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Flexible Cross-Modal Hashing
Guoxian Yu, Xuanwu Liu, Jun Wang, Carlotta Domeniconi, Xiangliang Zhang

Abstract—Hashing has been widely adopted for large-scale
data retrieval in many domains, due to its low storage cost
and high retrieval speed. Existing cross-modal hashing methods
optimistically assume that the correspondence between training
samples across modalities is readily available. This assumption is
unrealistic in practical applications. In addition, existing methods
generally require the same number of samples across different
modalities, which restricts their flexibility.

We propose a flexible cross-modal hashing approach (Flex-
CMH) to learn effective hashing codes from weakly-paired data,
whose correspondence across modalities is partially (or even
totally) unknown. FlexCMH first introduces a clustering-based
matching strategy to explore the structure of each cluster, and
thus to find the potential correspondence between clusters (and
samples therein) across modalities. To reduce the impact of
an incomplete correspondence, it jointly optimizes the potential
correspondence, the cross-modal hashing functions derived from
the correspondence, and a hashing quantitative loss in a unified
objective function. An alternative optimization technique is also
proposed to coordinate the correspondence and hash functions,
and to reinforce the reciprocal effects of the two objectives.
Experiments on public multi-modal datasets show that FlexCMH
achieves significantly better results than state-of-the-art methods,
and it indeed offers a high degree of flexibility for practical cross-
modal hashing tasks.

Keywords: Cross modal hashing, weakly-paired data,
flexibility, clustering-based match, optimization

I. INTRODUCTION

Hashing has sparked increasing interest from both research
and industry, due to its low storage cost and high retrieval
speed with big data [41], [43], [31], [28], [9], [11], [8], [4].
Hashing aims at compressing high-dimensional vectorial data
into a short binary code, while preserving the structure, to
facilitate efficient retrieval with significantly reduced storage
needs. By using the index constructed from the hash code, big
data retrieval can be achieved in constant or sub-linear time
[19], [32], [14], [23], [4].

With the wide range of applications of Internet of Things,
rapid influxes of multi-modal data ask for efficient cross-modal
hashing solutions. For example, given an image/video about a
historic event, one may want to cross-modally retrieve texts
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describing the details of the event. As such, how to perform
cross-modal hashing on widely-witnessed multi-modal data
becomes a topic of interest in hashing [17], [46], [41], [43],
[8] [45], [14]. Existing cross-modal hashing solutions can
be classified into unsupervised or supervised. Unsupervised
methods seek hash coding functions by taking into account
the underlying data structure, distributions, or topological
information [38], [2]. Supervised (semi-supervised) approaches
leverage supervised information (i.e., semantic labels) to
improve the performance [46], [20], [10], [40], [3], [11], [14].

Existing cross-modal hashing methods optimistically assume
that the correspondence between samples of different modalities
is known [16]. However, in real applications, some objects
are only available in one modality, or their corresponding (or
paired) objects in another modality are only partially (or even
completely) unknown. This can happen, for example, when one
wants to search images from texts, and there are 100 images
and 200 documents, but only the correspondence between 50
images and 80 documents is known. In other words, the image-
text collection is weakly-paired, and only the semantic labels
are shared across modalities. To the best of our knowledge,
how to flexibly learn a hash code from weakly-paired data is
still a challenging and open problem in cross-modal hashing.

Several cross-modal hashing methods have been recently
introduced to tackle weakly-paired multi-modal data [38], [27],
[35]. They typically project multi-modality data onto a latent
space under the guidance of paired samples, and then seek
new pairwise mappings between samples and hash functions
in this space. As such, they require enough paired data and
the same number of training samples across modalities. Few
multi-view learning approaches were also proposed to handle
the general weakly-paired samples [18], [22], [49], [29]. These
approaches also require the same number of training samples
across different views, or the same number of samples for
matched classes. However, these requirements are violated in
many cases, where samples across different modalities are
partially-paired, or even completely-unpaired, and the numbers
of member samples of matched clusters (or classes) across
modalities are not the same.

In this paper, we propose a Flexible Cross-Modal Hashing
(FlexCMH) solution (as illustrated in Fig. 1) to handle partially-
paired (and even completely unpaired) multi-modal data. Our
main contributions are summarized as follows:
(i) We design a novel matching strategy that uses centroids
of clusters, the local structure of centroids, and an incomplete
correspondence between samples to seek a matching between
samples in different modalities. This strategy neither requires
the same number of samples within the matched clusters, nor
across different modalities. Therefore, FlexCMH can be applied
with flexibility in general cross-modal hashing settings.
(ii) We propose a unified objective function to simultaneous-



2

ly consider the cross-modal matching loss, the intra-modal
representation loss, and the quantitative loss to learn adaptive
hashing codes. We also introduce an alternative optimization
technique to jointly optimize the match and hash functions in
a reciprocal boosting fashion.
(iii) Experiments on benchmark multi-modal datasets show that
FlexCMH significantly outperforms related and representative
cross-modal hashing approaches [2], [46], [20], [18], [22],
[27], [35] [25], [47] in weakly-paired scenarios, and it holds a
competitive performance in different open settings.

The rest of this paper is organized as follows. Section II
gives a brief review of related work. Section III introduces the
objective function of FlexCMH and its optimization. Section IV
presents the experimental setup, results, and analysis. Finally,
Section V draws conclusions and provides directions for future
work.

II. RELATED WORK

Like single-modal hashing methods which are based on a
structure preserving criterion, existing cross-modal hashing
can be categorized into three types: pairwise [46], [20], [33],
[28], [19], [32], [9], [23], [8], [14], [4], multi-wise [37], [42],
[26], and implicit similarity preserving [15], [34]. Semantic
correlation maximization (SCM) [46] optimizes the hashing
functions by maximizing the correlation between two modalities
with respect to the pairwise semantic similarity. Semantics
Preserving Hashing (SePH) [20] projects the corresponding
features of any instance for each modality into unified binary
hash codes based on the semantic consistency between views.
Collective Matrix Factorization Hashing (CMFH) [7] learns
unified binary codes using collective matrix factorization
with a latent factor model on multi-modal data. Efficient
Discrete Latent Semantic Hashing (DLSH) [28] simultaneously
discovers the latent shared space of heterogeneous multi-
modal data and enhances the discriminative capability of hash
codes with explicit semantic labels. Fast Discrete Cross-modal
Hashing (FDCH) [25] regresses semantic labels to correspond-
ing hashing codes with a drift to improve the cross-modal
retrieval performance. Deep Cross-Modal Hashing (DCMH)
[13] combines hashing learning and deep feature learning by
preserving the semantic similarity between modalities. Ranking-
based Deep Cross-modal Hashing (RDCMH) [26] preserves
the multi-level semantic similarity order between labeled and
unlabeled multi-label samples for cross-modal hashing. Deep
semantic-preserving ordinal hashing (DSPOH) [14] adopts deep
neural networks to learn hashing functions by exploring the
ranking structure. Cross-modal similarity sensitive hashing
(CMSSH) [2], as a representative implicit similarity preserving-
based method, models the projection of features in each view to
hash codes as binary classification problems with positive and
negative examples, and utilizes a boosting method to efficiently
learn the hash functions. However, these methods all assume
the training samples are completely-paired between modalities,
and cannot be applied to weakly-paired samples.

