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A Diversity Framework for Dealing with Multiple
Types of Concept Drift Based on Clustering in the

Model Space
Chun Wai Chiu, Leandro L. Minku, Member, IEEE

Abstract—Data stream applications usually suffer from mul-
tiple types of concept drift. However, most existing approaches
are only able to handle a subset of types of drift well, hindering
predictive performance. We propose to use diversity as a frame-
work to handle multiple types of drift. The motivation is that
a diverse ensemble can not only contain models representing
different concepts, which may be useful to handle recurring
concepts, but also accelerate the adaptation to different types of
concept drift. Our framework innovatively uses clustering in the
model space to build a diverse ensemble and identify recurring
concepts. The resulting diversity also accelerates adaptation to
different types of drift where the new concept shares similarities
with past concepts. Experiments with 20 synthetic and 3 real-
world data streams containing different types of drift show that
our diversity framework usually achieves similar or better pre-
quential accuracy than existing approaches, especially when there
are recurring concepts or when new concepts share similarities
with past concepts.

Index Terms—Online Ensemble Learning, Concept Drift, Re-
curring Concepts, Clustering in the Model Space, Diversity

I. INTRODUCTION

Due to the fast growth and high incoming speed of data,
it is inefficient or even impossible to wait for all the data to
arrive before analysing them. Data stream learning [1], which
is able to analyse data sequentially as they arrive, have thus
become increasingly important. It has been used in several
real-world applications, such as software defect prediction [2],
software effort estimation [3], credit card fraud detection [4],
spam filtering [5], and soft sensors in process industry [6].

Typically, data streams suffer changes in the underlying
distribution of the data. Such changes are referred to as concept
drifts [7], whereas the underlying joint probability distribution
of the data is commonly referred to as a concept [7]. To
enable a swift reaction to concept drifts, data stream learning
algorithms desirably operate in an online way, where the
predictive model is updated upon the arrival of each separate
incoming training example [1]. Thus, this paper focuses on
online learning.

Concept drift can be categorised into three main types:
abrupt, gradual, and recurrent [8]. Abrupt drifts replace the
current concept CBeforeDrift by another concept CAfterDrift
very suddenly – in a single time step [8]. Gradual drifts replace
CBeforeDrift by CAfterDrift over a transitional period where
the probability of an example being drawn from CBeforeDrift

C. W. Chiu and L. L. Minku are with the School of Computer Science,
University of Birmingham, Edgbaston, Birmingham, B15 7TT, UK. E-mail:
{cxc1015, L.L.Minku}@cs.bham.ac.uk

(CAfterDrift) gradually decreases (increases) [1], [8], [9].
Depending on how large the differences between CBeforeDrift
and CAfterDrift are, drifts can be further categorised as
severe or mild severity drifts. Active approaches, which em-
ploy explicit drift detection methods, are typically the most
effective in dealing with abrupt drifts [8], even though their
effectiveness typically relies on hyper-parameters that control
the trade-off between drift detection delay and false-positive
drift detection. Passive approaches that continuously update
predictive models without relying on explicit drift detection
tend to be more effective for gradual drifts [1]. Recurrent
drifts (or recurring concepts) occur when a concept previously
seen in the data stream reappears [8], [10]. Approaches that
maintain a memory of models representing different past
concepts can exploit past knowledge, being appropriate for
this type of drift [10].

Many data stream learning algorithms have been proposed
to deal with concept drift, but they tend to be better at handling
a small subset of types of drift. We posit that diversity could
be used as an overall framework to handle multiple types of
drift effectively and efficiently. Diversity can be perceived as
the level of disagreement among a set of models. It has been
shown that it can improve the recovery of predictive perfor-
mance from gradual and mild severity drifts while achieving
acceptable predictive performance on severe and abrupt drifts
[11]. However, the benefits of diversity could potentially go
beyond these types of drift. For example, diversity has the
potential to be a memory management strategy, which can
effectively maintain a memory of diverse past models to
better handle recurrent drifts [10]. Yet, no existing work has
exploited the full potential of using diversity to deal with
multiple types of drifts at the same time.

This paper thus aims to investigate whether diversity can
provide a robust framework to deal with multiple types of
drift. In particular, it answers the following research questions:
RQ1) How can diversity be used as a memory strategy to deal
with multiple types of concept drift, including recurrent and
non-recurrent drifts? RQ2) How effective is this framework
in dealing with multiple types of concept drift compared to
existing approaches? RQ3) Why is this framework successful
or unsuccessful in dealing with multiple types of concept drift
compared to existing approaches?

The novel framework exploits the full potential of using
diversity to deal with multiple types of concept drift. It
manages a memory of models by using a diversity metric
to decide which models to discard when the memory has
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reached its maximum size. A clustering algorithm is employed
in the model space to decide which of these models to
recover from the memory for learning and making predictions,
aiming at achieving robustness to multiple types of concept
drift (RQ1). The proposed approach is compared against six
existing approaches through experiments on twenty synthetic
data streams with multiple types of concept drift and three
real-world data streams. The results show that the proposed
approach can deal with multiple types of concept drift well
(RQ2), especially recurrent drifts and drifts leading to concepts
that share similarities with past concepts. This is because it
managed to identify and exploit similar past knowledge to
accelerate recovery from drifts (RQ3).

II. RELATED WORK

A. Approaches for Dealing with Concept Drift

Many different approaches have been proposed to deal
with concept drift [7], [12]–[14]. As explained in Section
I, this paper focuses on online learning approaches. One
of the most classic online learning approaches is the Drift
Detection Method (DDM) [15]. DDM monitors the error rate
of a predictive model. If the error increases significantly, it
triggers a concept drift detection and resets the model. The
monitored model can be a single model [15] or an ensemble
[11]. Diversity for Dealing with Drift (DDD) [11] is an active
approach that uses a highly diverse ensemble with a drift
detection method to recover the predictive performance from
different types of concept drift. However, DDM and DDD do
not maintain a memory of past models. So, they cannot exploit
potentially useful past knowledge to handle recurrent drifts.

Recurring Concept Drift (RCD) [16] maintains a memory of
past models. Each of these models is associated with a buffer
of data representing the respective underlying concept. Upon
concept drift detection, if there is no significant difference
between the most recent batch of data and one of the past
buffers, RCD deems that a recurring concept is detected and
the corresponding past model is retrieved from the memory to
react to the drift. However, RCD adopted a First In First Out
(FIFO) queue as its memory management strategy. Thus, if a
concept reoccurs after a long period, it loses the advantage of
exploiting past knowledge to recover from the drift. Diversity
Pool (DP) [10] uses a diversity metric to maintain a diverse
memory of models, increasing the chances to exploit relevant
past knowledge when past concepts reoccur. However, DP
focuses on handling recurring concepts and does not aim
at achieving robustness to multiple types of drift. Also, the
time complexity of its diversity-based memory management
strategy is high and it adopts a conservative method that may
fail to identify recurrent concepts.

