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Abstract— Deep image prior (DIP), which uses a deep
convolutional network (ConvNet) structure as an image prior,
has attracted wide attention in computer vision and machine
learning. DIP empirically shows the effectiveness of the ConvNet
structures for various image restoration applications. However,
why the DIP works so well is still unknown. In addition,
the reason why the convolution operation is useful in image
reconstruction, or image enhancement is not very clear. This
study tackles this ambiguity of ConvNet/DIP by proposing an
interpretable approach that divides the convolution into “delay
embedding” and “transformation” (i.e., encoder–decoder). Our
approach is a simple, but essential, image/tensor modeling
method that is closely related to self-similarity. The proposed
method is called manifold modeling in embedded space (MMES)
since it is implemented using a denoising autoencoder in com-
bination with a multiway delay-embedding transform. In spite
of its simplicity, MMES can obtain quite similar results to DIP
on image/tensor completion, super-resolution, deconvolution, and
denoising. In addition, MMES is proven to be competitive with
DIP, as shown in our experiments. These results can also facilitate
interpretation/characterization of DIP from the perspective of a
“low-dimensional patch-manifold prior.”

Index Terms— Autoencoder (AE), convolutional neural net-
work (CNN), deblurring, deconvolution, delay embedding,
denoising AE (DAE), Hankelization, image inpainting, manifold
model, super-resolution, tensor completion.

I. INTRODUCTION

THE most important piece of information for image/tensor
restoration would be the “prior.” The prior usually con-

verts the optimization problems from ill-posed to well-posed
and/or enhances the robustness to specific noises and outliers.
Many priors were studied in computer science problems,
including low-rank models [26], [27], [49], [60], smoothness
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[21], [51], sparseness [59], nonnegativity [6], [35], and sta-
tistical independence [29]. In computer vision and machine
learning, the Markov random fields (MRFs) [18], [37], the total
variation (TV) [23], [66], low-rank representation [28], [30],
[40], [54], [67], [69], [73], [82], [83], [85], and nonlocal
similarity [4], [9] priors are often used for image modeling.

Recently, the deep image prior (DIP) [61], [62] has
attracted attention in computer vision and machine learning.
Ulyanov et al. [61], [62] have reported a very interesting
phenomenon of the fully convolutional generator network
[convolutional network (ConvNet)]. They claimed that the
structure of a generator network is sufficient to capture a
great deal of low-level image statistics prior to any learning.
Fig. 1(a) shows a conceptual illustration of the method of
DIP in an image inpainting task. The method of DIP opti-
mizes untrained (i.e., randomly initialized) weight parame-
ters of ConvNet for minimizing the squares’ loss between
its output and an observed image (e.g., a noisy/incomplete
image) and to stop the optimization before overfitting (to
noise). Then, the ConvNet, which learned from only a single
corrupted image, reconstructs its restorative one. This implies
that the structure of ConvNet itself plays a key role as
a prior/regularizer in image restoration tasks.

Ulyanov et al. [61] explained the reason why a
high-capacity ConvNet can be used as a prior with the
following statement: the network resists “bad” solutions and
descends much more quickly toward naturally looking images,
and its phenomenon of “impedance of ConvNet” was con-
firmed by several toy experiments. However, it is not fully
convinced by the above explanation because it does not say
how the impedance is produced. One of the key questions is
why must it be ConvNet? From a more practical perspective,
it is important to consider what are “priors in DIP” while
using simple and clear words (e.g., smoothness, sparseness,
and low-rank).

Here, we discuss the problem of insufficient understanding
of DIP. Suppose that we have data that are corrupted by noise,
blur, or low resolution, and we want to recover them. Think
about which model/prior to using from MRF, TV regulariza-
tion, low-rank approximation, BM3D, and DIP. It is clear that
it is best to choose the prior that best matches the given data,
but it is impossible to choose without an understanding of each
prior. At this time, it may be very difficult to select a method
whose prior cannot be explained in words, such as DIP.

This study attempts to make the “DIP” more interpretable
or explainable. For this purpose, the convolution operation
was divided into “embedding” and “transformation”
(see Fig. 2). Here, “embedding” stands for delay/
shift-embedding (i.e., Hankelization), which is a
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Fig. 1. Conceptual illustrations of DIP and the proposed manifold modeling
in the embedded space. A case for the image inpainting task. In both models,
we optimize some measure of similarity (distance or divergence) between the
observed image and the reconstructed (generated) image for selective pixels.
(a) DIP. (b) MMES (proposed).

Fig. 2. Decomposition of the 1-D and 2-D convolutions: a valid convolution
can be divided into a delay embedding/Hankelization and a linear transfor-
mation. The 1-D valid convolution of f with the kernel h = [h1, h2, h3] can
be represented by a matrix–vector product of the Hankel matrix and h. In a
similar way, a 2-D valid convolution can be represented by the matrix–vector
product of the block Hankel matrix and an unfolded (vectorized) kernel.

copy/duplication operation of the image patches by the sliding
window of the patch size (τ, τ ). The embedding/Hankelization
performs preprocessing to capture the delay/shift-invariant
feature (e.g., nonlocal similarity) of the signals/images. The
“transformation” is a simple linear transformation used in the
convolution operation (see Fig. 2). Furthermore, we consider
the extension of the linear transformation to nonlinear
transformation similar to nonlinearity used in the ConvNets.

This study considers the following novel network structures:
embedding H (linear), encoding φr (nonlinear), decoding
ψr (nonlinear), and backward embedding H† (linear) (see
Fig. 3). Note that its encoder–decoder part (φr , ψr ) can be
considered as a simple multilayer perceptron along with the
filter domain (i.e., manifold learning), and it is sandwiched
between forward and backward embedding (H, H†). Hence,
the proposed network can be characterized by manifold mod-
eling in embedded space (MMES). The proposed MMES
was designed to be as simple as possible while having an

Fig. 3. Comparison of a typical AE ConvNet and the proposed MMES
network.

essential ConvNet structure. The parameters τ and r in MMES
correspond to the kernel size and the filter size in ConvNet.