Several cross-modal hashing approaches have been proposed
to handle the weakly-paired data. For example, Inter-Media
Hashing (IMH) maps view-specific features onto a common

Hamming space by learning linear hash functions with intra-
modal and inter-modal consistencies [38]. Semi-Paired Discrete
Hashing (SPDH) aligns both paired and unpaired samples in a
common latent subspace by successfully exploring the similarity
between samples via a cross-view graph [35]. Generalized
Semantic Preserving Hashing (GSPH) [5] proposes a simple
hashing framework that can work with different settings,
like single-label, multi-label, and both paired and unpaired
data, while effectively capturing the semantic relationship
between samples. Triplet Fusion Network Hashing (TFNH) [12]
designs a triplet network to handle both paired and unpaired
data, and to narrow the gap between the modalities by two
modality-based classifiers. Generalized Semi-supervised and
Structured Subspace Learning (GSS-SL) [47] proposes a label
graph constraint to ensure the intrinsic geometric structures
of different feature spaces are consistent with the structures
of the label space. Composite Correlation Quantization (CCQ)
jointly finds correlation-maximal mappings that transform
different modalities into an isomorphic latent space, and learns
composite quantizations that convert the isomorphic latent
features into compact binary codes [27]. Furthermore, several
multi-view learning solutions were also introduced to tackle
weakly-paired samples. Weakly-paired Maximum Correlation
Analysis (WMCA) extends the maximum covariance analysis
to the weakly-paired case by jointly learning the latent pairs and
subspace for dimensionality reduction and transfer learning [18].
Multi-Modal Projection Dictionary Learning (MMPDL) jointly
learns the projective dictionary and pairing matrix for the fusion
classification [22]. Mandal et al. [29] learnt coupled dictionaries
from the respective data views and sparse representation
coefficients with respect to their own dictionaries. They then
maximized the correlation between sample coefficients of the
same class, and simultaneously minimized the correlation of
different classes to seek the matching between samples and to
fuse weakly-paired multi-view data. However, these solutions
lack flexibility in one or multiple ways. They either require
enough paired samples across modalities (or views); they need
the same number of training samples across modalities [18],
[27], [35], [22], [29]; or they isolate the matching exploration
from the follow-up hashing learning [49].

To address these standing issues, we propose a Flex-
ible Cross-Modal Hashing (FlexCMH) to handle weakly-
paired multi-modal data. Specifically, FlexCMH introduces
a clustering-based matching strategy to explore the potential
correspondence between clusters and their member samples. In
addition, it jointly optimizes this correspondence, cross-modal
hashing functions derived from it, and the hashing quantitative
loss in a unified objective function to simultaneously learn a
compact hashing code. The workflow of FlexCMH is shown
in Fig. 1.

III. PROPOSED METHOD

A. Problem Definition
Let M be the number of modalities, and the number of

training samples for the m-th modality is Nm. Xm ∈ Rdm×Nm

represents the data matrix for the m-th modality, where both
Nm and dm are modal-dependent. For example, in a two-
modality Wiki-image search application, x1

i is the image feature
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Fig. 1. Workflow of the proposed FlexCMH (Flexible Cross-Modal Hashing). FlexCMH includes two parts: (1) A clustering-based matching strategy to
explore the matched clusters and samples therein across modalities; (2) A unified objective function to jointly account for the inter-modal representation loss,
the intra-modal representation loss, and the quantitative loss to learn adaptive hashing functions. The intra-modality presentation loss aims at exploring the
clusters and centroids of respective modalities. The inter-modal representation loss aims at preserving the proximity between samples of different modalities
using matched samples. The quantitative loss aims at quantifying the hashing loss from the high-dimensional vectors to the compact binary codes.

TABLE I
NOTATION.

b Hashing code length
k Number of clusters
Xm ∈ Rdm×Nm Feature data matrix of the m-th modality
Zm ∈ Rdm×k Cluster centroid matrix of the m-th modality
Hm ∈ Rk×Nm Cluster indicator matrix of the m-th modality
Γmm′ ∈ RNm×Nm′ Permutation matrix for two modalities

Xm
c , Zm

c , Hm
c

Feature, cluster centroid and cluster indicator
matrices of the m-th modality with respect
to the c-th cluster

B ∈ Rb×n Hashing code matrix

vector of sample i, and x2
i is the tag vector of this sample.

The notation used is summarized in Table I. To enable cross-
modal hashing, we need to learn two hashing functions, F1:
Rd1 → {−1, 1}b and F2: Rd2 → {−1, 1}b, where b is the
length of the binary hash codes. These two hashing functions
are expected to map x1

i and x2
i from the respective modality

onto a common Hamming space, and to preserve the proximity
of the original data.

This canonical cross-modal hashing assumes that training
samples in different modalities have a complete correspondence.
However, the samples may be weakly-paired only. For example,
consider the scenario in which, due to a temporary sensor
failure, x1

i and x2
i do not describe the same object from

different feature views. Instead, x1
i and x2

j (i 6= j) depict
the same object from different views. Several efforts have been
made to leverage paired and unpaired objects for cross-modal
hashing [27], [35], [38], but they assume the training objects
are identically paired. Furthermore, they cannot handle training
objects whose correspondence is completely unknown, and
modalities with different numbers of objects.

