
1338 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

Segmented Generative Networks: Data Generation
in the Uniform Probability Space

Nunzio A. Letizia , Graduate Student Member, IEEE, and Andrea M. Tonello , Senior Member, IEEE

Abstract— Recent advancements in generative networks have
shown that it is possible to produce real-world-like data using
deep neural networks. Some implicit probabilistic models that
follow a stochastic procedure to directly generate data have been
introduced to overcome the intractability of the posterior distrib-
ution. However, the ability to model data requires deep knowledge
and understanding of its statistical dependence—which can be
preserved and studied in appropriate latent spaces. In this article,
we present a segmented generation process through linear and
nonlinear manipulations in the same-dimensional latent space
where data are projected to. Inspired by the known stochastic
method to generate correlated data, we develop a segmented
approach for the generation of dependent data, exploiting the
concept of copula. The generation process is split into two frames:
one embedding the covariance or copula information in the
uniform probability space, and the other embedding the marginal
distribution information in the sample domain. The proposed
network structure, referred to as a segmented generative network
(SGN), also provides an empirical method to sample directly
from implicit copulas. To show its generality, we evaluate the
presented approach in three application scenarios: a toy example,
handwritten digits, and face image generation.

Index Terms— Copula, correlation, data analytics, dependence,
distribution, explainable machine learning (ML), generative
adversarial networks (GANs), generation, generative networks,
machine learning.

I. INTRODUCTION

DEEP learning literature has grown significantly over the
last years. The key to its success lies on the extended

availability of labeled data, increased computational power,
and GPUs. Given such a background, deep generative net-
works that are able to produce images, videos, text, and
music have been widely investigated. However, most of the
techniques and architectures proposed so far are heavily
applications and data dependent, making impossible to adopt
them across different domains. To develop new modeling
methodologies, a full knowledge and control of the steps
involved during the learning process is required in order to
extract meaningful information from the collected data.

Manuscript received December 19, 2019; revised June 19, 2020 and
October 2, 2020; accepted November 25, 2020. Date of publication
December 17, 2020; date of current version March 1, 2022. (Corresponding
author:
Nunzio A. Letizia.)

The authors are with the Chair of Embedded Communication
Systems, Institute of Networked and Embedded Systems, University
of Klagenfurt, 9020 Klagenfurt, Austria (e-mail: nunzio.letizia@aau.at;
andrea.tonello@aau.at).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2020.3042380.

Digital Object Identifier 10.1109/TNNLS.2020.3042380

Observations can be studied and described essentially in two
different ways: a deterministic or a probabilistic way. Given a
collection of observed data x (discrete or continuous valued),
one may try to fit a deterministic model with parameters θ
that best reproduce the relationship between a given function
f(z; θ), whose input is z and the desired output is x. The lack
of a real-world complete observation makes such correspon-
dence inexact so that it is useful to introduce a cost function C
that expresses the goodness of fitting x through f by changing
its parameters θ . A standard procedure to determine the best
parameters tries to solve the following optimization problem:

θmin = arg min
θ

C(f(z; θ), x). (1)

Such methodology can be implemented through a simple
neural network that attempts to express f , with input z,
as a superposition of nonlinear weighted (with parameter θ)
functions with the aim of minimizing a particular objective
function C using both backpropagation and gradient descent
techniques. Depending on the architecture of the artificial
neural network, the approximation of the mere output x can
be arbitrarily good. The universal approximation capability
renders deep neural networks excellent in finding patterns and
in performing tasks very close to human’s accuracy, e.g., for
classification [1], [2].

A different objective, such as the generation of new “reason-
able” data, cannot be treated with the same deterministic fitting
approach. Indeed, f can perfectly map z into the observed
data x, but it does not tell how to pick a new input ẑ so
that x̂ = f(ẑ; θ) is a statistically representative new sample.
The statistical validation is intrinsically missing. The right
way to proceed is to describe the process in a probabilistic
manner. Let x be a training set consisting of n independent
samples drawn from a distribution with probability density
function (PDF) pdata(x); then, the idea is to learn an estimate
pmodel(x; θ) of the real distribution pdata(x). Compared with
the former approach, which can be described as a pure
deterministic fitting of drawn samples with distribution pdata,
the latter approach consists of fitting in distribution, that is,
learning to capture the statistical distribution of the training
data.