Fig. 3 shows the network structures of ConvNet and the
proposed MMES. When the horizontal dimension of the
hidden tensor was set L with r , each τ 2-dimensional fiber
in H, which is a vectorization of each (τ, τ )-patch of an
input image, is encoded into the r -dimensional space. Note
that the volume of the hidden tensor L appears to be larger
than the input/output image; however, the representation ability
of L is much lower than that of the input/output image space.
This is because the first/last tensor (H, H′) must have a
Hankel structure (i.e., its degree of freedom, or the number
of free parameters, is the same as that of the original image
although the size of the Hankel tensor is larger than that of the
original image), and the hidden tensor’s dimensions L have
been reduced from H. Here, if we assume that r ≤ τ 2, then its
low-dimensionality cannot be provided without the existence
of similar (τ, τ )-patches (i.e., self-similarity) in the image.
This would provide some “impedance” that passes self-similar
patches while resisting others. Each fiber of the hidden tensor
L represents a coordinate on the patch manifold of the image.

It should be noted that the MMES network is a special case
for deep neural networks. In fact, the proposed MMES can
be considered as a new kind of autoencoder (AE), in which
the convolution operations have been replaced by Hanke-
lization in preprocessing and postprocessing. Compared with
ConvNet, the forward and backward embedding operations
can be implemented by convolution and transposed convo-
lution with one-hot-filters (see Fig. 6 for details). Note that
the encoder–decoder part can be implemented by multiple
convolution layers with the kernel size (1, 1) and nonlinear
activations. The proposed model does not use the convolution
explicitly; however, it performs linear transformations and a
nonlinear activation in the “filter-domain” (i.e., the horizontal
axis of the tensors in Fig. 3).

The contributions in this study can be summarized as
follows: 1) a new and simple approach for image/tensor
modeling is proposed, which extends and simplifies the Con-
vNet as a combination of delay embedding and multilayer
perceptron; 2) the effectiveness of the proposed method
and its similarity to the DIP are demonstrated by extensive
experiments; and 3) most importantly, there is a prospect
for interpreting/characterizing the DIP as a “low-dimensional
patch-manifold prior.”
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II. RELATED WORKS

Note that the idea of a low-dimensional patch manifold has
been proposed by Osher et al. [45] and Peyre [50]. Peyre [50]
first formulated the patch manifold model for natural images
and applied it to dictionary learning and performing a manifold
pursuit. Osher et al. [45] formulated the regularization function
to minimize the dimension of patch manifold and solved
the Laplace–Beltrami equation by using the point integral
method. In contrast to these studies, this study decreased the
dimensions of the patch manifold by using AE, as shown
in Fig. 3.

A related technique, low-rank tensor modeling in embedded
space, was recently studied by [75]. However, the modeling
approaches here are quite different since it considered the mul-
tilinear approach, while we consider the nonlinear (manifold)
approach. Thus, our study can be interpreted as a manifold
version of [75] from the perspective of tensor completion
methods. Note that Yokota et al. [75] applied their model
to only the tensor completion task. Moreover, in this study,
we investigated not only the tensor completion but also super-
resolution, deconvolution, and denoising tasks.

Another related work is devoted to group sparse represen-
tation (GSR) [80]. The GSR is roughly characterized as a
combination of similar patch grouping and sparse modeling,
which is similar to the combination of embedding and man-
ifold modeling. However, the computational cost of similar
patch grouping is higher than embedding, and this task is
naturally included in manifold learning.

The main difference between the abovementioned studies
and our investigation is the motivation: essential and simple
image modeling can translate the ConvNet/DIP. The proposed
MMES has many connections with ConvNet/DIP, such as
embedding, nonlinear mapping, and training with noise.

From the perspective of DIP, there are several related works.
First, the deep geometric prior [68] uses the properties of
a multilayer perceptron for a shape reconstruction problem,
which efficiently learns a smooth function from 2-D space to
3-D space. It helps us understand DIP from the perspective of
manifold learning. For example, it can be used for gray-scale
image reconstruction if an image is regarded as a point cloud
in 3-D space (i, j, Xij ). However, this may not provide a good
image reconstruction, such as DIP. The reason for this is that
it smoothly interpolates a point cloud with a surface, such as a
Voronoi interpolation. In addition, it cannot exploit a property
of self-similarity for a natural image.

Second, a deep decoder [24] reconstructs natural images
from noises by non-ConvNets. These non-ConvNets have
linear channel/color transformations, ReLU, channel/color
normalization, and upsampling layers. In contrast, the DIP
employs an overparameterized network, while the deep
decoder uses an underparameterized network, and it shows
its ability in image reconstruction. Although the deep decoder
is a non-ConvNet, Hackel and Hand [24] have emphasized
the closed relationship between the convolutional layers in
DIP and the upsampling layers in the deep decoder. As a
result, Hackel and Hand [24] have claimed: “if there is no
upsampling layer, then there is no notion of locality in the
resultant image,” for the deep decoder. This implies that the
“locality” is the essence of the image reconstruction model,
and the convolution/upsampling layer provides it. Furthermore,

the deep decoder has a close relationship with the proposed
MMES. Note that the MMES essentially has a decoder and an
inverse multiway-delay embedding transform (MDT) [see (6)],
and the encoder is used for satisfying the Hankel structure.
The decoder and the inverse MDT in the proposed MMES
correspond to the linear operation and the upsampling layer
in the deep decoder, respectively. Note that the concept of
underparameterization is also similar to the MMES.

Convolutional sparse coding (CSC) [47], [48] also has close
relations with the proposed MMES. The CSC model represents
the image by multiplication of a convolutional dictionary
matrix with a sparse vector. Papyan et al. [47] analyzed
convolutional neural networks (CNNs) using the CSC model.
In fact, the CSC model can be reformulated by using backward
embedding of patches generated by sparse coding (see the
Appendix), i.e., each patch is a linear combination of few
atoms of the redundant local dictionary. Its sparse coding
corresponds to our AE in terms of manifold learning. The main
difference between CSC and MMES is that we used the Han-
kel constraint to generate patches. In our MMES, overlapped
patches generated by AE are dependent on each other by the
Hankel constraint; however, the overlapped patches generated
by sparse coding in the CSC model are independent. In other
words, the main difference is in the principles of generative
patches. The patches in MMES directly represent local patches
in images, while the patches in CSC are “bases” of patches in
images.

From this, the essence of the image model is the “locality,”
and its locality is provided by “convolution,” “upsampling,”
or “delay embedding.” This is why image restoration from a
single image with deep ConvNets has received wide attention,
which is otherwise known as zero-shot learning, internal
learning, or self-supervised learning [2], [5], [33], [34], [36],
[56], [70].

Furthermore, recently, two generative models, SinGAN [53]
and InGAN [55], have been proposed, and they were trained on
a single image. The key concept of both works is to impose
the constraint for local patches of the image to be natural.
From the perspective of the constraint for local patches of the
image, the MMES has a closed relationship with these works.
However, our study explicitly imposes a low-dimensional
manifold constraint for the local patches rather than adversarial
training with patch discriminators.