Passive ensemble approaches could also potentially handle
recurring concepts, as they could maintain models representing
past concepts in the ensemble, depending on their memory
management strategy. Dynamic Weighted Majority (DWM)
[17] and Online Accuracy Update Ensemble (OAUE) [18]
maintain a weighted majority vote ensemble, and use memory
management strategies that delete ensemble members based
on their predictive performance on the current concept. These

strategies may not always be ideal because concepts that
are very different from the current concept can potentially
reappear at any time. Deleting them could thus be detrimental.
Nevertheless, these two approaches performed quite well in
the previous work [10], with OAUE being more competitive
against DP than DWM.

B. Approaches for Learning in the Model Space

Some existing work on learning in the model space focuses
on offline learning [19]–[21]. Chen et al. [22], [23] proposed
an online learning approach for fault diagnosis based on time
series classification. The approach creates models to represent
different portions of a time series that describes the behaviour
of a monitored system. One-class SVMs are trained on such
models to recognise previously seen states of the system,
where new states are assumed to represent new types of fault.
The different states of the monitored system can be seen as
different concepts in time series, suggesting that learning in the
model space could potentially be useful to support strategies to
handle drifts in data stream classification problems. However,
no existing work has investigated this potential so far.

III. PROPOSED APPROACH

To answer the research questions proposed in Section I,
we propose a new approach called Concept Drift Handling
Based on Clustering in the Model Space (CDCMS). The main
novelty of CDCMS is its diversity memory strategy, which
includes a clustering in the model space strategy and a memory
management strategy aimed at dealing with multiple types of
concept drift. CDCMS is presented in Algorithm 1 and its
general working mechanism is described below.

CDCMS uses a memory R of size e×r to store past models
representing different concepts, where e is the predefined
maximum size of the ensembles and r is the memory size
multiplier. A representative ensemble Enl consisting of a new
model is initialised to learn the current concept (line 1). During
learning, each training example (line 3) is stored into a sliding
window B (line 4), which will be used later by the clustering
in the model space strategy to deal with drifts. A drift detection
method is employed (line 5) to determine whether strategies to
react to concept drift should be triggered. Any drift detection
method can be used, e.g., [15], [24]–[28].

At every b time steps (line 7), CDCMS adds a new model
cn to the representative ensemble Enl (line 17), as a strategy
to deal with gradual drifts. Before adding this model, CDCMS
first checks whether Enl has reached its maximum size e (line
12). If so, the least performing model cworst in Enl is removed
from Enl and saved into the memory R using the diversity-
based memory management strategy (line 15) explained in
Section III-C. In other time steps, cn learns alongside with
Enl (line 19). Together with the creation of a new model at
every b time steps, this helps to fill up the memory quickly
so that the approach holds a good number of past models for
the clustering in the model space strategy explained in Section
III-A. Alternatively, if the current time step t is b time steps
after a drift detection (line 8), the representative ensemble Enl
is replaced by e−1 existing models from the memory that have
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Algorithm 1 Concept Drift Handling Based on Clustering in
the Model Space - CDCMS
Hyper-Parameters: Ensemble Size (e), Memory Size (e× r),
Window Size (b), Similarity Threshold (θ), Data Stream (S)
Variables: New Ensemble (Enl), Old Ensemble (Eol), Highly
Diverse Ensemble (Enh) New Model (cn), Sliding Window
(B), Memory (R), Clustering Result (C), Cluster (cluster)

1: Enl ← Enl.add(createModel())
2: Eol ← null;Enh ← null; cn ← createModel()
3: for st ∈ S do
4: B.saveFIFO(st)
5: drift level← DriftDetection(Enl, st)
6: if drift level == NORMAL then
7: if t mod b == 0 then
8: if t is b time steps after a drift then
9: C ← (R ∪ cn).clusteringModels(B)

10: cluster ← C.getCluster(cn)
11: Enl.add(cluster.getMostTrained(e−1))
12: else if |Enl| ≥ e then
13: cworst ← Enl.getWorstModel()
14: cworst.resetWeight()
15: R.saveByDiversity(cworst)
16: end if
17: cn ← createModel(); Enl.add(cn)
18: end if
19: cn.updateWeight(st); cn.trainOnInstane(st)
20: drift levelprevious ← NORMAL
21: else if drift level == DRIFT then
22: Eol ← Enl
23: Enl.resetWeight();R.saveByDiversity(Enl)
24: Enl.clear();Enh ← createEnsemble(e)
25: if drift levelprevious == NORMAL then
26: cn ← createModel()
27: C ← R.clusteringModels(B)
28: Enh ← C.getRepresentativeModels()
29: end if
30: Enl.add(cn); cn ← createModel()
31: Enh.resetWeight();Enl.resetWeight()
32: Eol.resetWeight();B.clear()
33: drift levelprevious ← DRIFT
34: end if
35: if Eol 6= null then Eol.updateWeight(st)
36: end if
37: if Enh 6= null then Enh.updateWeight(st)
38: end if
39: Enl.updateWeight(st);Enl.trainOnInstane(st)
40: end for

similar underlying concepts to the current concept, based on
the clustering in the model space strategy. This strategy aims
to deal with recurrent drifts.

Upon drift detection (line 21), Enl is denominated as the
old representative ensemble Eol (line 22). Its base models
are stored into the memory, using the diversity-based memory
management strategy (line 23) explained in Section III-C. A
highly diverse ensemble Enh is built by taking a representative
model from each cluster of models from the memory (line 28),
using the clustering in the model space strategy explained in

Section III-A. Before building Enh, CDCMS checks whether
the previous state of the system is “NORMAL” (line 25). This
is to prevent running the clustering method to rebuild Enh in
consecutive time step caused by false-positive drift detection,
which may detrimentally affect the prequential accuracy and
the running speed. This ensemble is created to help to deal
with drifts by making use of previously learnt knowledge. It
can potentially help not only with recurrent concepts but also
with drifts leading to new concepts that share similarities with
old concepts. At the same time, a new representative ensemble
Enl is also created, which consists of a new model cn created
upon drift detection (line 30, 26).

To make predictions, CDCMS uses the representative en-
semble Enl with weighted majority vote over the base models
most of the time. The weights of the base models are based
on their prequential accuracy. During the uncertain period
after the drift detection, all three ensembles are used to make
predictions by weighted majority vote until the system deems
to have confidence in using Enl only. Similarly, the weights
of the ensembles are also based on their prequential accuracy.
Section III-B discusses this in more detail.

The key aspect of CDCMS is the use of clustering in the
model space (lines 9, 27). The idea behind is that, ideally,
models learnt from the same concept should make the same
set of mistakes when predicting the same chunk of data. This
means that clustering models by the predictions they made on
the sliding window B, should cause models holding the same
concept to belong to the same cluster. This technique plays
an important role in CDCMS because it enables a convenient
way to identify recurring concepts and to construct ensembles
with different levels of diversity for handling concept drifts.

