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Abstract— This brief is concerned with the stability of a neural

network with a time-varying delay using the quadratic function negative-
definiteness approach reported recently. A more general reciprocally
convex combination inequality is taken to introduce some quadratic terms
into the time derivative of a Lyapunov–Krasovskii (L–K) functional. As a
result, the time derivative of the L–K functional is estimated by a novel
quadratic function on the time-varying delay. Moreover, a simple way
is introduced to calculate the coefficients of a quadratic function, which
avoids tedious works by hand as done in some studies. The L–K functional
approach is applied to derive a hierarchical type stability criterion for
the delayed neural networks, which is of less conservatism in comparison
with some existing results through two well-studied numerical examples.

Index Terms— Delayed neural network, Lyapunov–
Krasovskii (L–K) functional, reciprocally convex combination
lemma (RCCL), stability.

I. INTRODUCTION

Since neural networks can model and describe nonlinear dynamics
effectively, they have found a wide range of successful applications
in various fields, e.g., image processing, optimization, and pattern
recognition [1]–[4]. Because these applications heavily depend on
their dynamic behaviors, the stability problem is naturally of great
concern [5]. It should be mentioned that, due to a finite speed of
information processing and other factors, time delays are inevitably
encountered in neural networks [6]. As is well known, a time
delay may have a great impact on the properties of a neural
network. For example, it is proved [7], for the first time, that an
n-dimensional cellular neural network with a time-varying delay
has up to 2n local exponential attractors (i.e., stable equilibrium
points or periodic attractors). Moreover, it is recognized that time-
delays usually cause poor performance or result in instability of a
neural network [8]–[12]. Therefore, much effort has been devoted
to stability analysis of delayed neural networks during the past
years [13]–[20].

Since time delays encountered in practical neural networks
are often time-varying, the Lyapunov–Krasovskii (L–K) functional
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method has been widely employed to investigate the stability of
neural networks with a time-varying delay. The aim of this method is
to derive a less conservative stability condition by constructing a suit-
able L–K functional so that the stability is guaranteed for the neural
network under study with the delay varying within a closed interval
as large as possible. In doing so, more state vectors are required to be
taken into account when constructing an L–K functional. Meanwhile,
the time derivative of the L–K functional should be more precisely
estimated by using some advanced techniques [21]–[23].

So far, many remarkable L–K functionals have been proposed in
the literature [24]–[27]. To mention a few, hierarchical-type stability
criteria are obtained based on a hierarchical-type L–K functional [24],
in which the quadratic functional is comprised of more than N
vectors related with the neural state. A larger value of N means more
state vectors involved. Later, the N-dependent quadratic functional is
extended in a new L–K functional [25], where three N-dependent
quadratic functionals are constructed. Recently, when dealing with
linear systems with time-varying delays, instead of the double-integral
term

� t
t−h M

� t
s ẋ T (u)Rẋ(u)duds, two integral terms, i.e.,

� t
t−h(t)(hM −

t + s)ẋ T (s)R1 ẋ(s)ds and
� t−h(t)

t−h M
(hM − t + s)ẋ T (s)R2 ẋ(s)ds, are

introduced to a novel L–K functional [26], where h(t) is a time-
varying function belonging to a closed interval [0, hM ], and x(·) is
the neural state. The two different matrices R1 and R2 provide more
freedom to relax the resulting stability condition, which is verified
in [27].

Aside from constructing an appropriate L–K functional, developing
new techniques, such as integral inequalities [28], [29] and the
reciprocally convex combination lemma (RCCL) [23], [30]–[35],
to precisely estimate the time derivative of L–K functionals is also
important to reduce the conservatism of a stability criterion. The
RCCL is originally proposed in [30] to estimate a reciprocally convex
combination term, such as (1/α)βT

1 Z1β + (1/1 − α)βT
2 Z2β2 with

α ∈ (0, 1) and βT
i Ziβi being quadratic-type functions. Such a recipro-

cally convex combination is estimated by βT
1 Z1β1+βT

2 Z2β2+2βT
1 Sβ2

if [ Z1 S
ST Z2

] ≥ 0. It is clear that this estimation is α-independent.
In 2016, by introducing four slack matrices, this estimation is
generalized by an α-dependent expression that is affine with respect
to α, leading to an α-affine RCCL [31]. It is worth pointing out
that the α-affine RCCL is further refined by removing two slack
matrices while introducing two nonlinear terms, such as X R−1Y
[23], [33]. These two terms may increase the size of the corre-
sponding linear matrix inequalities (LMIs) due to the use of the
Schur complement. Other remarkable RCCLs with more free matrices
introduced can be referred to [34], [35].