In addition, supervised learning using ConvNet plays an
important role in image restoration tasks [12], [13], [31],
[36], [81]. The basic idea of the supervised image restora-
tion method is to learn a nonlinear map from the corrupted
image x to its original image y by using a large number of
pairs {xi , yi }Ntrain

i=1 . The dimensionality of image input/output
(e.g., 1282 and 2562) is very high; however, it has been
reported that the learning image restoration ConvNet can work
well with a relatively small number of training samples (e.g.,
91 in SRCNN [12], 500 in FBPConvNet [31], and 400 in
DnCNN [81]). After all, surprisingly, it has been demonstrated
that ConvNet works well with even zero training data in the
study of DIP [61], [62]. This makes us focus on the structure
of ConvNet in image restoration tasks.

Regarding embedding, it is often studied that a large number
of data can be embedded into latent space for representation
learning, such as in [39] and [44]. The motivation of delay
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Fig. 4. Flow of the multiway-delay-embedding operation (N = 2).

embedding in this study is similar to the above, but we
consider a case for which we do not have a large amount
of data but only a single image with noise, missing pixels,
or low resolution. Thus, we embed local patches of a single
image rather than a large set of training samples of images.
In our case of delay embedding, overlapped local patches are
strongly dependent on each other, while training samples are
independent in general embedding.

III. MANIFOLD MODELING IN EMBEDDED SPACE

In this section, we explain, in detail, the proposed method
based on the concept of MMES. In addition, this section sys-
tematically derives the MMES structure from it. Conceptually,
the proposed tensor reconstruction method can be formulated
by

min
X
‖Y − F(X )‖2F

s.t. H(X ) = [h1, h2, . . . , hT ] =: H

ht ∈Mr for t = 1, 2, . . . , T (1)

where Y ∈ R
J1×J2×···×JN is an observed corrupted ten-

sor, X ∈ R
I1×I2×···×IN is an estimated tensor, F :

R
I1×I2×···×IN → R

J1×J2×···×JN is a linear operator, which
represents the observation system, H : RI1×I2×···×IN → R

D×T

is padding, and a Hankelization operator with a sliding window
of size (τ1, τ2, . . . , τN ). In addition, each vector ht is imposed,
so it can be a point in a r -dimensional manifold Mr that
is embedded in the D-dimensional Euclidean space, which
results in r ≤ D. For simplicity, D := ∏

n τn and T :=∏
n(In + τn − 1). A linear operator F can be different for

different tasks. For the tensor completion task, F = P� is a
projection operator for the support set � so that the missing
elements are set to be zero. For the super-resolution task, F
is a downsampling operator for the images/tensors. For the
deconvolution task, F is a convolution operator with some blur
kernels. For the denoising task, F is an identity map. Fig. 1(b)
shows the concept of the proposed manifold modeling for
image inpainting/completion (i.e., N = 2). The distance was
minimized between the observation Y and the reconstruction
X with its support �. In addition, all patches in X should
be included in some restricted manifold Mr . In other words,
X is represented by the patch manifold, and the property of
the patch manifold can be image priors. For example, the low
dimensionality of the patch manifold restricts the nonlocal
similarity of the images/tensors, and it would be related to the
“impedance” in DIP. In addition, X was modeled indirectly
by designing the properties of the patch manifold Mr .

A. Multiway-Delay Embedding for Tensors

MDT is a multiway generalization of Hankelization that was
proposed by [75].

In [75], MDT is defined using the multilinear tensor product
with multiple duplication matrices and tensor reshaping. The
same operation was used; however, a padding operation was
added. Thus, multiway-delay embedding used in this study is
defined by

H(X ) := unfold(D,T )(padτ (X )×1 S1 . . .×N SN ) (2)

where padτ : R
I1×···×IN → R

(I1+2(τ1−1))×···×(IN+2(τN−1))

is a N-dimensional reflection padding operator
of tensors, Sn ∈ R

τn (In+τn−1)×(In+2(τn−1)) is a
duplication matrix (see Figs. 4 and 5), and unfold(D,T ) :
R
τ1(I1+τ1−1)×···×τN (IN+τN−1) → R

D×T is an unfolding
operator, which outputs a matrix from an input N-th order
tensor.

For example, the proposed Hankelization with reflection
padding of x = [x1, x2, . . . , x7]T with τ = 3 is given by

[x1, x2, x3, x4, x5, x6, x7]T
pad3−→[x3, x2, x1, x2, x3, x4, x5, x6, x7, x6, x5]T
Hankelize−→

⎛
⎝x3 x2 x1 x2 x3 x4 x5 x6 x7

x2 x1 x2 x3 x4 x5 x6 x7 x6
x1 x2 x3 x4 x5 x6 x7 x6 x5

⎞
⎠ .

(3)

Fig. 4 shows an example of the proposed multiway-delay
embedding in the case of second-order tensors. The overlapped
patch grid is constructed by the multilinear tensor product with
Sn . Finally, all the patches were split, lined up, and vectorized.

The Moore–Penrose pseudoinverse of H is given by

H†(H) = trimτ

(
fold(D,T )(H)×1 S†

1 · · · ×N S†
N

)
(4)

where S†
n := (ST

n Sn)
−1 ST

n is the pseudoinverse of Sn

fold(D,T ) := unfold−1
(D,T ) and trimτ = pad†

τ is a trimming
operator for removing the (τn − 1) elements at the start and
the end for each mode. Note that H† ◦H is an identity map;
however, H ◦H† is not since it is a projection.

1) Delay Embedding Using Convolution: Delay embedding
and its pseudoinverse can be implemented using a convolution,
in which the kernels are one-hot-tensor windows of size
(τ1, τ2, . . . , τN ). The one-hot-tensor windows can be provided
by folding a D-dimensional identity matrix I D ∈ R

D×D into
I D ∈ R

τ1×···×τN×D . Fig. 6 demonstrates the calculation flow
for multiway delay embedding, which uses the convolution
for the case where N = 2. The multilinear tensor product was
replaced with a convolution using the one-hot-tensor windows.
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Fig. 5. Duplication matrix S ∈ R
τ(I−τ+1)×I . In the case where there are I

columns, it consists of the (I − τ + 1) identity matrices with the size (τ, τ ).

Fig. 6. Multiway-delay embedding using 2-D-convolution (N = 2).
Functionality is the same as the flow shown in Fig. 4; only the implementation
is different.

