Assume ht,xi and ht,xj are the
updated hypotheses after sampling xi and xj , respectively, the
disagreement coefficient can be the infimum value of θ′

max
h∈B(h∗,r)

`(h∗, ht,xi
) + `(h∗, ht,xj

) ≤ 2θ′r, ∀r > 0, (3)

where ht,xi
is assumed to be the hypothesis with the maximum

disagreement to ht,xj
in a given radius setting r. In B(h∗, r)

of G, ht,xj denotes the node which is the farthest from the
node of ht,xi .

Let m be the number of unlabeled data in the candidate
pool, the constrained hypothesis relationship set is descried as

H′ = {(ht,x1 , h
′
t,x1

), (ht,x2 , h
′
t,x2

), ..., (ht,xm , h
′
t,xm

)}, (4)

where h′t,xi
denotes the hypothesis that is the furthest from

ht,xi
. By employing the hypothesis disagreement function

`(·, ·) of Eq. (3), learners can remove a part of the hypotheses
by a margin distance θ′. Then, we obtain a sparse hypothe-
sis class H∗. With this splitting strategy, characterizing any
hypothesis in H with a lower VC bound may be possible.
Therefore, the key study of this paper is to prune the original
hypothesis class into a sparse structure from the distribution
view.

C. Performance Disagreement

Halfspace learning provides a clear visualization to describe
the hypothesis relationship. Based on this advantage, in this
section, we describe the performance disagreement of the
hypothesis-pruning and distribution-shattering AL by halfs-
pace learning. We firstly describe different cases of learning a
halfspace over a unit sphere.

Case 1. Halfspace learning. Learning a halfspace c∗ [37]
[19] in a united sphere is to estimate an unknown vector µ
that takes the sphere center as the start point,

c∗={x∈R|〈µ, x〉≥0}, s.t. sign(〈xi, µ〉) ∈ {+1,−1} . (5)

In this case study, the goal of halfspace learning is to
estimate the optimal c∗ using the lowest number of queries
as possible. However, the label complexity of the unseen
sampling process heavily depends on the initial hypothesis.
Suppose that the points which could maximize the hypothesis
or distribution update are the primary sampling data, we utilize
label complexity to observe the difference of hypothesis-
pruning and distribution-shattering AL of the halfspace.

To explain the notion of label complexity, we take the label
complexity of the passive (random) learning of halfspace as
prior knowledge.

Case 1.1. Passive learning of halfspace. Let D be the
distribution over a unit sphere with 1/ε data, then the label
complexity of passive sampling is O( 1

ε ).
Let vt be the vector classifier on the tth query, and θt be the

angle between vt and µ, we give the following case studies.
Case 1.2. Hypothesis-pruning AL of halfspace. Let D be

the distribution over a unit sphere with 1/ε data, the label
complexity of obtaining a lower error rate compared to the
initial hypothesis is O( θtπε ). Even using the halving algorithm,
the label complexity is O(log θtπε ).

To reduce the error of the initial hypothesis, we need to
query the labels of the data distributed between vt and µ
(colored area in Fig. 1). Over a unit sphere with 1/ε data,
the candidate pool which can reduce the error of the initial
hypothesis has θt

πε data. If we use the halving algorithm such
as binary search in the candidate pool, the label complexity
would be O(log θtπε ). Different from the hypothesis-pruning



AL, the distribution-shattering AL that requires the unseen
sampled data is independent of the initial hypothesis.

Case 1.3. Distribution-shattering AL of halfspace. Let D
be the distribution over a unit sphere with 1/ε data, the label
complexity of obtaining a lower error rate compared to the
initial hypothesis is O(1).

The above cases compare the sampling policies of the
hypothesis-pruning and distribution-shattering AL algorithm
over the unit sphere. The performance of the hypothesis-
pruning AL strategy heavily depends on the initial hypothesis.
In real-world AL tasks, the querying results of AL depend on
the input labeled set and updating of the training model. For
example, an limited labeled set and misguided model update
will degenerate the performance of the subsequent sampling.
However, the final estimation on error rate of the proposed
distribution-shattering strategy depends on the representation
structure of the input distribution. In simple terms, learning
the representation structure of the distribution could help to
address the limitation of hypothesis-pruning with a certain
sampling selection. In a real AL task, the queried samples
of any generalized distribution-shattering algorithm will be
independent of the input training set.

IV. HYPOTHESIS AND DISTRIBUTION

In Section IV.A, we firstly present the monotonic property
of the active query set to show the uncertain error rate change
after querying. Then, we discuss the bottleneck of informative
AL and describe our splitting rule by representation sampling
in Section IV.B. Finally, we discuss the relationship between
error rate and number density of input distribution in Section
IV.C.

Based on these theoretical analysis, we are motivated to
undertake the splitting in input distribution. The goal is to
eliminate the hypothesis supervision by learning the structure
of the input distribution. Proofs are presented in Appendix.

A. Monotonic Property of the Active Query Set

To observe the error rate change after increasing the size
of the active query set, we follow the perceptron training (see
Fig. 1(a)) (Dasgupta et al., 2005) to analyze the hypothesis
relationship. In our perspective, training the updated hypoth-
esis will result in two uncertain situations: (1) the error rate
declines after querying, and (2) the error rate shows negative
(or slow) improvement when querying a lot of unlabeled data.
Therefore, the monotonic property of the active query set
size and error rate are unknown. The following proposition
provides a mathematical description for this discovery.

Proposition 1. The monotonic property of active query set
and error rate is unsatisfied or negative. Suppose εt and εt+1

respectively are the error rates of training the active query
sets Dεt and Dεt+1 . There must hold an uncertain probability
relationship which satisfies Pr(εt+1 ≤ εt|Dεt ⊂ Dεt+1

) < 1.

Proposition 1 describes the first perspective of this paper
about the relationship between the performance of the hypoth-
esis and the active query set size. It shows that the probability

of reducing the current error rate by increasing the size of the
active query set is unpredictable and answers the question that
we proposed in the beginning of this paper. In the following,
we observe the error rate change by shattering the number
density of the candidate pool.

B. Error Rate Change by Shattering Number Density

Following the perceptron training in the unit circle with
uniform distribution, we find the error rate grows with the
number density of the input distribution. This study also
appears in AL of halfspace.

