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Abstract—The problem of effectively exploiting the in-
formation multiple data sources has become a relevant but
challenging research topic in remote sensing. In this paper,
we propose a new approach to exploit the complementarity
of two data sources: hyperspectral images (HSIs) and
light detection and ranging (LiDAR) data. Specifically, we
develop a new dual-channel spatial, spectral and multiscale
attention convolutional long short-term memory neural
network (called dual-channel A3CLNN) for feature extrac-
tion and classification of multisource remote sensing data.
Spatial, spectral and multiscale attention mechanisms are
first designed for HSI and LiDAR data in order to learn
spectral- and spatial-enhanced feature representations, and
to represent multiscale information for different classes. In
the designed fusion network, a novel composite attention
learning mechanism (combined with a three-level fusion
strategy) is used to fully integrate the features in these
two data sources. Finally, inspired by the idea of transfer
learning, a novel stepwise training strategy is designed to
yield a final classification result. Our experimental results,
conducted on several multisource remote sensing data
sets, demonstrate that the newly proposed dual-channel
A

3CLNN exhibits better feature representation ability
(leading to more competitive classification performance)
than other state-of-the-art methods.
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I. INTRODUCTION

W
ITH the development of remote sensing technol-

ogy, different sources of complementary data are

now available from a variety of sensors. Hyperspectral

images (HSIs) provide plenty of spectral information

and have been widely used for land-cover classification

purposes [1]-[2]. Different from HSI data, light detection

and ranging (LiDAR) data consist of detailed elevation

information. These data convey rich information in the

spatial domain that can be used to improve the char-

acterization of HSI scenes [3]-[4], as the LiDAR data

are less affected by atmospheric interferers [5]. In the

literature, several works [6]-[9] have discussed the fusion

of multisource remote sensing data.

Many classification methods have been proposed to

exploit the spatial-spectral information contained in HSI

data, including machine learning-based methods [10],

[11], tensor-based algorithms [12], sparse representation-

based methods [13]. In recent years, deep learning-

based algorithms have achieved great success in re-

mote sensing data interpretation. Convolutional neural

networks (CNNs) were first adopted for HSI classifi-

cation by Hu et al. [14] and Chen et al. [15]. After

these seminal works, many other deep learning-based

HSI classification methods have been proposed, and

these methods have been shown to be able to provide

higher classification accuracies than traditional meth-

ods. Relevant examples are the CNN-based pixel-pair

model [16], a spatial-spectral feature based classification

(SSFC) model that stacks CNNs with balanced local

discriminant embedding [17], or the siamese CNN-based

method [18]. In addition to the CNN-based HSI classi-

fication algorithms, recurrent neural networks (RNNs)

[19] have also achieved great success in the task of

capturing useful information from different kinds of
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inputs, due to their unique ability for modeling long-

range dependencies. As a result, many HSI classifica-

tion models have been developed, including the RNN-

based pixel-level spectral classification model [20], a

local spatial sequential RNN (LSS-RNN) model [21],

and a classification model that combines CNNs and

RNNs [22]. Furthermore, in order to solve the gradient

vanishing or explosion problem in RNNs, long short-

term memories (LSTMs) [23] and convolutional LSTMs

(ConvLSTMs) [24] were proposed. The most common

way to utilize them is in combination with a CNN, such

as the convolutional RNN (CRNN) model for spectral-

contextual feature extraction [25], a recurrent three-

dimensional (3-D) fully convolutional network [26], and

a two-stage classification model that combines a 3-D

CNN and and a (2-D) ConvLSTM [27]. In addition,

there are also some relevant works focused on building

deep feature extraction and classification models using

the LSTM and (2-D) ConvLSTM cells as basic units,

such as a spatial-spectral LSTMs (SSLSTMs) [28], the

bidirectional-ConvLSTM (Bi-CLSTM) [29], or a spatial-

spectral ConvLSTM 2-D neural network (SSCL2DNN)

[30]. These methods have achieved good performance

in the task of HSI data classification. In order to better

preserve the intrinsic structure of HSI data, a 3-D Con-

vLSTM cell was developed from the (2-D) ConvLSTM

cell in [30], from which a spatial-spectral ConvLSTM

3-D neural network (SSCL3DNN) was designed.

Considering the special characteristics of HSI and

LiDAR data, several works aimed at fusing these two

data sources in order to improve the classification per-

formance [9]. Examples include decision-fusion clas-

sification methods [6], [8] and morphological feature

extraction-based algorithms [31]-[33]. In addition, sev-

eral deep learning-based classification methods have

also been proposed for the classification of multisource

remote sensing data. Xu et al. [34] built a two-branch

CNN model with data augmentation for fusing HSI and

LiDAR features. In [35], an unsupervised patch-to-patch

CNN (PToP CNN) model was designed for HSI and

LiDAR data classification, in which a three-tower PToP

mapping is used to fuse their multiscale features. By

introducing maximum correntropy criterion, Li et al. [36]

proposed a dual-channel robust capsule network (dual-

channel CapsNet) for the fusion of HSI and LiDAR data.

However, it should be noted that a fixed size of the

convolution kernel is used for all classes, which may lead

to the absence of multiscale information for different

classes. In this case, the complementarity of HSI and

LiDAR data is not fully exploited, since spectral and

spatial information cannot be effectively integrated.

The attention mechanism is an important technique

derived from computational neuroscience [37]. It allows

a given model to automatically locate and capture the

significant information from the input. Since Bahdanau

et al. [38] firstly utilized it to select reference words

from source sentences, numerous works have demon-

strated that, with the help of attention mechanisms, deep

learning-based models can obtain better feature represen-

tation ability in many fields of computer vision [39]-[45].

Several works have applied attention mechanisms to re-

mote sensing problems. Cui et al. [46] proposed a dense

attention pyramid network for ship detection in synthetic

aperture radar (SAR) images, in which a convolutional

block attention module (with spatial and channel-wise

attention) is designed for highlighting salient features

at specific scales. Chen et al. [47] improved the faster

region-based CNN by using multiscale (spatial) and

channel-wise attention for object detection in remote

sensing images. With a skip-connected encoder-decoder

model, the work in [48] developed an end-to-end mul-

tiscale visual attention network for highlighting ob-

jects and suppressing background regions. Wang et al.

[49] proposed an end-to-end attention recurrent CNN

for classification of very high-resolution (VHR) remote

sensing scenes. Regarding HSI classification tasks, an

attention-based inception model was designed in [50]

which can accurately model spatial information in HSI

data. Mou et al. [51] put forward a learnable spectral

attention module (prior to CNN-based classification) for

selecting informative bands. By combining an attention

mechanism and RNNs, a spatial-spectral visual attention-

driven feature extraction model was designed in [52].

In this paper, a new dual-channel spatial, spectral

and multiscale attention ConvLSTM neural network

(dual-channel A3CLNN) model is developed for the

classification of multisource (i.e., HSI and LiDAR) re-

mote sensing data. Specifically, three types of atten-

tion mechanisms are designed for extracting spectral-

and spatial-enhanced multiscale features. Furthermore,

a novel three-level fusion strategy is designed for ef-

fectively integrating the information coming from the

HSI and LiDAR data. In the first-level fusion stage,

composite attention learning is proposed for fully ex-

ploiting spatial and spectral information in the LiDAR

and HSI data. Then, both types of features are cascaded

as the input of the classification layer, which is the

intermediate stage. Since the order of magnitude of HSI

features is much larger than that of the LiDAR features,

in the third-level fusion stage the LiDAR features are

reused at the top of a fusion network to make full

use of the LiDAR data source on the classification

performance. To effectively train the proposed model, a

stepwise training strategy is designed, in which these two

branches (HSI and LiDAR) are first trained individually

to obtain the primary features, and then –inspired by the

idea of transfer learning [53]– these features are used

for initializing a fusion network that extracts high-level

features. Finally, a multi-task loss function is designed

to achieve a better optimization of the proposed dual-
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channel A3CLNN model. The main contributions of this

work can be summarized as follows.