The pseudoinverse convolution with padding was provided
with its adjoint operation. This is called the “transposed convo-
lution” in some neural network libraries, and there is trimming
and simple scaling with D−1. Note that this implementation
can perform the equivalent function of MDT and its inverse
defined in (2) and (4), respectively. It allows us to implement
the proposed method easily by using neural network libraries.

B. Definition of Low-Dimensional Manifold

This study considered AE when defining the r -dimensional
manifold Mr in the (

∏
n τn)-dimensional Euclidean space as

follows:
Mr := {ψ̂r (l) | l ∈ R

r }

(ψ̂r , φ̂r ) := argmin
(ψr ,φr )

T∑
t=1

‖ht − ψrφr (ht )‖22 (5)

where φr : R
D → R

r is an encoder, ψr : R
r → R

D is a
decoder, and ψ̂r φ̂r : RD → R

D is an AE that was constructed
from {ht }Tt=1. Note that, in general, the use of AE models
is a widely accepted approach for manifold learning [25].
The properties of the manifold Mr are determined by the
properties of φr and ψr . By employing multilayer perceptrons
(neural networks) for φr and ψr , the encoder–decoder may
provide a smooth manifold.

C. Problem Formulation

In this section, the conceptual formulation (1) and the AE
guided manifold constraint were combined to derive a practical
optimization problem. First, a tensor X was redefined as an
output of the generator

X := H†[h1, h2, . . . , hT ], where ht ∈Mr

= H†[ψ̂r (l1), ψ̂r (l2), . . . , ψ̂r (lT )] (6)

where l t ∈ R
r and H† is the pseudoinverse of H. At this

moment, X is a function of {l t }Tt=1; however, the Hankel
structure of the matrix H cannot always be guaranteed under
the unconstrained condition of l t . By guaranteeing the Hankel
structure of the matrix H , it was further transformed as
follows:

X := H†[ψ̂r φ̂r (g1), ψ̂r φ̂r (g2), . . . , ψ̂r φ̂r (gT )],
= H†Ar [g1, g2, . . . , gT ]
= H†ArH(Z) (7)

where Ar : R
D×T → R

D×T was inserted as an operator,
which autoencodes each column of the input matrix with
(ψ̂r , φ̂r ) and [g1, g2, . . . , gT ] as a matrix. This has a Hankel
structure, and it was transformed by the Hankelization with
some input tensors Z ∈ R

I1×I2×···×IN . Note that the tensor
Z is the most compact representation for the Hankel matrix
[g1, g2, . . . , gT ]. Since Ar is an AE, which enforces the
outputs to be as close as possible similar to the inputs by
using low-dimensional representations, ArH(Z) is estimated
to be a Hankel matrix.

Therefore, the constraint of X is in the original optimization
problem (1), and it is replaced with (7)

min
Z
‖Y − F(X )‖2F ,

s.t. X = H†ArH(Z). (8)

Note that the optimization parameter X in (1) is replaced with
Z in (8). This is because X is a function of Z . By substituting
the constraint into the objective function, the problem (8) is
transformed as minimizeZ ‖Y − F(H†ArH(Z))‖2F , where
Ar is an AE, which defines the manifold Mr . Note that the
problems (1) and (8) are slightly different because the original
constraint imposes H to be strictly Hankel in contrast to the
modified constraint that imposes ArH(Z) to be a Hankel.
This difference is due to the difficulty of the constraints of the
“Hankel structure” and a “low-dimensional representation” for
the matrix H .

In this study, the AE/manifold is learned from the observed
tensor Y ; thus, the optimization problem is formulated as

min
Z,Ar

‖Y − F(H†ArH(Z))‖2F︸ ︷︷ ︸
=:Lrec

+ λ ‖H(Z)−ArH(Z)‖2F︸ ︷︷ ︸
=:LAE

(9)

where the first and second terms are referred by a reconstruc-
tion loss and an autoencoding loss, and λ > 0 is a tradeoff
parameter for balancing both losses.

Finally, it should be noted that (7) describes the MMES
network shown in Fig. 3. This includes H, φ̂r , ψ̂r , and
H†, which, respectively, correspond to forward embedding,
encoding, decoding, and backward embedding. The encoder
and decoder can be defined by the multilayer perceptrons
(i.e., repetition of the linear transformation and nonlinear
activation).

D. Design of the Autoencoder

This section discusses how to design the neural network
architecture of the AE for restricting the manifold Mr . The
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Fig. 7. Example of the architecture of the AE.

simplest way is controlling the value of r , and it directly
restricts the dimensionality of the latent space. There are many
other possibilities: Tikhonov regularization [20], dropout [16],
denoising AE (DAE) [41], [65], variational AE [10], adver-
sarial AE [7], [42], and alpha-GAN [52], among others. All
methods have some perspective and promise; however, the cost
is not low. This study selected an attractive and fundamental
method: the “DAE” [65]. The DAE is attractive because it has
a strong relationship with the Tikhonov regularization [3], and
it decreases the entropy of the data [57]. Furthermore, learning
with noise was also employed for the DIP.

Finally, an AE was designed that controls the dimension
r and the standard deviation σ of the additive zero-mean
Gaussian noise. Fig. 7 provides an illustration of the examples
of architecture for the AE that was used in this study. The
sizes of the hidden variables affect the representation ability
for image reconstruction.

E. Optimization

The optimization problem (9) consists of two terms: a recon-
struction loss and an autoencoding loss. The hyperparameter
λ was set to balance both losses. In essence, λ should be
large because the autoencoding loss should be zero. However,
a very large λ prohibits minimization of the reconstruction
loss, which may lead to local optima. Therefore, the value of
λ was gradually adjusted in the optimization process.

Algorithm 1 shows an optimization algorithm for the tensor
reconstruction and/or enhancement. A strategy of DAE was
employed for AE learning. Adaptation of λ is an example,
and it can be modified appropriately with data and tasks. Here,
the tradeoff parameter λ is adjusted for keeping Lrec > LAE;
however, there is no large gap between both losses. By exploit-
ing the convolutional structure of H and H†, the calculation
flow of Lrec and LAE can easily be implemented using neural
network libraries, such as TensorFlow. This study employed
the Adam [32] optimizer for updating (Z,Ar ).

