
1

Multi-Task Representation Learning with
Multi-View Graph Convolutional Networks

Hong Huang, Member, IEEE, Yu Song, Yao Wu, Student Member, IEEE, Jia Shi, Xia Xie, and Hai
Jin, Fellow, IEEE

Abstract—Link prediction and node classification are two
important downstream tasks of network representation learning.
Existing methods have achieved acceptable results but they
perform these two tasks separately, which requires a lot of
duplication of work and ignores the correlations between tasks.
Besides, conventional models suffer from the identical treatment
of information of multiple views, thus they fail to learn robust
representation for downstream tasks. To this end, we tackle link
prediction and node classification problems simultaneously via
multi-task multi-view learning in this paper. We first explain
the feasibility and advantages of multi-task multi-view learning
for these two tasks. Then we propose a novel model named as
MT-MVGCN to perform link prediction and node classification
tasks simultaneously. More specifically, we design a multi-view
graph convolutional network to extract abundant information
of multiple views in a network, which is shared by different
tasks. We further apply two attention mechanisms: view attention
mechanism and task attention mechanism to make views and
tasks adjust the view fusion process. Moreover, view recon-
struction can be introduced as an auxiliary task to boost the
performance of the proposed model. Experiments on real-world
network datasets demonstrate that our model is efficient yet
effective, and outperforms advanced baselines in these two tasks.

Index Terms—Representation Learning, Graph Neural Net-
works, Multi-task Learning, Data Mining

I. INTRODUCTION

As the networks are widespread in the real world, such
as academic networks [1], biological networks [2] and social
networks [3], [4], learning to make predictions or classifica-
tions for networks is appealing to a wide range of concerns.
Specifically, we study two fundamental tasks for network
analysis in this work: link prediction and node classification.
The link prediction task is defined as estimating the existence
of edges between node pairs based on network observation,
while the node classification task aims to assign different class
labels to the nodes.

In recent years, a great deal of efforts have been devoted
to solving these two tasks, such as network embedding and
graph convolutional networks. Network embedding [5] aims to
learn low-dimensional representations for nodes of a network.
For example, DeepWalk [6] adopts random walk to generate
node sequences as word sequences then utilizes Skip-gram [7]
model to get the node representations. Since many network

All the authors are with the National Engineering Research Center for Big
Data Technology, Service Computing Technology and System Lab, Cluster
and Grid Computing Lab and School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074, China.
E-mail: {honghuang, yusonghust, yaowu, shijia, shelicy, hjin}@hust.edu.cn.
Hong Huang is the corresponding author.

embedding methods [8]–[11] can preserve the structure and
property of networks, they are very suitable for link prediction
and node classification tasks. Apart from network embedding,
graph convolutional networks (GCNs) [12], [13] are semi-
supervised methods applicable to link prediction and node
classification applications. The main idea of GCNs is to
design a convolution operation for message passing between
the immediate node and its neighbors, then the GCNs can
be trained by a task-specific loss like Convolutional Neural
Networks (CNNs). Based on that, Kipf & Welling [14] has
proposed a widely used convolution operation in the spatial
domain that leads to significant results in various downstream
tasks. Although existing methods have achieved great results,
they usually suffer from one or two main inadequacies:

(1) They are unable to utilize information encoded in
multiple views while there usually exists more than one type
of proximity between nodes, yielding multiple views for net-
works. In general, the relationships among nodes in real-world
networks are sophisticated and diverse. Taking academic net-
work as an example, we can observe the authors’ interactions
from three different views including co-authorship, author-
citation and text-similarity views [15]. The co-authorship view
depicts the cooperation relationship between two authors, the
author-citation view reflects an author citing articles by another
author and the proximity of two authors in the text-similarity
view is defined as the textual similarity of the papers they
published. Each view may be isolated and biased, thus we
need to take all views into consideration to learn a robust
representation.

It is of great significance to promote the collaboration of
different views for learning robust representations of nodes
for downstream tasks. The relationships between different
views are usually complex, making the collaboration of
views quite difficult. Existing multi-view models apply naive
view combination strategies, such as weighted average [15],
add [16] and multi-view matrix factorization [17], lack of
sufficient collaboration of views, leading to the sub-optimal
learnt representations. Besides, these methods adopt the fusion
of views depending entirely on the characteristics of the
data, such as view agreement or disagreement [18], which
is not able to capture the abundant information carried by
multiple views. In order to further confirm our statement,
we follow the method [19] to study the agreement level
among views on AMiner network (see details in Sec. V-A).
Given a pair of views, each node can connect to a unique
neighbor set in each view. If the Jaccard coefficient [20]
between the two sets of neighbors is large than 0.5 then
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Fig. 1. (a) Case study of view agreement on AMiner Network. cita: citation
network, co-au: co-authorship network and text: text similarity network. (b)
Case study of task correlation on AMiner Network. Correlated represents two
nodes on the edge have the same label.

we think the agreement information is carried by the node
in these two views, otherwise is disagreement information.
Figure 1(a) shows the proportion of nodes carried agreement or
disagreement information in each pair of views. As we can see,
co-authorship view and text similarity view have noticeable
agreement information while other pairs of views are totally
different, thus it is inappropriate to simply fuse multiple views
relying on agreement or disagreement.