To achieve an effective cross-modal hashing on such weakly-
paired (or totally unpaired) multi-modal data, we introduce
a flexible solution (FlexCMH), and provide its overall work-
flow in Fig. 1. FlexCMH first introduces a clustering-based
matching strategy to leverage the cluster centroids and the

local structure around the centroids to explore the potential
correspondence between clusters (and samples within) across
different modalities. Next, it defines a permutation matrix
based on the explored correspondence to align the index of the
same samples across modalities. Based on the aligned index,
it introduces a unified objective function to simultaneously
account for cross-modal similarity preserving loss, the intra-
modal representation loss, and the quantitative hashing loss. An
alternative optimization technique is also proposed to jointly
optimize the correspondence and the hash functions, and to
reinforce the reciprocal effects of these two objectives. The
following subsections elaborate on the above process.
B. Clustering-based cross-modal matching strategy

Unlike single-modal hashing, the correspondence between
samples is crucial for multi-modal data fusion and retrieval. For
completely matched samples, the correspondence is known and
can be used, along with the inter(intra)-modality similarity
between samples across modalities, to learn cross-modal
hashing functions. But for weakly-paired data, since the
correspondence is only partially known, the computation of
similarities between samples of different modalities is a non-
trivial task. A remedy is to divide the samples into different
groups based on their labels, and impose constraints (i.e.,
concerning the similarity between different classes) on the
coding vectors [44], [21]. In the representation space, the
within-class data would cluster together although they are from
different modalities, and the between-class data would be placed
far apart from each other. In other words, the data vectors of
the same class (different classes) from different modalities
should be similar (dissimilar) [39]. We can approximate the
similarity between different classes using the centroids of the
respective groups [22]. However, considering only centroids
may be insufficient, and the neighborhood objects around a
centroid may also be helpful. Furthermore, incomplete labels of
training data restrict the quality of groups. SPDH takes known
paired samples as anchors to augment latent matched samples.
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As such, it needs sufficient anchors for reliable matches, and
cannot be applied to multi-modality data whose correspondence
is completely unknown.

Given these observations, we introduce a novel clustering-
based matching strategy to leverage the centroids of clusters and
the local structure around the centroids. This strategy can ex-
plore the correspondence between clusters (and samples therein)
between different modalities. We illustrate the clustering-based
matching strategy in the center of Fig. 1, where the stars
represent centroids of clusters in different modalities, and the
red points indicate the objects with known correspondence in
another modality. The likelihood that two clusters will match
increases with the similarity of their centroids and with the
similarity of the local structure around the centroids. To achieve
this goal, we define the following matching function:

smm
′

cc′ =

ns∑
g=1

(||xmcg − zmc ||2F − α||xm
′

c′g
− zm

′

c′ ||2F )2 (1)

where zmc and zm
′

c′ are the centroids of the c-th cluster in the
m-th modality and the c′-th cluster in the m′-th modality;
ns is the user specified number of nearest samples to the
centroids; xmcg is the g-th nearest sample of zmc ; and α =

||zmc ||2F /||zm
′

c′ ||2F is a scalar coefficient to balance the scale
difference between two modalities. To seek the correspondence
between clusters of different modalities, Eq. (1) evaluates the
similarity of two clusters by measuring the consistency of
ordered nearest neighbors. Therefore, both the centroids and
neighborhood samples around the centroids are used to match
clusters and samples therein, and thus to facilitate the follow-up
cross-modal hashing. The smaller smm

′

cc′ is, the more similar
the two clusters are. In contrast, existing solutions only match
centroids using labeled samples and ignore informative local
patterns [18], [22]. Our matching function neither requires
matched clusters to have the same number of samples, nor
the same number of samples across modalities. It can also be
applied to multi-modality data whose label information and
correspondence are completely unknown. These advantages
contribute to the flexibility of FlexCMH.

Two clusters (c and c′), and their respective centroids zmc and
zm

′

c′ , are matched if smm
′

cc′ is the smallest among all pairwise
clusters from two modalities. We can align the objects in the
respective modalities by reordering their indices, and then use
the ‘matched’ (aligned) objects in different modalities for cross-
modality hashing. To this end, we define a permutation matrix
Γmm

′ ∈ RNm×Nm′ to align samples as follows:

Γmm
′

ij =

{
1, smm

′

cc′ is the smallest or Pmm′

ij = 1
0, otherwise

(2)

where Pmm′

ij = 1 indicates that the i-th sample in the m-th
modality is paired with the j-th sample in the m′-th modality. In
this way, our cluster-based matching strategy also incorporates
the known matched samples from different modalities. Γmm

′

ij =

1 if xmi belongs to the c-th cluster and xm
′

j belongs to the c′-th
cluster (with the same order to their centroids), and smm

′

cc′ is the
smallest among all pairwise clusters from two modalities. These
conditions indicate that the indices of xmi and xm

′

j should be

reordered for alignment. We observe that our matching strategy
is different from the typical network alignment, which aims
at finding identical sub-networks [36], [30]. In contrast, we
aim at matching samples within the explored clusters, which
describe the same object in different feature views. In addition,
a sample in one modality can be paired with more than one
sample in another modality. The follow-up cross-modal hashing
functions can be learned using the found correspondence.

C. Cross-modal hashing

To compute the matching loss, we must first identify the
centroids of the respective clusters. WMCA [18] and MMPDL
[22] both aim at addressing cross-model learning with weakly-
paired samples, but they obtain clusters using only labeled
samples. In practice, the labels of samples may not be sufficient,
or just unavailable. As such, these methods have restricted
flexibility. To find the centroids, we adopt Semi-Nonnegative
Matrix Factorization (SemiNMF) [6] as follows:

Ls =

M∑
m=1

||Xm − ZmHm||2F , s.t. Hm ≥ 0 (3)

where Zm ∈ Rdm×k can be viewed as the latent representation
of k cluster centroids of the m-th modality, and Hm ∈ Rk×Nm

is the cluster assignment of samples in the latent space.
Since clustering can explore the data distribution and achieve
dimensionality reduction, the above equation can also quantify
the intra-modality representation loss by clustering. Therefore,
Zm can be used for the clustering-based matching. Hm is
the indicator matrix, which represents the probability that Nm
samples belong to different clusters, and can be used for hashing
code learning.

To achieve sample-to-sample cross-modal retrieval, based
on the matched clusters and samples from Eq. (2), we further
minimize the difference between the matched pairs to encourage
them to be as similar as possible. Specifically, the indicator
vectors (Hm) of two samples from two different modalities
should be similar if they have the same cluster label, and
dissimilar otherwise. To this end, we quantify the relationship
between two different modalities by minimizing the deviation
of the indicator vectors of pairwise objects from different
modalities as follows:

Lc =

k∑
c=1

M∑
m=1,m′>m

||Hm
c −Hm′

c Γmm
′

c ||2F (4)

where Hm
c reorders the samples in Xm in descending order

based on their association probabilities with respect to the
c-th cluster. Γmm

′

c ∈ RN×N is the permutation matrix, which
shuffles the sample indices in Hm′

c to align the samples
according to the same indices in Hm

c , which can be obtained
using Eq. (2) and Zm. As such, the samples of Hm′

c can
be matched with Hm

c . In practice, we choose the top N
(< Nm) samples which belong to the c (c′) class to setup
Hm
c and Hm′

c , and to achieve the cross-modal matching. As
a result, our matching strategy can accommodate the case in
which the number of samples belonging to the same cluster
(class) in different modalities is different. In this way, we
can achieve cross-modal retrieval on multi-modal data, with
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partially or completely unknown matched samples, and with
different numbers of samples in the matched clusters.