Another key aspect of CDCMS is its diversity-based mem-
ory management strategy, which decides which models to
discard when the memory reaches its maximum size (line
15, 23). This strategy aims to maintain a memory of models
holding concepts as different as possible. It is more time-
efficient than the preliminary strategy in [10], as will be
discussed in Section III-D3. CDCMS is further detailed in
Sections III-A to III-D.

A. Clustering Models in the Diverse Memory

Clustering models in the diverse memory is crucial to
CDCMS. It is used to tackle multiple types of concept drift
as part of the unified framework. For instance, it is used to
form a highly diverse ensemble by picking a representative
model from each cluster, which is then used to deal with abrupt
drifts and drifts leading to concepts that share similarities with
past concepts. It is also used to enable identifying recurring
concepts and to accelerate adaptation to new concepts that
share similarities with past concepts by determining the cluster
to which a newly created model belongs. This section concen-
trates on our method for clustering in the model space, whereas
Section III-B explains how the results of the clustering are used
to deal with concept drift.

The clustering in the model space strategy is based on
the predictions given by the models to a batch of examples.
Therefore, a sliding window of examples is needed for this
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purpose. This sliding window is emptied when a drift is
detected, to prevent it from holding examples that belong to
past concepts (line 32). That said, we believe that CDCMS
has certain robustness to the presence of old examples in
the sliding window, because similar models will make similar
mistakes on old examples.

Whenever CDCMS needs to cluster the models in the
memory, it first requests these models to make predictions to
the examples in the sliding window. A data set is then created
where each example is a list of correctnesses of a model’s
predictions to the examples in the sliding window. A value
of 1 represents correct while a value of 0 represents incorrect.
Therefore, if the window has size b, each training example fed
to the clustering algorithm is a list of b binary attributes, and
if the memory has e × r models, there are e × r examples.
We refer to these examples as “clustering examples”, to avoid
confusion with the training examples from the data stream that
are stored in the sliding window. Any clustering algorithm can
be used to cluster the clustering examples, however, CDCMS
only needs a “snapshot” of the model space to build ensembles
with different diversity levels or to identify recurring concepts
when a drift is detected. Thus, an offline clustering algorithm
is sufficient. In this study, we used Expectation Maximisation
(EM) clustering [29] with 10-fold cross-validation to decide
the number of potential clusters.

B. Drift Handling and Recurring Concepts Identification

DDD has shown that past knowledge can help to speed up
learning of a new similar concept and to deal with gradual
concept drifts [11]. As this could result in swifter recovery
from drifts than resetting the learning system upon drift
detection [11], we also create a highly diverse ensemble upon
drift detection. However, even though DDD can deal with new
concepts well, it cannot handle recurring concepts well, as
it does not have a memory of past models. To achieve an
approach that can deal with both new and recurring concepts,
we hereby propose a new method to create ensembles with
different diversity levels by making use of the results of the
clustering algorithm explained in Section III-A.

Models clustered together are likely to represent the same
or similar concepts, whereas models in different clusters are
likely to represent different concepts. CDCMS thus creates
highly diverse ensembles by taking the model trained with
the largest number of examples from each cluster (line 28).
In the event of having only one cluster, models at every r
index number interval are taken to build the highly diverse
ensemble Enh. The fact that our proposed method creates a
highly diverse ensemble consisting of different past concepts
means that, in the case of encountering a recurring concept,
one of these models may hold the same or a similar concept,
helping to achieve faster recovery from the drift. This is a key
potential advantage over DDD, which creates highly diverse
ensembles by enforcing high diversity on an ensemble trained
from a single concept. DDD’s strategy may be inadequate
to handle recurring concepts, as the resulting highly diverse
ensemble does not incorporate models representing concepts
older than the most recent one.

To identify and deal with recurring concepts, once b new
training examples are received after the drift detection (line
8), the models in the memory and the new model created
upon the last drift detection are clustered (line 9). If the
new model belongs to a cluster with other past models, the
current concept is regarded as a recurring concept (line 10).
The algorithm then recovers the e−1 models trained with the
largest number of training examples from that cluster to fill up
the new representative ensemble (line 11), where e is the size
of the new representative ensemble. If the new model does not
belong to a cluster containing other past models, the current
underlying concept is regarded as a new concept. The new
representative ensemble will then carry on being built from
scratch, starting as an ensemble containing the new model as
its sole member. Besides, if the drift leads to a concept that
shares similarities with any past concept, this method of using
clustering to recover relevant past models can also help the
system to adapt the drift.

Since drift detection, all three ensembles (the highly diverse
ensemble Enh, the old and new representative ensembles
Eol, Enl) are used to make combined predictions until Enl
performs better than either of Eol and Enh. After that, the
system uses Enl only. Eol and Enl give predictions based on
weighted majority among their base models, while Enh gives
predictions by a simple majority among its base models. This
is because Enh consists of models from different concepts
and we do not have enough examples from the new concept
to assign the base models with reliable weights right after
drift detection. The final combined prediction of CDCMS is
by weighted majority among the predictions given by Eol,
Enl and Enh. The weights used for the majority votes are
computed as follows:

wit =

{
1, if ci ∈ Enh

acct(ci)∑M
l=1 acct(cl)

, otherwise
(1)

where ci is one of the L base models and M=L when
computing the predictions by Eol, Enl and Enh, or ci ∈
{Eol, Enl, Enl} and M=3 when computing the overall pre-
diction by CDCMS. The prequential accuracy acct(ci) is:

acct(ci) =

{
accext (ci), if t = f
accext (ci)+α×acct−1(ci)×(t−f)

t−f+1 , otherwise
(2)

where t is the current time step, accex is 0 if the prediction to
the current training example ex before learning is wrong and
1 if it is correct, f is the first time step used in the calculation,
and α is a fading factor.

The calculation of the overall weighted majority vote among
M models is shown below:

W.M.V.t = argmax
y∈Y

M∑
i=1

witI(ci(xt) = yt) (3)

where I is the indicator function and xt are the input attributes
of the example being predicted.

C. diversity-based Memory Management Strategy
As described in the general mechanism of CDCMS, the

algorithm regularly (at every b time steps) creates a new model
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cn to learn the current concept. If the maximum size e of the
representative ensemble Enl is reached, the least performing
model cworst ∈ Enl is removed and placed into the memory
R before adding cn to Enl. If R had already reached its
maximum size (e × r), the algorithm searches for the model
csim ∈ R that is the most similar to cworst. Only either cworst
or csim will be kept in R. This will maintain the memory with
a maximum size while ensuring that diversity is preserved,
increasing the chances that various past knowledge is kept.

Yule’s Q-statistics (Q) [30] is employed to find the most
similar model. It is used to calculate the similarity between
two models ci and ck as follows:

Qi,k =
N11N00 −N01N10

N11N00 +N01N10
(4)

where Na,b is the number of examples where the classification
by ci is a and the classification by cj is b, 1 represents a
correct classification and 0 represents a misclassification. Q
varies between 1 and -1. Models that tend to classify the
same/different examples correctly will have positive/negative
values of Q.