Proposition 2. Assume θt+1 > θt, we know err(Dεt) −
err(Dεt+1

) = (θt+1 − θt)Den(B)
n (w.r.t. the volume of the

circle is π), where Den(·) denotes the number density of the
distribution.

Error rate disagreement denotes the distance between two
arbitrary hypotheses. By observing the above propositions, we
find that number density affects the hypothesis disagreements.
Furthermore, we know the number density roughly decides
the VC dimension bound of the optimal hypothesis since
Vcdim(B) =

∑n
k=1

(
n
k

)
= 2n = 2πDen(B). For these two rea-

sons, number density is a direct way to describe the hypothesis
distribution in version space. Therefore, we are motivated to
shatter the number density of the input distribution to both
reduce the VC bound and find a lower label complexity. In
addition, we define Den(B) for the real AL tasks in Section
V.C. In the following, we discuss the bottleneck of querying
informative samples and present our solution to this issue.

C. Bottleneck of Hypothesis-pruning

In hypothesis-pruning, the generalized algorithm updates the
initial hypothesis w.r.t. h0 into hε with a desired error ε in the
original hypothesis class over version space (Fig. 2(a)). The
informative samples are the primary querying targets. How-
ever, estimating the hypothesis disagreement is challenging.
In particular, when the initial hypothesis is set improperly
(far from the optimal hypothesis in version space), the path
of finding the optimal hypothesis might be difficult. Thus,
there exists a bottleneck for the AL sampling by querying
informative samples, i.e., the hypothesis disagreement from the
initial hypothesis to the descried hypothesis is uncertain.

Since the VC dimension greatly affects the path finding
process for the optimal hypothesis, splitting the hypothesis
class of version space into a sparse structure can alleviate
the bottleneck of querying the informative samples. In our
assumption, we use distribution-shattering to optimize a group
of hypothesis spheres (Fig. 2(b)). Shattering by those sphere
centers, the original hypotheses are transformed into a sparse
hypothesis class, thereby finding hε can achieve a lower label
complexity than in that original hypotheses (Fig. 2(c)). To
implement this proposal, we perform the splitting idea on the
input distribution by finding k local balls constrained by the
following rules.

Solution. Given BD is a ball which tightly encloses D, and
{B1, B2, ..., Bk} are the k local split balls with the condition



of ∀i, Bi ⊂ D. Let Vol(·), r(·) define the volume and radius
of the input hypothesis object, respectively. The splitting must
satisfy the following conditions: (1) the volume of arbitrary
split ball Bi is smaller than that of BD, i.e., ∀Bi, Vol(Bi) <
Vol(BD), (2) the sum of the volumes of all the split balls Bi
is smaller than that of BD, i.e.,

∑k
i=1 Vol(Bi) < Vol(BD),

(3) the radius of an arbitrary ball is smaller than the radius of
BD, i.e., ∀Bi, r(Bi) < r(BD), and (4) the distance between
any two local hypothesis balls is bigger than the sum of their
radii, i.e., `(ci, cj) > r(Bi) + r(Bj), where `(·, ·) denotes the
distance between the two inputs, and ci denotes the center of
the ith split ball.

The above splitting rules provide an algorithmic paradigm
for distribution-shattering strategy. A generalized algorithm
termed SDAL is then presented in Section VI.C.

Remark 1. The policy of `(ci, cj) > r(Bi) + r(Bj) is the
key of the theoretical solution that avoids overlapping in
representations of local hypothesis spheres. It is generalized
in the convergence condition w.r.t. Line 15 of SDAL algorithm.

V. DISTRIBUTION-SHATTERING FOR ACTIVE LEARNING

Section V.A explains how to shatter the input distribution
from halving to splitting. Using a heuristic greedy selection,
we halve the number density of the input distribution to obtain
a shattered distribution in Section V.B. Then, we discuss its
theoretical advantages in Section V.C. With these guarantees,
Section V.D splits the shattered distribution of the input
distribution into a certain number of local balls to find a
representation structure. Proofs are presented in Appendix.

A. Shattering: From Halving to Splitting

Shattering the input distribution is proposed to eliminate the
dependence of the hypothesis. In the last section, halving the
number density of the colored candidate pool yields exponen-
tial reduce on the label complexity of halfspace learning. To
prove the positive help of shattering, we propose to implement
the halving algorithm against the input distribution. The the-
oretical estimations on the generalized label complexity and
error rate difference reveal the effectiveness of shattering. If
all feasible change can converge uniformly with the shattering
percentages, we split the shattered distribution into several
representation regions and use their central points as the query
samples of AL.

B. Halving Number Density for Shattered Distribution

By sorting the hypothesis disagreement of each pair in H′
of Eq. (4), we use a splitting threshold θ′ to halve the number
density of the input space under arbitrary data distributions.
The cutting rule is: let ht is centered with its update `(ht,xi

on xi, for any xj ∈ X , if `(ht,xi
, ht,xj

) ≥ θ′, we remove xj
from X . After the cutting, H′ will be reduced to H∗ over a
shattered distribution.

In hypothesis class H, the VC dimensions of H and H∗
can be written as Vcdim(H) := d =

∑m
i=1

(
m
i

)
= 2m and

Vcdim(H∗) := d′ =
∑m/2
i=1

(
m/2
i

)
=
√

2
m

[38]. Based on

these assumptions, let us discuss the advantages of shattered
distribution on label complexity and the upper bound of the
querying.

Lemma 1. Label complexity. Let each hypothesis hold for a
probability at least 1− δ, the label complexity m(ε, δ,H∗) is

m(ε, δ,H∗) =
64

ε2

(
1

√
2
m−2 In

12

ε

)
+ In

(
4

δ

)
< m(ε, δ,H).

(6)

Lemma 2. Upper bound of queries. Following [9], let us
assume 0 < ε < 1/2, < 0 < δ < 1/2, then the AL will
make at most 2m(ε, δ′H∗ ,H∗) < 2m(ε, δ′H,H) queries, where
δ′H is denoted as δ′H = δ

N(ε,δ,H)2+1 .

Based on the above discussion, we can easily observe that
the values of the two properties of the hypothesis class of
the shattered distribution are lower than that of the original
hypothesis class since it characterizes any hypothesis with a
lower bound on VC dimension.