Next, we splice Hm
c and remove the repeated samples. As a

result, we obtain Ym ∈ Rk×n with the same order of matched
samples across different modalities, and n = min{Nm}Mm=1

when modalities have a different number of samples. Ym can
be viewed as a k-dimensional new representation of samples in
the m-th modality with respect to k centroids in a latent space.
We further transform Ym into a binary hashing coding matrix
H̃m ∈ {−1|1}b×n to facilitate compatible hashing codes for
cross-modal hashing. More specifically, we first use k-means
to obtain b-dimensional one-hot codes on Ym, and then set the
largest entry of each row of Ym to 0. We repeat k-means until
the clustering results do not change anymore. Next, we merge
all the one-hot codes of Ym

i into a b-dimensional hashing code
H̃m
i . In this way, we transform Ym into binary hashing codes,

which reflect the structure information of each cluster. After
this transformation, we update H̃m = 2H̃m − 1b×n, and seek
the common hamming hash coding matrix B ∈ {−1|1}b×n as
follows:

Lq =

M∑
m=1

||B− H̃m||2F (5)

where B can be viewed as the common Hamming space across
all data modalities. It can be used for cross-modal retrieval,
along with the H̃m of the respective modalities. Eq. (5) is also
called the hashing quantitative loss.
D. Unified objective function and optimization

Based on the above analysis, we can assemble the three
losses into a unified objection function:

L(Z
m
,H

m
,B) = argmin

Zm,Hm,B

k∑
c=1

M∑
m=1,m′>m

||Hm
c −H

m′
c Γ

mm′
c ||2F

+

M∑
m=1

||Xm − Z
m

H
m||2F + λ

M∑
m=1

||B− H̃
m||2F

(6)

where the first term quantifies the cross-modal matching loss
from the cluster-wise and the inter-modal representation loss;
the second term measures the intra-modal representation loss
and seeks the clusters per-modality; and the third term measures
the hashing code quantitative loss. Typically, the first two
terms are equally weighted, since the cross-modal retrieval
has to jointly preserve the inter- and intra-modal similarity
[48]. For simplicity, we only use a scalar parameter λ to
balance the hashing code learning, and inter- and intra-modality
similarity preserving. By simultaneously optimizing the above
three losses, we jointly account for the matching and the hash
functions, and thus reinforce the reciprocal effects of the two
objectives. This joint optimization can avoid the misleading
impact on subsequent cross-modal hashing of initially not well-
matched clusters and samples. Our experimental results confirm
this conjecture.

The binary code of a new sample which is not in the training
set can be easily generated. For example, let’s consider a query
instance in the first modality x1. Since we have obtained the
clustering center z1 during the training process, we can compute
its soft-cluster indicator vector h1 via Eq. (3), and determine its
corresponding hash code as b1 = sign(h̃1), where sign(x) = 1
if x > 0, sign(x) = −1 otherwise. h̃1 can be derived from

the indicator vector h1 using the k-means clustering strategy
given in the last paragraph of Section III-C.

We observe that the loss function in Eq. (6) is actually a sum
of the cross-modal matching and retrieval loss, the intra-modal
representation loss, and the hashing quantitative loss. Once
Zm is fixed, we can directly obtain Γmm

′

c using Eq. (2). We
can solve Eq. (6) via the Alternating Direction Method of
Multipliers (ADMM) [1], which alternatively optimizes one of
Zm, Hm, and B, while keeping the other two fixed.

Optimize Hm with Zm and B fixed: We utilize stochas-
tic gradient descent (SGD) to learn Hm Here, Eq. (6) is
transformed into k independent optimization sub-problems
for consistency and easy computation. The c-th sub-problem
is:

min
M∑

m=1,m′>m

||Hm
c −H

m′
c Γ

mm′
c ||2F +

M∑
m=1

||Xm
c − Z

m
H

m
c ||

2
F (7)

where Xm
c has the same size and sample order as Hm

c . For
any class, the derivative of Eq. (7) with respect to the indicator
matrix Hm

c is:

∂L

∂Hm
c

= 2(Z
mT

Z
m

H
m
c − Z

mT
X

m
c ) +

M∑
m′>m

2(H
m
c −H

m′
c Γ

mm′
c ) (8)

We can then take ∂L
∂Hm

c
to update the indicator matrix Hm

c

using SGD. Similarly, we can also update Hm′

c based on
the derivative ∂L

∂Hm′
c

. After Hm
c is updated, the b-dimensional

binary matrix H̃m is consequently determined, and is used to
optimize B.

Optimize Zm with Hm and B fixed: Considering two
modalities as an example, since Γmm

′

c depends on Zmc and
Xm
c , we can compute the derivative of Eq. (6) with respect to

Γmm
′

c and Zm as follows:

∂L

∂Zm
=

dL
dZm

+
dL

dΓmm′
c

dΓmm′
c

dZm

= 2Z
m

H
m
c (H

m
c )

T − 4X
m
c (H

m
c )

T
+ 2X

m
c (Γ

mm′
c )

T
(H

m′
c )

T

(9)

We can then use these derivatives to update the centroid matrix
Zm. Similarily, in each iteration, after the centroids in Zm are
updated, Γmm

′

c is also determined. We consequently update
Γmm

′

c based on Eqs. (1-2), and use the updated Γmm
′

c for the
next optimization round. The optimization of Eq. (9) is given
in the supplementary file.

Optimize B with Hm and Zm fixed: Once Zm and Hm

are fixed, we can determine H̃m. The minimization in Eq. (6)
is equivalent to the following maximization problem:

max
B

tr(BT (λ

M∑
m=1

H̃m) = tr(λBTU) =
∑
i,j

BijUij (10)

where B ∈ {−1,+1}b×N and U = λ
∑M
m=1 H̃m. It’s easy to

see that the binary code Bij should have the same sign as Uij .
Therefore, we have:

B = sign(U) = sign(λ

M∑
m=1

H̃m) (11)

By iteratively applying Eqs. (8-11), we can jointly optimize
the correspondence and the hash functions, and thus reinforce
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the reciprocal effects of the two objectives. The whole Flex-
CMH procedure and the alternative optimization for solving
Eq. (6) are summarized in Algorithm 1. The convergence of
the alternative optimization is studied in Section IV-C

Algorithm 1 FlexCMH: Flexible Cross-Modal Hashing
Input: M modality data matrices Xm, m ∈ {1, 2, · · · ,M};

the matched samples indicator matrix Pmm′
(optional).

Output: Clustering centroid matrices Zm and indicator matri-
ces Hm, binary code matrix B.