(2) They solve these two tasks separately, which requires a
large amount of repetitive work and neglects the rich correlated
information between tasks. Generally, training multiple tasks
simultaneously can bring more benefits than training a single
task independently. First, both link prediction task and node
classification task can be regarded as classification problems,
with one at edge-level while the other at node-level, thus these
two tasks can be optimized simultaneously. Second, these two
tasks are relevant in many cases. For example, the authors in
the same research filed may cite each other more often than
cite other authors in different research fields; academic co-
authorships are also more common among scholars in the same
field and the scholars with a common research field will have
higher text similarity in their papers. As shown in Figure 1(b),
if there exists an edge between two nodes (authors), they will
have the same label (research filed) with a high probability
in each view, which indicates there is an intrinsic correlation
between link prediction and node classification tasks, and
multi-task learning may boost performance potentially. To this
end, we are eager to design an effective model to achieve
multi-task learning. It is also reasonable that different views’
information contributes unequally to different tasks, thus the
fusion of views needs to be decided by both the data and the
targeting tasks.

To address the above limitations, we propose a novel multi-
task multi-view learning framework for link prediction and
node classification, namely MT-MVGCN. Specifically, our
framework first takes multi-view graph convolutional networks
as the backbone to learn representations of nodes in each
view. After that, to encourage the collaboration between
different views we design two attention mechanisms: view
attention for voting the consensus representation and task-
specific attention for getting specific representation for each

task. Then we sum these two representations for each task
and train all tasks together. By setting the multi-view graph
convolutional networks and view attention shared by tasks, we
allow different tasks to transfer information implicitly. Further,
we add view reconstruction as an auxiliary task, which can
boost the performance of our model in some scenarios. We
empirically evaluate our model on four real-world datasets, and
the experimental results also indicate the effectiveness of the
attention mechanisms and the benefits of multi-task learning.

In summary, our main contributions are listed as fol-
lows:

• We explore the feasibility of multi-task multi-view learning
for link prediction and node classification tasks, then we
develop a novel framework, namely MT-MVGCN, to train
these two tasks simultaneously.
• Specifically, we design view attention mechanism to capture

the consensus information of different views, meanwhile
the task attention mechanism aims to extract the significant
information for each task. Moreover, the view reconstruction
task is introduced as an auxiliary task, which helps to learn
more robust hidden representations.
• Experimental results on several multi-view networks prove

our method is effective yet efficient over state-of-the-art
baseline approaches.

The rest of this paper is organized as follows. Sec. II reviews
the related work. Sec. III formalizes the problems; Sec. IV
introduces the proposed model. Sec. V describes the design
of experiments and reports the experimental results. Sec. VI
presents the conclusion and future work.

II. RELATED WORK

Network Embedding. Our work is related to network em-
bedding, which aims to find a nonlinear function to embed
the raw network into a low-dimensional latent space. Non-
negative matrix factorization is widely used for network em-
bedding [21], [22] because it makes all decomposed compo-
nents non-negative and achieves linear dimension reduction
at the same time [23]. Besides, random walk is also used
for various models such as DeepWalk [6], node2vec [11],
Struc2vec [10] and SDAE [24]. Apart from these methods,
there exists some heterogeneous network embedding models.
For example, Metapath2vec and HIN2Vec [25], [26] learn net-
work embedding based meta-path for synchronized modeling
of structural information and semantic association in heteroge-
neous networks. Shine [27] extracts potential representations
of users from heterogeneous networks and predicts unobserved
signs of emotional connections.
Graph Neural Networks. The convolutional neural networks
are designed for the data represented as a regular grid in the
Euclidean space such as pictures, which is not suitable for non-
euclidean data such as networks. Inspired by the success of
CNNs, various works [12], [14], [28], [29] attempt to re-define
a convolutional operation on graphs. Generally, Graph Neural
Networks (GNNs) can be regraded as a sample strategy for
neighbors of nodes and update the representations of nodes
by a weighted sum of their neighborhoods. Based on there
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methods, some improvements or variants are proposed. For
example, Graph Attention Network (GAT) [30] introduces
attention mechanism to aggregate neighborhoods for nodes
and FastGCN [31] aims to accelerate the speed of original
GCN via importance sampling. Traditional deep neural net-
work is a stack of non-linear layers thus it is also suitable
for mapping original graph structure and properties into a
low dimensional space. Some representative works, such as
SDNE [9], SiNE [32] and Deepcas [33], provide end-to-end
solutions to network problems.
Link prediction and Node classification. Link prediction
and node classification are two of the most fundamental
downstream tasks on network analysis, have attracted exten-
sive attention from industry and academia [5]. For example,
node2vec [11] performs link prediction on a social network,
a biological network and an academic network. SiNE [32]
demonstrates the excellent performance of signed network
embedding on link prediction. The node classification is also
widely used for different networks. Many studies [14], [15],
[26], [30] also apply their models for node classification,
which achieves superior performance. To name a few, in
language networks, such as Wikipedia, node classification
can infer the Part-of-Speech tags for words [34]. In protein-
protein interactions networks, node classification is applied
to classify proteins into 50 different biological states [11].
However, our method is the first attempt to solve these two
tasks simultaneously, which can fully utilize the correlation
between tasks to boost the performance.
Multi-task learning, Multi-view Learning and Attention
Mechanisms. Multi-task and Multi-view learning are signif-
icant fields for deep learning and great of methods have
been proposed in recent years. There are many successful
methods and applications in various fields [35]–[37], such as
computer vision, data mining and natural language processing.
However, only a few of works focus on networks. For multi-
view networks, existing methods adopts some naive methods
to learn the representations for downstream tasks. For example,
MVE [15] uses the weighted average of different views and
MINES [16] adds all views together. For multi-task learning,
MTGAE [38] designs a shared auto-encoder for all tasks. Al-
though these methods mentioned in related work are effective
and efficient for their problems, they are hardly satisfactory for
multi-view and multi-task learning simultaneously. However,
considering multi-task and multi-view learning at the same
time is a trend in recent years [39], [40]. Besides, our work
is related to attention mechanisms, which have been making
great successes on many problems, including machine trans-
lation [41], recommendation [42], image classification [43]
and so on. Attention mechanisms [15], [30], [41] aim to learn
importance of different parts of the training data so that the
models can focus on the most informative parts.