(1) Considering the wealth of spectral and spatial

information presented in HSI and LiDAR data, we

develop novel and learnable spectral and spatial

attention modules to obtain spectral- and spatial-

enhanced features.

(2) For different classes, a fixed-scale feature extrac-

tion strategy may be inappropriate due to the dif-

ferent scale information contained in these classes.

To solve this problem, a learnable multiscale

residual attention module is further designed that

enhances the multiscale information representation

ability of the whole model.

(3) A three-level fusion strategy is proposed. Partic-

ularly, a composite attention learning module that

combines spectral and spatial attention is designed

as a two-level attention strategy that makes better

use of the spectral and spatial information. In the

training stage, a stepwise training strategy (with a

multi-task loss function) is designed for optimizing

the proposed dual-channel A3CLNN model, which

can effectively accelerate its convergence speed.

The remainder of the paper is organized as follows.

Section II reviews the ConvLSTM2D, ConvLSTM3D,

and the attention mechanism. In Section III, the proposed

dual-channel A3CLNN model is described in detail. An

exhaustive analysis of parameter settings and a quan-

titative evaluation of the proposed model are given in

Section IV. Section V concludes the paper with some

remarks and hints at plausible future research lines.

II. RELATED WORK

A. ConvLSTM2D and ConvLSTM3D

As a modification and an extended version of LSTM,

Shi et al. [24] developed a ConvLSTM cell by extending

the data processing method in LSTM to a 2-D convo-

lution operation, with which plenty of the ConvLSTM-

based deep models have been built for HSI classification

[25], [26], [27], [29], [30]. Inspired by [30], it is further

named ConvLSTM2D cell for convenience. However, as

shown in [29] and [30], due to the special structure of the

ConvLSTM2D cell, 3-D HSI data must be decomposed

into a 2-D sequence when used as the input of the model,

which may lose the intrinsic structure of HSI data.

To better preserve the intrinsic structure of HSI data,

the ConvLSTM3D cell is further extended from the

ConvLSTM2D cell, with which Hu et al. [30] proposed

a novel and effective SSCL3DNN model for HSI classi-

fication. Nevertheless, there is still much room to further

improve the performance of SSCL3DNN. For example,

the multiscale information is not considered, and the

characteristics of the ConvLSTM3D layer for modeling

long-term dependencies are not fully utilized.

B. Attention Mechanism

After the attention mechanism was first introduced

into deep learning in [38], an increasing number of

attention-driven deep learning-based models have been

proposed. These models were able to improve the feature

representation ability in many research fields. In [39],

Vaswani et al. introduced the following equation to

calculate the output of the attention mechanism:

Attention(Q,K, V ) = softmax(f(Q,K))V, (1)

where f(·) is the attention function, and Q, K , and V

are the inputs. softmax(·) denotes the softmax function

used for normalization. Specifically, there are two com-

mon attention functions, i.e., additive attention [38] and

dot-product attention [39], where their corresponding

definitions can be written as:

fadditive(Q,K) = WQQ+WKK

fdot−product(Q,K) = QKT , (2)

where WQ and WK are the parameter weights, and T

represents the transpose of the matrix.

The most common way for introducing an attention

mechanism into deep learning is to build a hard part

selection subnetwork or a soft mask branch [41]. By

using residual learning, a residual attention module was

built for soft pixel-level attention learning in [42], and

then applied to image classification. In addition, channel-

wise attention [43], spatial and temporal-wise atten-

tion [44], spatial and channel-wise attention [46], and

spatial-spectral attention [52] have also been proposed

for feature enhancement. However, to the best of our

knowledge, there have been no effective implementations

of an attention mechanism for fusion and classification

of multisource remote sensing data. In the following

section, we develop a new composite attention learn-

ing module that combines spatial and spectral attention

learning and a multiscale (residual) attention learning

module for effectively combining HSI and LiDAR data.

III. DUAL-CHANNEL A3CLNN

A. Architecture Overview

It is well known that HSI data consist of many bands

carrying plenty of spectral information, while LiDAR

data are rich in height (spatial) information [34]. This

motivates us to build a classification model upon a two-

branch framework that fully exploits the complementary

information from both sources of information.

The overall framework of the proposed dual-channel

A3CLNN model is graphically represented in Fig. 1. A

spectral attention block (SeAB) and a spatial attention

block (SaAB) are first proposed for composite attention

learning (see subsection III-B). A multiscale residual

attention block (MSRAB) is designed in subsection III-

C. In subsection III-D and III-E, the HSI branch (marked



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Fig. 1. Architecture of the proposed dual-channel A3CLNN model.

Fig. 2. Structure of the spectral attention block (SeAB).

Fig. 3. Structure of the spatial attention block (SaAB).

Fig. 4. Proposed multiscale residual attention block (MSRAB).

with yellow arrows in Fig. 1) and the LiDAR branch

(marked with blue arrows in Fig. 1) are described in

detail. The proposed three-level fusion strategy (marked

with red arrows in Fig. 1) is described in subsection III-

F. Finally, subsection III-G describes the multi-task loss

function and the stepwise training strategy.

B. Composite Attention Learning

1) Spectral Attention Block (SeAB): An effective and

learnable SeAB module is designed to learn more dis-

criminative and spectral-enhanced feature representation.

The structure of this module is described in Fig. 2.

Let XH
l ∈ Rwl×hl×sl×cl denote the output of the lth

ConvLSTM3D layer (or the original HSI data), where

sl, wl, hl, and cl are respectively the number of spectral

bands, width, height, and channel number. The purpose

of SeAB is to learn an attention vector αH
Se.

As shown in Fig. 2, a 3 × 3 and a 1 × 1 ConvL-

STM2D layers, a spatial pooling layer, and a softmax

function comprise the main backbone of the proposed

SeAB module. Firstly, XH
l is decomposed into sl 2-D

components along the spectral dimension, and converted

into a sequence, i.e.,
{

XH
l1 , . . . , X

H
lt , . . . , X

H
lsl

}

, t ∈
{1, 2, . . . , sl}, which are then fed (one by one) to the

3 × 3 ConvLSTM2D layer to model the long-range

dependencies in the spectral domain. Another 1 × 1
ConvLSTM2D layer is added to generate an unnormal-

ized attention map ZH
Se, with size wl × hl × sl × 1.

A spatial pooling operation is then applied to ZH
Se to

transform it into an unnormalized attention vector zHSe,

with length sl. Finally, zHSe is fed to a softmax function

to yield the normalized attention vector αH
Se, which is

multiplied by the input to yield a spectral-enhanced

feature representation. The output X̂H
l of SeAB can be

described as:

zHSe = fp(fCL2D1(fCL2D3(X
H
l )))

αH
Se = softmax(zHSe)

X̂H
l = XH

l ⊙ αH
Se, (3)

where ⊙ is an element-based product operation.

fCL2D3(·) and fCL2D1(·) respectively indicate the 3×3
and 1×1 ConvLSTM2D layers. fp(·) is a spatial pooling

layer with size wl × hl, and softmax(·) represents the

softmax function. Particularly, the dimension time step

in each ConvLSTM2D layer is set to sl.

It should be noted that the input of SeAB can be

either the original data or the output of the last layer.

The special structure of SeAB makes it a feature en-
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hancement module that can be added to any layer of

the whole network to obtain spectral-enhanced feature

representation. In our experiments, SeAB is added to

the ConvLSTM3D layer.