As N-dependent quadratic functionals are included in L–K func-
tionals, the time derivative of L–K functionals is often estimated as
a quadratic function, such as F(t) � γ T (t)[h2(t)�2 + h(t)�1 +
�0]γ(t), where γ(t) is a h(t)-independent vector; � j ( j = 0, 1, 2)
are symmetric real matrices and h(t) ∈ [0, hM ]. Developing a
methodology to ensure the quadratic function to be negative for
h(t) ∈ [0, hM ] has become a hot topic during the past years [35]–[37].
By partitioning the whole interval into multiple subintervals,
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a quadratic-partitioning method is proposed without introducing
additional decision variables (NVs) [36]. The more the subinter-
vals, the less the conservative stability criterions. A necessary and
sufficient condition on F(t) < 0 for h(t) ∈ [0, hM ] is recently
developed by introducing two slack matrices [26], and soon after,
it is extended to general cases [27]. It should be mentioned that, when
the above methods are applied, it is tedious to calculate the matrix
coefficients � j ( j = 0, 1, 2). Thus, seeking a skill to fast calculate
� j ( j = 0, 1, 2) is definitely helpful to make the above methods more
practical.

This brief focuses on the stability of delayed neural net-
works based on a quadratic function negative-definiteness method.
An α2-dependent reciprocally convex combination inequality is intro-
duced with a smaller number of free matrices compared with that
in [35]. Another significance of this inequality is that it can introduce
some quadratic terms into the time derivative of an L–K functional.
Consequently, the time derivative of the L–K functional is estimated
by a novel quadratic function on the time-varying delay, which is
of extra freedom compared with some existing methods. Moreover,
this brief presents a simple way to calculate the coefficients, such as
� j ( j = 0, 1, 2) mentioned earlier, of a quadratic function, which
significantly avoids tedious works by hand as done in some existing
results (see [25]–[27]). A general L–K functional is constructed to
derive a hierarchical type stability criterion for the delayed neural
network under study. Two numerical examples show the effectiveness
of the proposed result.

The remaining part of this brief is organized as follows. Useful
lemmas are presented in Section II. Problem formulation and stability
conditions are given in Section III. Section VI demonstrates two
numerical examples, and Section V concludes this brief.

Notations: Throughout this brief, R
n denotes the n-dimensional

Euclidean vector space and R
n×m the set of all n×m real matrices. S

n
+

represents the set of symmetric positive-definite matrices of Rn×n and
Dn

+ the set of diagonal matrices of Sn
+. N and N+ stand for the sets of

nonnegative and positive integers, respectively.
�k

l

� := (k!/(l !(k−l)!)).

II. USEFUL LEMMAS

Lemma 1: [An α-affine RCCL [31]] For matrices R1, R2 ∈ Sn
+,

if there exist X̃1, X̃2 ∈ Sn and Ỹ1, Ỹ2 ∈ Rn×n such that�
R1 0
0 R2

�
≥

�
α X̃1 αỸ1 + (1 − α)Ỹ2

(∗) (1 − α)X̃2

�
(1)

holds for α = 0, 1, then so does the following inequality:⎡
⎢⎣

1

α
R1 0

0
1

1 − α
R2

⎤
⎥⎦ ≥

�
R1+(1−α)X̃1 Ỹ (α)

(∗) R2+α X̃2

�
(2)

for ∀α ∈ (0, 1), where Ỹ (α) = αỸ1 + (1 − α)Ỹ2.
Remark 1: Since the inequality (1) is affine with α, it also holds

for ∀α ∈ (0, 1). By setting X̃1 = X̃2 = 0 and Ỹ1 = Ỹ2, the α-affine
RCCL is reduced to the well-known α-independent one [30].

Inspired by Park et al. [30] and Seuret and Gouaisbaut [31],
we propose a new RCCL by introducing some slack matrices, which
includes Lemma 1 as a special case.

Lemma 2: For matrices R1, R2 ∈ Sn
+, if there exist Xi , Yi ∈ Sn

and Z0, Zi ∈ Rn×n , i ∈ {1, 2}, such that�
R1 0
0 R2

�
≥

�
X (α) Z(α)
(∗) Y (α)

�
(3)

holds for ∀α ∈ (0, 1), then so does the following inequality:� 1
α

R1 0
0 1

1−α
R2

�
≥

�
R1 + X (α) Z(α)

(∗) R2 + Y(α)

�
(4)

for ∀α ∈ (0, 1), where

X (α) = αX1 + α2 X2 Z(α) = Z0 + αZ1 + α2 Z2

Y (α) = (1 − α)Y1 + (1 − α)2Y2

X (α) = (1 − α)X1 + α(1 − α)X2

Y(α) = αY1 + α(1 − α)Y2.

Remark 2: The proof is similar to that in [31], hence omitted
for clarity. By setting X2 = Y2 = Z2 = 0, X1 = X̃1, Y1 = X̃2,
Z0 = Ỹ2, and Z1 = Ỹ1 − Ỹ2, Lemma 2 reduces to Lemma 1. It is
clear that no other nonlinear terms, such as X R−1Y , are introduced.
Moreover, since the inequality (4) includes some α2-dependent terms,
we call Lemma 2 an α2-dependent RCCL, which gives an extra way
to introduce some quadratic terms on the time-varying delay into the
time derivative of an L–K functional. In addition, it is not difficult
to see that Lemma 2 is equivalent to that in [35] but with a smaller
number of NVs introduced.