III. PROBLEM DEFINITION

Definition 1: Multi-view network Given a multi-view net-
work G = (V,E1, E2, · · · , Ek), where V is the set of nodes
and Ei (1 ≤ i ≤ k) is the set of edges observed from view
i. Each view is regarded as a single-view network reflecting

a single and distinct relationship among nodes, described by
edges in Ei.

Obviously, we can utilize various methods to learn low
dimension representation Zi ∈Rd (d� |V |) for view i. After
that, we still face the problem of how to fuse representations
of multiple views to get the final representation for multi-task
learning.

Problem 1: View Fusion Assuming we have obtained view
representations {Z1,Z2, · · · ,Zk}, the view fusion process
aims to learn a fusion function f to get the final representation
Z = f(Z1,Z2, · · · ,Zk).

Problem 2: Multi-task Learning Given M related or par-
tially related tasks denoted as {Tm}Mm=1, multi-task learning
aims to use the knowledge contained in all or part of the M
tasks to improve the learning of model.

IV. THE MT-MVGCN FRAMEWORK

In this section, we will introduce our model in details.
Taking three views as an example, as illustrated in Figure 2,
we first design multi-view graph convolutional networks to
extract information in different views, then the view attention
and task attention are applied to learn representations for
link prediction and node classification tasks. Moreover, we
introduce view reconstruction as an auxiliary task to improve
our model. Overall, since tasks are related, it is reasonable to
assume that different tasks share a common representation for
the original features. Thus the multi-view graph convolutional
networks and view attention mechanism are shared by tasks.
Through training data in all tasks, a stronger representation
can be learned for each task, and this representation can
bring performance improvements. Besides, we allow different
tasks to extract task-specific information through task attention
mechanism.

A. Multi-View Graph Convolutional Networks

For a multi-view network G = (V,E1, E2, · · · , Ek), we
denote adjacency matrix as Ai and feature matrix as Xi for
view i. N is the number of nodes. To extract the information
encoded in view i, we follow Kipf & Welling [14] to design
a Graph Convolutional Network (GCN) with the following
propagation rule at l-th layer:

Z
(l)
i = σ(D̃i

− 1
2 ÃiD̃i

− 1
2Z

(l−1)
i W (l)) (1)

Here, we set Ãi = Ai+IN and IN is identity matrix, D̃ii =∑
j Ãij , W (l) is the weight matrix, Z(l)

i ∈ RN×d(l)

, Z(0)
i =

Xi and σ(·) is the activation function. In this paper, we choose
tanh as activation function in all cases. If the node features
are not available the Xi will be an identity matrix.

Note that there is a key point in multi-view GCN that we
make the weight matrix W (l) shared by each view. Through
this shared architecture1 we can: (1) project all views into the
same semantic space so that the fusion of view representations
is more interpretable. (2) make our model scalable for views

1Note the node set is shared across all views. Moreover, the multi-view
GCN can also be applied to such multi-view networks that have a few nodes
unobserved in each view. In this case, we just need to pad those unobserved
nodes’ entries as zero in the adjacency matrix of each view.
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Fig. 2. Overview of the proposed MT-MVGCN model. The Multi-view GCN and view attention modules are shared by different tasks. The view reconstruction
module is designed as an auxiliary task.

Fig. 3. Illustration of View Attention Mechanism.

and take up less memory due to the parameters shared mech-
anism. (3) allow different views influence each other mutually
and collaborate implicitly. After getting the final output of
multi-view GCN for each view denoted as {Z1,Z2, · · · ,Zk},
we will discuss how to design the fusion function f to generate
representation for each task in the next section.

B. Attention based View Fusion

In order to achieve the collaboration between different
views, we need to fuse view-specific representations by a flexi-
ble way. Instead of concatenating or adding the representations
in different views, we can also apply attention mechanism to
capture the complex relationships between views and tasks.
Concretely, view attention mechanism is proposed to make
all views vote the robust representation and task attention
mechanism aims to fetch the important information across
different views for each task.

1) View Attention Mechanism: Recent research shows that
the attention mechanism can be understood as the weighted
sum of values, and the query and keys are used to calculate the
weight coefficients of the corresponding values. In this work,
we still apply the query, keys to calculate the attention score
for each view, then we sum view-specific values according to
the attention score. However, the scale of the networks are
usually relative large thus we must design a time efficient
way to calculate attention score for each view. Here we first
introduce view attention mechanism and take three views as
an example, which is illustrated in Figure 3.

As an initial step, weight matrices WQ and WK define two
learnable linear transformations for the node representations of
each view respectively, then we get the query vector Q and
key vectors K as follows:

Qi = ZiWQ, Q = avg[Q1,Q2,Q3] (2)

Ki = ZiWK , K = stack[K1,K2,K3] (3)

where the avg is element-wise average, stack operation stacks
all key matrices into a new matrix with rank one higher than
each key matrix, WQ and WK are shared by all views in order
to make our model be scalable for any number of views.