2) Spatial Attention Block (SaAB): Unlike HSI data,

LiDAR data provide rich elevation information, which

means information about the height and shape of targets

[34]. We design an SaAB module for exploiting the

spatial information in LiDAR data, which will lead to

more effective spatial-enhanced feature representation.

Let XL
l ∈ Rwl×hl×cl be the output of the lth Con-

vLSTM2D layer (or the original LiDAR data), in which

wl, hl, and cl are defined in accordance with those in

the SeAB. SaAB is constructed to learn an attention map

αL
Sa.

The structure of the proposed SaAB module is shown

in Fig. 3. The main backbone of this module is given by

a 3× 3 and a 1× 1 ConvLSTM2D layer, and a softmax

function. Firstly, the 3×3 and 1×1 ConvLSTM2D layers

are used to generate an unnormalized attention map ZL
Sa

with size wl × hl × 1. After that, a softmax function is

utilized to generate a normalized attention map αL
Sa. The

forward propagation of SaAB can be written as:

ZL
Sa = fCL2D1(fCL2D3(X

L
l ))

αL
Sa = softmax(ZL

Sa)

X̂L
l = XL

l ⊙ αL
Sa, (4)

where X̂L
l denotes the output of SaAB. The definitions

of ⊙, fCL2D3(·), fCL2D1(·), and softmax(·) are sim-

ilar to that in (3). However, different from SeAB, the

dimension time step in the SaAB module is fixed to 1.

Similar to SeAB, SaAB can be treated as an effective

spatial feature extractor, and used by any layer of a

deep learning-based model to obtain spatial-enhanced

features. In our experiment, SaAB is utilized after the

ConvLSTM2D layer in the LiDAR branch.

Based on the two aforementioned attention blocks,

an effective composite attention learning approach is

proposed for jointly learning the spatial-spectral features.

Our approach can efficiently exploit spectral and spatial

information, and enhance the feature extraction ability

of the whole model. A more detailed description of the

attention mechanism is given in subsection III-F.

C. Multiscale Residual Attention Block (MSRAB)

In multisource remote sensing data, different classes

may comprise different scale information, which means

classification models using uniform scale to extract fea-

tures may not meet the scaling requirements of different

classes. Therefore, it is necessary to design a multiscale

feature extractor able to properly describe multiscale

information. An MSRAB module (integrating residual

learning and attention mechanism) is proposed.

Taking the LiDAR branch as an example. Let XL
l ∈

Rτl×wl×hl×cl and XL
l+1

denote the input and output

of the MSRAB module, where τl is the dimension

time step of the ConvLSTM2D layer. The structure of

the MSRAB module is given in Fig. 4. In particular,

the first column is the multiscale feature extraction

function realized by the ConvLSTM2D layers, which

uses different fields of perception to capture multiscale

information from the input (using different scales such as

1×1, 3×3, and 5×5). These features are cascaded in the

time step dimension of the ConvLSTM2D layer. After

the ConvLSTM2D layers, the obtained multiscale fea-

tures are further learned in non-linear fashion, yielding

an unnormalized attention map ZL
MSR ∈ R3τl×wl×hl×cl .

Then, after a global average pooling (GAP) layer, the

unnormalized attention map ZL
MSR is converted to an

unnormalized attention vector zLMSR with length 3τl,
which is further normalized by a softmax function to

generate a multiscale attention vector αL
MSR. The output

OL
MSR of the multiscale attention part in the MSRAB

module is written as:

T = [f1(X
L
l ), f3(X

L
l ), f5(X

L
l )]

zLMSR = fp(fCL2D1(fCL2D3(T )))

αL
MSR = softmax(zLMSR)

OL
MSR = T ⊙ αL

MSR, (5)

where [·, ·, ·] denotes the concatenation operation, and

f1(·), f3(·), and f5(·) are the multiscale feature extrac-

tion functions realized by the ConvLSTM2D layer.

Unlike the cascading approach in [54] and [55], the

output of MSRAB is fed to a fusion layer (built by a

ConvLSTM2D layer) to model long-term dependencies

in the multiscale dimension. Furthermore, residual learn-

ing is also applied to mitigate the gradient vanishing or

explosion problems through a feature reuse mechanism.

The forward propagation of MSRAB is expressed as:

XL
l+1 = fCL2Da(O

L
MSR) +XL

l , (6)

where fCL2Da(·) denotes an a×a ConvLSTM2D layer.

Specially, the structure of MSRAB in the HSI branch

is similar to that in the LiDAR branch. However, the

dimensions XH
l and XH

l+1
need to be extended to

Rτl×wl×hl×sl×cl and R3τl+1×wl+1×hl+1×sl+1×cl+1 , in

which sl and sl+1 are the spectral dimensions. f1(·),
f3(·), f5(·), fCL2D1(·), fCL2D3(·), and fCL2Da(·) in

(5) and (6) are implemented by ConvLSTM3D layers.

Similar to SeAB and SaAB, MSRAB can be used as

a multiscale information enhancement module to bring a

larger receptive field to the whole model, and MSRAB

can adaptively focus on important areas at each scale.
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D. Multiscale Spectral Attention Neural Network

(MSSeA) for the HSI Branch

An MSSeA model is proposed for HSI branch, which

is marked in Fig. 1 by yellow arrows. The backbone

of MSSeA consists of a ConvLSTM3D layer, an SeAB

module, a pooling layer, an MSRAB model, a GAP layer,

and a classification layer. Specifically, considering the

redundant information presented in the original HSI data,

principal component analysis (PCA) is used for spectral

dimensionality reduction in our experiments.

Let W ×H ×D denote the size of the original HSI

data, where W , H , and D are the width, height, and the

number of the spectral bands, respectively. In the data

preprocessing stage, the first K principal components are

retained, and the pixels in a local neighborhood window

with size s × s are extracted to account for the spatial-

contextual information around each pixel x. Accordingly,

the whole data associated to pixel x can be represented

as XH ∈ Rs×s×K , which is also the input of MSSeA.

To make the data meet the format requirements of the

ConvLSTM3D layer, XH is decomposed into τ 3-D

components and then converted into a sequence with

length τ , as indicated below:

XH ⇒
{

XH
1 , . . . , XH

t , . . . , XH
τ

}

, (7)

where XH
t is the tth 3-D component, and t ∈

{1, 2, . . . , τ}. τ is the dimension time step in the Con-

vLSTM3D layer (fixed here to 1).

Then, this sequence is fed into l cascaded ConvL-

STM3D layers (one by one) to extract shallow spatial-

spectral features. To facilitate subsequent variable rep-

resentation, the output of the lth ConvLSTM3D layer

is written as XH
l ∈ Rτl×wl×hl×sl×cl , where τl is the

dimension time step, and the size of the convolution

kernel is kHl ×kHl ×kHl . Following each ConvLSTM3D

layer, SeAB is applied to extract the spectral-enhanced

features and, according to (3), the enhanced features can

be expressed as X̂H
l . In our experiments, l is set to 1.

Furthermore, to measure the multiscale information

and meet the scale requirements of different classes,

the spectral-enhanced features X̂H
l , obtained after a

pooling layer, are input to an MSRAB module to

learn the multiscale information. From (6), the ex-

tracted multiscale features can be written as XH
l+1

∈
R3τl+1×wl+1×hl+1×sl+1×cl+1 . Inspired by [56] and for

the sake of accelerating convergence and solving the

gradient vanishing problem, a batch normalization (BN)

layer and a swish function are used for regularization.