1: Initialize centroid matrices Zm , indicator matrices Hm,
the number of classes k and the number of iterations iter,
t = 1.

2: while t < iter or Eq. (6) has not converged do
3: for c = 1→ k do
4: Update Hm

c using Eq. (8);
5: end for
6: Update Hm using Eq. (8) and then the permutation

matrix Γmm
′

using Eqs. (1-2);
7: Update Zm using Eq. (9);
8: Update B using Eq. (11);
9: t = t+ 1.

10: end while

E. Complexity analysis
To facilitate the time complexity analysis, we assume a

simple extreme case with M modalities, k clusters, and t
iterations. For any modality, we have n samples and the extreme
pairing case is considered. The time complexity of the proposed
method is composed of three parts. The time cost of updating
Hm
c in Eq. (8) is O(kM(k2d+k2n+kdn+(k2d)(M−1)/2));

the time cost of updating Zmc in Eq. (9) is O(M(4dkn +
nk2)); and the time cost of updating Γmm

′
in Eq. (2) is

O(k2nd2(M(M − 1))/2). Since the complexity of the third
part is larger than other two in each iteration, the overall
complexity of FlexCMH is O(tk2n2d(M(M − 1))/2).

IV. EXPERIMENTS

A. Experimental setup
Datasets: Three widely used benchmark datasets (Nus-wide,

Wiki, and Mirflicker) are collected to evaluate the performance
of FlexCMH. Each dataset includes two modalities, image
and text, although FlexCMH can also be directly applied to
cases with more than two data modalities. Nus-wide1 contains
269,648 web-text pairs. Each image is annotated with one
or more labels taken from 81 concept labels. Each text is
represented as a 1,000-dimensional bag-of-words vector. The
hand-crafted feature of each image is a 500-dimensional bag-
of-visual words (BOVW) vector. Wiki2 is generated from a
group of 2,866 Wikipedia documents. Each document is an
image-text pair, can be annotated with 10 semantic labels, and
is represented by a 128-dimensional SIFT feature vector. The
text articles are represented as probability distributions over 10
topics, which are derived from a Latent Dirichlet Allocation
(LDA) model. Mirflickr3 originally contained 25,000 instances

1https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-
WIDE.html

2https://www.wikidata.org/wiki/Wikidata
3http://press.liacs.nl/mirflickr/mirdownload.html

collected from Flicker. Each instance consists of an image and
its associated textual tags, and is manually annotated with one
or more labels, from a total of 24 semantic labels. Each text is
represented as a 1,386-dimensional bag-of-words vector, and
each image is represented by a 512-dimensional GIST feature
vector.

Comparing methods: Eleven related and representative
methods are adopted for comparison, which were introduced in
the related work Section. (i) CMSSH (Cross-modal Similarity
Sensitive Hashing) [2]; (ii) SCM (Semantic Correlation Max-
imization) [46]; (iii) CMFH (Collective Matrix Factorization
Hashing) [7]; (iv) SePH (Semantics Preserving Hashing) [20];
(v) WMCA (Weakly-paired Maximum Correlation Analysis)
[18]; (vi) MMPDL (Muti-Modal Projection Dictionary Learn-
ing) [22]; (vii) CCQ (Composite Correlation Quantization)
[27]; (viii) SPDH (Semi-Paired Discrete Hashing) [35]; (ix)
FDCH (Fast Discrete Cross-modal Hashing) [25]; (x) GSS-
SL (Generalized Semi-supervised and Structured Subspace
Learning) [47]; (xi) GSPH (Generalized Semantic Preserving
Hashing) [5]. The codes of the baselines are available from the
authors, and the input parameter values are set according to the
guidelines given by the authors in their respective papers. We
implemented SPDH, since its code is not available. WMCA,
MMPDL, and GSS-SL are not hashing methods; thus, for these
approaches we obtain the hashing codes by substituting the
classification with the ordinary hashing function sign(·). For
FlexCMH, we fix λ in Eq. (6) to 1, k = 10 on Wiki, k = 25
on Mirflickr, and k = 80 on Nus-wide; the number of nearest
neighbors ns in Eq. (1) is fixed to 5 and N in Eq. (4) is fixed
to min{Nm, Nm′}. Our study shows that FlexCMH is robust
to the input values of ns and N . The number of iterations for
optimizing Eq. (6) is set to 500. We empirically found that
FlexCMH generally converges within 400 iterations on all the
datasets. The sensitivity with respect to parameters λ and k is
studied in the supplementary file.

B. Results in different practical settings

(i) Settings: We conducted experiments in three different
settings: (1) completely-paired, (2) weakly-paired, and (3)
completely-unpaired. In each type of experiment, all methods
are run ten times, and we report the average MAP (mean
average precision) results. The standard deviations of MAP
results of the compared methods are quite small (less than 2%)
across all datasets. To save space, we do not report the standard
deviations in these tables. The best results are boldfaced.
All the experimental settings with different scenarios are
summarized in Table II.

For the completely-paired experiments, the clustering-based
matching process of FlexCMH is excluded, and each comparing
method uses all the paired samples for training (70%) and the
rest for validation (30%). Table III reports the MAP results on
Mirflickr, Nus-wide, and Wiki datasets. In the Table, ‘Image
vs. Text’ denotes the setting where the query is an image and
the database is text, and the vice versa for ‘Text vs. Image’.

For the weakly-paired experiments, we investigate two
different settings: (2a) 50% of the image-text pairs of the
training set (70% of the whole dataset) are kept, and the other
pairs are randomly shuffled. (2b) As in (2a), all the images in
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TABLE III
RESULTS (MAP) ON THREE DATASETS WITH COMPLETELY-PAIRED DATA.

Mirflickr Nus-wide Wiki
Methods 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

Image
vs.