Since the output of view attention is the weighted average
of value matrices, thus it is of great significance to require
the value matrices to preserve original structural information
as much as possible. Different from query and key matrices,
we design a graph encoder to calculate the value matrices,
aiming to further take the higher-order structural information
into consideration. The graph encoder is defined by function
g and weight matrix WV :

Vi = g(Ãi,Zi) = ÃiZiWV , V = stack[V1,V2,V3] (4)
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After getting query, key, value matrices, we calculate the
attention score with the intuition: the query matrix is the aver-
age information of views thus it can represent the consensus
information of views. If the query matrix Q and the key
matrix Ki have a larger inner product through broadcasting,
meaning all views believe view i is more informative, then
we will assign a larger weight for this view. Following such
intuition, we compute the final representation of view attention
mechanism as:

Zv =
softmax(Q ·K) · V√

d
(5)

where the softmax function is used to normalize all choices,
d is the hidden dimension of these matrices. In practice, we
may not compute the attention score with matrix multiplication
due to the node size limitation in real-world networks. Com-
pared with matrix multiplication, the inner product operation
reduces the time complexity by N times, which greatly
accelerates the running speed.

Since multiple views can be significantly different from
each other, the variance of network data are quite high. To
tackle such problem, we extend the Eq. (5) to multi-head
attention to stabilize the learning process of view attention,
similarly to [41]. Specifically, we utilize H attention heads
to execute Eq. (5) independently and simultaneously, and then
their results are concatenated, leading to the following output
feature representation:

Zv = ‖Hh=1(
softmax(Qh ·Kh) · V h

√
dh

) (6)

where ‖ represents concatenation, and h means the h-th head.
2) Task Attention Mechanism: Similar to the view atten-

tion mechanism, task attention mechanism is also computed
according to Eq. (7).

Zt = ‖Hh=1(
softmax(Qh

t ·Kh
t ) · V h

√
dh

) (7)

Where the V is also shared with view attention mechanism,
but the main difference between Eq. (6) and Eq. (7) is that
the Qt and Kt are replaced by two trainable variables for
each task. Due to Qt and Kt do not know the information of
views, they are trained totally by the specific task so that the
task can gather useful information through optimizing these
two variables. In other words, this strategy enables different
tasks to assign customized weights to different views, thus
only the information is believed serviceable will be chosen by
each task. Besides, we should notice that view attention result
can be shared by all tasks and task attention results are unique
across tasks.

After we compute the results of view attention mechanism
and task attention mechanism for m-th task, denoted as Zm

v

and Zm
t respectively. We integrate the results by a hyper

parameter α ranging from 0 ∼ 1 to obtain the final repre-
sentation:

Zm = αZm
t + (1− α)Zm

v (8)

C. Multi-task Learning

In this work, we study two significant tasks associated
with relational: link prediction and node classification. For
link prediction task, cosine similarity implies the distance
between the pair of nodes in vector space, thus the cosine
similarities between node pairs are estimated as features to
make predictions. Given an edge e, we predict the existence
of e in each view; y is the label of edge e, in which the k-th
dimension is set as 1 if e exists in k-th view else set as 0,
which comes down to a multi-label classification problem. As
there exists a huge amount of node pairs that share no edges,
predicting edge existence between all possible node pairs is
unrealistic. Therefore, we only predict the existence of edges
that appear in at least one view. For node classification task, we
use the learnt representations as features and the node labels
are already provided. For m-th task, Zm is the final feature
representation, ym is the ground truth label, we first predict
the label using a nonlinear layer: pm = f(ZmWm+bm), f is
activation function (eg. sigmoid or softmax function), Wm is
the weight matrix and bm is bias. The cross-entropy is applied
for prediction loss, thus the overall loss is formulated as:

L = −
M∑

m=1

λm

Nb∑
j=1

[ymj log pmj + (1− ymj ) log (1− pmj )] (9)

where λm is a hyper-parameter determines the importance of
m-th task, M is the number of tasks, and Nb is the batch size.

D. MT-MVGCN++

The attention mechanisms in MT-MVGCN employ graph
encoder to preserve the structural information when com-
puting the value vectors in Eq. (4). However, the structural
information can be preserved mainly because the adjacency
matrix contains abundant information rather than the original
information is preserved. In addition, graph encoder may lead
the features to be over smoothed [44]. Here, we introduce
an auxiliary task: view reconstruction, which aims to decode
the values back to the original feature space to constrain the
encoder preserving enough original features. As [45] proved,
the reconstruction criterion can smoothly capture the data man-
ifolds thus preserve the original information. More specifically,
we utilize the final representations of tasks to reconstruct a
representation of each view: Z̃i = g̃(Ãi,Z

′) = ÃiZ
′W i

D,
where Z ′ =

∑M
m=1 Z

m.
In this case, view reconstruction can be regarded as an

unsupervised task to be trained with other tasks together. The
objective function of view reconstruction is mean square error:

loss =
1

k

1

N

k∑
i=1

‖Zi − Z̃i‖
2

F (10)

where k is the number of views, N is the node size. To this
end, the objective function is the sum of prediction loss and
reconstruction loss:
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L = −
M∑

m=1

λm

Nb∑
j=1

[ymj log pmj + (1− ymj ) log (1− pmj )]

+ λM+1
1

k

1

N

k∑
i=1

‖Zi − Z̃i‖
2

F

(11)

E. Implementation

In practice, we utilize Tensorflow [46] for an efficient GPU-
based implementation of the proposed models, then the param-
eters can be optimized efficiently and automatically with gra-
dient descent and back propagation algorithm. Due to the spar-
sity of network data, we use sparse-dense matrix multiplication
for Eq. (1), as described in [14]. Through stacking multiple
GCN layers, as described in Eq. (1), we construct a multi-view
GCN module to extract the information in each view. Then
the outputs of multi-view GCN, i.e. {Z1,Z2, · · · ,Zk}, will
be fused by view attention module and task attention module,
and yield the hidden representation Zm for m-th task. After
that, we perform multiple tasks simultaneously to calculate the
overall loss. Finally, the parameters can be updated through
minimizing the overall loss. The reference code is available at
https://github.com/yusonghust/MT-MVGCN