Most of the generative models work with the maximum
likelihood (ML) principle [3]; given a probability distribution
parameterized by θ , the ML estimator for θ is defined as

θML = arg max
θ

pmodel(x; θ), x ∼ pdata(x). (2)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1495-4449
https://orcid.org/0000-0002-9873-2407

LETIZIA AND TONELLO: SGNs: DATA GENERATION IN THE UPS 1339

Since we do not have access to the real distribution pdata,
we use the empirical one, p̂data, which considers only the n
training points. In this way, (2) can be rewritten using the
Kullback–Leibler (KL) divergence

θML = arg min
θ

DKL(p̂data(x)||pmodel(x; θ)) (3)

with the useful interpretation that minimizing the KL diver-
gence is equal to minimizing the cross entropy between the
distributions.

Although the log-likelihood criterion has been largely used
for generative networks, it is important to remark that having
good quality samples is neither a sufficient nor a necessary
condition for results with high log likelihood [4], [5].

In this article, we want to show how both linear and
nonlinear dependence in collected data can be exploited in
a different latent space, in detail, the uniform probability
space (UPS).1 This enables a deeper understanding of the
underlying true distribution. Linear transformation schemes,
copulas, and noncomplex neural network architectures are
good candidates for such a purpose. Furthermore, we propose
a combined generative-like model that splits and segments
the data generation process into two frames: one embedding
the covariance or copula information in the uniform space,
and the other embedding the marginal distribution information
in the sample domain. We refer to such methodology as
segmented generative network (SGN), in particular, SGN-C
when the process targets the generation of data with the same
correlation of the samples in the data set, SGN-D instead,
when the generation process targets the attainment of the
full statistical dependence among data. In principle, such
a segmentation procedure can be beneficial not only for a
better global understanding but also for a robust generation
process, regardless of the semantics of the observed data.
Indeed, the proposed approach is general and can be adopted
to study multimodality in data coming from images, audio,
text, or heterogeneous signals.

This article is organized as follows. In Section II, we briefly
present the main related work with the respective different
approaches. In Section III, we present the key points of our
methodology. In Section IV, we report numerical results and
comparisons. Finally, Section V reports the conclusions.

A. Definitions and Notation

X denotes a multivariate random variable of dimension d
whose components are Xi with i = 1, . . . , d , whereas x(j)

for j = 1, . . . , n denotes the j th realization of X among n
independent observations. xi denotes a column vector of n
realizations of Xi . Furthermore, x (j)

i denotes the i th entry (out
of d) of the j th collected sample (out of n observations). In a
compact notation, x = [x1, x2, . . . , xd] denotes an n×d matrix,
sometimes referred to as the training data. �x and pX(x)
denote the sample covariance matrix and probability density
function of X, respectively. FX(x) = P(X1 ≤ x1, . . . , Xd ≤
xd) and F−1

X (x) denote the cumulative distribution function
and quantile function, respectively. The expected value of X

1UPS: space of uniform distributions.

Fig. 1. GAN framework in which generator and discriminator are learned
during the training process.

is denoted with the expectation operator Ex∼pX(x)[X]. Finally,
DKL(p||q) is the KL divergence from q to p and it is defined
as Ex∼pX(x)[log(pX(x)/qX(x))].

II. RELATED WORK

One of the most promising data generation techniques
is represented by generative adversarial networks (GANs),
proposed by Goodfellow et al. [6]. The main idea is to
train a pair of networks in competition with each other: a
generator network G that captures the data distribution and
a discriminator network D that distinguishes if a sample is
an original coming from real data rather than a fake coming
from data generated by G (see Fig. 1). The training procedure
for G is to maximize the probability of D making a mistake.
GANs can be thought as a minimax two-player game that
will end when a Nash equilibrium point is reached. Given an
input noise vector y with distribution pnoise(y), the map to the
data space is achieved through G(y; θgen). Defining the value
function V (G, D) as

V (G, D) = Ex∼pdata(x)[log D(x)]
+Ey∼pnoise(y)[log(1 − D(G(y)))] (4)

it has been proved that the generator implicitly learns the true
distribution. Indeed, pgen = pdata holds when the equilibrium is
reached. StyleGANs [7] are the most recent evolution of GANs
since they produce state-of-the-art results in synthesizing high-
resolution images. They achieve it by improving the generator
architecture (a mapping network for the latent representation
and a synthesis one with different resolution levels) for a better
understanding of the output. However, minor efforts have been
carried out in generating structured nonimages data using
GANs. Some attempts to synthesize stochastic signals, such
as audio, text from images, or even communication signals,
have been investigated in [8]–[10].