Recently, a quadratic-partitioning method is developed to deal
with the quadratic-function negative-definiteness problem [36]. For
convenience to use, its matrix-valued form is given in the following.

Lemma 3 [36]: For a quadratic matrix-valued function M(ht) :=
h2

t �2 + ht�1 + �0, where �2, �1,�0 ∈ Sp, one has M(ht) < 0 for
∀ht ∈ [0, hM ] if the following inequalities hold:
M(0) < 0, M(hM ) < 0, −�2h2

M + 4M(0) < 0

−�2h2
M + M(0) + M(hM ) < 0.

Remark 3: Lemma 3 is a sufficient condition on M(ht) < 0 for
ht ∈ [0, hM ], where no additional matrix variables are introduced.
As stated in [36], it is less conservative than the one in [12]. Although
an LMI-based necessary and sufficient condition is recently presented
in [26], the involved LMIs are of much higher calculation complexity.
On the one hand, p2 NVs are introduced, and on the other hand,
the dimensions of the obtained LMIs are 2p, which is double as
those in Lemma 3. Therefore, compared with the necessary and
sufficient condition, Lemma 3 can be regarded as a tradeoff between
conservatism and calculation complexity.

It is worth pointing out that, when employing some existing
methods to deal with M(ht) = h2

t �2 + ht�1 + �0 < 0 for
ht ∈ [0, hM ], it is necessary to get the exact explicit expressions of
the matrices � j ( j = 0, 1, 2). However, it seems that the proposed
methods in [25], [26], and [27] are tedious to work them out since
a large number of algebraic manipulations by hand are required. The
following result paves a simple way to derive �i from the expression
of M(ht ).

Lemma 4: For a quadratic matrix-valued function
M(x) := x2�2 + x�1 + �0 with �0,�1, �2 ∈ Sp, one has

�0 = M(0) (5)

�1 = −1

2


M(2) − 4M(1) + 3M(0)

�
(6)

�2 = 1

2


M(2) − 2M(1) + M(0)

�
. (7)

Proof: It follows from the definition of M(x):

M(0) = �0, M(1) = �2 + �1 + �0

M(2) = 4�2 + 2�1 + �0.

Solving the above equations gives (5)–(7). �
In the end, we introduce the m-order Bessel–Legendre integral

inequality for the integral term
� b

a ẋT (s)Rẋ(s)ds.
Lemma 5: [25] For a scalar m ∈ N, a matrix R ∈ Sn

+ and
a differentiable vector function x(t): [a, b] → Rn , the following
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inequality:

(b − a)

� b

a
ẋT (s)Rẋ(s)ds ≥ ϑT

m(a,b)�̃
T
m R̃m�̃mϑm(a,b) (8)

holds, where

R̃m := diag{R, 3R, . . . , (2m + 1)R}
�̃m := col{�0,�1, . . . ,�m}

�i :=
⎧⎨
⎩


I −I 0 · · · 0

�
, i = 0 �i

k=0 ρ i
k I ρ̄ i 0 · · · 0

�
, 1 ≤ i ≤ m

(9)

ρ̄ i :=


−ρ i
0 I −ρ i

1 I · · · −ρ i
i I

�
ρ i

k := (−1)k+i

�
i

k

��
k + i

k

�

ϑm(a,b) :=
⎧⎨
⎩

col{x(b), x(a)}, m = 0

col
�

x(b), x(a),
	01

S1
, . . . , 	0m

Sm

�
, m ≥ 1

Si :=
� b

a

� b

u1

· · ·
� b

ui−1

dui · · · du2du1

	0i :=
� b

a

� b

u1

· · ·
� b

ui−1

x(ui )dui · · · du2du1.

For m = 3, �0 = [I − I 0 0 0], �1 = [I I − 2I 0 0],
�2 = [I − I 6I − 6I 0], and �3 = [I I − 12I 30I − 20I ],
which are consistent with previous results reported in the literature.

III. MAIN RESULTS

Consider a generalized neural network with a time-varying delay
described by

ẋ(t)=−Ax(t)+W0 f (W2x(t))+W1 f (W2x(t −h(t))) (10)

where x(t) = col{x1(t), x2(t), . . . , xn(t)} ∈ Rn is the
state vector with n neurons; f (W2x(t)) = col{ f1(W21x(t)),
f2(W22x(t)), . . . , fn(W2n x(t))} is the neuron activation function with
W2i denoting the ith row of W2; and A ∈ D

n
+ and W0, W1, W2 ∈ R

n×n

are constant real matrices. h(t) is the time-varying delay satisfying
the following constraints:

0 ≤ h(t) ≤ hM , μ1 ≤ ḣ(t) ≤ μ2 (11)

where hM , μ1, and μ2 are the real constants. The activation functions
fi (W2i x(t)), i ∈ {1, 2, . . . , n}, satisfy fi(0) = 0 and

k1i ≤ fi (t1) − fi(t2)

t1 − t2
≤ k2i , t1 �= t2 (12)

where k1i and k2i are the known constants that may be positive, nega-
tive, or zero. For convenience, we define K1 := diag{k11, k12, . . . , k1n}
and K2 := diag{k21, k22, . . . , k2n}. The following inequalities can be
directly obtained from (12) with s, s1, s2 ∈ R and T, U ∈ D

n
+:


1(s, T ) ≥ 0, 
2(s1, s2, U) ≥ 0 (13)

where


1(s, T ) := 2
T
11(s)T 
12(s)


2(s1, s2, U) := 2
T
21(s1, s2)U
22(s1, s2)


11(s) := f (W2x(s)) − K1W2x(s)


12(s) := K2W2x(s) − f (W2x(s))


21(s1, s2) := 
11(s1) − 
11(s2)


22(s1, s2) := 
12(s1) − 
12(s2).