Then, we apply a GAP layer [57] at the top of MSSeA

–instead of the fully connected (FC) layer– to map the

feature space to class label space, which can directly

endow each channel with the actual category meaning,

regularize the whole model, and prevent over-fitting to

some degree. In addition, this strategy can effectively

solve the problem of having too many parameters in the

FC layer, relaxing the limitations imposed to the model

by the resolution of the input. The forward propagation

of the GAP layer in MSSeA can be expressed as:

XH
GAP = fGAP (X

H
l+1), (8)

where fGAP (·) and XH
GAP ∈ R1×cl+1 denote the ex-

pression and output of the GAP layer, respectively.

Finally, a classification layer (with the softmax func-

tion) follows the GAP layer to predict the conditional

probability distribution PH
c = P (y = c|XH

GAP ,W, b) =
e(WcXH

GAP
+bc)

∑
N
j=1 e

(WjXH
GAP

+bj)
of each class c, where c ∈

1, 2, . . . , N , and N denotes the number of classes.

To obtain the final classification results, the cross

entropy is selected as the loss function to optimize the

HSI branch, which is named LossH for convenience.

E. Multiscale Spatial Attention Neural Network (MSSaA)

for the LiDAR Branch

Similar to subsection III-D, an MSSaA model is

designed for the LiDAR branch (marked in Fig. 1 with

blue arrows). A ConvLSTM2D layer, an SaAB module,

a down-sample layer, an MSRAB module, a GAP layer,

and a classification layer represent the backbone of it.

Let us assume that the size of the original LiDAR data

is W × H . In the data preparation stage, a s × s local

spatial-contextual window around each pixel x is first

extracted, which is fed into the MSSaA and expressed

as XL ∈ Rs×s. Due to the special structure of the

ConvLSTM2D layer, XL needs to be decomposed into

a sequence with τ 2-D components as follows:

XL ⇒
{

XL
1 , . . . , X

L
t , . . . , X

L
τ

}

, (9)

where XL
t is the tth 2-D component and t ∈

{1, 2, . . . , τ}. τ is the dimension time step in the Con-

vLSTM2D layer, which is set to 1 in our experiments.

Then, this sequence is fed into l cascaded ConvL-

STM2D layers (one by one) to extract the shallow spatial

features. For convenience, the output of the lth Con-

vLSTM2D layer is described as XL
l ∈ Rτl×wl×hl×cl .

After that, an SaAB module is applied to enhance

the spatial information of the output of each ConvL-

STM2D layer. According to (4), the enhanced features

are written as X̂L
l . Furthermore, a pooling layer and

an MSRAB are utilized for learning the multiscale

information, and then the extracted multiscale features

XL
l+1

∈ R3τl+1×wl+1×hl+1×cl+1 are mapped into the

category space by a GAP layer whose output is given

by XL
GAP . Particularly, l is set to 1 in our experiments.

Finally, XL
GAP is fed to a softmax function to obtain

the conditional probability distribution PL
c , and the cross

entropy is also set as the loss function LossL of the

LiDAR channel to yield the final classification results.
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F. Three-Level Fusion Strategy

An effective fusion network (with a three-level fusion

strategy) is designed for making full use of the comple-

mentarity of the HSI and LiDAR data. This network is

marked in Fig. 1 with red arrows.

In the first-level fusion, to fully exploit the (more

complete) spatial information carried out by the LiDAR

data to enhance the feature representation in the HSI

branch, the spatial attention in SaAB is applied to

the output of SeAB for composite attention learning.

Furthermore, residual learning is also utilized to avoid

the degradation problem. The forward propagation of this

part is expressed as:

F
X̂H

l

= αL
Sa ⊙ X̂H

l + X̂H
l , (10)

where F
X̂H

l

denotes the spatial-spectral features of the

HSI channel.

In the second-level fusion, the outputs of MSRAB in

each branch are cascaded in the spectral dimension, and

then, a 1× 1 ConvLSTM3D layer and a GAP layer are

utilized to fuse the cascaded features, as shown in Fig.

1. The forward propagation of this part is expressed as:

XF
GAP = fGAP (fCL3D1([X

H
l+1, X

L
l+1])), (11)

where XF
GAP denotes the output of the GAP layer, and

fCL3D1(·) denotes the 1× 1 ConvLSTM3D layer.

Finally, due to the fact that the order of magnitude

of the HSI features is much larger than that of the

LiDAR features, the impact of the LiDAR channel on

the classification performance may need to be upscaled.

Hence, at the top of the designed fusion network, the

LiDAR features XL
GAP are reused by cascading them

with the features in (11), i.e., the third-level fusion. The

outputs of this part are written as XF = [XF
GAP , X

L
GAP ],

and then fed into a softmax function to yield the proba-

bility distribution PF
c . Similar to the HSI and LiDAR

branches, the cross entropy is still used as the loss

function LossF to optimize the fusion network.

G. Loss Function and Network Training Strategy

Given the loss functions in subsections III-D, III-E

and III-F, a multi-task loss function for optimizing the

proposed dual-channel A3CLNN model is designed as:

Loss = αLossH + βLossL + γLossF , (12)

where α, β, and γ are the scalar weights. For conve-

nience, they are fixed to 1 in our experiments.

All the weights and biases in the proposed dual-

channel A3CLNN model need to be learned. In order

to train the whole model adequately –different from

the training strategies in [34]– a novel and effective

stepwise training approach is proposed. In the first stage,

the LiDAR and HSI branches are trained using Nstep1

and Nstep2 epochs, respectively, which can provide the

primary spatial features and spatial-spectral features to

the designed fusion network and be regarded as pre-

trained channels to replace the ones obtained by tradi-

tional random initialization. Then, inspired by transfer

learning [53], the proposed fusion network is initialized

by these two pre-trained branches, and the multi-task

loss function in (12) is further optimized in Nsteps

epochs to yield the final classification results of the

proposed model. This also accelerates the convergence

speed of the whole model. The detailed training strategy

is summarized in Algorithm 1.

Algorithm 1 Training Dual-Channel A3CLNN for Mul-

tisource Remote Sensing Data Classification

Input: HSI data XH ; The LiDAR data XL; Ground truth Y

Output: Classification map Ω

1: Parameter setting and weights initialization
2: while step ≤ Nstep1 do
3: Train the LiDAR branch by optimizing the loss function LossL

4: Save model as the pre-trained LiDAR model
5: end while
6: while step ≤ Nstep2 do Train the HSI branch by optimizing

the loss function LossH

7: Save model as the pre-trained HSI model
8: end while
9: while step ≤ Nsteps do Restore these two pre-trained models

to initialize the fusion network
10: Train the whole classification model by optimizing the multi-

task loss function Loss

11: end while

12: return Classification map Ω

It should be pointed out that the adaptive momentum

(ADAM) algorithm is adopted to optimize the three

loss functions LossH , LossL, and Loss with different

learning rates, which are represented by lrH , lrL, and

lr, respectively. Additional explanations on parameter

settings will be given in Section IV.

IV. EXPERIMENTAL RESULTS

In order to quantitatively and qualitatively evaluate

the performance of the proposed dual-channel A3CLNN

model, some state-of-the-art methods are selected for

comparison, such as ELM [11], SVM [34], SSCL3DNN

and SaCL2DNN [30], two-branch CNN [34], and dual-

channel CapsNet [36]. The overall (OA), average ac-

curacy (AA), and Kappa coefficient (κ) are utilized as

the quantitative metrics to measure the classification per-

formance of all algorithms. For the sake of eliminating

the bias caused by random initialization of parameters in

deep learning-based models, all experiments are repeated

10 times, and the average value is given for each quanti-

tative metric. All our experiments have been conducted

on a desktop PC with an Intel Core i7-8700 processor

and an Nvidia GeForce GTX 1080ti GPU.
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Fig. 5. (First row) false-color map (using bands 57, 27 and 17) of the Houston HSI data. (Second row) grayscale representation of the Houston
LiDAR data. (Third row) ground-truth map of the Houston data set.