C. Advantages of Shattered Distribution

To observe the advantages of the shattered distribution, we
1) analyze the bounds of error disagreements between the
hypotheses with positive or negative labeling assumptions, 2)
discuss the upper bound of the error rate by fall-back analysis
which requires a change in different assumptions that can hold
for the same algorithm, and 3) present the label complexities
in η-bounded and v-adversarial noise conditions.

1) Bounds of Error Disagreement in Shattered Distribution:
In this learning process, we continue to use the greedy strategy
of halving to split the local unit ball B(h∗, r). Before splitting,
here we present the halving guarantees of error rate difference
on the shattered distribution.

Theorem 1. Let D′ be the distribution over H∗, {hi, h′i} ∈ H,
h′i be furthest from hi in H, F be a family of functions
f : Z → {0, 1}, S(H, n) be the nth shatter coefficient with
infinite VC dimension, αt =

√
(4/t)In(8S(H, 2t)2)/δ, EZf

be the empirical average of f over a subset Z ⊂ Z ⊂
X with probability at least 1 − δ. Then, we have ∆′ =
(err(hi,D′)− err(hi,D))− (err(h′i,D′)− err(h′i,D)) ≤ 0.

Using this lemma, the error rate of the shattered distribution
guarantees the decrease. However, it has a relationship with
the size of D. To obtain the structure of the version space, we
continue to use the halving approach to split H into k local
balls with a fall-back and bounded noises-tolerant guarantees.

2) Fall-back Analysis in Shattered Distribution: Fall-back
analysis [12] helps us to observe the upper bound of error rate
in the shattered distribution. Before analyzing the fall-back of
querying, we need some technical lemmas.

Lemma 3. [12] With an assumption of nor-
malized uniform, ∆t could be defined as:
∆t := β2

t + βt(
√

errt(h+1) +
√

errt(h−1)), where
βt =

√
(4/n)In(8(n2 + n)S(H∗, 2n)2δ).
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(c) Sparse hypothesis class

Fig. 2. The assumption of distribution-shattering with a sparse hypothesis class. Each node denotes one realizable hypothesis, and the lengths of the red
lines denote the hypothesis disagreement. Hypothesis-pruning updates the initial hypothesis w.r.t. h0 into hε with a desired error ε in the original hypothesis
class (Fig. 2(a)). Distribution-shattering optimizes a group of local hypothesis spheres (Fig. 2(b)). Shattering by those sphere centers, the original hypotheses
are transformed into a sparse hypothesis class (Fig. 2(c), thereby finding hε can achieve a lower label complexity than in its original hypotheses.

Lemma 4. With the assumptions of errt(h+1)− errt(h−1) >

∆t, errt(h+1) − errt(h−1) >
2β2

t

1−βt
and it is consistent with

the labeled set Lt for all t ≥ 0.

With Lemma 4, we then produce the upper bound of error
of sampling in a shattered distribution.

Theorem 2. Assume there exists a hypothesis hf which
satisfies errD′(hf ) ≤ errD(h∗). If the AL algorithm is given
by k queries with probability of 1− δ, let ν = errD′(h

∗), the
error rate of shattered distribution is at most (

√
ν + βk)2.

From the above analysis, sampling in a shattered distribution
can still converge safely. The upper bound of error of sampling
in a shattered distribution is further proven to be tighter
than sampling in the input distribution without halving. It
shows sampling in a shattered distribution may save sampling
consumption and a continuous splitting algorithm may further
reduce this bound uniformly. Next, let us analyze the bounds
of the label complexity in the noise settings.

3) Bounded Noise Analysis of Shattered Distribution: Un-
der the uniform assumption, noises affect the unseen queries.
Here we discuss the label complexities of the shattered distri-
bution in η-bounded and v-adversarial noise settings [13].

Theorem 3. For some η ∈ [0, 1/2] with respect to µ ( w.r.t.
Definition 1), if for any xi ∈ D′, Pr[Y 6= sign(µ · xi)|X =
xi] ≤ η, we say the distribution of D′ is η-bounded [39].
Under this assumption, (1) there are at most Õ( d′

(1−2η)3ε )
unlabeled data, and (2) the number of queries is at most
Õ( d′

(1−2η)2 In 1
2ε ), where Õ(f(·)) := O(f(·)lnf(·)).

Theorem 4. For some v ∈ [0, 1] with respect to µ, if for
any xi ∈ D′, Pr[Y 6= sign(µ · xi)|X = xi] ≤ v, we say
the distribution of D′ is v-adversarial noise condition [40].
Under this assumption, (1) there are at most Õ( d

′

2ε ) unlabeled
data, and (2) the number of queries is at most Õ(d′In 1

2ε ).

Compared to the original input distribution, the shattered
distribution has lower label complexity since the VC bound
of any hypothesis is shattered into a shaper value.

D. Distribution-shattering for AL Tasks

Shattered distribution provides theoretical advantages with-
out special distribution assumptions since number density is
independent of arbitrary distribution situation. Therefore, in

real-world AL tasks, we firstly halve the number density of
the input distribution to learn a shattered distribution via an
active scoring strategy. After obtaining the shattered distribu-
tion, we split the shattered distribution into k balls via the
distribution density. Then, we propose the SDAL algorithm
for AL querying.

1) Active Scoring for Halving: Active scoring is used to
measure the local representativeness of arbitrary data, in which
the score value monotonically grows with the representative-
ness. By removing some data with the lowest representative-
ness (i.e., halving the number density of the input distribution),
we try to shatter the unlabeled data pool. This reduces the label
complexity of the subsequent AL sampling. Here we use the
experimental design [30] to finish the operation of halving.