Variational autoencoders [11] are another particular class
of generative models based on variational inference. Taken z
as the latent (hidden) variable of the observed value x for
a parameter θ , then pθ(z|x) represents the intractable true
posterior, which can be approximated by a tractable one,
qφ(z|x), for a parameter φ. A probabilistic encoder produces
qφ(z|x), whereas a probabilistic decoder produces pθ(x|z).
Recalling that the KL divergence is a measure of difference
between two distributions, the idea is to maximize a variational
lower bound L on the marginal likelihood

log pθ (x(i)) = DKL(qφ(z|x(i))||pθ(z|x(i)))+ L(θ, φ; x(i)) (5)

1340 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

where

L(θ, φ; x(i)) = −DKL(qφ(z|x(i))||pθ(z))

+Eqφ(z|x(i))

[
log pθ (x(i)|z)

]
. (6)

Rather than outputting the code z, the encoder outputs parame-
ters describing a distribution for each dimension of the latent
space. In the case where the prior is assumed to be Gaussian,
z will consist of mean and variance. Tuning in the latent space
and processing the new latent samples through the decoder is
a way to generate new data.

Following the idea that “a good representation is that in
which the data have a distribution that is easy to model,”
Dinh et al. [12] proposed a nonlinear deterministic transfor-
mation of the data, which maps them into a latent space of
independent variables where the probability density results
tractable. The framework lies behind the change of variable
rule

pX (x) = pZ (g
−1(x)) ·

∣∣∣∣det
∂g−1(x)
∂x

∣∣∣∣ (7)

when both the determinants of the Jacobian and g−1 are
easy to compute; in that case, it is straightforward to directly
sample from pX (x) since x = g(z). NICE, Real NVP, and the
most recent Glow [13] belong to flow-based generative models
that are able to provide a good latent-variable inference and
excellent log-likelihood evaluation.

The Gaussian process latent variable model (GP-LVM) [14]
aims at inferring both the latent code z and the mapping
function f that lead to the data set x. The prior distribution
over z is set as Gaussian, while f(·) is described as a Gaussian
process (GP) f ∼ GP(0,K), where K (·, ·) is the covariance
function, commonly referred to as squared exponential kernel.
This approach ensures a smooth mapping from the latent to
the sample space while providing a closed-form expression to
approximate the true posterior distribution p(z|x) and to find
a variational lower bound for a robust training procedure [15].

The methods presented so far have been mostly and success-
fully applied to images and they all share the ability to generate
new samples in parallel. The synthesis of fully visible belief
networks (FVBNs) (see [16], [17]) and autoregressive models
[18] is difficult to parallelize; therefore, due to their sequential
nature, they are relatively slow. Indeed, their core idea is to
factorize the joint probability distribution of d dimensional
inputs x into products of 1-D conditional distributions

pmodel(x) =
d∏

i=1

pmodel(xi |x1, . . . , xi−1). (8)

Generation is done by generating one dimension at a time
leading to good quality of the samples (as WaveNet for human
speech [19]) since they optimize the likelihood directly.

Boltzmann machines [20] and generative stochastic network
[21] rely on estimating the transition operator of a Markov
chain p(xi |xi−1) but are now less used since Markov chains
fail to scale in high-dimensional spaces.

Bearing this overview in mind, our method consists in a
different approach. It does not focus on maximizing the likeli-
hood or minimizing the KL divergence between the model and

the reference true distribution, but it aims to produce, in the
linear case, samples belonging to an unknown distribution that
pretends to be a linear estimator of the true one, whereas in the
nonlinear framework, new samples are drawn from the same
distribution of the real data exploiting the concept of copula
and GANs. To the best of our knowledge, this is the first work
that embeds the copula concept inside a GAN framework.

III. PROPOSED APPROACH

The statistical dependence between the components of a
multivariate random variable X is described by the joint
probability distribution pX(x1, x2, . . . , xd). The correlation,
instead, measures how the components are related on average,
and it is expressed in terms of the expectation E[X ·XT] or the
covariance E[(X − m X) · (X − m X)

T], where m X denotes the
expected value of X. The correlation is often associated with
the idea of linear dependence.