Before proceeding, we define the following notations for simplicity
of presentation:

ht := h(t), hMt := hM − ht , fW (t) := f (W2x(t))

σ0(t) := col{x(t), x(t − ht), x(t − hM )}
σ1(t) := col{ fW (t), fW (t − ht ), fW (t − hM )}
σ2(t) := col

�� t

t−ht

fW (s)ds,
� t−ht

t−h M

fW (s)ds

�
σ3(t) := col{ẋ(t − ht), ẋ(t − hM )}
σ(t) := col{σ0(t), σ1(t), σ2(t), σ3(t)}
ui (t) :=

� t

t−ht

�
s − t + ht

ht

�i

x(s)ds

vi (t) :=
� t−ht

t−h M

�
s − t + hM

hMt

�i

x(s)ds

ωi (t) := col{ui(t), vi (t)}, i (t) := col

�
ui (t)

ht
,
vi (t)

hMt

�
ξN (t) := col{σ(t),0(t),1(t), . . . ,N (t)}.

Inspired by Chen et al. [25], Oliveira and Souza [26], and
Zhang et al. [27], we construct a novel L–K functional candidate
as

V (t) := V0(t) + V1(t) + V2(t) + V3(t) + V4(t) (14)

where

V0(t) := χT
N (t) P̃N (t)χN (t)

V1(t) :=
� t

t−ht

ηT
1 (t, s)Q1η1(t, s)ds

+
� t−ht

t−h M

ηT
2 (t, s)Q2η2(t, s)ds

V2(t) := hM

� t

t−ht

(hM − t + s)ẋ T (s)R1 ẋ(s)ds

+hM

� t−ht

t−h M

(hM − t + s)ẋ T (s)R2 ẋ(s)ds

V3(t) := 2
n�

i=1

� W2i x(t)

0
[h1i f −

i (s) + h2i f +
i (s)]ds

+ 2
n�

i=1

� W2i x(t−ht )

0
[h3i f −

i (s) + h4i f +
i (s)]ds

+ 2
n�

i=1

� W2i x(t−h M )

0
[h5i f −

i (s) + h6i f +
i (s)]ds

V4(t) := hM

� t

t−ht

(hM − t + s) f T
W (s)R3 fW (s)ds

+ hM

� t−ht

t−h M

(hM − t + s) f T
W (s)R4 fW (s)ds

with P̃N (t) := ht P1 + P0 and

χN (t) := col{σ0(t), ω0(t),ω1(t), . . . , ωN (t)}
η0(s) := col{ẋ(s), x(s), fW (s)}

η1(t, s) := col

�
η0(s),

� t

s
x(u)du,

� s

t−ht

x(u)du

�

η2(t, s) := col

�
η0(s),

� t−ht

s
x(u)du,

� s

t−h M

x(u)du

�
f −
i (s) := fi (s) − k1i s, f +

i (s) := k2i s − fi(s)

Hj := diag{h j1, h j2, . . . , h jn}, j ∈ {1, . . . , 6}.
Remark 4: Compared with some existing L–K functionals, e.g.,

in [24] and [25], the L–K functional defined in (14) has been
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improved in two parts: one is the quadratic matrix P̃N (t) in V0(t),
which is affine with the delay ht . It is obvious that the delay-affine
matrix is more general than both the constant matrix P0 and the delay-
product-type one ht P1 [9], [21]. The other is the two double-integral
terms in V2(t) and V4(t), which splits the interval [t − hM , t] into
[t − hM , t − ht ] and [t − ht , t]. As a result, two different matrices
R1 and R2 (or R3 and R4) are introduced. If one sets R1 = R2 (or
R3 = R4), V2(t) (or V4(t)) is the same as that in [24] and [25].