Text

CMSSH 0.5616 0.5555 0.5513 0.5484 0.3414 0.3336 0.3282 0.3261 0.1694 0.1523 0.1447 0.1434
SCM-orth 0.5721 0.5607 0.5535 0.5482 0.3623 0.3646 0.3703 0.3721 0.1577 0.1434 0.1376 0.1358
SCM-seq 0.6041 0.6112 0.6176 0.6232 0.4651 0.4714 0.4822 0.4851 0.2341 0.2411 0.2443 0.2564
CMFH 0.6232 0.6256 0.6268 0.6293 0.4752 0.4793 0.4812 0.4866 0.2578 0.2591 0.2603 0.2612
SePH 0.6573 0.6603 0.6616 0.6637 0.4787 0.4869 0.4888 0.4932 0.2836 0.2859 0.2879 0.2863
WMCA 0.5834 0.5847 0.5856 0.5873 0.4396 0.4415 0.4433 0.4436 0.2243 0.2271 0.2283 0.2312
MMPDL 0.6126 0.6135 0.6141 0.6128 0.4635 0.4658 0.4661 0.4672 0.2731 0.2745 0.2768 0.2801
CCQ 0.6139 0.6152 0.6178 0.6221 0.5019 0.5027 0.5051 0.5073 0.2389 0.2412 0.2433 0.2446
SPDH 0.6348 0.6356 0.6369 0.6391 0.5172 0.5189 0.5212 0.5231 0.2512 0.2533 0.2563 0.2578
FDCH 0.6516 0.6735 0.6814 0.6691 0.4982 0.5031 0.5062 0.5055 0.2697 0.2755 0.2811 0.2817
GSS-SL 0.6317 0.6353 0.6395 0.6472 0.4926 0.4957 0.4986 0.5013 0.2431 0.2463 0.2492 0.2514
GSPH 0.6514 0.6579 0.6628 0.6692 0.5026 0.5057 0.5091 0.5116 0.2819 0.2842 0.2865 0.2879
FlexCMH 0.6639 0.6674 0.6691 0.6724 0.5211 0.5232 0.5249 0.5257 0.2846 0.2889 0.2912 0.2935

Text
vs.

Image

CMSSH 0.5616 0.5551 0.5506 0.5475 0.3392 0.3321 0.3272 0.3256 0.1578 0.1384 0.1331 0.1256
SCM-orth 0.5694 0.5611 0.5544 0.5497 0.3412 0.3459 0.3472 0.3539 0.1521 0.1561 0.1371 0.1261
SCM-seq 0.6055 0.6154 0.6238 0.6299 0.4370 0.4428 0.4504 0.2235 0.2257 0.2459 0.2482 0.2518
CMFH 0.6205 0.6237 0.6259 0.6286 0.4349 0.4387 0.4412 0.4425 0.2872 0.2891 0.2907 0.2923
SePH 0.6481 0.6521 0.6545 0.6534 0.4489 0.4539 0.4587 0.4621 0.5345 0.5351 0.5471 0.5506
WMCA 0.5847 0.5861 0.5886 0.5903 0.4179 0.4192 0.4221 0.4235 0.2089 0.2104 0.2131 0.2156
MMPDL 0.6124 0.6142 0.6156 0.6172 0.4225 0.4232 0.4237 0.4256 0.2821 0.2824 0.2836 0.2861
CCQ 0.6079 0.6096 0.6121 0.6145 0.5011 0.5025 0.5037 0.5046 0.2328 0.2339 0.2351 0.2371
SPDH 0.6233 0.6254 0.6267 0.6283 0.5112 0.5124 0.5136 0.5146 0.2563 0.2584 0.2596 0.2607
FDCH 0.6539 0.6672 0.6744 0.6879 0.4967 0.5025 0.5084 0.5173 0.4143 0.4115 0.4184 0.4202
GSS-SL 0.6305 0.6346 0.6376 0.6431 0.4893 0.4935 0.4973 0.5011 0.2435 0.2472 0.2515 0.2535
GSPH 0.6478 0.6492 0.6507 0.6523 0.4931 0.4977 0.5014 0.5021 0.5812 0.5836 0.5849 0.5867
FlexCMH 0.6601 0.6632 0.6648 0.6676 0.5137 0.5149 0.5172 0.5188 0.2812 0.2836 0.2857 0.2869

TABLE IV
RESULTS (MAP) ON THREE DATASETS WITH WEAKLY-PAIRED DATA.

Mirflickr Nus-wide Wiki
Methods 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

50% image-text pairs are paired, all methods use all the paired and unpaired data

Image
vs.

Text

CMSSH 0.5216 0.5238 0.5244 0.5249 0.2715 0.2731 0.2757 0.2766 0.1011 0.1023 0.1035 0.1031
SCM-orth 0.5398 0.5401 0.5406 0.5412 0.2953 0.2968 0.2991 0.3012 0.1107 0.1112 0.1125 0.1128
SCM-seq 0.5404 0.5413 0.5430 0.5442 0.3343 0.3358 0.3372 0.3395 0.1126 0.1138 0.1149 0.1168
CMFH 0.5405 0.5422 0.5438 0.5447 0.3409 0.3428 0.3442 0.3462 0.1157 0.1165 0.1179 0.1182
SePH 0.5411 0.5436 0.5467 0.5501 0.3561 0.3582 0.3610 0.3612 0.1235 0.1267 0.1284 0.1302
WMCA 0.5456 0.5463 0.5471 0.5489 0.3721 0.3746 0.3758 0.3761 0.1575 0.1593 0.1611 0.1635
MMPDL 0.5778 0.5792 0.5814 0.5846 0.4117 0.4136 0.4137 0.4136 0.2342 0.2361 0.2375 0.2341
CCQ 0.5806 0.5812 0.5826 0.5833 0.4359 0.4368 0.4372 0.4386 0.2253 0.2274 0.2281 0.2294
SPDH 0.5784 0.5803 0.5826 0.5832 0.4312 0.4326 0.4335 0.4342 0.2342 0.2363 0.2375 0.2389
FDCH 0.5622 0.5732 0.5767 0.5787 0.4125 0.4163 0.4219 0.4240 0.2193 0.2237 0.2269 0.2273
GSS-SL 0.5771 0.5753 0.5795 0.5832 0.4210 0.4239 0.4277 0.4296 0.2223 0.2256 0.2289 0.2311
GSPH 0.5651 0.5649 0.5681 0.5712 0.4062 0.4091 0.4123 0.4135 0.2519 0.2531 0.2546 0.2571
FlexCMH 0.5867 0.5891 0.5925 0.5973 0.4473 0.4496 0.4515 0.4531 0.2629 0.2647 0.2655 0.2687

Text
vs.