Considering a linear function f(x) = wTx from mea-
surements yi = wTxi + ξi, where w ∈ R, and ξi ∼
N (0, σ2). The halving algorithm is to optimize a set of
V = {(v1, y1), (v2, y2), ..., (vm, ym)} to represent x, where
m = bn/2c. Therefore, the maximum likelihood estimate of
w is obtained by

argmin
w∗

{
J (w) =

n∑
i=1

(wT vi − yi)

}
(7)

and the error rate is e = w−w∗, s.t. µ(e) = 0, D(e) = σ2Cw,
where µ(·) denotes the mean value of the input variable, D(·)
denotes the covariance matrix of the input object, and

Cw =

(
∂2J
∂wwT

)−1
= (VVT )−1. (8)

Then the average expected square predictive error over X
can be written as

E(yi − w∗Txi) = σ2 + σ2Tr(X TVVTX ). (9)

In order to minimize the average expected square predictive
error, we need to minimize Tr(X TVVTX ). With mathemati-
cal derivations, the minimization issue changes into:

argmin
V,A

n∑
i=1

||xi − VTαi||+ µ||αi||,

V ⊂ X ,A = [α1, α2, ..., αn],

(10)

where u is the penalty factor of the global optimization.
After mapping the original input space into a non-linear



kernel space, we iteratively project the top-(bn/2c) data with
the highest confidence scores to a shattered space3. To solve
this equation, [30] uses sequential optimization to iteratively
select the data with high representativeness in kernel space.
In this paper, we follow their results and use the confidence
score function to define the representativeness of one data:

Score(xi) =
||K(κ, :)K(:, κ)||2

K(κ, κ) + u
,∀i,

s.t. K = K − K(:, κ′)K(κ′, :)

K(κ′, κ′) + u
,

(11)

where K denotes the kernel matrix of X , κ denotes the
sequence position of xi in X , and κ′ denotes the sequence
position of the data with the current highest confidence score in
X . Generally, sequential optimization costs a time calculation
of O(n2) with a greedy strategy. For a large-scale data set, we
can adopt the kernel relevant component analysis trick [41] to
reduce the calculation complexity.

2) Splitting by Distribution Density: Implementing split-
ting in the input distribution by number density has already
been proved effective in agnostic distributions (unknown
assumptions). However, in d̂-dimensional space, calculating
the number density of a high dimensional-bounded space
is challenging. To approximately generalize number density,
we propose to use the exponential value of the distribution
density to quickly split the input distribution due to their
positive proportional relationship. Here we nearly generalize
the number density as

Den(Bi) =
1

mi

∑
xj ,xl∈Bi

f d̂(xj , xl, h), (12)

where f d̂(·) denotes the exponential value of the distribution
density, f(·) can be generalized by arbitrary kernel function
K(·) with a bandwidth setting of K(

xj−xl

h ), h denotes the
kernel bandwidth, and mi denotes the data number in Bi.
Then, we propose the splitting rule:

min
∑

B1,B2,...,Bk

∑
xj ,xl∈Bi

1

mi
f d̂(xj , xl, h). (13)

To solve the above minimum optimization problem, we use
the (1+ε)-approximation [42] approach to increase the ball
radius to make it converge, where ε is set by the empirical
threshold.

3) Querying by SDAL: How to query unlabeled data is an
important step for AL tasks. In this section, we propose a Shat-
tered Distribution-based AL algorithm (SDAL) to implement
the proposed distribution-shattering strategy by following the
splitting rule in Section IV.B. The algorithm has two steps.
Step 1 (Lines 2 to 10) is to find a shattered distribution which
contains the optimal data sequences by the active scoring using
Eq. (11). Step 2 (Line 11 to 25) is to solve the optimization
of Eq. (13). Finally, the output data of the algorithm are used
as the AL queries.

3Shattered space is a generalization from shattered distribution in real-
world.

Algorithm 1: SDAL algorithm
1 Input: dataset X , radius r, approximation ratio ε, number of epochs T .
2 while l = 1 < dn/2e do
3 for i=1,2,3...,n do
4 Calculate the score of xi: Ω(i) =

||K(κ,:)K(:,κ)||2
K(κ,κ)+u)

.
5 end
6 Find the sequence κ′ with the maximum value in Ω:

κ′ = argmax
i

Ω(i).

7 Add xi to X ∗.
8 Update matrix K = K − K(:,κ′)K(κ′,:)

K(κ′,κ′)+u .
9 l = l + 1.

10 end
11 Initialize k data points as the ball centers from X ∗ using k-means.
12 f0 =

∑
B1,B2,...,Bk

∑
xj ,xl∈Bi

1
mi
f d̂(xj , xl, h).

13 while t = 1 ≤ T do
14 ft =

∑
B1,B2,...,Bk

∑
xj ,xl∈Bi

1
mi
f d̂(xj , xl, h)

15 if ft − ft−1 → 0
∣∣∣ ∣∣∣ ||ci − cj ||2 ≤ 2r, ∃i, j then

16 break;
17 else
18 Update ball centers {c1, c2, c3, ..., ck}, where

ci = 1
mi

∑
xj∈Bi

xj .
19 Update ball radius r = r(1 + ε).
20 Update {B1, B2, ..., Bk} by new radius setting.
21 end
22 end
23 t = t+ 1.
24 end
25 Update ci by their nearest neighbor in Bi,∀i < k.
26 Output: {c1, c2, c3, ..., ck}.

The detailed process is as follows. Lines 2 to 10 iteratively
halve the number density of input data set X by removing
a half of the data. The remaining data X ∗ with high repre-
sentativeness denote the data of shattered distribution of X . It
reduces the label complexity for the subsequent sampling. In
the (1 + ε)-approximation, Lines 11 and 12 firstly initialize
k balls with the input radius setting. The approximation
converges when the balls overlap or the splitting function stops
updating (see Line 15). Otherwise, Lines 18 to 20 iteratively
update the centers, balls, and radius.

VI. EVALUATION AND EXPERIMENTS

In this section, we investigate the halving and querying
performance of the SDAL algorithm on three groups of
experiments:

1) comparing the error rates of passive sampling in input
and shattered spaces;

2) comparing the optimal error rates of different baselines;
3) comparing the average error rates of different baselines

on six real-world datasets, where the datasets used in
the querying tests have limited labels.

To defend our theoretical insights on the performance dis-
agreement of hypothesis-pruning and distribution-shattering
strategies, we compare their error performance on querying
with adversarial examples and noisy labels. In these exper-
iments, the LIBSVM(3.22 version) [43] and convolutional
neural network (CNN) are set as the default classification tools.
The error rate and mean±std are used as evaluation standards,
where error rate is over the entire input set.