Theorem 1: For given scalars hM , μ1, μ2 ∈ R and N ∈ N,
the neural network (10) subject to (11) and (12) is asymptotically
stable if there exist matrices P0, P1 ∈ S(5+2N)n , Q1, Q2 ∈ S5n

+ ,
R1, R2, R3, R4 ∈ Sn

+, Hi , Ti ∈ Dn
+, i ∈ {1, . . . , 6}, Xi , Yi ∈ S(N+2)n ,

Z0, Zi ∈ R(N+2)n×(N+2)n , X f i , Y f i ∈ Sn , and Z f 0, Z f i ∈ Rn×n ,
i ∈ {1, 2}, such that

P̃N (t) > 0 (15)

M1(α) :=
�

X (α) Z(α)

(∗) Y (α)

�
−

�
R̃1,N+1 0
(∗) R̃2,N+1

�
≤ 0 (16)

M2(α) :=
�

X f (α) Z f (α)

(∗) Y f (α)

�
−

�
R3 0
(∗) R4

�
≤ 0 (17)

M3(ht , ḣt) :=
4�

i=0

�i (ht , ḣt) + ϒ < 0 (18)

for ht ∈ [0, hM ], ḣt ∈ [μ1, μ2], and α ∈ (0, 1), where

�0(ht , ḣt) = Sym{πT
1 (ht) P̃N (t)π2(ḣt)}

+ḣtπ
T
1 (ht)P1π1(ht) (19)

π1(ht) = col{eσ0 , eu0 , ev0 , . . . , eu N , evN }
eσ0 = col{e1, e2, e3}
eui = ht e11+2i , evi = hMt e12+2i

π2(ḣt) = col{eσ̇0 , eu̇0 , ev̇0 , . . . , eu̇ N , ev̇N }
eσ̇0 = col{es, (1 − ḣt)e9, e10}
es = −Ae1 + W0e4 + W1e5

eu̇i =
�

e1 − (1 − ḣt)e2, i = 0

e1 − i(1 − ḣt)e11+2(i−1) − i ḣt e11+2i , i ≥ 1

ev̇i =
�

(1 − ḣt)e2 − e3, i = 0

(1 − ḣt)e2 − ie12+2(i−1) + i ḣt e12+2i , i ≥ 1

�1(ht , ḣt) = cT
1 Q1c1 − (1 − ḣt)c

T
2 Q1c2 + Sym{cT

3 Q1c4}
+(1 − ḣt)c

T
5 Q2c5 − cT

6 Q2c6 + Sym{cT
7 Q2c8} (20)

c1 = col{es, e1, e4, 0, ht e11}
c2 = col{e9, e2, e5, ht e11, 0}
c3 = col{0, 0, 0, e1,−(1 − ḣt)e2}
c4 = col{e1 − e2, ht e11, e7, h2

t e13, h2
t (e11 − e13)}

c5 = col{e9, e2, e5, 0, hMt e12}
c6 = col{e10, e3, e6, hMt e12, 0}
c7 = col{0, 0, 0, (1 − ḣt)e2,−e3}
c8 = col{e2 − e3, hMt e12, e8, h2

Mt e14, h2
Mt (e12 − e14)}

�2(ht , ḣt) = h2
MeT

s R1es + (1 − ḣt)hM hMt e
T
9 R21e9

−
�

�̃N+1 E1N

�̃N+1 E2N

�T

�I(α)

�
�̃N+1 E1N

�̃N+1 E2N

�
(21)

�I(α) =
�

R̃1,N+1 + X̃(α) Z(α)
(∗) R̃2,N+1 + Ỹ (α)

�
R̃1,N+1 = diag{R1, 3R1, . . . , (2N + 3)R1}
R̃2,N+1 = diag{R2, 3R2, . . . , (2N + 3)R2}

E1N = col{e1, e2, e11, 2e13, . . . , (N + 1)e11+2N }
E2N = col{e2, e3, e12, 2e14, . . . , (N + 1)e12+2N }

X (α) = αX1 + α2 X2, Z(α) = Z0 + αZ1 + α2 Z2

Y (α) = (1 − α)Y1 + (1 − α)2Y2

X̃(α) = (1 − α)X1 + α(1 − α)X2

Ỹ (α) = αY1 + α(1 − α)Y2, R21 = R2 − R1

�3(ht , ḣt ) = Sym{�T
31W2es} + Sym{(1 − ḣt)�

T
32W2e9}

+Sym{�T
33W2e10} (22)

�31 = H1(e4 − K1W2e1) + H2(K2W2e1 − e4)

�32 = H3(e5 − K1W2e2) + H4(K2W2e2 − e5)

�33 = H5(e6 − K1W2e3) + H6(K2W2e3 − e6)

�4(ht , ḣt ) = h2
M eT

4 R3e4 + (1 − ḣt)hM hMt e
T
5 R43e5

−�
eT

7 eT
8

�
� f I(α)

�
eT

7 eT
8

�T
(23)

X f (α) = αX f 1 + α2 X f 2, R43 = R4 − R3

Z f (α) = Z f 0 + αZ f 1 + α2 Z f 2

Y f (α) = (1 − α)Y f 1 + (1 − α)2 Y f 2

X̃ f (α) = (1 − α)X f 1 + α(1 − α)X f 2

Ỹ f (α) = αY f 1 + α(1 − α)Y f 2

� f I(α) =
�

R3 + X̃ f (α) Z f (α)

(∗) R4 + Ỹ f (α)

�

ϒ =
3�

i=1

Sym{ϒ1i} +
2�

i=1

Sym{ϒT
2i T3+iϒ3i }

+Sym{ϒT
4 T6ϒ5}, (24)

ϒ1i = (e3+i − K1W2ei )
T Ti(K2W2ei − e3+i)