Let x = [x1, x2, . . . , xd] be a set of realizations of X,
also referred to as the collected multivariate data. We would
like to generate new unseen samples x̂ = [x̂1, x̂2, . . . , x̂d]
similar, in some way as we will discuss, to x. In the following,
we propose two different approaches.

1) The first one revisits the known stochastic generation
process of correlated data (data that exhibit the same
correlation as the collected one) and highlights the need
for a segmentation and domain adaptation step. Such
a method will be referred to as SGN targeting and
modeling the correlation of data (SGN-C).

2) The second one, instead, studies the stochastic gener-
ation process of dependent data (data that exhibit the
same joint distribution as the collected one) by applying
the same domain adaptation of SGN-C but integrating
the concept of copula in order to segment the generation
process. Moreover, it provides a direct method to sample
from copulas. Such an approach will be referred to as
SGN targeting and modeling the statistical dependence
of data (SGN-D).

A. Transform Sampling

The training data have been generated by some fixed
unknown or difficult to construct probability distribution
pX(x) = pX(x1, x2, . . . , xd) with cumulative distribution func-
tion FX(x) = P(X1 ≤ x1, . . . , Xd ≤ xd). However, it is
plausible to assume that the marginal density of each Xi is
known or can be easily derived as pXi (xi) with cumulative
FXi (xi). Hence, the data can be mapped into a latent space
with the same dimension using the inverse transform sampling
method. In particular, if Ui be a uniform random variable, then

Xi = F−1
Xi
(Ui) (9)

is a random variable with cumulative distribution FXi . To
project the data x into the latent space, it is enough to compute
the transformation ui = FXi (xi) ∀i = 1, . . . , d . This first step
can be interpreted as a simple encoder, which tries to represent
the data in a domain space where linear manipulations are
easier to be implemented. One way to go back is to train a
neural network, which, given u as input and x as output, finds

LETIZIA AND TONELLO: SGNs: DATA GENERATION IN THE UPS 1341

the inverse mapping between the two spaces, the latent, and the
sample ones. This inverse transformation back to the sample
space can be easily interpreted as a decoder. Fig. 2 shows the
SGN framework.

The autoencoder described so far has no generative proper-
ties since it only replicates the data set x. The way to generate
new samples is to build a new encoded set û and feed it into
the already trained inverse network.

In general, Xi and X j with i �= j ≤ d are dependent random
variables (let us consider, for example, the intensity of two
consecutive pixels in an image or the amplitude of a waveform
like the sound). A first order of approximation is the linear
dependence; the idea is to choose the new encoded set û as
a set of d correlated uniform variables—correlation quantified
by the sample covariance matrix �u of the encoded initial
set u.

B. Correlated Uniforms (SGN-C)

Let �x and �u be the sample covariance matrices of the
data set x and the latent uniform code u, respectively. If x̂ has
covariance matrix �x̂ equal to �x , then we define x̂ similar
to x. Denoting with F−1 the nonlinear inverse cumulative
distribution function, then if û is similar to u, it follows that
x̂ = F−1(û) is similar to x.

To generate d correlated uniform distributed random vari-
ables, we use the NORTA method [22], in the following
denoted as covariance method. The first step requires the gen-
eration of d correlated Gaussian distributed random variables.
In particular, given a mean vector μ and a covariance matrix
�, to generate a sample Y ∼ N (μ,�) from the multivariate
normal distribution, we need to consider first a vector z of
uncorrelated Gaussian random variables and then find a matrix
C and square root of � such as C·CT = � (for example, using
the Cholesky decomposition). It follows that y = μ + C · z
is a vector of d Gaussian random variables {Yi }d

i=1 with the
desired properties. Applying the probability integral transform
to each entry leads to d correlated uniform random variables

Ûi = �(Yi) (10)

where � is the cumulative distribution function of the stan-
dard normal distribution. If we wanted to impose �u as
the covariance matrix of û, we could transform the latent
code u into a new latent code n in the Gaussian space,
compute the covariance matrix �n , and use it to sample from
the multivariate normal distribution N (μ,�n). Instead, if we
only wanted to impose the correlation matrix Ru, we would
rather just sample from the multivariate normal distribution
N (μ,Ru) to get a good practical approximation as described
in [23].