V. EXPERIMENT

TABLE I
STATISTICS OF THE DATASETS

Dataset # views # nodes # edges # labels Tasks

YouTube 4 5,108 3,263,045 /
link prediction
reconstruction

Twitter 4 12,741 3,154,719 /
link prediction
reconstruction

Flickr 2 34,881 3,290,030 169
link prediction

node classification
reconstruction

Aminer 3 8,438 2,433,356 8
link prediction

node classification
reconstruction

TABLE II
CONFIGURATIONS OF THE PROPOSED MODELS

Datasets YouTube Twitter Flickr AMiner

GCN-Layers 3 3 2 1
GCN-Hiddensize 64 64 32 32

α 0.5 0.5 0.5 0.5
λlinkpred 1.0 1.0 1.0 1.0
λnodecls - - 0.1 0.001

λreconstruction 0.01 0.01 0.01 0.01

A. Datasets

We select four real-world multi-view network datasets.
Link prediction will be evaluated in all datasets and node
classification will be evaluated in the last two datasets.

• YouTube Dataset For YouTube network [47], four views
are constructed, representing friendship, number of common
friends, number of common subscribers between two users
and number of common favorite videos respectively.
• Twitter Dataset The twitter network [48] contains four

views, including re-tweeting, reply, mention and friendship.
We apply the similar method [8] to reconstruct these three
views to make them denser due to the sparsity of original
network.
• Flickr Dataset The network built from Flickr dataset [49]

includes two views. Friendship view is the contact network
among the blog owners. Tag-similarity view is a network
with each node connecting to its top ten nearest neighbors,
and the similarity is calculated based on the user’s tags. The
community memberships are used as node labels.
• AMiner Dataset The AMiner network [1] has three views:

author-citation, co-authorship and text similarity. The edge
weight in co-authorship view is the number of publications
cooperated by each pair of authors; the edge weight in
citation view is defined as the number of literature published
by one author and cited by another author; the text similarity
view depicts top ten nearest neighbors for each node, and
the similarity is calculated based on the title and abstract
by TF-IDF [50]. We only preserve authors in eight research
fields as [25] as nodes and research fields are treated as
node labels.

The details of datasets are listed in Table I.

B. Baselines

We choose four types of baselines: single-task single-
view(STSV) based, single-task multi-view(STMV) based,
multi-task single-view based(MTSV) and multi-task multi-
view(MTMV) based.

• DeepWalk [6] DeepWalk uses random walk to construct
node sequences then applies skip-gram model to learn
network representation.
• GCN [14] GCN is a semi-supervised method based on

graph convolutions.
• GAT [30] GAT introduces attentions mechanism for graph

convolutional operations.
• DW-con DW-con concatenates representations learned by

DeepWalk of all views to generate the final representation.
• MVE [15] MVE adopts attention mechanism to assign

weights for the weighted sum of view representations.
• RGCN [51] RGCN allows multiple relationships among

two nodes of a graph. Views corresponding to distinct
relationships are encoded differently.

• HIN2Vec [26] Multi-view network is a type of heteroge-
neous network thus HIN2Vec is adopted to learn network
representation.

• MTGAE [38] Multi-task graph auto-encoder defines a set
of nonlinear transformations to capture graph structure for
multi-task learning.

https://github.com/yusonghust/MT-MVGCN
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TABLE III
QUANTITATIVE RESULTS ON THE LINK PREDICTION TASK FOR DIFFERENT DATASETS.

Category Methods YouTube Twitter Flickr AMiner
AP AUC AP AUC AP AUC AP AUC

STSV
DeepWalk 0.697 0.617 0.631 0.717 0.737 0.740 0.732 0.764

GCN 0.708 0.779 0.629 0.566 0.759 0.768 0.789 0.831

STMV
DW-con 0.701 0.719 0.633 0.566 0.707 0.716 0.751 0.775

MVE 0.723 0.627 0.642 0.546 0.669 0.676 0.709 0.736
HIN2Vec 0.798 0.776 0.653 0.625 0.802 0.818 0.626 0.636

MTSV MTGAE 0.782 0.798 0.649 0.619 0.783 0.808 0.786 0.833

MTMV
GCN-con 0.786 0.775 0.661 0.710 0.824 0.927 0.816 0.857

MT-MVGCN 0.800 0.804 0.669 0.703 0.847 0.955 0.837 0.858
MT-MVGCN++ 0.807 0.824 0.672 0.719 0.861 0.949 0.829 0.844

• GCN-con A variant of MT-MVGCN, which concatenates
the results of multi-view GCN to get the final representation.

• MT-MVGCN The proposed model for multi-task learning
with information of multiple views.

• MT-MVGCN++ A variant of MT-MVGCN, which intro-
duces an auxiliary task: view reconstruction.

Note that we study the attention mechanisms in section V-E,
so here we mainly compare our models with some represen-
tative baselines. Besides, there are some multi-view matrix
factorization methods, which will not be compared with our
model since they can not be extended to large-scale networks.

C. Experimental Setup

For the proposed model, the parameter settings are listed in
Table II for different datasets. For DeepWalk, the number and
the length of random walks for each node is set as 10 and 80
respectively. The window size of the skip-gram model is 10.
For RGCN, HIN2Vec, MTGAE and MVE we use the default
parameter settings in the original paper. For all baselines, we
set the hidden dimension of representation same as our model.
We train all models using Adam [52] optimizer with learning
rate of 0.001. We also use dropout with drop rate of 0.5
and early stopping to prevent over-fitting. For two attention
mechanisms and GAT, we set the number of heads as 4. We
calculate the average precision score (AP), area under curve
score (AUC) for link prediction and accuracy score, precision
score and f1 score for node classification. As graph data has
a large variance, we follow the method [14] to repeat each
method for ten times, and the average metrics are reported.
For single-view based methods, the best result among different
views is reported. As node features are not available for our
datasets the feature matrix will be an identity matrix.