Image

CMSSH 0.5121 0.5135 0.5142 0.5136 0.2563 0.2607 0.2622 0.2741 0.0989 0.1002 0.1011 0.1020
SCM-orth 0.5211 0.5226 0.5237 0.5242 0.2855 0.2879 0.2893 0.2921 0.1118 0.1124 0.1121 0.1128
SCM-seq 0.5235 0.5238 0.5241 0.5250 0.3211 0.3234 0.3269 0.3274 0.1206 0.1209 0.1214 0.1221
CMFH 0.5314 0.5335 0.5356 0.5372 0.3382 0.3397 0.3421 0.3442 0.1231 0.1255 0.1269 0.1293
SePH 0.5431 0.5441 0.5453 0.5459 0.3531 0.3554 0.3560 0.3579 0.1238 0.1242 0.1247 0.1264
WMCA 0.5456 0.5461 0.5458 0.5472 0.3612 0.3648 0.3679 0.3712 0.1437 0.1445 0.1458 0.1473
MMPDL 0.5631 0.5647 0.5648 0.5655 0.3872 0.3891 0.3911 0.3924 0.2132 0.2141 0.2155 0.2135
CCQ 0.5732 0.5743 0.5755 0.5763 0.4267 0.4281 0.4299 0.4312 0.2216 0.2237 0.2253 0.2263
SPDH 0.5715 0.5736 0.5751 0.5768 0.4213 0.4234 0.4267 0.4286 0.2365 0.2379 0.2393 0.2411
FDCH 0.5652 0.5683 0.5712 0.5729 0.4155 0.4183 0.4211 0.4246 0.2336 0.2418 0.2502 0.2533
GSS-SL 0.5692 0.5713 0.5746 0.5791 0.4218 0.4245 0.4283 0.4311 0.2215 0.2258 0.2384 0.2491
GSPH 0.5613 0.5635 0.5649 0.5692 0.4205 0.4237 0.4262 0.4291 0.2522 0.2539 0.2573 0.2639
FlexCMH 0.5801 0.5825 0.5836 0.5859 0.4431 0.4456 0.4479 0.4412 0.2538 0.2541 0.2557 0.2563

50% image-text pairs are paired, the number of image samples and that of text samples are different

Image
vs. Text

FlexCMH(nJ) 0.5421 0.5435 0.5467 0.5485 0.3878 0.3892 0.3905 0.3936 0.2231 0.2245 0.2256 0.2273
FlexCMH(nC) 0.5259 0.5286 0.5304 0.5327 0.3618 0.3643 0.3666 0.3647 0.2015 0.2057 0.2076 0.2088
FlexCMH 0.5635 0.5641 0.5653 0.5668 0.4333 0.4351 0.4367 0.4383 0.2577 0.2593 0.2612 0.2635

Text vs.
Image

FlexCMH(nJ) 0.5224 0.5237 0.5244 0.5256 0.4115 0.4123 0.4143 0.4150 0.2235 0.2256 0.2271 0.2293
FlexCMH(nC) 0.5183 0.5104 0.5131 0.5142 0.3832 0.3845 0.3873 0.3907 0.2056 0.2074 0.2093 0.2108
FlexCMH 0.5589 0.5624 0.5643 0.5658 0.4327 0.4335 0.4354 0.4388 0.2503 0.2515 0.2534 0.2542

TABLE V
RESULTS (MAP) ON THREE DATASETS WITH COMPLETELY-UNPAIRED DATA.

Mirflickr Nus-wide Wiki
Methods 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

Image
vs.

Text

WMCA 0.5214 0.5231 0.5245 0.5263 0.3559 0.3574 0.3591 0.3604 0.1276 0.1295 0.1310 0.1336
MMPDL 0.5535 0.5542 0.5567 0.5588 0.3963 0.3984 0.4004 0.4015 0.2210 0.2231 0.2254 0.2268
GSPH 0.5582 0.5597 0.5616 0.5633 0.4179 0.4183 0.4199 0.4237 0.2438 0.2436 0.2453 0.2475
FlexCMH 0.5693 0.5704 0.5723 0.5749 0.4215 0.4235 0.4259 0.4273 0.2511 0.2534 0.2548 0.2563

Text
vs.

Image

WMCA 0.5256 0.5263 0.5278 0.5293 0.3414 0.3438 0.3467 0.3481 0.1335 0.1344 0.1358 0.1381
MMPDL 0.5489 0.5503 0.5531 0.5547 0.3635 0.3678 0.3691 0.3713 0.2015 0.2038 0.2074 0.2098
GSPH 0.5515 0.5542 0.5576 0.5601 0.4013 0.4047 0.4065 0.4093 0.2402 0.2426 0.2455 0.2476
FlexCMH 0.5631 0.5652 0.5681 0.5694 0.4131 0.4158 0.4183 0.4212 0.2437 0.2459 0.2483 0.2501
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TABLE II
EXPERIMENTAL SETTINGS WITH DIFFERENT SCENARIOS. ‘T/I’ GIVES THE

PROPORTION OF TRAINING IMAGES AND TEXTS, RESPECTIVELY; ‘P/U’
GIVES THE PROPORTION OF PAIRED AND UNPAIRED SAMPLES.

scenarios T/I P/U
completely-paired 0.7/0.7 1/0
weakly-paired(2a) 0.7/0.7 0.5/0.5
weakly-paired(2b) 0.7/0.6 0.5/0.5

completely-unpaired 0.7/0.7 0/1

the training set are used for training, but 10% of the text samples
in the training set is randomly removed. As such, the number
of images is different from the number of text samples across
modalities and clusters. For the setting (2b), all the comparing
methods cannot be applied, so we only report the MAP
results of our FlexCMH and its variants (FlexCMH(nJ) and
FlexCMH(nC)). FlexCMH(nJ) first seeks the potential image-
text pairs, and then executes the follow-up cross-modal hashing,
without jointly optimizing the matched clusters (samples) and
hashing functions in a coherent fashion. FlexCMH(nC) uses the
label information to obtain the correspondence between samples
(as done by MMPDL), instead of our proposed clustering-based
matching strategy. Table IV reports the MAP values of the
compared methods in these settings.

For the completely-unpaired experiments, besides randomly
partitioning the data into training (70%) and testing (30%) sets,
we randomly shuffle the index of images and the index of text
samples in the training set. As a result, the images and the
text samples are almost completely unpaired. CCQ, SPDH,
GSS-SL, and GSPH all require paired samples for training, so
they cannot be run in this setting. For this type of experiments,
only WMCA, MMPDL, and GSPH can be used for comparison.
Table V reports the MAP values of the three methods.

(ii) Completely-paired: Table III shows that our FlexCMH
achieves the best performance in most cases. This is because
FlexCMH not only jointly models the cross-modal and intra-
modal similarity preserving losses, to build a more faithfully
semantic projection, but also models the quantitative loss to
learn adaptive hashing codes. We observe that SePH and GSPH
obtain better results for ‘Text vs. Image’ retrieval on the small
Wiki dataset. This is possible because they consider different
data distributions for different modalities, while FlexCMH
adopts a consistent clustering-based strategy for all modalities.
An unexpected observation is that the performance of CMSSH
and SCM-Orth decreases as the length of hash codes increases.
This might be caused by the imbalance between bits in the hash
codes learned by singular value or eigenvalue decomposition.
These experimental results show the effectiveness of FlexCMH
for the canonical cross-modal hashing, where training samples
from different modalities are completely paired.