There exists two main steps in SDAL algorithm: halving
and splitting. In step 1, halving introduces the sequential
optimization to score the representativeness of the data, which
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Fig. 3. Error rate changes of undertaking passive sampling in input and shattered spaces on different datasets.

relates transductive experimental design (TED). In step 2,
splitting uses (1+ε)-approximation to find a group of represen-
tative spheres, which is related to Hierarchical clustering-based
AL algorithm. We thus select these two approaches as our
baselines. GEN is a comprehensive approach that introduces
the representative measure in the process of estimating the
hypothesis update. It is different with traditional estimation
methods. Self-Paced AL is a generalization of hypothesis-
pruning that estimates the hypothesis update with error loss
and representativeness. Besides this, we present two general-
izations of the k-means clustering approaches with different
label estimation schemes. The details of these algorithms are
described as follows.
• Hiera(Hierarchical clustering-based AL):[44] utilizes the

prior knowledge of hierarchical clustering to actively an-
notate more unlabeled data by an established probability
evaluation model, but it is sensitive to cluster structure.

• TED(Transductive Experimental Design): [30] prefers
data points that are not only hard to predict but also
representative for the rest of the unlabeled pool. It is also
called T-optimization.

• GEN(a GENeral active learning framework): [33] pays
attention to the data which minimizes the difference
between the distribution of the labeled and unlabeled sets.

• k-meansN: updates the final k-means cluster centers into
their Nearest neighbors and then queries the labels.

• k-meansA: estimates the label of each final k-means
cluster center by rounding the Average label value of
its cluster members.

• Self-Paced(Self-Paced active learning): [45] optimizes the
least squared loss and maximum mean discrepancy for
finding an instance with informativeness and representa-
tiveness.

• SDAL(Shattered Distribution-based Active Learning al-
gorithm): the proposed algorithm in this paper.

Note all features of the input data are rescaled into [0,1] before
the experiments.

A. Effectiveness of Halving

To verify the halving ability of SDAL, we undertake passive
sampling in input and shattered spaces to compare their
prediction abilities over the input data. The tested datasets
are four UCI real datasets: german (1,000 examples), iris (150
examples), monk1 (124 examples), and vote (435 examples).
In the experimental process, we undertake passive sampling 10
times to obtain the mean error rate under different querying

numbers in the two different spaces. Fig. 3 presents the test
results, where LIBSVM follows a parameter setting of [-c 1].

Shattering removes some “low informative points” deriving
small influence to training model, thereby querying in a
shattered space always has lower error rates than that of the
original input space as learning curves in Fig. 3. Assume
that there exists p “highly informative points” that determine
the final learning model in the input space, with a limited
sampling budget k, do not consider the influences of the
classifiers and parameter settings, the probabilities of obtaining

a descried hypothesis in the two spaces are Pr(D) =
(k
p)

(k
n)

and

Pr(D′) =
( k
p′)

( k
n/2)

, respectively, where p′ denotes the number of

the highly-informative points in the shattered space. If p− p′
is small enough, Pr(D) < Pr(D′) must hold.

B. Optimal Error of Querying

The experiments on halving have shown that the shattered
space could have a better passive sampling performance com-
pared to the original input space. It provides a guarantee for
performing AL querying by the distribution-shattering strategy
in a shattered space. However, most of the AL work require
the supervision from a labeled set. To run these hypothesis-
pruning algorithms in a warm start, we set the size of the initial
training set as the class category via randomly selecting one
datum from each class of the input datasets. Because these AL
algorithms always show negative performance when the start
labeled set is insufficient, we minimize the influence of the
labeled set by tunning their best parameters (related tunning
is described in Section V.B). Under different settings on the
querying numbers, we collected the their optimal prediction
results by initializing the start labeled set 100 times.

Fig. 4 presents the error rate curves of the five AL ap-
proaches on different tested datasets these being german, iris,
monk1, vote, and four subsets of the letter data set. Note
that A-T denotes the instances of letter A to T. The classifier
toolbox is LIBSVM that follows a parameter setting of [-c
1]. Although we have maximized the model performance of
the hypothesis-pruning AL algorithms, the SDAL algorithm is
still better than others in terms of optimal error.

To analyze the paradigm differences of these algorithms, we
begin the discussions: (1) The idea of Hieral is active annota-
tion. It depends on the cluster assumption from version space.
Classification ability of it in unstructured datasets such as the
subsets of letter thus is unstable. This makes the recorded
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Fig. 4. The error rate performances of the seven AL approaches on the active learning test. (a)-(d) are four UCI datasets; (e)-(k) are that on the selected sub
datasets of letter, where the class number of them are 12, 16, 20, and 26.

Table I
THE STATISTICAL RESULTS (MEAN±STD IN %) OF ERROR OF DIFFERENT AL BASELINES ON SIX REAL-WORLD DATASETS

Datasets Class Number Algorithms Number of queries
100 200 300 400 500 600 700 800 900

Phishing 2 Hiera 49.6±3.0 45.0±7.2 42.5±2.3 38.5±1.7 33.2±2.1 22.6±1.4 19.3±1.2 18.0±1.1 14.6±0.7
TED 39.0±1.9 39.1±0.9 34.9±0.3 34.1±0.6 31.2±0.7 28.5±0.5 27.9±0.5 18.6±0.5 13.8±0.8
GEN 47.4±3.6 45.4±2.2 38.6±3.8 32.8±2.9 31.7±2.1 22.6±3.2 19.8±3.6 16.8±2.1 14.5±2.2

k-meansN 37.0±0.1 36.1±1.2 34.9±0.1 32.1±0.1 30.2±0.5 27.5±0.0 25.9±0.4 16.6±0.3 14.8±0.7
k-meansA 58.0±0.6 56.3±0.8 52.2±0.1 52.1±1.1 50.7±1.0 47.6±1.2 45.4±1.5 42.1±0.8 40.2±0.4
Self-Paced 47.4±2.7 44.4±2.8 41.2±2.8 36.8±3.4 35.7±2.8 35.6±2.9 22.8±2.8 17.8±3.2 15.5±2.8

SDAL 36.5±1.7 36.5±1.2 30.4±2.8 30.0±2.8 27.4±2.2 19.1±1.7 16.5±1.7 12.6±1.8 11.2±2.1
Satimage 6 Hiera 22.1±0.9 19.9±0.6 18.9±1.1 18.5±1.0 18.4±1.1 18.4±2.3 17.3±1.2 16.7±1.0 15.9±0.6