ϒ2i = e3+i − e4+i − K1W2(ei − ei+1)

ϒ3i = K2W2(ei − ei+1) − e3+i + e4+i

ϒ4 = e4 − e6 − K1W2(e1 − e3)

ϒ5 = K2W2(e1 − e3) − e4 + e6

α = ht/hMt

ei = �
0n×(i−1)n In×n 0n×(12+2N−i)n

�
i ∈ {1, 2, . . . , 12 + 2N − i}

and �̃N+1 is defined in Lemma 5.
Proof: Along the trajectory of the neural network (10), the time

derivatives of Vi (t), i ∈ {0, . . . , 4}, are computed as follows:

V̇0(t) = 2χT
N (t) P̃N (t)χ̇N (t) + ḣtχ

T
N (t)P1χN (t)

= ξ T
N (t)�0(ht , ḣt)ξN (t) (25)

V̇1(t) = ηT
1 (t, t)Q1η1(t, t)

− (1 − ḣt)η
T
1 (t, t − ht)Q1η1(t, t − ht)

+ 2
� t

t−ht

ηT
1 (t, s)Q1

dη1(t, s)

dt
ds

+ (1 − ḣt)η
T
2 (t, t − ht)Q2η2(t, t − ht)

− ηT
2 (t, t − hM )Q2η2(t, t − hM)

+ 2
� t−ht

t−h M

ηT
2 (t, s)Q2

dη2(t, s)

dt
ds

= ξ T
N (t)�1(ht , ḣt)ξN (t) (26)

V̇2(t) = h2
M ẋT (t)R1 ẋ(t)

+ (1 − ḣt)hM hMt ẋ
T (t − ht)R21 ẋ(t − ht)

− I1 − I2 (27)

V̇3(t) = ξ T
N (t)�3(t, ḣt)ξN (t) (28)

V̇4(t) = h2
M f T

W (t)R3 fW (t)

+ (1 − ḣt)hM hMt f T
W (t − ht )R43 fW (t − ht)

− I f 1 − I f 2 (29)
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where �0(ht , ḣt ), �1(ht , ḣt), and �3(t, ḣt) are, respectively, defined
in (19), (20), and (22), and

I1 = hM

� t

t−ht

ẋ T (s)R1 ẋ(s)ds

I2 = hM

� t−ht

t−h M

ẋT (s)R2 ẋ(s)ds

I f 1 = hM

� t

t−ht

f T
W (s)R3 fW (s)ds

I f 2 = hM

� t−ht

t−h M

f T
W (s)R4 fW (s)ds.

Applying Lemma 5 with m = N + 1 to I1 and I2 leads to

I1 + I2 ≥ hM

ht
ξ T

N (t)E T
1N �̃T

N+1 R̃1,N+1�̃N+1 E1N ξN (t)

+ hM

hMt
ξ T

N (t)E T
2N�̃T

N+1 R̃2,N+1�̃N+1 E2N ξN (t)

= ξ T
N (t)

�
�̃N+1 E1N

�̃N+1 E2N

�T

R̃12(α)

�
�̃N+1 E1N

�̃N+1 E2N

�
ξN (t)

where

R̃12(α) =
⎡
⎢⎣

1

α
R̃1,N+1 0

(∗)
1

1 − α
R̃2,N+1

⎤
⎥⎦.

Note that the facts ϑ(N+1)(t−ht ,t) = E1N ξN (t) and ϑ(N+1)(t−h M ,t−ht ) =
E2N ξN (t) are considered from Lemma 3 in [25]. Continuing to apply
Lemma 2 to R̃12(α) leads to

R̃12(α) ≥ �I(α)

subject to the inequality (16). Then, it follows that:
V̇2(t) ≤ ξ T

N (t)�2(ht , ḣt)ξN (t) (30)

where �2(ht , ḣt) is defined in (21).
Now, applying Jensen’s inequality and Lemma 2 to I f 1 and I f 2

yields

I f 1 + I f 2 ≥ 1

α
FT

1 (t)R3 F1(t) + 1

1 − α
FT

2 (t)R4 F2(t)

= ξ T
N (t)

�
e7

e8

�T

⎡
⎢⎣

1

α
R3 0

(∗)
1

1 − α
R4

⎤
⎥⎦�

e7

e8

�
ξN (t)

≥ ξ T
N (t)

�
e7

e8

�T

� f I(α)

�
e7

e8

�
ξN (t) (31)

where F1(t) = � t
t−ht

fW (s)ds and F2(t) = � t−ht

t−h M
fW (s)ds subject to

inequality (17). Then, we have

V̇4(t) ≤ ξ T
N (t)�4(ht , ḣt )ξN (t) (32)

where �4(ht , ḣt) is defined in (23).
On the other hand, from (13), one has


1(t, T1) ≥ 0, 
1(t − ht , T2) ≥ 0 (33)


1(t − hM , T3) ≥ 0, 
2(t, t − ht , T4) ≥ 0 (34)


2(t − ht , t − hM , T5) ≥ 0, 
2(t, t − hM , T6) ≥ 0. (35)