F. Computational Complexity

Here, we discuss the computational complexity of the pro-
posed MMES and ConvNet used in DIP. Let us assume that the
total number of pixels is T and delay-embedding dimension
is D, and the computational complexity of delay embedding H
or its inverse H† is O(DT ). Then, the computational complex-
ity of the AE is O(D2T ). On the other hand, the computational
complexity of ConvNet is O(kc2 T ), where k is the size of
the convolutional kernel and c is the number of channels/filters
for input/output feature maps. For example, when we consider
(8, 8)-patches, the embedded dimension is D = 64. Since DIP
uses the (3, 3)-kernel and the number of channels/filters is 128,
e.g., k = 9 and c = 128, in the abovementioned case, we have

Algorithm 1 Optimization Algorithm for Tensor Reconstruc-
tion

input: Y ∈ R
J1×···×JN (corrupted tensor), F , τ , r , σ ;

initialize: Z ∈ R
I1×···×IN , auto-encoder Ar , λ = 5.0;

repeat
H ← H(Z) ∈ R

D×T with τ ;
generate noise E ∈ R

D×T with σ ;
LAE ← ‖H −Ar (H + E)‖2F ;
Lrec ← 1

D ‖Y − F(H†Ar (H + E))‖2F ;
update (Z,Ar ) by Adam for Lrec + λLAE;
if Lrec < LAE then λ← 1.1λ; else λ← 0.99λ;

until converge
output: X̂ = H†ArH(Z) ∈ R

I1×···×IN (reconstructed
tensor);

Fig. 8. Generator network in a case of RGB color-image recovery.

D2 T < kc2T . Thus, the computational complexity of MMES
is slightly smaller than that of the original DIP in most cases.

G. Special Setting for Color-Image Recovery

In the case of the multichannel or color-image recovery,
a special setting for the generator network was used. This is
because the spatial pattern of individual channels is similar,
and the patch manifold can be shared. Fig. 8 shows an
illustration of the AE shared version of MMES in the case
of color-image recovery. In this case, three channels were
inputted, and each channel input was embedded independently.
Then, three block Hankel matrices were concatenated and
autoencoded simultaneously. The inverted three images were
stacked as a color-image (third-order tensor). Finally, the mul-
tichannel image is color-transformed. The last color-transform
can be implemented by a convolution layer with a kernel size
(1, 1), and it is also optimized as the parameters. It should
be noted that the three input channels are not necessary for
corresponding to RGB; however, it would be optimized with
compact color-representation.

IV. EXPERIMENTS

This section shows the extensive experimental results that
demonstrate the similarity and some slight differences between
the DIP and MMES. First, toy examples with a time-series
signal and a gray-scale image were recovered by the proposed
method to show its basic behaviors. Second, hyperparameter
sensitivity was demonstrated to get a sense for adjusting the
parameters and show the effects of DAE. Third, the phe-
nomenon of noise impedance in MMES was demonstrated
in comparison to the DIP. Finally, the results are presented
in comparison to the DIP and other selective methods for
color-image inpainting, super-resolution, deconvolution, and
denoising tasks.
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Fig. 9. Time-series signal recovery of the subspace and manifold models in
the embedded space.

Fig. 10. 2-D (8, 8)-patch manifold that was learned from a gray-scale image
of “Lena” with 50% of missing pixels.

A. Toy Examples

In this section, the proposed method was applied to a toy
example of signal recovery. Fig. 9 shows the results of this
experiment. A 1-D time-series signal was generated from
the Lorentz system. This signal was corrupted by additive
Gaussian noise, random missing, and three block occlusions.
The corrupted signal was recovered by the subspace model-
ing [75] and the proposed manifold modeling in the embedded
space. The window size of the delay embedding was τ = 64,
the lowest dimension of the AE was r = 3, and the additive
noise standard deviation was set to σ = 0.05. The structure
of the Lorentz attractor was caught more effectively through
manifold modeling than the subspace modeling.

Fig. 10 visualizes a 2-D (8, 8)-patch manifold that was
learned by the proposed method from a 50% missing
gray-scale image of “Lena.” For this figure, this study set the
parameters as follows: τ = [8, 8], r = 2, and σ = 0.05.
Similar patches were located near each other, and a smooth
change of the patterns was observed. This implies that the
relationship between the nonlocal similarity-based methods
[4], [9], [22], [80] and the manifold modeling (i.e., DAE) plays
a key role for “patch grouping” for the proposed method. The
difference from the nonlocal similarity-based approach is that
manifold modeling is “global” rather than “nonlocal.” In other
words, the MMES finds similar patches for the target patch
from the whole image area rather than its neighborhood area.

1) Optimization Behavior: This experiment recovered 50%
of the missing gray-scale image of “Lena.” The optimization
algorithm was stopped after 20 000 iterations. The learning
rate was set as 0.01, and the learning rate was decayed by
0.98 for every 100 iterations. λ was adapted by the algo-
rithm 1 for every ten iterations. Fig. 11 shows the optimization

Fig. 11. Optimization behavior of MMES during reconstruction of “Lena”
with 50% missing pixels.

Fig. 12. Reconstructing the color image of “Lena” with 99% pixels missing
for the various values of r and noise level.

behavior of the reconstructed image, the reconstruction loss
Lrec, the autoencoding loss LDAE, and the tradeoff coefficient
λ. By using the tradeoff adjustment, the reconstruction loss and
the autoencoding loss were intersected around 1500 iterations.
In addition, both losses jointly decreased after the intersection
point.

B. Hyperparameter Sensitivity

The sensitivity of the MMES was evaluated with three
hyperparameters: r , σ , and τ . First, the patch size was
fixed as (8, 8), and the dimension r and the noise standard
deviation σ varied. Fig. 12 shows the reconstruction results of
a 99% missing image of “Lena” by the proposed method with
different settings for (r, σ ). The proposed method with very
low dimensions (r = 1) provided blurred results, whereas the
proposed method with very high dimensions (r = 64) provided
results that had many peaks. Furthermore, an appropriate noise
level (σ = 0.05) can provide sharp and clean results. As a
reference, Fig. 13 shows the difference of the DIP optimized
with and without noise. From these results, the effects of
learning with noise can be confirmed.

Next, the noise level was fixed as σ = 0.05, and the patch
size varied with some values of r . Fig. 14 shows the results
with various patch-size settings for recovering a 99% missing



YOKOTA et al.: MMES: INTERPRETABLE ALTERNATIVE TO DIP 1029

Fig. 13. Reconstruction of the ‘home’ image by training with/without noise
in the DIP with 99% missing pixels.