The generation of the encoded set can be easily imple-
mented in parallel, which means that we do not need to wait
for any information from previous samples. Once the encoded
set û is built, the transformation F−1(û) gives x̂ as a new
generated sample, exploiting only the linear information inside
the data set. Note that exploiting an artificial neural network
for the inverse transform is not mandatory; one could use
the inverse cumulative distribution function [quantile function,

Fig. 2. Transform sampling: SGN approach where original data are projected
into a latent space, and the new codes are generated and back-projected again.

see (9)] implemented by step functions or kernel smoothing
functions. Section IV will show some visual results.

C. Dependent Uniforms (SGN-D)

Working only with linear dependence (correlation) is not
sufficient to fully reproduce the relationship between data.
Thus, it is necessary to build a new encoded set û of d
dependent uniform variables.

When we discussed the procedure to build correlated uni-
forms, we were looking for a vector û whose covariance matrix
�û was equal to the prescribed one �u and built it by using
the SGN-C algorithm described in Section III-B. Another
approach could have been the following; given a family of
functions Sθ that takes uncorrelated uniform variables u0 as
input and transforms them into correlated ones û, one could
solve the optimization problem

θmin = arg min
θ

δ(�u,�Sθ (u0)) (11)

where δ is a measure of distance between the sample covari-
ance matrices of u and û.

In the same way, given the latent codes u with probability
density function pu(u), the main idea to generate dependent
uniform random variables is to train a neural network Gθ ,
which takes independent uniform variables u0 as input and
maps them into new dependent ones, û, with distribution
qû(û). This is again a generative model whose objective
function is

θmin = arg min
θ

δ(pu(u), qû(Gθ (u0)) (12)

where now δ is a measure of discrepancy between the real
distribution pu and the generated one qû.

Before introducing the approach chosen for solving problem
(12), we focus on the particular properties that pu and qû have,
recalling the concept of copula.

Let (U1,U2, . . . ,Ud) be uniform random variables, and
then, their joint cumulative distribution function FU(u) =
P(U1 ≤ u1, . . . ,Ud ≤ ud) is a copula C : [0, 1]d →
[0, 1] (see [24] for an analytic description). Copulas are a
useful tool to construct multivariate distributions and analyze
data dependence. Indeed, Sklar’s theorem [25] states that if
FX is a d-dimensional cumulative distribution function with

1342 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

continuous marginals FX1 , . . . , FXd , then FX has a unique
copula representation

FX(x1, . . . , xd) = C(FX1(x1), . . . , FXd (xd)). (13)

Moreover, when the multivariate distribution has a probability
density function fX, it holds that

fX(x1, . . . , xd) = c(FX1(x1), . . . , FXd (xd)) ·
d∏

i=1

fXi (xi) (14)

where c is the density of the copula. This last relationship
is rather interesting because it affirms that the dependence
internal structure of fX can be recovered using the density
of the marginals fXi and the density c of the copula. Under
this perspective, problem (12) can be reformulated as

θmin = arg min
θ

δ(cu(u), cû(Gθ (u0)) (15)

where cu and cû are the densities of the copulas related to
u and û, respectively. The objective is to reach the equality
cu = cû and to sample a new encoded set û from cu, preserving
the entire hidden dependence in u by construction. Due to the
fact that we are working with a finite set of samples, we should
build the empirical copula of the encoded given set u, with
expression

Cn(u) = 1

n

n∑
j=1

�{
U (j)

1 <u1,...,U
(j)
d <ud

} (16)

where n is the number of observations, U (j)
i denotes the j th

realization of the i th random variable, with i = 1, . . . , d ,
and �A is the indicator function. When its dimensionality
increases, this is not feasible anymore and one way to proceed
is to choose a parametric family of multivariate copulas, like
the multivariate Gaussian copula with correlation matrix �
(equivalent to NORTA [26]) or the multivariate Student’s t-
copula with ν degrees of freedom and correlation matrix �,
which is more suitable for data containing phenomena of
extreme value dependence [27]. Archimedean copulas are a
particular class of copulas that admit a closed formula and
allow modeling dependence varying one parameter, they have
the following representation:

C(u1, . . . , ud ; θ) = ψ [−1](ψ(u1, θ)+· · ·+ψ(ud, θ); θ) (17)

where ψ is a continuous, strictly decreasing and convex
generator function with pseudoinverse ψ [−1] [24] and θ is
a parameter. Section IV compares some results using differ-
ent copulas in specific applications. An interesting way to
overcome the lack of parametric multivariate copulas is to
take advantage of the huge number of parametric families
of bivariate copulas through the concept of vine copulas
[26], [28]. The idea is to model the copula density as the
product of pairs of conditional copula bivariate densities, under
a tree or vine decomposition, which leads to tractable and
flexible probabilistic models. A recent attempt to generate
data using vine copulas [29] exploited autoencoders and their
ability to find lower dimensional representation.

We have argued about the parameters of the function δ that
we are trying to minimize, but we never mentioned so far the

type of distance/discrepancy that δ has to mime. Since we are
elevating our approach to a general one that does not focalize
on low dimension of data or specific type of distributions,
we propose two different approaches. The first one is the
maximum mean discrepancy (MMD) metric.

Let x = {x(1), . . . , x(l)} and y = {y(1), . . . , y(m)} be observa-
tions taken independently of p = cu and q = cû, respectively.
Let (χ, d) be a nonempty compact metric space in which p
and q are defined. Then, the MMD is defined as

MMD(F , p, q) := sup
f ∈F

(Ex∼p[f (x)] − Ey∼q[f (y)]) (18)

where F is a class of functions f : χ → R. Since p = q
if and only if Ex∼p[f (x)] = Ey∼q [f (y)] ∀ f ∈ F , MMD is a
metric that measures the disparity between p and q (see [30]).

When F is a reproducing kernel Hilbert space (RKHS), f
can be replaced by a kernel k ∈ H (i.e., Gaussian or Laplace
kernels). In this case, Gretton et al. [31] showed that

MMD2(H, p, q) = Ex,x�∼p[k(x, x�)] − 2Ex∼p,y∼q[k(x, y)]
+Ey,y�∼q [k(y, y�)] (19)

where x� is an independent copy of x with the same distribution
and y� is an independent copy of y. For practical implemen-
tation, an unbiased empirical estimate is given by

MMD2
u(H, x, y) = 1

l(l − 1)

∑
i �=i �

k(x(i), x(i
�))

+ 1

m(m − 1)

∑
j �= j �

k(y(j), y(j �))

− 2

lm

l∑
i=1

m∑
j=1

k(x(i), y(j)). (20)

Finally, we can define the type of discrepancy δ as the
MMD2

u estimator, in particular

δ(cu(u), cû(Gθ (u0)) = MMD2
u(H,u,Gθ (u0)) (21)

and proceed with its minimization by the exploitation of the
chain rule and the gradient descent method as described in
[32]. We found this methodology not effective for embedding
the copula dependence structure. Therefore, we decided to use
it during the evaluation phase (see Section IV) and, instead,
adopt a GAN framework to reproduce the copula dependence.

The core idea is to identify the copula with a first generator
Gu . The generator Gu receives an equal-dimensional indepen-
dent uniform noise source z as input and internally creates
the copula dependence structure by opposing a discriminator
Du that tries to distinguish between real and fake dependent
uniform samples, u and û, respectively. The corresponding
value function reads as follows:

V (Gu, Du) = Eu∼cu(u)[log Du(u)]
+Ez∼U(0,1)[log(1 − Du(Gu(z)))]. (22)

At the same time, in order to strengthen the copula gener-
ation process, another GAN (Gx , Dx) mimes the relationship
(the quantile function F−1

Xi
for i = 1, . . . , d) between the

latent code u and the sample space x. To do so, it takes the
generated uniforms û and statistically transforms them into

LETIZIA AND TONELLO: SGNs: DATA GENERATION IN THE UPS 1343

Fig. 3. SGN modeling the dependence: a first network builds the dependent
uniforms and a second network converts them into new data.

new samples x̂, checking again the statistical significance with
another discriminator Dx . The second value function is defined
as

V (Gx, Dx) = Ex∼px(x)[log Dx(x)]
+Eû∼cû [log(1 − Dx(Gx(û)))]. (23)

We denote the full generation process as SGNs modeling
the dependence (SGN-D). Succinctly, the first generator Gu

embeds the copula density structure cu(u) and produces depen-
dent uniform samples û. The second generator Gx embeds the
marginals structure (the quantile F−1

Xi
for i = 1, . . . , d) and

statistically maps û into new samples x̂. Fig. 3 graphically
summarizes the entire followed methodology.