A. Experimental Data

In our experiments, two HSI + LiDAR data sets,

i.e., Houston data set and Trento data set, are consid-

ered to evaluate the performance of our dual-channel

A3CLNN. According to [9] and [32], the false-color

maps, grayscale representations, ground-truth maps, and

the training samples for each data set are respectively

presented in Figs. 5-6 and Tables I-II. In the following,

we describe these data sets in more detail:

Fig. 6. (First row) false-color map (using bands 25, 15 and 2) of the
Trento HSI data. (Second row) grayscale representation of the Trento
LiDAR data. (Third row) ground-truth map of the Trento data set.

1) Houston Data: These data were captured in 2012

by the Compact Airborne Spectrographic Imager (CASI)

sensor over the University of Houston campus and the

surrounding area. The data was introduced in the 2013

IEEE Geoscience and Remote Sensing Society (GRSS)

Data Fusion contest. Its size is 349× 1905 pixels, with

spatial resolution of 2.5 m. There are 144 bands in

the wavelength range from 0.38 to 1.05 µm and 15

distinguishable class labels. These data, including the

reference classes, are available online from the IEEE

GRSS Data and Algorithm Standard Evaluation Website:

http://dase.grss-ieee.org/.

TABLE I
NUMBER OF TRAINING SAMPLES FOR THE HOUSTON DATA

NO. Color Class Training Total

1 Health grass 198 1251

2 Stressed grass 190 1254

3 Synthetic grass 192 697

4 Tress 188 1244

5 Soil 186 1242

6 Water 182 325

7 Residential 196 1268

8 Commercial 191 1244

9 Road 193 1252

10 Highway 191 1227

11 Railway 181 1235

12 Parking lot 1 192 1233

13 Parking lot 2 184 469

14 Tennis court 181 428

15 Running track 187 660

Total 2832 15029

TABLE II
NUMBER OF TRAINING SAMPLES FOR THE TRENTO DATA

NO. Color Class Training Total

1 Apple trees 129 4034

2 Buildings 125 2903

3 Ground 105 479

4 Woods 154 9123

5 Vineyard 184 10501

6 Roads 122 3374

Total 819 30414

2) Trento Data: These data were collected by the

AISA Eagle sensor over a rural area in Trento, Italy. The

http://dase.grss-ieee.org/


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

data comprises 600×166 pixels with spatial resolution of

1 m, 6 ground-truth classes, and 63 bands in the spectral

range from 420.89 to 989.09 nm.
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Fig. 7. Overall accuracy (%) achieved by the proposed dual-channel
A3CLNN model with different parameters for the Houston and Trento
data sets. (a) Size s × s of the local spatial window. (b) Number K

of principal components. (c)-(d) Learning rates lrH and lrL. (e)-(f)
Learning rate lr. (g)-(h) Training epochs Nstep1 and Nstep2.

B. Parameter Settings

As in [15] and [30], PCA is also utilized as the

dimension reduction approach. For the HSI branch in the

dual-channel A3CLNN model, the first K components

after PCA are retained as the spectral information.

For the compared algorithms, the parameter settings

of SVM, ELM, SSCL3DNN, SaCL2DNN, two-branch

CNN, and dual-channel CapsNet are obtained according

to [34], [11], [30], [34], [36] to achieve quasi-optimal

performance. For the proposed dual-channel A3CLNN

model in Fig. 1, there are some parameters that need to

be tuned, i.e., the size (s×s) of the local spatial window,

the number (K) of the principal components, the size

(k × k) of the convolution kernels, the number (M ) of

feature maps, the value of the dropout operation, the

learning rates (lrH , lrL, and lr), and the training epochs

(Nstep1 and Nstep2). At first, K is fixed to 10, and

the value of the dropout operation is 0.5. The learning

rates [lrH , lrL, lr] for the Houston data set are set

to [0.0001, 0.001, 0.0001], respectively, and to [0.001,

0.0005, 0.0001] for the Trento data set, respectively.

The training epochs Nstep1 and Nstep2 for the two data

sets are fixed to 500. Parameter M in the first layer of

each branch, the a × a ConvLSTM layer of MSRAB,

and the ConvLSTM3D layer of the fusion network is

respectively fixed to {32, 64, 128}. The number Nsteps

of training epochs is fixed to 1200 for the two data sets.

After that, s is searched from {9, 11, 13, 15} for the two

data sets, and k is set to a value in the range {3, 4, 5}.

Based on the above parameter settings, the experimen-

tal results for analyzing the effect of using different

spatial window sizes on the classification performance

are reported in Fig. 7(a), from which it is obvious that

the optimal size of the local window is set to 13 × 13
(Houston data) and 11× 11 (Trento data), respectively.

Furthermore, an optimal number K is generated from

a given set {5, 10, 15, 20}, and the OA achieved by the

proposed method (for different values of parameter K)

is shown in Fig. 7(b), from which it can be seen that the

optimal value of K is 10 for the two data sets.

Then, the performance on different values of M for

four different combinations: {8, 16, 32}, {16, 32, 64},

{32, 64, 128}, and {64, 128, 256} is analyzed in Table

III. From Table III, we can infer that the optimal number

of feature maps is {32, 64, 128} (Houston data) and

{16, 32, 64} (Trento data), respectively.

To reduce the occurrence of overfitting problem, the

dropout operation is used as a training trick, and the

experiments for analyzing the influence of its different

values on the classification performance are conducted.

From Table IV, the optimal value of the dropout opera-

tion is set to 0.5 for the two data sets.

The learning rate is one of the parameters that con-

trols the convergence rate of the proposed dual-channel

A3CLNN model in the training process, and the op-

timal values of lrH , lrL and lr are searched in the

range {0.0001, 0.0005, 0.001, 0.005, 0.01}. Concretely,

Figs. 7(c)-(d) report the experimental results obtained

after tuning the learning rates when lr was fixed to

0.0001. From Figs. 7(c)-(d), it is evident that the optimal

value of [lrH , lrL] for the two data sets is [0.0001,

0.001] (Houston data) and [0.001, 0.0005] (Trento data),

respectively. Furthermore, the experimental results ob-

tained after tuning lr are shown in Figs. 7(e)-(f), from

which it can be seen that the learning rate lr for the two

data sets can be fixed to 0.0001.
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TABLE III
SENSITIVITY COMPARISON AND ANALYSIS OF THE FEATURE