A predefined threshold (θ) is used to ensure that cworst
and csim are similar enough. If Qworst,sim ≤ θ, the least
performing between the two models is discarded. Otherwise,
the model trained with more examples is kept in memory.
This memory management strategy is an improvement over
DP [10], as will be discussed in Section III-D.

D. Time Complexity

The time complexity of CDCMS consists of its time com-
plexities for making predictions, training models, clustering
models and managing the diverse memory.

1) Prediction and Training Time Complexity: Consider-
ing each ensemble has e base models with prediction time
complexity in O(Mp), the time complexity of CDCMS to
make a prediction at any time step during concept stationary
period is O(eMp), which is just the combined vote of the base
models in the ensemble. During the period between the drift
detection and until the new representative ensemble is deemed
to be ready to make predictions by itself, the time complexity
of CDCMS to make a prediction is O(3eMp) = O(eMp)
because all three ensemble (Enl, Enh Eol) participate in
making combined prediction. The training time complexity
of CDCMS can be determined similarly because it always
trains the new representative ensemble only. Thus, the training
time complexity is O(eMt), where O(Mt) is the training time
complexity of the base model. Note that the time complexities
O(Mp) and O(Mt) depend on the base learner used.

2) Clustering in the Model Space Strategy and Concept
Drift Handling: Consider that we have H models with pre-
diction time complexity in O(Mp) and we need to cluster
them based on b examples. As described in Section III-A, the
models are first required to make predictions to the sliding
window B of examples, such that a data set can be built
to hold the results of the predictions for the clustering. The
time complexity of this procedure is O(HMpb). A clustering
method with time complexity O(G) is then used to cluster the

models based on this data set, where O(G) depends on the
clustering method used. Thus, the overall time complexity to
obtain the clustering results of those H models based on b
examples is in O(HMpb+G). This time complexity applies
to both building the highly diverse ensemble and identifying
recurring concepts because the clustering in the model space
strategy is used in both circumstances despite the results of
the clustering being used differently.

3) diversity-based Memory Management Strategy: Con-
sider the memory has L = e × r models with prediction
time complexity O(Mp). The time complexity of the memory
management strategy proposed in Section III-C is in O(LMp).

In contrast, DP [10] uses an exhaustive search method.
It simulates all possible memory states by eliminating each
model from the memory and then computes their respective
diversity level. It then keeps the memory state that has the
highest diversity level as the new memory. To compute the
diversity level of each possible memory state, the average Q-
statistics (Qav) over all pairs of models is used:

Qav =
2

L(L− 1)

L−1∑
i=1

L∑
k=i+1

Qi,k (5)

The time complexity of Eq. 5 is O(L2Mp). As the number
of possible memory states is L, the overall time complexity
of the exhaustive search is O(L3Mp), which is less efficient
than the O(LMp) time complexity of the proposed memory
management strategy.

IV. EXPERIMENTS TO EVALUATE THE PREDICTIVE
PERFORMANCE OF CDCMS

This section presents the experiments performed to evaluate
the predictive performance of CDCMS and provide a detailed
understanding of the reasons behind it, answering RQ2 and
RQ3 posed in Section I. The source code of CDCMS is
available at https://github.com/michaelchiucw/CDCMS.

A. Data Streams Used in The Experiments

Twenty synthetic data streams were created using the
Agrawal [31], SEA [32], Sine [15] and STAGGER [33] gen-
erators from the Massive Online Analysis (MOA) framework
[34]. Synthetic data allows us to specify the severity of the
concept drifts and the order of the concepts, enabling us to
obtain a detailed understanding of the predictive performance
of CDCMS in different situations.

Streams Sine1-2 consist of two numerical input attributes.
Their concepts f1-f4 are defined in MOA, and involve the
mathematical sine function in its calculation. Streams Agr1-4
consist of nine numerical input attributes. Their concepts f1-
f10 are the same as those in [31]. Streams SEA1-2 consist
of three numerical input attributes, where the last of them
is irrelevant. Their concepts f1-f4 are the same as those in
[32], where the thresholds are 8, 9, 7, and 9.5 respectively.
We added a SEA function f5 with threshold 4, to enable the
investigation of drifts with relatively higher severity. Streams
STA1-2 consist of three categorical input attributes. Their input
attributes (size, colour and shape) are the description for a
domain of objects. The STAGGER concepts are defined in
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TABLE I
DATA STREAMS

Data Stream Concept Drift Sequence
Sine1 f3→f4→f3
Sine2 f1→f2→f3→f4→f1
Agr1 f1→f3→f4→f7→f10
Agr2 f7→f4→f6→f5→f2→f9
Agr3 f4→f2→f1→f3→f4
Agr4 f1→f3→f6→f5→f4
SEA1 f5→f3→f1→f2→f4
SEA2 f5→f1→f4→f3→f2
STA1 f1→f2→f3→f2
STA2 f2→f3→f1→f2

Coloured rows (lime / light grey) highlight data streams with recurring concepts.
fn represents the n-th function of the stream type, i.e., f1 in Agr1 is referring to
the first function of the Agrawal generator.

TABLE II
PERCENTAGE DIFFERENCE OF CONCEPTS

Sine SEA STAGGER
f1 f2 f3 f1 f2 f3 f4 f1 f2

f2 100.0% - - 8.5% - - - 59.3% -
f3 26.8% 73.2% - 7.4% 16.0% - - 77.8% 48.1%
f4 73.2% 26.8% 100.0% 13.1% 4.6% 20.6% - - -
f5 - - - 23.9% 32.5% 16.5% 37.1% - -

Agrawal
f1 f2 f3 f4 f5 f6 f7 f8 f9

f2 53.9% - - - - - - - -
f3 53.1% 50.8% - - - - - - -
f4 53.9% 20.5% 50.8% - - - - - -
f5 53.4% 47.6% 50.7% 47.7% - - - - -
f6 69.9% 28.9% 51.2% 35.5% 48.1% - - - -
f7 50.5% 53.3% 50.1% 53.5% 60.1% 57.2% - - -
f8 33.5% 60.4% 46.5% 59.6% 59.6% 59.8% 49.8% - -
f9 50.4% 53.3% 50.2% 53.5% 59.9% 57.3% 6.0% 49.5% -

f10 32.9% 61.3% 46.5% 61.3% 60.0% 59.9% 51.1% 1.8% 51.1%

All percentage differences were calculated using Eq. 6 based on one million
random generated examples.

MOA, where any of one or more input attributes are taken
into account and the remaining are irrelevant. All synthetic
data streams are binary classification problems.