Then, it follows from (33)–(35) that:
ξ T

N (t)ϒξN (t) ≥ 0

where ϒ is defined in (24). As a result, we have

V̇ (t) ≤ ξ T
N (t)M3(ht , ḣt)ξN (t) (36)

with M3(ht , ḣt ) being defined in (18). It is seen from (18) and (36)
that there exists a sufficient small ε1 > 0 such that V̇ (t) ≤
−ε1	x(t)	 < 0 for any x(t) �= 0. It is also seen from (15) that there
exists a sufficient small ε2 > 0 such that 	V (t)	 ≥ ε2	x(t)	 > 0 for
any x(t) �= 0. Therefore, based on the L–K functional theory, it is
concluded that a neural network (10) is asymptotically stable. This
completes the proof. �

Remark 5: Theorem 1 presents a stability criterion for the delayed
neural network (10). In inequality (18), M3(ht , ḣt) is a quadratic
matrix-valued function with respect to ht , which can be rewritten
as M3(ht , ḣt) = h2

t �2 + ht�1 + �0. The coefficient matrix �2 of
the quadratic term h2

t comes not only from the derivative of V̇ (t)
but also from the use of α2-dependent reciprocally convex lemma
(i.e., Lemma 2). However, if we use Lemma 1 instead of Lemma 2,
no quadratic term is introduced.

Note that Theorem 1 does not provide criteria to ensure
M3(ht , ḣt) < 0 for ht ∈ [0, hM ], making Theorem 1 difficult for
checking the stability of (10). We are now in a position to derive an
LMI condition from Theorem 1 using Lemma 3.

Theorem 2: For given scalars hM , μ1, μ2 ∈ R and N ∈ N,
the neural network (10) subject to (11) and (12) is asymptotically
stable if there exist matrices P0, P1 ∈ S(5+2N)n , Q1, Q2 ∈ S5n

+ ,
R1, R2, R3, R4 ∈ Sn

+, Hi , Ti ∈ Dn
+, i ∈ {1, . . . , 6}, Xi , Yi ∈ S(N+2)n ,

Z0, Zi ∈ R(N+2)n×(N+2)n , X f i , Y f i ∈ Sn , Z f 0, Z f i ∈ Rn×n , and
i ∈ {1, 2}, such that

P0 > 0, hM P1 + P0 > 0 (37)

M1(0) < 0, M1(1) < 0, −�2 + 4M1(0) < 0 (38)

−�2 + M1(0) + M1(1) < 0 (39)

M2(0) < 0, M2(1) < 0, −�2 + 4M2(0) < 0 (40)

−�2 + M2(0) + M2(1) < 0 (41)

M3(0, ḣt) < 0, M3(hM , ḣt) < 0 (42)

−�2h2
M + 4M3(0, ḣt) < 0 (43)

−�2h2
M + M3(0, ḣt) + M3(hM , ḣt) < 0 (44)

for ḣt ∈ {μ1, μ2}, where M1(α), M2(α), and M3(ht , ḣt ) are, respec-
tively, defined in (16)–(18)

�2 = [M1(2) − 2M1(1) + M1(0)]/2

�2 = [M2(2) − 2M2(1) + M2(0)]/2

�2(ḣt) = [M3(2, ḣt) − 2M3(1, ḣt) + M3(0, ḣt)]/2.

Proof: Since M1(α) in (16) is quadratic with the variable α, it can
be rewritten in the following form:

M1(α) = α2�2 + α�1 + �0

where �2, �1, and �0 can be calculated via Lemma 4. According to
Lemma 3, M1(α) < 0 for ∀α ∈ (0, 1) is ensured by (38) and (39).
In the same way, M2(α) < 0 for ∀α ∈ (0, 1) and M3(ht , ḣt) < 0 for
∀ht ∈ [0, hM ] are, respectively, ensured by (40)–(44) since M2(α) and
M3(ht , ḣt) can be rewritten in the following forms via Lemma 4:

M2(α) = α2�2 + α�1 + �0

M3(ht , ḣt) = h2
t �2(ḣt) + ht�1(ḣt) + �0(ḣt).

On the other hand, P̃N (t) and M3(ht, ḣt) are, respectively, affine
with respect to ht and ḣt . Thus, P̃N (t) > 0 for ∀ht ∈ [0, hM ] is
ensured by P0 > 0 and hM P1+P0 > 0. M3(ht , ḣt) < 0 ∀ḣt ∈ [μ1, μ2]
is ensured by M3(ht , μ1) < 0 and M3(ht , μ2) < 0. This completes
the proof. �

Remark 6: From the proof of Theorem 2, it is clear to see that
the use of Lemma 4 helps us avoid those tedious works to calculate
the coefficient matrices � j (ḣt) ( j = 0, 1, 2), as done in [25]–[27].
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TABLE I

MAUBS hM FOR μ2 = −μ1 IN EXAMPLE 1

On the other hand, similar to [24], we can also prove that Theorem 2
forms a hierarchy of LMI conditions.