TED 20.4±0.7 19.6±0.1 18.4±0.4 17.8±0.6 17.6±0.2 17.4±0.2 17.2±0.1 16.8±0.3 16.0±0.1
GEN 21.9±4.0 20.1±2.7 18.5±0.5 18.4±0.3 18.1±1.2 18.0±1.5 17.8±0.7 16.5±0.9 16.4±2.0

k-meansN 22.2±1.1 22.0±0.1 19.8±0.7 18.7±1.2 18.2±0.9 17.5±0.8 17.0±0.7 17.1±0.0 17.2±0.1
k-meansA 34.2±1.0 32.0±1.1 30.8±1.2 28.5±1.2 26.3±1.1 25.4±0.0 22.8±0.8 19.6±1.0 19.2±0.9
Self-Paced 24.7±2.8 23.1±2.7 20.5±0.5 18.2±0.3 17.3±1.2 17.8±1.5 17.1±0.7 16.4±0.9 16.2±2.0

SDAL 18.4±1.5 17.5±1.2 17.4±2.3 16.8±0.1 16.4±1.3 15.1±2.2 14.9±1.2 14.1±1.3 14.1±1.9
MNIST 10 Hiera 51.2±2.7 46.0±1.7 37.3±2.4 21.3±2.8 20.1±2.3 11.9±2.2 9.6±1.5 9.3±1.3 9.0±1.0

TED 63.3±1.2 40.7±2.3 21.5±3.2 21.7±0.8 8.9±0.5 8.3±0.9 8.3±0.2 8.2±0.5 7.8±0.6
GEN 57.3±5.7 50.7±1.9 30.1±1.6 20.7±1.3 14.9±1.6 11.0±0.6 9.2±0.6 8.1±1.4 8.0±0.1

k-meansN 65.7±0.7 52.7±1.3 32.4±1.2 29.8±0.2 16.4±0.3 12.5±0.2 11.6±0.1 10.7±0.1 7.8±0.4
k-meansA 82.6±1.2 75.4±1.1 64.4±0.8 57.8±0.6 46.7±0.6 42.2±0.4 34.7±0.2 28.9±0.4 26.3±0.5
Self-Paced 78.6±4.3 54.8±2.7 42.2±3.2 35.5±2.1 26.4±2.3 22.6±3.7 10.6±1.9 9.3±1.7 9.4±0.9

SDAL 44.2±2.4 37.0±2.8 19.8±3.8 11.5±1.9 9.0±1.2 8.1±0.9 7.9±0.8 7.7±0.6 7.6±0.3
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(c) ε=0.5

Fig. 5. Illustration of the produced adversarial examples by FGSM with
different perturbation parameters, where the marked examples are clean data
without feature perturbations.

error rates of Hieral be higher than that of other approaches,
although we have increased the test number. Moreover, active
annotation has a negative influence on the subsequent querying
once the clustering result is not correct as its error rate curves
in Fig. 4(a). In other words, actively annotating the labels
of a given budget have to undertake the positive or negative

influences of pre-clustering. (2) TED tends to select those
points with large norms, which might be hard to predict, but
they do not best represent the whole data set. Also, the noises
or low informative data are sampled in its querying process. So
the reported classification results are good but not the best. (3)
GEN always presents disappointing results at the beginning of
training in all the tested datasets. Its error rate declines rapidly
with the increase of the number of queries. The reason is that
the established objective function prefers the data located at the
center area of classes, which does not reflect the whole class
structure well. (4) The performance of k-meansN is at middle
level amongst all compared baselines because of the intuitive
cluster structures of the tested datasets. While the error rate
cannot decrease rapidly as other baselines. Besides this, the
performance of k-meansA presents the worst performance of
this group of experiments since averaging the labels of the
cluster members cannot provide a correct estimation. (5) The
performance of Self-Paced AL optimizes the hypothesis update
with a constrain on distribution representation. When the initial
hypothesis is set improperly, the update will lead to an biased
selection or random index. Thus, the performance of it is



similar with GEN. (6) Compared to the above algorithms,
the SDAL algorithm halves the number density of the data
distribution into a shattered distribution, which removes most
of the redundant points. The remaining points, which represent
the local data distributions, help the learner to obtain the
structure of the original data distribution. In the reported error
rate curves, this represented structure shows effective sampling
guidance when the number of queries is insufficient.

C. Average Error of Querying

The optima error of querying reflects the best sampling
performance of different AL algorithms. To tightly analyze
their performance dependency on the initialized hypothesis
(labeled set), this section presents their average error rates
on three UCI datasets namely Phishing (11,055 examples),
Satimage (4,435 examples), and one handwritten digit dataset
MNIST (60,000 examples). 4 Parameter settings are:1) vary
the pruning budget of Hieral from 100 to 1000 with a step of
100; 2) kernel bandwidth parameter of TED is set as σ=1.8,
then vary the kernel ridge regression λ from 0.01 to 1 with
a step of 0.01; 3) vary the trade-off parameter of Self-Paced
from 1 to 1000 with a step of 10; 4) vary the paced learning
parameter from 0.01 to 1 with a step of 0.01; 4) number of
queries are set as the clustering number of k-meansA and
k-meansN; 5) for SDAL, the used kernel in the sequential
optimization is RBF, where the hyper parameter h is set as
1.8, and the hyper parameter µ is set as 10e-4, we then vary
the ball radii from 0.01 to 0.51 with a step of 0.05 and ε from
0.01 to 0.51 with a step of 0.05. To run Hieral, TED, GEN and
Self-Paced algorithms, we select one datum with label from
each class of the six datasets respectively as their initialized
labeled sets. The classifier toolbox is LIBSVM with following
parameter settings: 1) [-c 1 -g 25] for N ≤ 600, [-c 1 -g 20]
for N > 600 on Phishing, 2) [-c 1] on Satimage, 3) [-c 2] for
N ≤ 300 and [-c 4 -g 0.0015 -r 91.1 0.001] for N > 300 on
MNIST, where N denotes the number of queries. The diver
settings make the derived errors of AL process decrease slowly
but finally achieve the optimal; better observation on learning
changes by adding perturbations of classifier. The mean and
standard deviation (std) errors of the that algorithms on these
datasets are reported in Table I with the results showing that
SDAL significantly outperforms the others indicated in bold.