Concept drifts were simulated by connecting two data
streams with different concepts at regular intervals, using a
sigmoid function to decide the probability of data coming from
the old and new concepts during the transitional period. The
order of concepts of the synthetic data streams are presented in
Table I. Each data stream from that table has been investigated
using all gradual and all abrupt drifts. For gradual drift
streams, the width of the drifts is 2,000 and the central drift
point is at the middle of this transitional period. For abrupt
drift streams, the width of the drifts is 1. These data sets is
available at https://github.com/michaelchiucw/CDCMS.

Regarding the severity of drifts in the synthetic data streams,
Table II presents the percentage difference of each pair of
concepts used in the experiments, calculated as follows:

diff(fa, fb) =

∑n
i=1 |yifa − y

i
fb
|

n
(6)

where yifa and yifb are the class labels determined by the a-
th and b-th functions of a generator, respectively, and n is
the total number of examples generated uniformly at random
to calculate the severity. We consider a concept drift to be
severe when the concepts before and after the drift have at
least around 50% difference, while around 25% difference is
referred to as a mild severity drift.

Three real-world data streams (KDDcup99, Power Supply
stream, and Sensor) have also been used, allowing us to have
a general idea of the predictive performance of CDCMS in
practical applications. These data streams are available at
[35]. KDDcup99 contains data that was produced based on
simulated attacks to a network. So, even though it is composed
of real-world data, its drifts can be considered synthetic.

B. Experiment Setup
To answer RQ2 posed in Section I, CDCMS’s predictive

performance was quantitatively compared against other ex-
isting approaches. All approaches used Hoeffding Tree with
Naı̈ve Bayes at the leaves (HTNB) as the base learner. The
approaches and the reasoning behind their choice are listed
below:
• HTNB [36]: to compare against the base learner.
• OzaBag (Online Bagging) [37]: to compare against a

baseline ensemble approach without any concept drift
handling mechanism.

• OAUE [18]: to compare against a passive ensemble ap-
proach.

• DDD [11]: to compare against an active ensemble ap-
proach which uses a highly diverse ensemble to handle
gradual and mild severity drifts.

• DP [10]: to compare against an approach that uses a
diverse memory to handle recurrent drifts.

• RCD [16]: the compare against an approach designed to
handle recurrent drifts.

Accuracy was measured prequentially, i.e., each example in
the data stream was used to test the approach before training on
it. A fading factor of 0.999 was used to make the past examples
less important to the current accuracy [38]. The prequential
accuracies were sampled at every 500th example.

To tune the hyper-parameters of each approach for experi-
ments with synthetic data streams, four synthetic data streams
were created (one for each stream type: Sine, Agrawal, SEA,
STAGGER) with random orders of concepts, drift width and
central drift point. The hyper-parameter values that lead to
the highest average prequential accuracy on the randomised
data stream for Sine, Agrawal, SEA, and STAGGER were
then chosen to be used in the experiments with data streams
Sine1-Sine2, Agr1-Agr4, SEA1-SEA2, and STA1-STA2, re-
spectively. For experiments with real-world data streams, the
first 10% examples of each stream were used for hyper-
parameter tuning.

The hyper-parameter options are as follows. Hyper-
parameters related to batch size and evaluation period are in
{200, 400, 500, 600, 800, 1000}. Ensemble size is in {5, 10,
15, 20}. Memory size multiplier for CDCMS is in {4, 6, 8,
10}. Drift detection method is in {DDM [15], EDDM [24],
ADWIN [25]}. Statistical significance threshold used in RCD
is in {0.01, 0.05}. The diversity measure used in DP is in
{Entropy Measure, Q-Statistic}. The λ value to control the
diversity level of the highly diverse ensemble in DDD is in
{0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}, which are the
same options used in [11] for hyper-parameter tuning. The
base learner, HTNB, and drift detection methods ran with
default MOA hyper-parameter values.
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(a) Data Stream Sine2-gradual (b) Data Stream Agr3-gradual

(c) Data Stream Sine1-gradual

Fig. 1. Prequential Accuracy with Synthetic Gradual Drift Streams

Each approach ran for thirty times on each data stream.
For each data stream, the Friedman test is used to determine
if there is a statistically significant difference in the average
prequential accuracy among all approaches. If there is, Ne-
memyi post hoc test is used to determine which approach is
significantly different from the top-ranked approach. Based on
the comparison, a few representative runs from experiments
with synthetic data streams were chosen to analyse CDCMS’s
behaviour qualitatively in detail. This will complement the
answer to RQ2 and provide an in-depth understanding of the
reasons behind the results, answering RQ3. Other cases are
omitted due to page limitations and can be explained similarly.

C. Results with Synthetic Gradual Drift Data Streams

The left part of Table III shows that CDCMS achieved
similar or better average accuracy in most cases, as depicted
by bold text cells. CDCMS only performed significantly worse
than DDD and DP in Sine1-gradual. In other cases, even
though CDCMS was not always the top-ranked, its accuracy
had no significant difference with the top-ranked approaches.
Over the next paragraphs, we provide a detailed analysis of
these results based on the first single run from data streams
with representative predictive performance results.

1) Cases where CDCMS performed better: Sine2-gradual
and Agr3-gradual are representative cases where CDCMS
performed significantly better than most other approaches.

Sine2-gradual is composed of four gradual severe drifts
(see Tables I and II). Figure 1(a) shows that CDCMS was
usually among the best approaches in Sine2-gradual both in
terms of fast reaction and recovery from all drifts. It archived
particularly good accuracy at the rear of the data stream,
which is a recurring concept. It also archived good stable
accuracy after drifts. The behaviour log of CDCMS shows
that it successfully identified the first drift as a drift leading to
a new concept. However, it mistakenly considered the second
drift as a recurrent drift and recovered a set of models that
mainly held the knowledge of concept f1. This was because
concepts f1 and f3 are quite similar (see Table II). Thus,

CDCMS performed the best during the period of concept f3,
as shown in Figure 1(a) (40k-60k time steps). At the third
drift, CDCMS also considered this drift as a recurrent drift and
recovered a set of models holding the knowledge of concepts
f1 and f2. Despite this new low diversity ensemble holding
a partially different concept (diff (f1,f4): 53.9%, diff (f2,f4):
20.5%), it still managed to be one of the fastest approaches
in reacting to this drift and adapting to concept f4. At the
fourth drift, CDCMS successfully identified the recurring
concept and managed to recover corresponding models from
the memory. That is why it recovered from this drift faster
than the other approaches. DP and RCD could not identify
this recurring concept because their methods for identifying
recurring concepts are conservative.

This analysis shows that the clustering in the model space
strategy together with the diversity-based memory manage-
ment strategy worked better than DP and RCD in handling
gradual severe recurrent drifts appearing after several gradual
severe drifts. Interestingly, despite OzaBag having an initially
slower recovery (as it is not designed for non-stationary data
streams), it eventually managed to recover its accuracy from
this drift and surpass all approaches’ accuracies at around
50,000th time steps. This may indicate that OzaBag is better
for stationary periods, as it will not be negatively affected by
false-positive drift detections, nor by new base models.