Fig. 14. Reconstruction of the “Lena” image for various patch sizes τ .

image. The patch sizes τ of (8, 8) or (10, 10) were appropriate
for this case. The patch size is very important because it
depends on the variety of patch patterns. If the patch size is too
large, then the patch variations might expand, and the structure
of the patch manifold is complicated. In contrast, if the patch
size is too small, then the information obtained from the
embedded matrix H is limited, and reconstruction becomes
difficult in the highly missing cases. The same problem might
occur for all the patch-based image reconstruction methods
[4], [9], [22], [80]. However, good patch sizes would be
unique for different images and types/levels of corruption.
In addition, the estimation of a good patch size is an open
problem. A multiscale approach [74] may partially help with
this issue; however, the patch size is still fixed or tuned as a
hyperparameter.

C. Noise Impedance of MMES

This section reproduces the demonstration of the noise
impedance in [61] with the proposed MMES. Four target
color images, a natural image, a natural image with noise
∼N (0, 202), a pixel-shuffled image, and an image of uniform
noise, were prepared and are displayed in Fig. 15(a). They
were reconstructed using DIP and MMES. In both methods,
the mean square error between the target and the reconstructed
images was recorded for each iteration. The learning rate was
set as 0.01, and the learning rate was decayed by 0.98 for
every 100 iterations. In MMES, the tradeoff parameter λ was
dynamically adjusted so that the autoencoding loss LDAE does
not exceed some small value.

Fig. 15(b) and (c) shows the optimization behavior of DIP
and MMES when reconstructing the four target images. First,
a natural image was reconstructed rapidly for both DIP and
MMES. The optimization of the noisy image for DIP and
MMES was slower than the noise-free image, and both curves
were similar. The curves of the shuffled and uniform images of
MMES were also similar to DIP. This implies that the MMES
has noise impedance.

D. Comparisons
This section displays the experimental results of the perfor-

mance comparison for four tasks: tensor completion, super-
resolution, deconvolution, and denoising.

1) Color-Image Completion, for an Extremely High Ratio
of Missing Pixels: This section compares the performance
of the proposed method with several selected unsupervised

TABLE I

PARAMETER SETTINGS FOR THE MMES IN THE
IMAGE COMPLETION EXPERIMENTS

tensor completion/image inpainting methods. This includes the
low-rank tensor completion (HaLRTC) [40], parallel low-rank
matrix factorization (TMac) [72], tubal nuclear norm regular-
ization (tSVD) [84], Tucker decomposition with a rank incre-
ment (Tucker inc.) [75], low-rank and total-variation (LRTV)
regularization1 [76], [77], smooth PARAFAC tensor comple-
tion (SPC)2 [79], GSR3 [80], multiway delay embedding based
on Tucker modeling (MDT-Tucker)4 [75], and DIP5 [61].

For these experiments, the hyperparameters of all the
methods were manually tuned to obtain the best peak-
signal-to-noise ratio (PSNR) and for the structural similarity
(SSIM). For DIP, it is impossible to investigate all the network
structures since there were various kernel sizes, filter sizes,
and depths. Instead, a “default architecture” was employed
[61], and the details are available in the Supplementary
Material.6 For this investigation of DIP, the best number of
intermediate iterations was employed for each image based
on the value of the PSNR during the optimization. For the
proposed MMES method, this study handly tuned the patch
size τ and the dimension r for each image. Table I shows
the parameter settings of τ = [τ, τ ], and r for MMES. The
noise level of the DAE was set as σ = 0.05 for all the
images. For the AE, the same architecture shown in Fig. 7
was employed. The initial learning rate of Adam optimizer
was 0.01. In addition, the learning rate was decayed by
0.98 for every 100 iterations. The optimization was stopped
after 20 000 iterations for each image.

Fig. 16(a) shows the eight test images and averages of
the PSNR and SSIM for the various missing ratios {50%,
70%, 90%, 95%, 99%} and the selective competitive methods.
The proposed method is quite competitive with DIP. Fig. 17
shows the illustration of the results. As a result, 99% of the
randomly selected voxels were removed from the 3-D (256,
256, 3)-tensors; furthermore, the tensors were recovered by
various methods. Low-rank priors (HaLRTC, TMac, tSVD,
and Tucker) were unable to recover a highly incomplete image.
In piecewise smoothness prior (LRTV), the oversmoothed
images were reconstructed since the essential image properties
could not be captured. There was somewhat of a jump from
them by the SPC (i.e., smooth prior of basis functions for
low-rank tensor decomposition). The MDT-Tucker further

1For LRTV, software was downloaded from https://sites.google.com/site/
yokotatsuya/home/software/lrtv_pds

2For SPC, software was downloaded from https://sites.google.com/site/
yokotatsuya/home/software/smooth-parafac-decomposition-for-tensor-
completion

3For GSR, each color channel was recovered, independently, using software,
which was downloaded from https://github.com/jianzhangcs/GSR

4For MDT-Tucker, software was downloaded from https://sites.google.com/
site/yokotatsuya/home/software/mdt-tucker-decomposition-for-tensor-
completion

5For DIP, this was implemented in Python with TensorFlow.
6https://dmitryulyanov.github.io/deep_image_prior
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Fig. 15. Optimization behavior of DIP and MMES for the different target images. (a) Four target images. (b) and (c) Convergence behavior of DIP and
proposed MMES. The natural image is optimized faster than the noisy images for DIP and MMES.

Fig. 16. Comparison of averages of PSNR and SSIM. (a) Eight color images
were used for task completion with various missing rates (from 50% to 99%
missing pixels). (b) Nine color images were used for the super-resolution
task with three settings. (c) Seven color images were used for the denoising
task with various noise levels. (a) Completion task. (b) Superresolution task.
(c) Denoising task.

improves it by exploiting the shift-invariant multilinear basis.
GSR recovered the global pattern of the images; however,
the details are insufficient. Finally, the images reconstructed
by the DIP and MMES were of significantly high quality for
both global and local patterns of the images.

2) Volumetric/3-D Image/Tensor Completion: This section
presents the results of the MR-image/3-D-tensor completion
problem. The size of the MR image is (109, 91, 91). This
study randomly removed 50%, 70%, and 90% of the voxels of
the original MR-image and recovered the missing MR-images
by the proposed method and DIP. For DIP, this study imple-
mented the 3-D version of the default architecture in the
TensorFlow; however, the number of filters of shallow
layers was slightly reduced because of the GPU memory
constraint. For the proposed method, the 3-D patch size was
set as τ = [4, 4, 4], the lowest dimension was r = 6, and the

noise level was σ = 0.05. The same architecture that is shown
in Fig. 7 was employed.