D. Experimental Results

In this section, the experimental results of link prediction
and node classification are presented. For link prediction the
percentage of training data is 50%, and for node classification,
the percentage of training data varies from 30% to 70%. The
link prediction results are listed in Table III and node classi-
fication results are listed in Table IV. From the experimental
results, we have the following observations and analysis:

• For link prediction task, MTSV based methods perform bet-
ter than STSV based method on Flickr and AMiner datasets.
In contrast, MTSV based method has similar results with
STSV based methods on YouTube and Twitter datasets. This
phenomenon can prove that multi-task learning is applicable
and useful in many scenarios. First, as the node labels are
not available for YouTube and Twitter datasets, the MTGAE
model is only trained by link prediction task, thus it is not
surprising that MTGAE is close to the performance of the
STSV based methods. Second, link prediction task is co-
training with node classification task on Flickr and AMiner
datasets. Thus we can see that multi-task learning boosts
the performance on these two datasets.
• For link prediction task, the results of MT-MVGCN++

are more satisfactory than MT-MVGCN on YouTube and
Twitter datasets while the opposite is true on the other two
datasets. On the one hand, this result is due to the fact that
we introduce an auxiliary task for the first two datasets,
which can also prove that multi-task learning is reasonable
and useful. On the other hand, for the last two datasets, link
prediction task is already co-trained with node classification
task, thus the auxiliary task even makes the performance
degrade slightly since it may introduce extra noises for the
link prediction task.
• For node classification task, we can see that multi-task based

baselines have no obvious improvement but HIN2Vec and
RGCN outperform single-view based baselines. However,
our methods always maintains significantly performance
improvement with training percentage varying from 30%
to 70%.
• As we can see, the average performance of STMV based

methods is close to STSV based but the performance of
MTMV based methods is better than MTSV based method.
The reason may be that multi-task learning can make
better use of information of multiple views. Besides, we
also find that some naive view fusion methods, such as
concatenation (DW-con) and average (MVE), fail to make
collaboration the between different views, thus these meth-
ods achieve relatively poor performance. Lastly, the meta-
path based heterogeneous network representation learning
method has achieved satisfactory results but still not as good
as our proposed method. Since there is only one type of
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TABLE IV
QUANTITATIVE RESULTS IN TERMS OF CLASSIFICATION ACCURACY/PRECISION/F1 SCORES ON DIFFERENT DATASETS

Category Methods Flickr Aminer
30% 50% 70% 30% 50% 70%

STSV
DeepWalk 0.898/0.668/0.699 0.901/0.755/0.731 0.913/0.738/0.723 0.932/0.899/0.765 0.936/0.912/0.899 0.944/0.913/0.921

GCN 0.907/0.690/0.720 0.909/0.772/0.749 0.911/0.737/0.723 0.876/0.810/0.830 0.879/0.843/0.821 0.883/0.812/0.827
GAT 0.901/0.675/0.706 0.913/0.780/0.758 0.918/0.752/0.738 0.889/0.816/0.835 0.899/0.871/0.852 0.907/0.845/0.858

STMV

DW-con 0.883/0.633/0.666 0.883/0.719/0.693 0.884/0.673/0.656 0.875/0.806/0.826 0.876/0.844/0.823 0.877/0.805/0.820
MVE 0.882/0.631/0.664 0.891/0.734/0.710 0.893/0.684/0.668 0.878/0.800/0.821 0.880/0.850/0.829 0.879/0.809/0.824

RGCN 0.911/0.701/0.730 0.917/0.789/0.768 0.922/0.780/0.767 0.947/0.906/0.917 0.957/0.940/0.931 0.960/0.930/0.936
HIN2Vec 0.910/0.698/0.727 0.911/0.776/0.754 0.914/0.766/0.753 0.961/0.934/0.941 0.962/0.951/0.943 0.961/0.935/0.941

MTSV MTGAE 0.895/0.661/0.692 0.898/0.749/0.725 0.903/0.712/0.696 0.854/0.768/0.791 0.865/0.825/0.802 0.875/0.810/0.825

MTMV
GCN-con 0.896/0.663/0.695 0.906/0.765/0.743 0.914/0.750/0.736 0.875/0.811/0.830 0.875/0.847/0.826 0.876/0.811/0.826

MT-MVGCN 0.906/0.688/0.718 0.922/0.800/0.780 0.923/0.778/0.765 0.969/0.948/0.954 0.971/0.961/0.954 0.973/0.953/0.958
MT-MVGCN++ 0.917/0.716/0.745 0.921/0.798/0.777 0.935/0.800/0.788 0.973/0.952/0.958 0.977/0.970/0.965 0.984/0.974/0.976

node in the multi-view network, leading to the semantic
information of the meta-path greatly reduced.

• For both tasks, the proposed methods outperform all com-
pared baselines on all datasets which indicates our methods
can be better extend to link prediction and node clas-
sification tasks. We can find that although GCN-con is
based on multi-task multi-view learning, the performance
is still under our methods because our models adopt two
attention mechanisms to make use of information from
different views rather than combining all views naively.
More specifically, view attention mechanism and task at-
tention mechanism complement each other to better extract
the information in each view. Besides, we observe that by
simultaneously training view reconstruction task with MT-
MVGCN, MT-MVGCN++ achieves better performance in
most instances.