Agr3-gradual’s first drift has mild severity, whereas its other
three drifts are severe (see Tables I and II). Although Figure
1(b) shows that there is a slight drop in CDCMS’s accuracy at
around the 32,450th time step, the predictive performance of
CDCMS and OAUE generally are similar, which is confirmed
by the statistical test (see Table III). Looking back to Figure
1(b), CDCMS had a better recovery rate than other approaches
from the last drift, which is a recurrent drift. It also recovered
quite well from the second and the third drifts. Surprisingly,
the behaviour log shows that CDCMS only had a delayed
drift detection for the first drift but no drift detection at
the second and the third drifts. Yet, it could still adapt to
the changes at these drifts. This is because the ensemble
committee substitution mechanism at every fixed time interval
gradually and continuously updates the knowledge held in the
representative ensemble, enabling it to recover from missed
drift detections. In fact, OAUE, which also uses a similar
mechanism, obtained similar overall accuracy to CDCMS,
suggesting that this type of mechanism is the most suitable for
this data stream. Besides, a few false-positive drift detections
from the 32,450th time step to the 33,278th time step were
given, causing CDCMS to have a drop in accuracy. For the
last drift, CDCMS successfully identified the recurring concept
and recovered a set of models corresponding to concept f4.
This shows that the clustering in the model space strategy
was able to distinguish two sets of models holding similar
concepts, which echoes the analysis of the experiment with
Sine2-gradual.

2) Cases where CDCMS performed worse: Table III
shows that Sine1-gradual is the case where CDCMS performed
significantly worse than at least one other existing approach.

Tables I and II show that Sine1-gradual consists of two
extremely severe drifts where the second drift is a recurrent
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TABLE III
AVERAGE PREQUENTIAL ACCURACY (STANDARD DEVIATION) ACROSS 30 RUNS FOR THE SYNTHETIC DATA STREAMS

Data
Stream

Synthetic Data Stream with Gradual Drifts
CDCMS HTNB OzaBag DP OAUE RCD DDD
87.737% 67.745% 75.283% 88.3% 85.92% 87.806% 87.786%Sine1 (6.109%) (22.178%)(23.252%) (5.958%) (9.998%) (6.026%) (7.341%)
92.692% 65.555% 74.39% 91.689% 89.968% 90.39% 91.632%Sine2 (7.666%) (26.393%)(26.552%) (7.935%) (12.008%) (8.643%) (9.236%)
89.53% 74.003% 71.998% 85.268% 89.707% 85.634% 87.293%Agr1 (8.576%) (11.758%) (12.03%) (10.152%) (9.193%) (8.302%) (10.867%)
78.494% 67.301% 68.304% 71.877% 80.458% 73.954% 74.09%Agr2 (11.311%) (12.327%)(12.175%) (9.767%) (9.153%) (10.229%)(11.955%)
82.895% 70.068% 70.295% 75.833% 83.413% 78.58% 77.759%Agr3 (9.108%) (8.178%) (8.731%) (7.616%) (9.116%) (9.037%) (10.457%)
81.187% 69.749% 67.592% 75.46% 82.505% 77.783% 77.647%Agr4 (11.45%) (14.208%)(14.072%)(12.894%) (10.119%) (11.093%)(13.051%)
87.591% 86.117% 86.581% 86.879% 87.168% 86.71% 87.525%SEA1 (1.488%) (2.239%) (2.777%) (1.709%) (2.505%) (1.855%) (1.652%)
86.841% 85.036% 85.733% 86.296% 86.713% 86.033% 86.738%SEA2 (1.652%) (3.392%) (3.62%) (1.854%) (2.579%) (1.965%) (1.964%)
98.268% 86.462% 86.782% 98.183% 96.898% 97.783% 98.132%STA1 (4.193%) (14.325%)(13.774%) (4.306%) (7.258%) (4.91%) (4.466%)
98.155% 78.25% 78.511% 98.079% 96.842% 97.713% 97.949%STA2 (4.623%) (16.809%)(16.635%) (4.65%) (7.484%) (5.402%) (5.028%)

Synthetic Data Stream with Abrupt Drifts
CDCMS HTNB OzaBag DP OAUE RCD DDD
90.248% 74.35% 78.58% 89.374% 86.846% 89.527% 88.54%
(1.586%) (18.25%) (20.238%) (1.877%) (9.164%) (1.827%) (6.961%)
95.894% 65.559% 76.702% 91.557% 91.593% 94.061% 93.755%
(3.055%) (27.081%)(25.508%) (7.497%) (9.918%) (4.032%) (7.22%)
90.31% 76.283% 76.282% 87.209% 90.666% 86.706% 88.805%

(8.367%) (12.768%)(10.802%) (8.58%) (8.733%) (8.735%) (9.617%)
79.528% 67.575% 68.871% 72.668% 81.807% 74.711% 75.038%

(10.862%) (12.765%)(12.383%)(10.878%) (8.609%) (10.684%)(12.379%)
83.888% 69.972% 70.404% 76.95% 84.499% 77.986% 79.789%
(9.128%) (8.402%) (8.892%) (8.428%) (8.921%) (9.576%) (10.644%)
80.775% 71.867% 70.141% 78.063% 82.984% 77.679% 78.324%
(12.21%) (15.6%) (14.376%)(12.118%) (10.584%) (11.969%)(13.253%)
87.569% 86.136% 86.58% 86.434% 87.378% 86.527% 87.538%
(1.528%) (2.467%) (2.974%) (1.893%) (2.551%) (1.633%) (1.701%)
86.935% 85.05% 85.773% 85.976% 86.953% 85.846% 86.884%
(1.761%) (3.605%) (3.856%) (2.514%) (2.667%) (2.105%) (2.08%)
99.936% 90.324% 90.142% 99.904% 98.129% 99.945% 98.964%
(0.223%) (11.997%)(11.639%) (0.291%) (5.867%) (0.203%) (3.343%)
99.953% 86.898% 87.342% 99.893% 98.004% 99.946% 99.024%
(0.156%) (15.764%)(16.241%) (0.3%) (6.281%) (0.161%) (3.2%)

Lime or light grey in the column of Data Stream means that synthetic data stream consists of recurring concepts. The p-values of Friedman tests are all <2.2E-16. Cells with
bold text represent the best accuracy (or approaches have no significant difference with best one) in the data stream, based on the p-value (≥ 0.05) in Nemeyi post-hoc test.

drift. The best approaches for Sine1-gradual were DDD and
DP. Figure 1(c) shows that DDD achieved the best recovery
at the first drift but the magnitude of the improvement was
relatively small. Even though CDCMS and DDD both have
a highly diverse ensemble for prequential accuracy recovery,
DDD enforces low diversity learning on the highly diverse
ensemble after the drift, whereas CDCMS uses low diversity
only in the representative ensemble. This potentially enabled
DDD to recover better from the drift. The same figure also
shows that DP achieved the best recovery from the second
drift, which takes the stream to a concept that is the same as
the first concept. Both DP and CDCMS successfully identified
this recurrent drift. DP correctly recovered a model that purely
learnt from the corresponding concept (f3) while CDCMS
recovered a set of models that had been learning since the
first stationary period of f3 and a set of models that had learnt
during the transitional period of the first drift. The reason
behind such a model recovery of CDCMS at this drift can
be explained as follows.