MAPS OBTAINED FOR DIFFERENT VALUES OF M

M Houston Data Set Trento Data Set

{8, 16, 32} 85.96 97.56

{16, 32, 64} 87.87 98.54

{32, 64, 128} 90.82 98.27

{64, 128, 256} 88.64 96.35

TABLE IV
SENSITIVITY COMPARISON AND ANALYSIS OF DIFFERENT VALUES

OF THE DROPOUT OPERATION

Dropout Houston Data Set Trento Data Set

0.4 89.42 98.22

0.5 90.82 98.54

0.6 88.69 98.14

TABLE V
PARAMETER SETTINGS FOR THE HOUSTON DATA SET

Layer Name Kernel Size
Output Size for HSI

Channel

Output Size for

LiDAR Channel

Input 13 × 13 × 10 × 1 13 × 13 × 1

ConvLSTM3D 3 × 3 × 3 13 × 13 × 10 × 32

ConvLSTM2D 3 × 3 13 × 13 × 32

SeAB 13 × 13 × 10 × 32

SaAB 13 × 13 × 32

First-Level Fusion 13 × 13 × 10 × 32

MaxPooling3D 2 × 2 × 2 7 × 7 × 5 × 32

MaxPooling2D 2 × 2 7 × 7 × 32

MSRAB(3D) 4 × 4 × 4 3× 7 × 7× 5× 64

MSRAB(2D) 3 × 3 3 × 7 × 7 × 64

Second-Level Fusion 1 × 1 × 1 3 × 7 × 7 × 6 × 128

Dropout 0.5

GAP3D 3 × 7 × 7 × 6 1 × 1 × 1 × 1 × 128

Dropout 0.5

GAP3D 3 × 7 × 7 × 5 1× 1 × 1× 1× 64

GAP2D 3 × 7 × 7 1 × 1 × 1 × 64

Third-Level Fusion 1 × 1 × 1 × 1 × 192

Dropout 0.5

Softmax 13 13

TABLE VI
PARAMETER SETTINGS FOR THE TRENTO DATA SET

Layer Name Kernel Size
Output Size for HSI

Channel

Output Size for

LiDAR Channel

Input 11 × 11 × 10 × 1 11 × 11 × 2

ConvLSTM3D 3 × 3 × 3 11 × 11 × 10 × 16

ConvLSTM2D 3 × 3 11 × 11 × 16

SeAB 11 × 11 × 10 × 16

SaAB 11 × 11 × 16

First-Level Fusion 11 × 11 × 10 × 16

MaxPooling3D 2 × 2 × 2 6 × 6 × 5 × 16

MaxPooling2D 2 × 2 6 × 6 × 16

MSRAB(3D) 4 × 4 × 4 3× 6 × 6× 5× 32

MSRAB(2D) 3 × 3 3 × 6 × 6 × 32

Second-Level Fusion 1 × 1 × 1 3 × 6 × 6 × 6 × 64

Dropout 0.5

GAP3D 3 × 6 × 6 × 6 1 × 1 × 1 × 1 × 64

Dropout 0.5

GAP3D 3 × 6 × 6 × 5 1× 1 × 1× 1× 32

GAP2D 3 × 6 × 6 1 × 1 × 1 × 32

Third-Level Fusion 1 × 1 × 1 × 1 × 96

Dropout 0.5

Softmax 13 13

Finally, for the training epochs Nstep1 and Nstep2,

we carry out the experiments to study the effect of

the training epochs of these two pre-training channels,

and the optimal Nstep1 and Nstep2 are selected from

{400, 500, 600}. As shown in Figs. 7(g)-(h), the optimal

[Nstep1, Nstep2] for the two data sets is [500, 500]. The

detailed parameter settings for the proposed model for

the two data sets are reported in Tables V-VI.

C. Classification Performance

According to [9] and [32], we evaluate the perfor-

mance of the considered classification algorithms on the

Houston and Trento data sets, using the available training

samples. The obtained results are reported in Tables I-

II. Note that the data enhancement technology in [34] is

utilized to extend training sets for two-branch CNN and

dual-channel CapsNet.

TABLE VII
CLASSIFICATION PERFORMANCE OF EACH BRANCH: HSI (H)

AND LIDAR (L)

Data Set
Proposed (L)

OA Kappa

Houston Data 59.83 56.48

Trento Data 89.31 85.98

Proposed (H)

OA Kappa

87.00 85.90

97.65 96.86

Proposed (H+L)

OA Kappa

90.55 89.75

98.73 98.31

On the basis of the parameter settings reported in sub-

section IV-B, the experimental results obtained by all the

considered methods on the HSI data alone, the LiDAR

data alone, and HSI + LiDAR data are reported in Tables

VII-X. For convenience, HSI data, LiDAR data, and HSI

+ LiDAR data in Tables VII-X are abbreviated as H,

L, and H+L, respectively. Particularly, for SSCL3DNN

(which merges H+L) in Tables VIII-IX, the input of

SSCL3DNN [30] is changed to the fusion of the HSI and

LiDAR data, and the SaCL2DNN model [30] is selected

for extracting spatial features from the LiDAR data, since

SSCL3DNN is not suitable for dealing with 2-D data

(and also because SaCL2DNN has a similar structure

with regards to SSCL3DNN). From Tables VII-X, it can

be seen that the proposed dual-channel A3CLNN can

obtain better classification performance than the other

tested methods. On the one hand, the gate mechanisms

realized by the convolution operation make it possible

for the ConvLSTM2D and ConvLSTM3D layers to

fully exploit both spatial and spectral information from

multisource remote sensing data. On the other hand,

with the help of the spectral, spatial and multiscale

attention mechanisms, the proposed model can extract

highly effective spectral- and spatial-enhanced features,

and fully exploit multiscale information coming from

multisource remote sensing data. Furthermore, the three-

level fusion and stepwise training strategies not only

can fully integrate the spectral and spatial information

by exploiting the complementary information of HSI

and LiDAR data, but also accelerate the convergence

speed of the whole model. Concretely, the experimental
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TABLE VIII
CLASSIFICATION RESULTS ACHIEVED BY DIFFERENT APPROACHES FOR THE HOUSTON DATA SET

Class
SVM SVM ELM ELM Two-Branch Two-Branch Dual-Channel Dual-Channel SSCL3DNN SSCL3DNN Proposed Proposed

(H) (H+L) (H) (H+L) CNN(H) CNN(H+L) CapsNet(H) CapsNet(H+L) (H) (Merge, H+L) (H) (H+L)

1 81.01 82.53 82.15 82.24 94.85 97.98 80.63 81.39 81.04 82.05 79.84 81.73

2 82.24 84.77 82.93 82.99 82.59 89.44 81.95 83.08 84.21 80.98 85.15 84.43

3 82.97 86.93 95.45 96.96 30.32 53.20 94.46 97.43 72.21 89.44 93.20 91.49

4 90.81 95.83 90.44 91.41 98.30 96.73 90.06 88.64 90.79 90.85 89.20 96.72

5 97.63 97.54 99.59 98.96 95.61 96.88 100.00 100.00 100.00 99.78 99.84 99.97

6 79.72 88.81 71.79 77.86 76.41 24.31 89.51 95.10 84.38 87.18 95.34 97.90

7 76.12 81.16 80.32 74.91 96.18 87.47 81.72 91.23 89.55 91.51 84.58 87.06

8 43.40 44.92 64.10 63.60 70.54 89.02 71.51 92.40 68.66 93.32 81.83 96.93

9 79.41 86.40 72.62 77.34 82.31 86.85 72.24 80.64 87.91 78.88 86.02 87.88

10 90.15 59.75 80.79 58.91 65.41 78.20 62.26 65.54 52.38 55.60 60.42 70.82

11 63.00 71.82 68.22 88.58 78.69 90.88 72.87 88.99 73.62 90.83 95.70 98.13

12 84.15 92.41 72.81 78.87 83.75 65.99 86.55 87.42 93.05 91.80 93.05 94.65

13 89.82 85.96 42.57 54.97 94.25 100.00 77.89 62.46 92.05 85.96 91.46 96.02

14 80.97 83.00 90.01 92.44 95.02 98.28 93.93 95.95 92.31 78.41 99.60 97.30

15 66.60 74.21 84.00 93.94 91.10 96.37 94.93 96.41 94.43 94.86 99.86 96.05

OA 78.79 80.15 79.52 80.76 77.79 83.15 81.53 86.61 82.72 86.01 87.00 90.55

AA 79.20 81.07 78.52 80.96 82.35 83.44 83.37 87.11 83.79 86.10 89.01 91.81

κ 77.15 78.58 77.74 79.10 75.95 81.73 80.01 85.50 81.33 84.84 85.90 89.75

TABLE IX
CLASSIFICATION RESULTS ACHIEVED BY DIFFERENT APPROACHES FOR THE TRENTO DATA SET

Class
SVM SVM ELM ELM Two-Branch Two-Branch Dual-Channel Dual-Channel SSCL3DNN SSCL3DNN Proposed Proposed