E. Ablation Study of Attention Mechanisms

There are two important attention mechanisms in the pro-
posed methods, the view attention mechanism and task atten-
tion mechanism. In this subsection, we evaluate the contribu-
tions of these two attention mechanisms to the final results. For
each dataset, we first remove the view attention mechanism or
task attention mechanism from MT-MVGCN model, namely as
MT-MVGCN-NVA and MT-MVGCN-NTA respectively. Apart
from that, we assign equal weights for views without attention
mechanisms, named as MT-MVGCN-EQU. Then we study the
link prediction and node classification results with different
training ratios. And the results are presented in Figure 4.

Overall, it is obvious that view attention mechanism and
task attention mechanism are essential parts of the proposed
model. For all datasets, there is a clear performance decline
after we remove two attention mechanisms with the variation
of the proportion of training data. This phenomenon shows
that, rather than simply assigning equal weight to each view,
the attention mechanisms make the model focus on the most
informative views. Apart from that, link prediction task is more
sensitive to the attention mechanisms than node classification
task. As we can see, the performance of link prediction is

TABLE V
RESULTS OF ABLATION STUDIES OF MULTI-TASK LEARNING FOR THE
PROPOSED MODEL. WE PERFORM EACH TASK SEPARATELY, NAMELY

’SINGLE’ AND PERFORM ALL TASKS VIA MULTI-TASK LEARNING,
NAMELY ’MULTI’. TIME COST IS THE AVERAGE TIME COST PER EPOCH

AND IT IS THE SUM OF TASKS FOR SINGLE-TASK LEARNING.

Dataset Flickr AMiner
Task Metric Single Multi Single Multi

Link prediction
AP 0.820 0.847 0.851 0.855

AUC 0.857 0.955 0.892 0.897

Node classification
ACC 0.925 0.922 0.975 0.977

Precision 0.789 0.800 0.963 0.970
F1 0.772 0.780 0.958 0.965

Time cost Second 212 111 0.369 0.284

marked retrogressive after the removing of attention mecha-
nisms while node classification accuracy can still keep relative
stable in Flickr dataset and only degrade on AMiner dataset.

And we still notice that the importance of task attention
mechanism is beyond view attention mechanism. First, there is
a larger performance decline under the condition of removing
task attention mechanism. We can see that AUC and AP
metrics are declined by 5% on average if we remove task
attention rather than view attention. Second, for link prediction
task, the metrics of MT-MVGCN-NVA declines apparently
on all datasets but still not sharply as MT-MVGCN-NTA.
For node classification task, we even find that there are
little change without view attention on Flickr dataset. By
comparison, it is so clear for the declining in performance
without task attention especially on AMiner dataset.

F. Ablation Study of Multi-task Learning
Although our experimental results have demonstrated the

effectiveness of multi-task learning, we here study the differ-
ence between training link prediction and node classification
task separately and training them together for the proposed
model on Flickr and AMiner datasets. We set the train data
percentage as 0.5 and keep other experimental settings the
same including hardware2. The results are shown in Table V.

2A shared device with Intel(R) Xeon(R) CPU E5-2680, a Tesla P100 GPU
and 250Gb Memory.
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Fig. 4. Comparison of performance with different attention mecha-
nisms. MT-MVGCN-NVA: MT-MVGCN without view attention mechanism,
MT-MVGCN-NTA: MT-MVGCN without task attention mechanism, MT-
MVGCN-EQU: MT-MVGCN with equal weights for views.

As we can see, the multi-task learning based results still
outperform the single-task based results on two datasets. For
link prediction task, the multi-task learning achieves better
performance by 3% on average, which means the information
of node labels may be helpful for link prediction task. Besides,
we still find that the influence varies for different datasets but
it always positive. For node classification, we conclude that
multi-task learning only brings a little influence due to the
tiny difference between training tasks separately and simulta-
neously. Since it will not lead to the performance degradation,
therefore training node classification with other tasks can be
time efficient. As the graph convolutional networks tend to
over-fitting resulting in unsatisfactory performance, we deduce
that through multi-task learning the model is forced to learn
more robust feature representations so the results are better

on the whole. First, the model must learn general features
for different tasks so the possibility of over-fitting is reduced.
Second, different tasks can not only provide some useful
information to each other, but also introduce some noise to
each other to prevent over-fitting.

There is a key point that multi-task learning is very time
efficient especially for the large networks. Flickr network is
several times the size of AMiner network, thus we can observe
that multi-task learning saves nearly double the time cost on
Flickr dataset but for the AMiner dataset it is not so obvious.
As a result, we can conclude that multi-task learning is time
efficient and avoids a lot of repetitive work compared with
single-task learning.

G. Visualization of Attention Mechanisms

To validate the effectiveness of the view and task attention
mechanisms, we explore the learned weight for each view of
different datasets. Now that we have touched upon attention
heads, we also show where the different heads are focusing.
The visualizations of view attention weights, link prediction
task attention weights and node classification task attention
weights are shown in Figure 5, 6 and 7 respectively. As
we can see, the weights of multiple views have noticeable
difference between each other, which means that the view
attention mechanism try to assign proper importance to each
view. For example, the third view of YouTube dataset is
more valued and the second view of Twitter view has relative
large weight than other views. Moreover, we also observe
that dividing the attention mechanism into multiple heads and
forming multiple sub-spaces allows it to focus on different
aspects of information. Compared with view attention mech-
anism, the task attention mechanism assigns different weight
to each view since different tasks tend to utilize distinct view
information to achieve better performance. Intuitively, view
attention mechanism are shared by all tasks so it would like to
extract consensus information while task attention mechanism
prefers to extract task-specific information, leading to different
weights learned by this two kinds of attention mechanisms.
Overall, our model can achieve better performance via two
kinds attention mechanisms capturing consensus information
as well as task-specific information.