CDCMS considered a false-positive drift detection during
the transitional period of the first drift (f3→f4) as a recurrent
drift and then recovered a set of models corresponding to con-
cept f3 and a few models created during the transitional period
to handle it. As this set of mixed concepts models has learnt
from the examples of this transitional period, the clustering in
the model space strategy treated it as an intermediate concept
between f3 and f4. As the transitional period of the second
drift (f4→f3) is also composed of these two concepts, CDCMS
considered this drift as the recurrence of such intermediate
concept, instead of the recurrence of f3. In other words, the
clustering in the model space strategy precisely distinguished
models with a significant difference in the underlying concept.
While this distinction would normally be advantageous, it was
detrimental because the new concept was f3, and no new drift
detection was triggered when moving from the intermediate
concept of f3-f4 to the pure f3 concept. Besides, we can
again see that OzaBag performed better than all concept drift

(a) Data Stream Sine1-abrupt (b) Data Stream Sine2-abrupt

Fig. 2. Prequential Accuracy with Synthetic Abrupt Drift Data Streams

handling approaches at the end of the concepts, which also
happened in Sine2-gradual.
Summary: CDCMS usually achieved similar or better re-
sults than other approaches on synthetic gradual drift data
streams, being more robust to and fast recover from multiple
types of gradual drift (RQ2). This is because the clustering
in the model space strategy managed to recover relevant
past models to handle concept drifts, in particular, severe
recurrent drifts and severe drifts taking to a concept that
shares similarities with past concepts. However, in cases
where there are extremely severe gradual recurrent drifts,
CDCMS can retrieve models that learnt from intermediate
concepts, slightly hindering the accuracy (RQ3).

D. Results with Synthetic Abrupt Drift Data Streams

The right part of Table III shows that CDCMS achieved
similar or better accuracy than other approaches in all abrupt
drift data streams. Thus, the analysis done in this section will
focus on why CDCMS performed significantly better than
DP and DDD for Sine1-abrupt, given that it had performed
significantly worse for Sine1-gradual. Sine2-abrupt has been
chosen as an additional representative case.

Sine1-abrupt consists of two extremely severe drifts, where
the second drift is a recurrent drift (see Tables I and II).
Figure 2(a) shows that CDCMS was the best approach both
in terms of reaction to drifts and recovery speed. At the first
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drift, CDCMS mistakenly considered it as a recurrent drift
and recovered only one model which was created 200 time
steps before the drift. Relative to other models in memory,
this model did not learn much from the old concept. Thus,
we can consider that the new representative ensemble consists
of new models only, which enabled better adaptation to the
new concept. A further investigation of the ensembles’ weights
right after this drift shows that the new representative ensemble
obtained a weight of around 56% while the highly diverse
ensemble helped to recover the accuracy, with the weight
of around 38%. In contrast, the old representative ensemble
performed poorly, having a very low weight of around 5.6%.
As this drift is abrupt, it is reasonable that training new models
is the best strategy [11]. CDCMS successfully benefited from
that and recovered well from this drift.

On the contrary, OAUE and DDD had a great drop in
accuracy at the first drift. For OAUE, the main reason was
that it is a passive approach, which usually has an adaptation
lag in handling abrupt drifts. For DDD, it was because its
highly diverse ensemble was not diverse enough to have a
better generalisation in handling the drift, i.e., the λ value
suggested by the hyper-parameter tuning procedure was not
small enough. Thus, the highly diverse ensemble did not
perform well and could not draw a higher weight. This
indirectly led DDD to put too much emphasis on the old
representative ensemble, being unable to recover well from
this drift. An extra experiment using a smaller λ value showed
that DDD could place a higher emphasis on the highly diverse
ensemble, performing more similarly to CDCMS.

For the second drift, which is a recurrent drift, CDCMS was
the best one in adapting to this change. This was because all
the drifts in Sine1-abrupt are abrupt, resulting in no transitional
period where intermediate concepts can be formed. Thus, CD-
CMS managed to identify the recurring concept and recover
corresponding models more easily. Besides, its highly diverse
ensemble also helped to prevent a great drop in accuracy right
after the drift by participating in making predictions with a
weight of 49% (the new representative ensemble weighted
46%). OAUE performed poorly for the same reason as the first
drift, while DDD performed satisfactorily despite not being
designed for handling recurring concepts. The results obtained
for STA1-abrupt can be explained similarly to Sine1-abrupt.

Sine2-abrupt is the representative case that shows CDCMS
performed significantly better. Tables I and II show that all the
concept drifts in Sine2 are severe. Even though the statistical
test result did not capture any significant difference in the
overall accuracy between CDCMS and DDD, Figure 2(b)
shows that CDCMS started to perform considerably better
after the second drift (around 41,000th time step). The details
of CDCMS’s behaviour reveal that it considered this drift
as a recurrent drift. It then recovered a vast majority of
models holding the knowledge of concept f1, despite the actual
underlying concept being f3. CDCMS behaved similarly at the
third drift. A vast majority of models holding the knowledge
from f2 were recovered, despite the actual underlying concept
being f4. This happened because the concepts of f1 and f3
are quite similar and the concepts of f2 and f4 are also quite
similar (see Table II). CDCMS had not seen the concepts of

(a) KDDcup99’ (first 200k time steps) (b) Power Supply

(c) Sensor (first 200k time steps)

Fig. 3. Prequential Accuracy with Real-World Data Streams
TABLE IV

AVERAGE PREQUENTIAL ACCURACY (STANDARD DEVIATION) ACROSS
30 RUNS FOR THE REAL WORLD DATA STREAMS

Data
Stream CDCMS HTNB OzaBag DP OAUE RCD DDD

99.738% 99.65% 99.728% 99.65% 99.663% 99.65% 99.717%KDD
Cup99 (0.191%) (0.291%) (0.278%) (0.291%) (1.073%) (0.291%) (0.277%)

16.247% 14.833% 14.907% 14.637% 16.237% 13.84% 14.838%Power
Supply (4.115%) (3.359%) (3.28%) (3.671%) (4.523%) (3.226%) (3.503%)

89.38% 56.283% 71.126% 83.504% 92.332% 53.402% 85.838%Sensor (8.867%) (17.35%) (15.96%) (16.628%) (7.306%) (18.793%) (12.99%)
The p-values of Friedman tests are all <2.2E-16. Cells with bold text represent the
best accuracy (or approaches have no significant difference with best one) in the data
stream, based on the p-value (≥ 0.05) in Nemeyi post-hoc test.

f3 and f4 by the time it encountered them but managed to
exploit relevant past knowledge and successfully recover its
accuracy from these two drifts. This reflects CDCMS’s ability
in dealing with mild severity abrupt drifts.
Summary: CDCMS always performed similar or better
than other approaches on the abrupt drift data streams,
indicating that it was more robust to and fast recover from
multiple types of abrupt drift (RQ2). This is because the
highly diverse ensemble, containing relevant knowledge to
the concept after the drift, helped to prevent a great drop
in accuracy. Besides, CDCMS handled abrupt drifts better
than handling gradual drifts because it would not retrieve
models that learnt from intermediate concepts (RQ3).