IV. NUMERICAL EXAMPLES

In this section, two well-used numerical examples are presented to
calculate the maximum allowable upper bounds (MAUBs) to check
the conservatism of Theorem 2 and other conditions reported recently
in the literature. In addition, the number of NVs is also compared
since it is a major indicator reflecting the computational complexity
of stability conditions.

Example 1: Consider a local field neural network of the form (10)
with W2 = I , and

A = diag{1.2769, 0.6231, 0.9230, 0.4480}

W0 =

⎡
⎢⎢⎣

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.086 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

⎤
⎥⎥⎦

W1 =

⎡
⎢⎢⎣

0.8674 −1.2405 −0.5325 0.022
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

⎤
⎥⎥⎦

with the time-varying delay h(t) satisfying (11) and the activation
function satisfying (12), where

K1 = diag{0, 0, 0, 0}
K2 = diag{0.1137, 0.1279, 0.7994, 0.2368}.

The MAUBs and NVs are listed in Table I, which are obtained by
Theorem 2 and some existing methods in [13], [22], [24], and [25].
It is seen that Theorem 2 (N = 0) produces larger MAUBs than
[13, Th. 3] and [22, Th. 3]. Moreover, only 61n2 + 28n NVs
are involved in Theorem 2 (N = 0), which are fewer than those
involved in [22, Th. 3]. It is also seen that all MAUBs obtained by
Theorem 2 are larger than those by the others, even if N = 1 or
N = 2. Meanwhile, the number of NVs involved in Theorem 2
(N = 1) is 126n2 + 34n that is smaller than that involved in
Proposition 3 (N = 2) [24] and is close to that involved in Theorem 1
(N = 2) [25]. Therefore, no matter in terms of conservatism or
computational complexity, Theorem 2 is a good stability condition
that produces less conservative results with a relatively small number
of NVs.

Generally speaking, conservatism and computational complexity
are contradictory. Less conservatism is usually achieved at the price of
more computational complexity. How to reconcile the contradiction
is important. As expected, when the value of N increases from 0
to 1 and 2, MAUBs obtained by Theorem 2 increase slowly, and
meanwhile, the number of NVs involved increases quickly. Thus,
if the computational complexity is of more concern, Theorem 2

TABLE II

MAUBS hM FOR μ2 = −μ1 IN EXAMPLE 2

(N = 1) is preferred since it gives a tradeoff stability criterion with
a little bit more conservatism but lower computational complexity.

To show the role of V2(t) and V4(t) on reducing the conservatism,
we let R1 = R2 and R3 = R4 in Theorem 2 (N = 1). In this case,
MAUBs obtained are 4.565, 4.100, and 3.680 as μ2 takes values of
0.1, 0.5, and 0.9, which are, respectively, smaller than those listed
in the line of “Theorem 2 (N = 1).” This shows that the proposed
V2(t) and V4(t) are helpful in achieving larger MAUBs. In addition,
if we only let P̃N (t) = P0, MAUBs obtained by Theorem 2 (N = 1)
are 4.551, 3.990, and 3.529, which are obviously smaller than those
listed in the line of “Theorem 2 (N = 1).” This implies that the
delay-affine quadratic functional V0(t) is very effective in reducing
the conservatism.

Example 2: Consider a static neural network of the form (10) with
W0 = 0, W1 = I , and

A = diag{7.3458, 6.9987, 5.5949}

W2 =
⎡
⎣ 13.6014 −2.9616 −0.6936

7.4736 21.6810 3.2100
0.7290 −2.6334 −20.1300

⎤
⎦

with the time-varying delay h(t) satisfying (11) and the activation
function satisfying (12), where

K1 = diag{0, 0, 0}, K2 = diag{0.3680, 0.1795, 0.2876}.
It is found from Table II that MAUBs obtained by Theorem 2

(N = 0) are all larger than those in [22] and [20] as μ2 takes
values of 0.1 and 0.5. Moreover, the number of NVs involved
in Theorem 2 (N = 0) is smaller than those involved in
both [22] and [20]. Therefore, in terms of either conservatism or
computational complexity, Theorem 2 (N = 0) is better than those
proposed in [22] and [20]. As expected, Theorem 2 (N = 1) produces
larger MAUBs than those in [24] (N = 2) and [25] (N = 2) with a
relatively small number of NVs.

V. CONCLUSION

This brief studied the stability of neural networks with time-varying
delays using the quadratic function negative-definiteness method.
A more general reciprocally convex combination inequality has been
employed to introduce some quadratic terms into the time derivative
of an L–K functional. A simple way has been introduced to calculate
the coefficients of a quadratic function, which avoids tedious works
by hand as done in some existing results. A general L–K functional
has been introduced to derive a less conservative stability criterion
for delayed neural networks. Numerical examples have clearly shown
the effectiveness of the proposed result.

The proposed approach can be used to address the ability-related
problem for various delayed systems, e.g., fuzzy T–S delayed sys-
tems. Especially, the simple way to calculate matrix coefficients of a
quadratic function may be widely applied. The idea involved can be
extended to the case of a cubic or quadratic function.
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