H. Parameter Sensitivity

In this section, we study the parameter sensitivity of the
proposed model. There are three important parameters, the
balance between two attention mechanisms α, the importance
of node classification task λnodecls, and the importance of view
reconstruction task λreconstruction. As we keep the importance
of link prediction task as 1.0, we only need to vary the
importance of other two tasks. The training percentage is set
as 0.5. We choose Flickr and AMiner datasets as examples
and the results are shown in Figure 8.

1) The influence of α: We first analyze how the balance
of two attention mechanisms affects the experimental results.
For both tasks we can see that the performance initially raises
with the α increasing. The link prediction accuracy raises
a little while the AUC raises sharply on both datasets. For
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(a) YouTube (b) Twitter (c) Flickr (d) AMiner

Fig. 5. Visualization of view weights learned by view attention mechanism of each dataset

(a) YouTube (b) Twitter (c) Flickr (d) AMiner

Fig. 6. Visualization of view weights learned by link prediction task attention mechanism of each dataset

(a) Flickr (b) AMiner

Fig. 7. Visualization of view weights learned by node classification task
attention mechanism of AMiner dataset and Flickr dataset

node classification task, the performance on AMiner dataset is
more sensitive to the attention mechanisms than its on Flickr
dataset. Then with the increasing of α, the performance of
both tasks keeps relatively stable without decline for two tasks.
In addition, corresponding to section V-E, the task attention
mechanism is key factor of the proposed models. If the weight
of task attention mechanism is too low the performance is also
poor. On the whole, we conclude that keeping the importance
of two attention mechanisms roughly equal is a favourable
setting for the model.

2) The influence of λnodecls: Then we discuss the in-
fluence of node classification task, with the importance of
it varying from 0.0001 to 2.0. As observed in Figure 8,
there is little difference in the effect on the two datasets. For
Flickr dataset, when the hyper-parameter is too small or too

large, the link prediction results are not very satisfactory. This
phenomenon may due to the reason that if the importance of
node classification task is too low the link prediction task can
not obtain enough information; while the importance is too
high the model will ignores the link prediction task, thus it
is not surprised that the performance decline. Compared with
Flickr dataset, there is no obvious change in link prediction
performance when λnodecls is small on AMiner dataset. How-
ever, Flickr dataset is faced with the performance degradation
in link prediction task if the parameter is not properly set. For
node classification task, the influence is basically the same
as link prediction task. With the increasing of importance the
model start focus more on node classification gradually thus
the classification accuracy continues growing.

3) The influence of λreconstruction: Finally we study the
impact of λreconstruction, which controls the contribution of
reconstruction task to our model. As we can see, the auxiliary
task is pretty significant for our model especially for Flickr
dataset. The performance for both tasks raises evidently with
the weight of view reconstruction increasing at start. Then
there is a slightly degradation of performance if the weight of
view reconstruction sustained increases. In contrast, it seems
that link prediction task is not sensitive to the auxiliary task on
AMiner dataset, but it has no negative impact on performance
as long as the weight is set appropriately. All in all, our
model boosts the performance in most cases through the view
reconstruction as it helps to preserve structural information of
different views.
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(a) Flickr

(b) AMiner

Fig. 8. Parameter Sensitivity w.r.t. the balance of two attention mechanisms α, the importance of node classification task λnodecls and the importance of
view reconstruction task λreconstruction.

I. Discussion

In this subsection, we mainly discuss the spotlights of our
models and try to explain why our models perform better than
experimental baselines.

Compared with existing multi-view based methods, such
as average, concatenate and add, our models achieve great
results due to the advanced view fusion strategy. First, we
propose an attention-based fusion method which can capture
the complex relationships between views. We not only allow
all views to vote for the robust representation, but also allow
the specific task to focus on the most informative views.
Second, as mentioned in [53], average fails to capture repeat
features in graph, thus average methods and something like
that may also fail to fuse different views information since
it is common for repeating features among views. Third, add
and concatenate methods are enough to preserve the original
information, but may introduce extra noise and lack sufficient
collaboration of views, making the results sub-optimal. Finally,
previous attention based methods like MVE [15] adopts simple
attention mechanism to take an average of all views, which
is not interpretable and effective as our models. In contrast,
by applying two multi-head attention mechanisms our models
can also compute diverse attentions independently on different
sub-spaces in parallel.

Compared with the existing multi-task based method, i.e.
MTGAE, our models include shared layers and task specific

layers, which brings great flexibility to multi-task learning.
MTGAE [38] is composed of a symmetrical graph auto-
encoder shared by all tasks so it is hard to extract specific
information for a certain task. The advantage of our models
lies in that view attention is shared by tasks and task attention
is specific to each task, expected to capture more complex rela-
tionships between network information and tasks. In addition,
the auxiliary task also makes great contributions to multi-task
learning.

VI. CONCLUSION

In this paper, we study the problem of link prediction and
node classification tasks by multi-task learning with multi-
view graph convolutional networks. More specifically, our
model considers utilizing information of multiple views for
multiple tasks through two attention mechanisms. Besides, we
enhance our model by introducing an auxiliary task which can
make the network structural information better preserved. In
the experiments, we show that our model is significantly and
consistently superior to the start-of-the-art baselines. We also
study the contribution of two attention mechanisms and the
parameter sensitivity. In the future, we plan to explore two
directions based on the current work: one is how to make the
model learn the importance of different tasks by itself rather
than controlling it by hyper-parameters. The other is applying
our model to more realistic scenarios and problems.
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