E. Results with Real-World Data Streams

Table IV shows that CDCMS performed similarly or signif-
icantly better than all other approaches on the real-world data
streams. Due to the length of KDDcup99 and Sensor, Figure
3(a) and 3(c) only show their initial 200k time steps.

Despite Table IV showing that OzaBag is the most compet-
itive against CDCMS, Figure 3(a) shows that the accuracy
of OAUE is actually more competitive against CDCMS at
the beginning of KDDcup99 stream. Figure 3(a) shows that
CDCMS performed well and relatively more stable than other
approaches at the beginning of the KDDcup99 stream. The
standard deviation of CDCMS’s accuracy shown in Table IV
also supports this observation. The behaviour of CDCMS on
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this data stream was similar to its behaviour in the second and
third drifts of Agr3-gradual. Thus, in principle, the accuracy of
CDCMS and OAUE should have no significant difference in
this data stream but Table IV shows that CDCMS performed
significantly better. This may suggest that using prequential
accuracy as done by CDCMS may be a better weighting or
comparison metric in this data stream than using Mean Square
Error as done by OAUE.

For Power Supply, Table IV shows that no significant
difference has been found between the accuracies of CDCMS
and OAUE. Figure 3(b) shows that the accuracies of CDCMS
and OAUE are indeed quite similar throughout time. We
believe that this is mainly because CDCMS and OAUE both
keep updating their representative ensemble over time. When
comparing against other approaches, the same Figure shows
that there are periods of time when HTNB and OzaBag
won against CDCMS by a small magnitude. However, when
CDCMS won, it was by a large magnitude.

For Sensor, Table IV shows that CDCMS performed sig-
nificantly better than other approaches and similar to OAUE.
When looking closer at Figure 3(c), CDCMS could not achieve
better average accuracy than OAUE because it had frequent
drops in accuracy, caused by drift detection. Given the frequent
drops in accuracy, these drift detections may have been false-
positives. CDCMS can normally deal with false-positives by
emphasising old models after drift detection. However, the
large number of false-positives may have caused none of the
existing models to represent the current concept well enough,
causing the approach not to emphasise them.

V. EXPERIMENTS TO ANALYSE THE
TIME-MEMORY-ACCURACY RELATIONSHIP IN CDCMS

This section extends the time complexity analysis of
CDCMS presented in Section III-D with empirical results.
CDCMS was evaluated prequentially with different hyper-
parameter values that control its memory requirements and
may affect its runtime, based on the five representative
synthetic data streams that were analysed in Sections IV-C
and IV-D: Sine1-(gradual, abrupt), Sine2-(gradual, abrupt),
Agr3-gradual. We recorded the information about the average
prequential accuracy, total runtime (CPU seconds) and model
cost (RAM-hours) across thirty runs for each hyper-parameter
combination per data stream. Each run was performed using
the University of Birmingham’s BlueBEAR HPC with 8 CPU
cores and 8GB memory in a single computing node.

A. Experimental Setup

The hyper-parameters of CDCMS that control its memory
restrictions and may affect its runtime are the maximum total
number of models that CDCMS can hold at a time (3e+e×r)
and the size of the most recent window of data (b). The
options for these hyper-parameters were the same as those
in Section IV-B, except that we selected a subset of ensemble
size-memory size multiplier (e-r) combinations that lead to
roughly equal intervals for the maximum total number of
models. In summary, the e-r combinations chosen to control
the maximum total number of models were 5-4 (35), 5-10

(a) Runtime (b) Memory

(c) Accuracy

Fig. 4. Overall runtime, memory and accuracy of CDCMS for different
maximum total numbers of models in Agr3-gradual. The different coloured
lines represent different sliding window sizes.

(65), 10-6 (90), 10-8 (110), 10-10 (130), 15-8 (165), 15-10
(195), 20-8 (220), 20-10 (260), where the value in brackets is
the resulting maximum number of models. Other non-memory
related hyper-parameters were kept with the values previously
selected through hyper-parameter tuning in Section IV-B
B. Results with Synthetic Data Streams

Figure 4 shows representative plots of the time, memory
and accuracy obtained when restricting the maximum total
number of models to different values. Other plots were omitted
due to space restrictions, but present similar trends unless
stated otherwise. Figures 4(a) and 4(b) show that increasing
the maximum number of models (3e+ e× r) in general leads
to an increase in CDCMS’s memory cost (RAM-hours) and
total runtime (CPU seconds). This is because CDCMS can
hold and is required to process more information. However, the
relationship between sliding window size (b), the memory cost
and the total runtime was less clear, varying and depending
on the data stream and the maximum number of models.

Despite the higher memory cost and runtime, increasing
the maximum number of models was in general beneficial
to the overall prequential accuracy (see Figure 4(c)). This
could be because a larger memory can store more concepts,
increasing the chances that various past knowledge is kept.
So, it can better handle recurrent drifts and drifts leading to
a concept that shares similarities with past concepts. Larger
sliding window sizes did not necessarily lead to better overall
prequential accuracy as expected, because different sliding
window sizes will be better for different types and frequencies
of drift.

In summary, the analysis above shows that increasing the
maximum total number of models could slightly improve the
prequential accuracy but the trade-offs are the increase in the
memory cost and the total runtime.

VI. CONCLUSION

Multiple types of concept drift could potentially coexist in
real-world applications. However, existing data stream mining
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algorithms tend to be better at handling a small subset of types
of drift, which may not be sufficient for real-world applica-
tions. This paper proposes a novel diversity framework called
CDCMS that can handle multiple types of drift well. CDCMS
creates highly diverse ensembles through clustering in the
model space and uses a diversity-based memory management
strategy (RQ1). CDCMS achieved similar or better prequential
accuracy than existing approaches in both synthetic and real-
world data streams, doing particularly well with abrupt and
recurrent drifts in terms of accuracy recovery speed and the
overall predictive performance (RQ2). The main reason behind
is that CDCMS’s novel clustering in the model space strategy
and diversity-based memory management strategy were able to
keep, identify and recover relevant past knowledge to handle
concept drifts. The highly diverse ensemble created based on
such strategies also helped to prevent great drops in accuracy
after concept drifts (RQ3).

Future work includes the investigation on how to improve
the accuracy of CDCMS on data streams with multiple ex-
tremely severe gradual drifts and the extension of this diversity
framework to online class imbalanced learning.
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