(H) (H+L) (H) (H+L) CNN(H) CNN(H+L) CapsNet(H) CapsNet(H+L) (H) (Merge, H+L) (H) (H+L)

1 59.59 97.69 89.31 93.17 90.38 97.44 98.46 97.15 96.48 98.32 98.17 98.92

2 34.55 87.36 71.55 87.95 96.66 93.29 94.14 99.07 91.62 96.88 95.97 99.14

3 92.69 87.06 92.21 73.56 88.24 72.86 91.44 97.29 90.81 82.19 91.79 98.12

4 98.61 99.80 97.58 97.30 99.32 98.01 96.17 100.00 97.15 99.81 99.59 100.00

5 97.93 93.36 87.57 93.17 98.24 98.44 98.93 94.62 99.87 96.74 99.89 99.95

6 79.30 69.34 59.84 66.95 60.09 80.14 72.21 91.71 79.31 85.34 86.40 90.57

OA 84.89 92.69 86.45 90.85 93.20 95.36 94.65 96.75 95.50 96.46 97.65 98.73

AA 77.11 89.10 83.01 85.35 88.82 90.03 91.89 96.64 92.54 93.21 95.30 97.78

κ 79.45 90.22 82.01 87.81 90.92 93.81 92.87 95.69 93.99 95.30 96.86 98.31

Fig. 8. Classification maps obtained by different approaches for the Houston data set. (a) SVM (80.15%). (b) ELM (80.76%). (c) Two-branch
CNN (83.15%). (d) dual-channel CapsNet (86.61%). (e) SSCL3DNN (86.01%). (f) The proposed dual-channel A3CLNN (90.55%).

Fig. 9. Classification maps obtained by different approaches for the Trento data set. (a) SVM (92.69%). (b) ELM (90.85%). (c) Two-branch
CNN (95.36%). (d) dual-channel CapsNet (96.75%). (e) SSCL3DNN (96.46%). (f) The proposed dual-channel A3CLNN (98.73%).
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TABLE X
CLASSIFICATION RESULTS OBTAINED BY DIFFERENT APPROACHES FOR THE LIDAR DATA OF THE TWO CONSIDERED DATA SETS

Class

Houston Data Set Trento Data Set

SVM ELM Two-Branch Dual-Channel SaCL2DNN Proposed SVM ELM Two-Branch Dual-Channel SaCL2DNN Proposed

(L) (L) CNN(L) CapsNet(L) (L) (L) (L) (L) CNN(L) CapsNet(L) (L) (L)

1 20.23 7.41 39.61 43.87 58.97 52.30 37.23 11.38 87.30 90.31 91.41 88.84

2 15.51 2.88 22.03 26.69 26.00 35.40 61.73 68.27 88.93 91.35 95.64 89.34

3 40.20 26.40 68.37 82.57 28.98 46.60 50.73 20.04 62.00 72.65 57.41 73.76

4 94.98 37.69 81.81 66.48 74.59 79.83 69.18 66.58 99.28 93.23 97.66 94.25

5 26.42 13.79 60.74 38.83 24.87 44.92 28.80 47.91 65.32 83.07 68.61 86.93

6 60.14 55.94 21.40 31.47 37.53 52.91 71.80 24.20 81.72 61.85 84.95 85.90

7 41.60 38.62 80.15 55.50 88.22 79.20

8 65.81 75.21 65.96 86.80 75.34 92.47

9 11.80 11.49 60.90 40.42 54.04 51.15

10 9.74 7.01 41.54 50.29 58.72 46.07

11 35.58 35.96 74.20 66.70 82.64 89.25

12 12.10 3.33 41.62 42.75 13.74 38.52

13 31.23 47.49 49.70 51.23 74.50 61.29

14 76.92 27.6 39.24 85.83 53.85 54.12

15 3.81 14.59 39.81 67.86 20.79 53.63

OA 33.71 24.21 53.61 54.15 53.50 59.83 50.15 47.69 82.45 85.50 84.56 89.31

AA 36.41 27.03 52.47 55.82 51.52 58.49 53.24 39.73 80.76 82.08 82.62 86.51

κ 28.63 19.26 49.80 50.55 49.68 56.48 38.48 32.28 77.24 80.99 79.98 85.98

results obtained when analyzing the effectiveness of

the proposed three-level fusion strategy and stepwise

training strategy are given in Table VII, from which it

is apparent that, for the LiDAR data in Houston and

Trento data sets, the values of the OA metric in the

LiDAR branch are 59.83% and 89.31%, respectively,

while the values of the OA metric in the HSI branch

are 87.00% and 97.65%, respectively. Moreover, when

utilizing HSI and LiDAR data, the gains in OA obtained

by using our newly developed model are respectively

3.55% and 1.08% (compared to the HSI channel) for

the two considered data sets. This demonstrates the

effectiveness of the proposed dual-channel A3CLNN.

Moveover, the experimental results aimed at analyzing

the accuracy obtained for each class and quantitative

metrics obtained after fusing HSI and LiDAR data are

reported in Tables VIII-X. From these tables it can

be seen that, without data augmentation, the proposed

dual-channel A3CLNN model performs better than other

baseline methods. Concretely, for the Houston data set,

the proposed model yields highly competitive classi-

fication accuracy of 90.55%, with a gain over 7.40%

with respect to that achieved by the two-branch CNN.

Our model also yields 10.40% and 9.79% improvements

with regards to the standard SVM and ELM, respec-

tively. As for the Trento data set, the improvements in

OA achieved by the proposed dual-channel A3CLNN

model are 6.04%, 7.88%, and 3.37%, respectively, when

compared with SVM, ELM, and two-branch CNN. For

dual-channel CapsNet [36], although many works have

verified that CapsNet can better learn the information

of position, orientation, deformation, and texture than

CNN, the spectral and scale information contained in

different classes may not be fully learned. The pro-

posed model outperforms dual-channel CapsNet, having

improvements of 3.94% and 1.98% for the two data

sets, respectively. The above experimental results show

that, for traditional models such as SVM and ELM,

the way of converting the HSI and LiDAR data into

vectors leads to the loss of the spatial and geometric

structure information, while simple feature cascading in

two-branch CNN [34] and dual-channel CapsNet [36]

fails to effectively learn complementary information by

fusing the HSI and LiDAR data. In contrast to these

comparison algorithms, the design of gate mechanisms

makes the ConvLSTM-based models to fully leverage

spatial information and better preserve the intrinsic struc-

ture information of the original data, which is in line

with the findings in [30]. In addition, compared with

SSCL3DNN, our dual-channel A3CLNN model can im-

prove the classification accuracy in almost all cases, and

obtain 4.54% and 2.27% gains in OA for the two data

sets, respectively, benefiting from the developed three-

level fusion and stepwise training strategies. In addition,

when only HSI or LiDAR data are used, the performance

of each branch in the proposed model is also superior to

that achieved by other comparison methods. Specifically,

the dual-channel A3CLNN(H) model can even achieve

higher accuracy than other models that use both HSI

and LiDAR data, which may be the contributions of

the spectral and multiscale attention structures. More

detailed experimental results can be found in Tables

VIII-X.

Regarding Tables VIII-IX, similar conclusions can be

drawn from the classification maps presented in Figs.

8-9, from which it is obvious that the classification

maps yielded by the proposed dual-channel A3CLNN

model are the closest to the ground-truth maps for

the two considered data sets. Particularly, the obtained

classification maps exhibit less mislabeled areas, and the
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boundaries between different classes are better delin-

eated and identified, especially for classes 6, 8 and 11

in Fig. 8, and classes 2, 3 and 5 in Fig. 9. This further

verifies the advantages and effectiveness of our dual-

channel A3CLNN model.