Fig. 18 shows the reconstruction results and the behavior
of the PSNR with the final value of the PSNR/SSIM in
this experiment. From the values of the PSNR and SSIM,
the proposed MMES outperforms the DIP in the cases of
a low missing rate. In addition, it is quite competitive for
highly missing cases. Degradation of the DIP might have
occurred due to the insufficiency of the filter sizes since there
are many filter sizes that are required for 3-D ConvNet than
2-D ConvNet. Moreover, the computational run time that is
required by the MMES is significantly reduced compared with
DIP.

3) Color-Image Super-Resolution: This section compares
the performance of the proposed method with several unsuper-
vised image super-resolution methods. This includes bicubic
interpolation, GSR7 [80], ZSSR8 and DIP [61].

In these experiments, DIP was conducted with the best
number of iterations from {1000, 2000, 3000, . . . , 9000}. For
four times (x4) upscaling in MMES, the following parameters
were set: τ = 6, r = 32, and σ = 0.1. For eight times
(x8) upscaling in MMES, the following parameters were set:
τ = 6, r = 16, and σ = 0.1. For all the images in MMES,
the architecture of the AE consists of three hidden layers
with sizes of [8τ 2, r, 8τ 2]. It was assumed that the same
Lanczos2 kernel was used for the downsampling system for
all the super-resolution methods.

Fig. 16(b) shows the nine test images and the averages of
the PSNR and SSIM for the three super-resolution settings.
This study used three (256, 256, 3) color images and six (512,
512, 3) color images. Super-resolution methods recovered the
four or eight times downscaled images. According to this
quantitative evaluation, bicubic interpolation was clearly worse
than the others were. In essence, GSR, DIP, and MMES were
very competitive. In particular, DIP was slightly better than
GSR, and the proposed MMES was slightly better than DIP.

Fig. 19 shows the selected high-resolution images that were
reconstructed by the four super-resolution methods. In general,
the bicubic method reconstructed the blurred images and
these were visually worse than the others were. The GSR

7For GSR, each color channel was recovered, independently, using software
that was downloaded from https://github.com/jianzhangcs/GSR. We slightly
modified the code by applying it to the super-resolution task.

8For ZSSR, software was downloaded from https://github.com/
assafshocher/ZSSR. This study set the same Lanczos2 kernel for the
super-resolution task.
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Fig. 17. Completion results from images with 99% randomly distributed missing pixels by HaLRTC [40], TMac [72], tSVD [84], Tucker inc. [75], LRTV [76],
SPC [79], GSR [80], MDT-Tucker [75], DIP [61], and the proposed MMES.

Fig. 18. Results of the MRI completion. (a) Illustration of the MRI reconstructed from a 90% missing tensor and (b) optimization behaviors of PSNR with
the final values of PSNR/SSIM by the DIP and the proposed MMES.

results had smooth outlines in all the images; however, these
were slightly blurred. As demonstrated, ZSSR was weak for
very low-resolution images. DIP reconstructed visually sharp
images; however, these images had jagged artifacts along the
diagonal lines. The proposed MMES reconstructed the sharp
and smooth outlines.

4) Color-Image Deconvolution: This section compares
the proposed method with DIP for the image deconvolu-
tion/deblurring task. Three (256, 256, 3) color images were
prepared and blurred using three different Gaussian filters.
For DIP, this study chose the best early stopping time from
{1000, 2000, . . . , 10 000} iterations. For MMES, the fixed AE
structure was employed as [32τ 2, r, 32τ 2], and the parameters
were τ = 4, r = 16, and σ = 0.01 for all the nine cases.
Fig. 20 shows the reconstructed deblurring images by DIP and
MMES with these PSNR and SSIM values. It can be observed
that the methods are similar to qualitatively and quantitatively.

5) Color-Image Denoising: This section compares the
performance of the proposed method with that of several
selected unsupervised image denoising methods: CBM3D9 [8],
MCWNNM10 [71], and DIP [61]. This study synthetically
generated noisy images by additive Gaussian noise with vari-
ous standard deviations ranging from {20, 30, 40, 50, 60, 70}.

In these experiments, both DIP and MMES were conducted
with the best number of iterations from {100, 200, 300,…,
9900} with the same early stopping strategy. For all the images
in MMES, the architecture of the AE consists of three hidden
layers with sizes of [8τ 2, r, 8τ 2], and the parameters were set
as τ = 6, r = 36, and σ = 0.05. The tradeoff parameter λ

9For CBM3D, software was downloaded from http://www.cs.tut.fi/~foi/
GCF-BM3D

10For MCWNNM, software was downloaded from https://github.com/
csjunxu/MCWNNM_ICCV2017
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Fig. 19. Comparison of performance of super-resolution with state-of-the-art methods. The first and second lines “Lena” and “Peppers” were upscaled from
(128, 128, 3) to (512, 512, 3). The third line “Leaves” was upscaled from (64, 64, 3) to (256, 256, 3). The fourth line “Airplane” was upscaled from (64, 64, 3)
to (512, 512, 3).

Fig. 20. Comparison of the proposed approach with DIP for the deconvolution/deblurring task. Three color images were blurred by three Gaussian windows
for different sizes. These were recovered by the DIP and the proposed MMES. The MMES provides consistently better performance.

was controlled to keep the low AE loss LDAE and smoothly
minimize the reconstruction loss Lrec.

Fig. 16(c) shows the seven test images and the averages of
the PSNR and SSIM for the various noise levels. According
to this quantitative evaluation, CBM3D was the best for
PSNR and SSIM, and DIP was slightly worse than the other
methods. This study revealed that MCWNNM and MMES
were competitive.

Fig. 21 shows that the selected images were recon-
structed by four denoising methods. MCWNNM reconstructed
the natural smooth images; however, it tends to remove
too many signal components. In contrast, DIP and MMES
tend to leave noise components. CBM3D provided a good

balance by removing the noise while keeping the signal
components.

From these results, DIP and MMES were still similar for
the denoising problem. Both methods have the same limitation
regarding the difficulty of the early stopping strategy, which
is equivalent to the difficulty of tuning the hyperparameters
for the denoising problem. This includes noise estimation and
rank estimation.

V. INTERPRETATION OF MMES TOWARD

EXPLAINING DIP
It is well known that there is no mathematical definition

of interpretability in machine learning, and there is no unique
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Fig. 21. Denoising results for cases where the noise standard deviation is 40.

definition for interpretation. We understand interpretability as a
degree to which a human can consistently predict the model’s
results or performance. The higher the interpretability of a
deep learning model, the easier it is for someone to com-
prehend why a certain performance, prediction, or expected
output can be achieved. It is believed that a model is more
interpretable than another model if its performance or behavior
is easier for a human to comprehend than the performance of
the other models.