(iii) Weakly-paired: Compared with the results in Table III,
all the methods manifest reduced MAP values in Table IV,
where weakly-paired training sets are used. This observation
suggests the correspondence information is of paramount
importance for cross-modal hashing. SePH is a probability-
based method that learns unified hashing codes across all
views; it performs well on small text datasets. However, when
dealing with weakly-paired data, where the important pair
information between samples across modalities is destroyed, it

cannot maintain well-unified hashing codes across views, and
has significantly compromised results. WMCA, MMPDL, CCQ,
SPDH, GSS-SL, GSPH, and FlexCMH give better results than
other comparing methods. That is because they adopt different
techniques to augment matched samples, which boost the
performance of cross-modal hashing. MMPDL, CCQ, and GSS-
SL are outperformed by SPDH, CCQ, GSPH, and FlexCMH,
since they are not targeted to hashing, and the adopted sign
to convert their numeric outputs into hashing codes is not
ideal. Although SPDH, CCQ, GSPH, and FlexCMH all try
to augment paired samples, FlexCMH still outperforms the
former three in most cases. This is due to: (1) its novel
clustering-based matching approach to explore the matched
clusters and samples therein, and (2) a unified objective function
to optimize, in a coordinated manner, the matching between
clusters and samples, and the cross-modal hashing functions
with the matched clusters and samples. Results (reported in
the Supplementary file) obtained using another evaluation
metric, Precision with Hamming radius (PH) [24], drive similar
observations and conclusions.

FlexCMH gives slightly reduced MAP values when the
numbers of samples (images and texts) in different modalities
are not the same, and only 50% of the image-text is paired. In
‘Image vs. Text’ retrieval, the MAP results of FlexCMH are
generally lower than those in 2(a). This is because 10% of the
text samples in the text modality is removed. We also study
the performance of FlexCMH with other ratios of unpaired
samples (from 30% to 90%) and of removed samples (from
10% to 40%), and report the results in the Supplementary file.

FlexCMH(nJ) isolates the optimization of matching samples
and of hash functions, and its MAP values are lower than those
of FlexCMH. This observation proves that jointly optimizing
the hashing functions and the matched clusters and samples
enables a mutual boost of the two objectives. FlexCMH(nC)
simply adopts the label information to set the correspondence
between samples, and it also loses to FlexCMH. This fact
proves that our proposed clustering-based matching strategy
can more reliably find the matching between samples across
modalities.

(iv) Unpaired: The MAP results of all methods in Table
V are inferior to those of Table III. Still, FlexCMH achieves
the best results, which proves the effectiveness of FlexCMH
on completely-unpaired data. From these results, we can state
that the matching information of samples across modalities is
crucial for cross-modal hashing. Our clustering-based matching
strategy can reliably explore paired samples, and it boosts
the performance of cross-modal hashing on weakly-paired (or
completely unpaired) samples.

We further studied the performance of FlexCMH with pre-
learnt deep features and on datasets with more than two
modalities, and performed parameter sensitivity analysis. The
results (reported in the Supplementary file) show that FlexCMH
outperforms the competing methods also in scenarios with more
than three modalities and with pre-learnt deep features.

In summary, our experimental results prove that FlexCMH
can learn cross-modal hashing codes more effectively than
representative comparing methods. FlexCMH can be applied
in a variety of practical settings, where paired samples across
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modalities are either partially available or completely unknown,
and the numbers of samples in different modalities (and
matched clusters) are also different. To the best of our
knowledge, existing cross-modal hashing methods [41], [43]
cannot be applied in these settings, or can work only for the
weakly-paired setting [35], [27], [5].

C. Convergence curves and runtime analysis

We further plot the unified objective function loss
(L(Zm,Hm,B) in Eq. (6) under different iterations in Fig. 2.
FlexCMH reaches a convergence state after 30, 100, and 400
iterations on Wiki, Mirflickr and Nus-wide, respectively. In
addition, we report the runtime costs of the compared methods
on three datasets in Table VI, where the experimental settings
are the same as in (2a) of Section IV-B. All the experiments
were conducted on a server with Intel E5-2650v3, 256GB
RAM, and Ubuntu 16.04.01 OS.
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Fig. 2. Objective function loss of FlexCMH on three datasets as the number
of iterations increases.

TABLE VI
RUNNING TIMES (IN SECONDS) WITH CODE LENGTH FIXED TO 16.

Wiki Mirflickr Nus-wide
train search train search train search

CMSSH 113.51 1.36 1147.56 5.86 1038103.08 532.15
SCM-seq 10.13 0.11 75.16 0.72 59154.34 37.89
SCM-orth 16.41 0.15 113.42 1.15 128752.64 155.36

SePH 30.41 0.33 211.75 1.76 434575.12 134.67
WMCA 15.39 0.19 108.47 1.02 121759.26 135.81

WMPDL 75.61 1.06 876.31 3.15 948972.64 373.56
CCQ 19.28 0.21 185.34 1.55 165491.36 110.34

FDCH 18.93 0.26 212.15 1.61 181345.15 131.21
GSS-SL 45.17 0.81 302.87 2.56 673215.43 212.54

FlexCMH 15.31 0.12 96.42 0.86 74163.55 46.13

We can see that FlexCMH costs 15.31 seconds on Wiki,
96.42 seconds on Mirflickr, and 74163.55 seconds on Nus-wide.
FlexCMH is the second most efficient method, despite the fact
that it seeks the matching between samples across modalities.
This demonstrates the efficiency of the proposed alternative
optimization procedure for the unified objective function.
WMCA, WMPDL, and GSS-SL also seek the matching
between samples across modalities, but they run slower than
FlexCMH. This is because FlexCMH simultaneously achieves
the matching between samples and inter-modal similarity
preservation, whereas WMCA, WMPDL, and GSS-SL pursue
the two goals separately, and thus they have to spend more time
computing intermediate variables. SCM-seq uses sequential
learning to optimize the hash bits, and runs faster than all
the other comparing methods. These results demonstrate that
our proposed FlexCMH performs weakly-paired cross-modal
retrieval efficiently.

V. CONCLUSIONS

We proposed a flexible cross-modal hashing solution (Flex-
CMH) to learn effective hashing functions from weakly-paired
(or completely-unpaired) data across modalities. FlexCMH uses
a clustering-based matching strategy to explore the potential
correspondence between clusters and their member samples. In
addition, we introduced a unified objective function to jointly
optimize the cross-modal matching loss, the intra(inter)-modal
representation loss, and the quantitative loss to learn adaptive
hashing codes in a coherent way. Our extensive experiments
have shown that FlexCMH outperforms several competitive
hashing methods on completely-paired, weakly-paired, and
completely-unpaired multi-modality data. In the future, we
will incorporate deep learning into cross-modal hashing on
weakly-paired data.
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