D. Ablation Study

To highlight the effectiveness of SeAB, SaAB,

MSRAB, two-level attention strategy, and stepwise train-

ing strategy in dual-channel A3CLNN, detailed ablation

studies are conducted to see how they contribute to the

classification performance. SSCL3DNN [30] is used as

a baseline. For convenience, the dual-channel A3CLNN

model with and without each component are respectively

abbreviated as proposed(·, with) and proposed(·, with-

out), in which · denotes H, L, and H+L.

(1) The effectiveness of SeAB: To effectively learn the

spectral-enhanced feature representation from the HSI

data, a SeAB module is built for the classification of

the HSI branch. To demonstrate its effectiveness, we

conduct experiments to analyze the influence of SeAB by

adding and removing it from our dual-channel A3CLNN,

whose results are reported in Table XI. Compared with

SSCL3DNN(H), the proposed model(H, without SeAB)

can obtain 3.13% and 1.57% gains for the two data

sets, respectively, while the proposed model(H+L, with-

out SeAB) generates 4.04% and 1.65% improvements

against SSCL3DNN(H+L). With the help of SeAB, the

proposed model(H+L) further improves the classification

accuracy of the proposed model(H+L, without SeAB)

by 0.50% and 0.62% for the two data sets, indicating

that the SeAB module can improve the classification

performance by enhancing the ability of spectral feature

representation of the whole model.

(2) The structure analysis of SaAB: LiDAR data

can provide rich elevation information in the spatial

domain, thus having the potential of improving the char-

acterization of HSI scenes. The experimental results for

analyzing the performance of our dual-channel A3CLNN

model with and without SaAB are reported in Table

XII. Compared with the proposed model(H+L, without

SaAB), 1.22% and 0.56% gains are yielded by the

proposed model(H+L, with SaAB) for the two data sets,

respectively, which shows the advantages of SaAB.

(3) The analysis of two-level attention strategy: To

fully utilize and fuse the spectral and spatial information,

a composite attention learning module is designed as a

two-level attention strategy to jointly learn spectral- and

spatial-enhanced features. The experiments for analyzing

its influence on the classification performance are carried

out, whose results are presented in Table XIII. Compared

with SSCL3DNN(H+L), the gains in OA yielded by

the proposed model(H+L, without composite attention

learning) are respectively 2.99% and 1.17% for the two

data sets, showing the superiority of the MSRAB model

to improve the classification performance to some extent.

Furthermore, after embedding the composite attention

learning module, the proposed model(H+L) achieves

1.55% and 1.10% gains for the two data sets, respec-

tively. Experimental results in Table XIII show that

the composite attention learning and MSRAB modules

can effectively learn the spatial-spectral and multiscale

information, resulting in better classification results.

TABLE XI
THE INFLUENCE OF THE PROPOSED SEAB MODULE

Models
Houston Data

OA Kappa

SSCL3DNN(H) 82.72 81.33

Proposed(H, without) 85.85 84.64

Proposed(H, with) 87.00 85.90

SSCL3DNN(H+L) 86.01 84.84

Proposed(H+L, without) 90.05 89.22

Proposed(H+L, with) 90.55 89.75

Trento Data

OA Kappa

95.50 93.99

97.07 96.10

97.65 96.86

96.46 95.30

98.11 97.47

98.73 98.31

TABLE XII
THE STRUCTURE ANALYSIS OF THE DEVELOPED SAAB MODULE

Models
Houston Data

OA Kappa

SaCL2DNN(L) 53.50 49.68

Proposed(L, without) 58.48 55.05

Proposed(L, with) 59.83 56.48

SSCL3DNN(H+L) 86.01 84.84

Proposed(H+L, without) 89.33 88.45

Proposed(H+L, with) 90.55 89.75

Trento Data

OA Kappa

84.56 79.98

87.59 83.60

89.31 85.98

96.46 95.30

98.17 97.56

98.73 98.31

TABLE XIII
THE ANALYSIS OF TWO-LEVEL ATTENTION STRATEGY

Models
Houston Data

OA Kappa

SSCL3DNN(H+L) 86.01 84.84

Proposed(H+L, without) 89.00 88.11

Proposed(H+L, with) 90.55 89.75

Trento Data

OA Kappa

96.46 95.30

97.63 96.83

98.73 98.31

TABLE XIV
THE ARCHITECTURE STUDY OF THE DESIGNED MSRAB MODULE

Models
Houston Data

OA Kappa

SSCL3DNN(H) 82.72 81.33

Proposed(H, without) 85.29 84.08

Proposed(H, with) 87.00 85.90

SaCL2DNN(L) 53.50 49.68

Proposed(L, without) 56.34 52.73

Proposed(L, with) 59.83 56.48

SSCL3DNN(H+L) 86.01 84.84

Proposed(H+L, without) 87.23 86.23

Proposed(H+L, with) 90.55 89.75

Trento Data

OA Kappa

95.50 93.99

96.33 95.11

97.65 96.86

84.56 79.98

87.81 84.16

89.31 85.98

96.46 95.30

97.58 96.77

98.73 98.31

(4) The architecture study of MSRAB: Different

classes in hyperspectral data should contain different

scale information, so that using the fixed-scale convo-

lution kernel limits the ability of CNN-based models to

learn scale information. To analyze the contributions of

MSRAB, we compare the proposed model with a variant

of our model in which the MSRAB module is replaced
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with a ConvLSTM2D or ConvLSTM3D layer in Table

XIV. We can observe that, compared with this variant,

MSRAB can bring 3.32% and 1.15% improvements to

the proposed model(H+L) for the two data sets, respec-

tively. Moreover, the experimental results shown in the

last three lines of Table XIV also validate that the com-

posite attention learning and MSRAB modules are one

of the main reasons for the performance improvements

of dual-channel A3CLNN, which is consistent with the

conclusions in Table XIII. More detailed experimental

results are reported in Table XIV.
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Fig. 10. The learning curves of the proposed dual-channel A3CLNN
for the Houston and Trento data sets. (a) The learning curves for the
Houston data set. (b) The learning curves for the Trento data set.

(5) The analysis of stepwise training strategy: To

obtain better optimization of our dual-channel A3CLNN,

a stepwise training strategy is designed for the full

training of the whole model. The learning curves of the

proposed method on the two data sets are visualized

in Fig. 10, where both curves for each data set tend

to converge stably with the increase of the number

of iterations. By analyzing the data distribution of the

two data sets in Figs. 5-6, we can find that the data

distribution of the Houston data set is more scattered

than that of the Trento data set. From Fig. 10(a), al-

though these two curves fluctuate slightly, the loss curve

of the proposed model with stepwise training strategy

converges faster and is more stable than the one without

it. The learning curves shown in Fig. 10 illustrate that

the proposed stepwise training strategy is advantageous

for accelerating the convergence speed of the proposed

dual-channel A3CLNN model to some extent.

V. CONCLUSION

In this paper, a new dual-channel A3CLNN model

has been proposed for the classification of multisource

remote sensing data. Specifically, our model comprises

two different pipelines for LiDAR data and HSI data, in

which spatial, spectral, and multiscale residual attention

structures have been implemented to fully exploit spatial,

spectral, and multiscale information and obtain more

comprehensive and discriminative feature representation.

Moreover, an effective three-level fusion strategy and

a novel stepwise training strategy are also developed

to fully integrate the spatial and spectral information

contained in the LiDAR and HSI data, exploiting their

complementarity. Our experimental results demonstrate

that the proposed dual-channel A3CLNN provides better

performance than state-of-the-art CNN-based approaches

(e.g., the two-branch CNN), the capsule network-based

models (e.g., the dual-channel CapsNet) and baseline

ConvLSTM-based methods (e.g., SSCL3DNN).
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