A. From the Perspective of Dimensionality
Reduction/Manifold Learning

Manifold learning and the associated AE can be viewed as
the generalized nonlinear version of the principal component
analysis (PCA). In fact, manifold learning solves the key
problem of dimensionality reduction very efficiently. In other
words, manifold learning (modeling) is an approach to non-
linear dimensionality reduction. Manifold modeling for this
task is based on the idea that the dimensionality of many
data sets is only artificially high. Although the patches of
the images (data points) consist of several tens of pixels,
they may be represented as a function of only a few or
a limited number of underlying parameters. In other words,
the patches are samples from a low-dimensional manifold that
is embedded in a high-dimensional space. Manifold learning
algorithms attempt to uncover these parameters in order to find
a low-dimensional representation of the images.

With the MMES approach, this study applied original
embedding via multiway delay embedding transform (MDT
or Hankelization). The proposed algorithm is based on the

optimization of the cost function, and it works toward extract-
ing the low-dimensional manifold that is used to describe the
high-dimensional data. The manifold is described mathemati-
cally by (5), and the cost function is formulated by (9).

B. Regarding Our Attempt to Interpret “Noise Impedance
in DIP” via MMES

As mentioned in Section I, Ulyanov et al. [61] reported an
important phenomenon of noise impedance for the ConvNet
structures. The experiments in this study demonstrated that the
MMES has a noise impedance that is shown in Fig. 15. This
subsection provides a discussion of the noise impedance in
DIP through the MMES.

Let us consider the sparse-land model [14], [15].
The noise-free images were distributed along with the
low-dimensional manifolds in the high-dimensional Euclid-
ean space and the images perturbed by the noises thicken
the manifolds (i.e., make the manifolds’ dimensions higher).
By assuming that the image patches are sampled from the
low-dimensional manifold, such as the sparse-land model,
it is difficult to put noisy patches on the low-dimensional
manifold. Let us consider fitting the network for noisy images.
In such a case, the fastest way for decreasing the squared error
(loss function) is to learn “similar patches,” which frequently
appears in a large set of image patches. Note that finding sim-
ilar image patches for denoising is a well-known problem that
has been solved (e.g., by the BM3D algorithm). In contrast,
the proposed AE automatically maps similar patches into close
points for a low-dimensional manifold. When similar patches
have some noise, the low-dimensional representation tries to
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keep the common components of the similar patches while
reducing the noise components. This has been proven by Alain
and Bengio [1] so that a (denoising) AE maps the input image
patches toward higher density portions in the image space.
In other words, a (denoising) AE has a force to reconstruct
the low-dimensional patch manifold. As a result, this is a rough
explanation for the noise impedance phenomenon. Although
the proposed MMES and DIP are not completely equivalent,
there are many analogies and similarities. It is believed that the
proposed MMES model and the associated learning algorithm
provide some new insights for the DIP.

VI. CONCLUSION AND DISCUSSION

A beautiful manifold representation of the complicated
signals in the embedded space was originally discovered
in a study that performed dynamical system analysis (i.e.,
chaos analysis) for time-series signals [46]. Afterward, many
signal processing and computer vision applications have been
studied; however, most methods have considered only a
linear approximation because of the difficulty of nonlinear
modeling [11], [38], [43], [58], [63]. Currently, the study
of nonlinear/manifold modeling has significantly progressed
with deep learning, and it was successfully applied in this
study. We were able to apply this nonlinear system analysis
not only for the time-series signals but also for the natural
color images and tensors (this is an extension of the delay
embedding to multiway delay embedding). To the best of our
knowledge, this is the first study that applies Hankelization
with AE into the general tensor for data reconstruction for
a wide spectrum of applications: denoising, super-resolution,
deblurring, inpainting, and so on.

MMES is a novel and simple image/tensor reconstruc-
tion model based on the low-dimensional patch-manifold
prior, and it has many connections to ConvNet. We believe
that it helps us understand how ConvNet/DIP work
through MMES while supporting its use to DIP for var-
ious applications, such as tensor/image reconstruction or
enhancement [17], [19], [64], [78].

Finally, we discussed the connections between different
research areas, such as the dynamical system analysis, deep
learning, and tensor modeling. The proposed method is a
prototype, and it can be further improved by incorporating
other methods, such as regularizations, multiscale extensions,
and adversarial training.

APPENDIX

RELATION TO CONVOLUTIONAL SPARSE CODING

Here, we discuss the similarities and differences between
the CSC and the MMES. First, we remind the CSC model
[48] can be described as follows:

xCSC =
N∑

i=1

RT
i DLαi (10)

where xCSC ∈ R
N is a reconstructed signal by the CSC model,

DL ∈ R
n×m is a dictionary matrix, αi ∈ R

m is a sparse
coefficient vector, and RT

i ∈ {0, 1}N×n is a binary matrix for
performing the shift operation. In fact, (10) can be transformed
to the following equivalent formulation:

xCSC = H†([s1, s2, . . . , sN ]) (11)

where si = DLαi ∈ R
n , and H† is an operator of inverse delay

embedding. On the other hand, MMES can be represented as

xMMES = H†([h1, h2, . . . , hN ]) (12)

where hi = ψr (l i ) ∈ R
n is the output of the AE, where

l i ∈ R
r is a latent variable. Note that the dimensions of si and

hi correspond to each other. In this regard, CSC and MMES
have similar structures in terms of inverse delay embedding
of a matrix.

The fundamental difference between CSC and MMES is
based on the following two points.

1) Sparse coding of si is used in CSC, while AE for hi is
employed in MMES.

2) In CSC, the Hankel constraint is not imposed on S =
[s1, . . . , sN ], while, in MMES, we impose the Hankel
constraint on H = [h1, . . . , hN ].

First, sparse coding and AE are quite different although both
models can be commonly used for encoding data. Each si ∈
R

n is represented by αi ∈ R
m in sparse coding, and hi ∈ R

n

is represented by l i ∈ R
r in the AE. In sparse coding,

various data are encoded into sparse vectors using a redundant
dictionary so that n < m in appearance. By contrast, in the
AE, r < n because various data are directly encoded into
low-dimensional vectors by a differentiable nonlinear map.
Second, the Hankel constraint of the latent matrix is employed
only in MMES. Since the Hankel constraint enforces the
consistency of overlapped patches, hi directly represents the
‘patch’ in the image, but si represents the “basis” of it. In other
words, the Hankel constraint is necessary to understand the
proposed method as manifold modeling “in embedded space.”
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