As shown in Table I, (1) on all settings of the query-
ing numbers, the SDAL algorithm achieves the lowest error
rates over other baselines; (2) with the experience setting
on parameters, all baselines achieve an average error below
0.5 after querying 300 data from the unlabeled data; (3) the
SDAL algorithm produces significantly less errors when the
numbers of querying are less than 600, benefiting from the
representative structure of the input space; (4) for Hieral, TED,
GEN and Self-Paced, the initial selection of the labeled set
greatly affects their subsequent sampling; (5) on all settings,
all algorithms obtain an average error below 0.3 after querying
600 data from the unlabeled data; (6) with an increase of the
querying percentages, the differences between each algorithm

4http://yann.lecun.com/exdb/mnist/

begin to narrow since the number of their overlapped data
increases. Therefore, we conclude that our proposed SDAL
algorithm, an approach derived from distribution-shattering
strategy, breaks the curse of the initial hypothesis.

D. Querying with Adversarial Examples

In the machine learning community, the training models
may misclassify the adversarial examples [46] generated from
the distribution of the correctly classified examples. The degra-
dation of the performance in supervision training, caused by
adversarial examples, is already not a mystery: the adversarial
perturbation affects the precision of the features. In particular,
the linear models are vulnerable to adversarial perturbation,
such as regression and SVM models. In our study, the general
hypothesis-pruning AL strategies which need the support of
the classifiers preferably pick up the adversarial examples.
The underlying reason is that the adversarial examples make
disagreement between the current and subsequent models more
obvious than the examples without perturbation (clear data).
Therefore, active querying with adversarial examples signifi-
cantly describes the performance disagreement of hypothesis-
pruning and distribution-shattering AL strategies, and further
defends our theoretical insights.

The experiments are tested on the MNIST dataset and we
respectively generate 9,000 adversarial samples by the Fast
Gradient Sign Method (FGSM) [46] attack method under
different perturbation parameter ε: 0.1, 0.3, 0.5. For each pa-
rameter, such as ε= 0.1, we randomly choose 1,000 legitimate
images from the MNIST test dataset, and 100 images for
each class. For each image, we generate 9 adversarial samples
with different labels. For example, for an image with label 0,
we generate 9 adversarial samples with labels 1 to 9. Fig. 5
presents a group of illustrations of adversarial examples, where
each illustration marks three clean examples. To intuitively ob-
serve the influence of the adversarial examples in AL querying,
we use the 9,000 examples with ground truth labels as the
unlabeled set of AL and the 9,000 data with misclassified
labels as the adversarial set. The features are extracted by
the LeNet model and the classification model is CNN. To
accelerate the experiments, we adjust the umber of epochs:
1) epoch=1 for N≤2000, 2) epoch=5 for 2000≤N<2500,
3) epoch=20 for N>2500, where N denotes the number of
queries. This way defers the decrease of error rate that benefits
the observation on the influences of subsequent perturbations
from adversarial examples. Parameters of baselines follow
their best tunning in Section VI.C.

In a dynamic view, we add a different number of adversarial
examples to see the error change of different algorithms in
the querying process. Before the querying test, we randomly
select 20 data from the training set as the initial (start)
labeled set for the hypothesis-pruning AL algorithms including
Hiera, TED, GEN and Self-Paced. Fig. 6 draws the error rate
change of predicting the labels of the entire training set under
different settings on the perturbation parameter, number of
added adversarial examples (Nadv), and the number of queries.
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(b) ε=0.1, Nadv=100
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(c) ε=0.1, Nadv=500
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(d) ε=0.1, Nadv=1000
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(e) ε=0.3, Nadv=100
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(f) ε=0.3, Nadv=500
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(g) ε=0.3, Nadv=1000
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(h) ε=0.3, Nadv=2000
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(i) ε=0.5, Nadv=100
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(j) ε=0.5, Nadv=500
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(k) ε=0.5, Nadv=1000
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(l) ε=0.5, Nadv=2000

Fig. 6. The performance of error rate on AL querying with adversarial examples, where the adversarial examples are produced by FSGM with different
perturbation parameter settings.
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(c) Nnoi=500
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Fig. 7. The performance of error rate on AL querying with noisy labels.

With the dynamic views on Fig. 6(a) to 6(d), 6(e) to
6(h), and 6(i) to 6(l), we find that the three hypothesis-
pruning AL algorithms significantly degenerate their error
rates. Because the added adversarial examples misclassify
the classifier using fraudulent labels, they significantly affect
the update of the training model largely. By mixing more
adversarial examples into the training set, the current training
model has a greater chance to select the adversarial examples.
However, our proposed SDAL algorithm which utilizes the
distribution-shattering strategy is not sensitive to the classifier.
Thus, its error rates only slightly reduce when querying the
same number of unlabeled data, even adding more adversarial
examples. In another view of setting different perturbation
parameters, i.e., from the comparison of Fig. {6(b), 6(e), 6(i)},
{6(c), 6(f), 6(j)}, {6(d), 6(g), 6(k)}, and {6(h), 6(l)}, we find
the error rates of these hypothesis-pruning AL algorithms also
reduce significantly with an increase of ε.

To tighten the above analysis, Table II calculates the mean
and std values of querying 1,000 legitimates when varying the
number of adversarial examples with different ε. By observing
the statistical results, we can clearly find that SDAL presents a
slight change on error rate even when adding a different num-

ber of adversarial examples or setting different perturbation
parameters. However, the estimation of hypothesis update on
an adversarial example is highly-skewed than a clear example.
It then leads to sensitive perturbations for GEN and Self-
Paced algorithms. Moreover, the approaches involved with
representative examples such as Hiera, TED, k-meansN, and
k-meansA also present small perturbations.

E. Querying with Noisy Labels
In many learning issues, the cost of obtaining the ground

truth labels is expensive. A group of good annotation results
on the unlabeled set is difficult to obtain due to manual error
or simply a lack of precision of the original data [47]. This
also makes the queried labels in AL noisy. When hypothesis-
pruning querying meets the noisy labels, these examples will
generate an unprepared perturbation for the estimation of
model change of a hypothesis-pruning AL. Further, querying
with noisy labels zooms the performance disagreement of the
hypothesis-pruning and distribution-shattering AL. Therefore,
the experiment results can be a group of evidence to defend
our theoretical insights.

We firstly collect the Fashion-Mnist dataset 5. With a similar
5https://github.com/zalandoresearch/fashion-mnist



Table II
THE STATISTICAL RESULTS (MEAN±STD IN %) OF AL WITH

ADVERSARIAL EXAMPLES OF DIFFERENT ALGORITHMS (ALG DENOTES
ALGORITHMS)

ε Alg Number of added adversarial examples (Nadv)
0 100 500 1,000 2,000

0.1 Hiera 29.3±27.3 31.4±28.7 37.4±7.3 42.4±5.5 39.0±7.1
TED 26.8±26.7 29.0±7.5 30.5±7.9 32.0 ±7.9 35.7±7.0
GEN 30.2±31.6 31.3±10.3 56.6±8.1 58.5±6.7 60.1±6.0

k-meansN 30.0±1.0 31.3±0.8 32.5±0.5 33.5±0.9 34.1±1.2
k-meansA 47.9±1.4 31.3±0.7 49.7±0.6 51.6±1.0 53.1±1.3
Self-Paced 30.6±28.5 31.3±8.7 56.3±9.3 66.0±8.3 70.1±7.2

SDAL 23.6±24.6 24.5±6.2 26.0±6.6 26.7±6.9 28.9±5.9
0.3 Hiera 29.3±27.3 31.2±8.4 44.7±5.9 39.8±7.3 41.2±8.0

TED 26.8±26.7 29.9 ±7.6 34.3 ±8.9 34.6±7.9 37.6±8.1
GEN 30.2±31.6 32.0±9.8 59.8 ±7.1 61.2±6.5 62.3±6.2

k-meansN 30.0±1.00 30.2±1.3 31.3±0.9 35.7±0.6 36.3±0.8
k-meansA 47.9±1.4 49.2±1.2 31.3±0.6 52.7±0.7 52.5±1.1
Self-Paced 30.6±28.5 59.5±12.5 67.6±9.3 58.5±8.9 68.7±11.4

SDAL 23.6±24.6 25.4 ±6.2 28.0±5.9 29.2±6.5 31.9±6.7
0.5 Hiera 29.3±27.3 31.9±8.4 44.7±5.9 41.9±6.9 49.4±6.1

TED 26.8±26.7 31.3±6.8 35.0±7.8 39.0±9.0 38.8±7.6
GEN 30.2±31.6 32.0±9.8 61.6±6.5 63.8±6.4 63.8±6.0

k-meansN 30.0±1.0 33.3±1.3 33.5±0.9 36.4±0.5 37.2±0.8
k-meansA 47.9±1.4 49.9±1.2 50.7±0.7 52.6±0.6 53.2±1.1
Self-Paced 30.6±28.5 33.2±12.5 59.0±9.3 68.8±8.9 70.1±9.7

SDAL 23.6±24.6 25.4 ±6.2 29.6 ±7.2 30.9±6.7 33.3±6.3

experiment setting, we respectively revise the original labels of
the first 10, 500, 1000 data with noisy labels such as revising
the label ‘0’ to ‘1’. Fig. 7 describes the error rate change of
adding a different number of noisy labels (Nnoi), where the
classifier also is a CNN model following Section VI.D, and
parameters of baselines follow their best tunning in Section
VI.C. In the drawn curves, the noisy examples have a negative
influence on AL querying since they may misclassify a lot of
unlabeled data after adding them in to the labeled set. Thus,
they are also picked up as the primary sampling objects in the
estimation of the model chance policy of hypothesis-pruning
AL methods. However, the distribution-shattering approach
avoids the perturbations. Only if the percentage of the noisy
labels are large, the influence on the SDAL algorithm is
obvious. Besides this, GEN shows a biased selection with
the noisy setting. The noise perturbation to it is the most
sensitive among the compared baselines. The others keep clear
perturbation but not so series as GEN. The inherent reason
follows the analysis of Section VI.D.

F. Calculation Complexity
The proposed SDAL algorithm (Algorithm 1 on Page 9) has

two steps: halving and splitting, where Lines 2-10 describe
the halving process using Eq. (11), and Lines 11-24 split the
shattered distribution into k geometrical balls using Eq. (13).
Generally, the halving step costs a calculation complexity
of O(n3) and the splitting step costs a time complexity of
O(nk). Therefore, the total calculation complexity of SDAL
algorithm is O(n3). For any generalized hypothesis-pruning
algorithm, estimating the hypothesis update needs to retrain the
classification models, which results an uncertain calculation
complexity. For example, GEN and Self-Paced algorithms
repeatedly train a SVM model to select the samples which
can maximize the error update, in the experiments. Generally,
sampling k data will retrain and repredict the classifier kn′

times, where n′ denotes the unlabeled data number that is
usually close to n. Then, the calculation complexity is almost
O(kn3) to O(kn4) since SVM costs a calculation complexity

of O(n2) to O(n3). In addition the two generalized k-means
algorithms approximately cost O(kn). The TED approach
costs O(n2) due to a greedy selection. The Hierarchical
clustering-based AL costs O(n3) due to the pre-clustering.

VII. CONCLUSION

AL algorithms provide strong theoretical guarantees on
supervision sampling under fixed distribution and noise con-
ditions. However, the label complexity bounds of the general
hypothesis-pruning methods heavily depend on the initial
hypothesis. This generates a challenging gap between the
theoretical guarantee and application performance of AL al-
gorithms.

To bridge this gap, we propose a distribution-shattering
strategy from a theoretical perspective of number density. With
lower generalization error and label complexity in the shattered
distribution, we implement the proposed theoretical strategy
against an arbitrary distribution by the SDAL algorithm in real-
world querying tasks. Based on these theoretical analyses, em-
pirical evaluation, and experiment results, we conclude that the
hypothesis-pruning AL strategies degenerate their performance
when querying with limited labels, adversarial examples, and
noisy labels since they heavily depend on the initial labeled set
and classifier. However, the proposed distribution-shattering
strategy only presents slight perturbations in these querying
scenarios.
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