To identify the marginal cumulative distribution function
FXi , for i = 1, . . . , d , it is sufficient to cyclically repeat
the aforementioned segmentation process by concatenating
another GAN, which takes as input the last generated samples
x̂ and projects them into a new encoded set ũ.

Section IV presents some graphical and numerical results,
comparing the different methodologies.

IV. EVALUATION OF RESULTS

This section discusses and compares the SGN-C and SGN-D
approaches to generate new samples in three different case
studies. We consider a 2-D toy data set and two higher dimen-
sional data sets, MNIST [33] and CelebA [34]. For each of
them, we qualitatively evaluate the generation performance of
the SGN-C approach (e.g., covariance, Gaussian, and t-copula)
and the SGN-D approach (with GANs). Finally, for the last
data set scenario, we compare some quantitative results using
three different metrics.

A. Qualitative Evaluation

We used Keras with TensorFlow [35] as back end to
implement the proposed model. The code has been tested on
a Windows-based operating system provided with Python 3.6,
TensorFlow 1.13.1, Intel core i7-3820 CPU, and one GPU
GTX1080. Two different types of neural network architectures
have been deployed according to the specific data set under
analysis. To allow the reproducibility of the work presented,
Tables I and II report all the implementation aspects. The
details of the network and the chosen parameters for the first

TABLE I

SGN-D BASED ON GAN ARCHITECTURE FOR SYNTHETIC TOY MODEL

toy example are reported in Table I. For the two data set
containing images, the established DCGAN [36] architecture
has been used as a foundation for the proposed SGN-D
structure with all details reported in Table II. To overcome
numerical issues in the cases of the images, the definition
interval of the uniform distribution is transformed from [0, 1]
to [−1, 1].

1) 2-D Toy Database: Consider a set of two random vari-
ables whose statistics is computed from a collection of 2000
observations. Thus, given x = [x1, x2], we wish to generate
a new sample x̂ = [x̂1, x̂2]. In order to impose a nonlinear
statistical dependence structure, we build x as follows:

x = [sin(t), t cos(t)] + n (24)

where t ∼ N (0, 1) and n ∼ N (0, σ 2
I) with σ = 0.01.

Proceeding as explained in Section III-B leads to a set of
correlated uniforms and correlated samples, û and x̂, respec-
tively. Despite having the same covariance matrix and the same
marginals, the linear transformation is not capable to account
for the full dependence structure, as shown in the top row of
Fig. 4. What is missing is indeed the copula density component
in (14). Since, in general, there is no closed-form expression
for the copula density c(u), the multivariate Gaussian copula
and the Student’s t-copula are possible choices that contain
information regarding correlation coefficients and, thus, linear
properties. Nevertheless, both of them are not enough to
cover or at least approximate the dependence in x. Therefore,
we considered both Clayton [37] and Frank Archimedean
copulas. From the central row of Fig. 4, we can immediately
understand that there exists a set of parameters θ , which
approximates the dependence around the mean values but is
not able to do the same around the tails.

1344 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

TABLE II

SGN-D BASED ON DCGAN ARCHITECTURE FOR IMAGES

In the low-dimensional space, i.e., 2-D, it is still feasible to
calculate the empirical copula for a certain bins resolution.
In such a case, sampling from copula results in a trivial
task and provides good quality of the generated samples
(bottom-left corner of Fig. 4). Whenever the space dimension
increases, such an approach cannot be easily followed anymore
due to numerical problems, the reason why an SGN-D-based
methodology, which implicitly estimates the distribution, can
be exploited. Bottom subplots with orange samples of Fig. 4
show the generated samples under the SGN-D framework for
both Gu (back-projected with quantiles in sample domain) and
Gx output samples.

2) Handwritten Digit Database: Now, consider a set 28×28
pixels representing images of digit 4. This results in 784
dependent random variables whose statistics is computed
from a collection of 2000 observations. Thus, given x =
[x1, x2, . . . , x784], we wish to generate a new sample x̂ =
[x̂1, x̂2, . . . , x̂784]. The nonlinear dependence structure is an
intrinsic property of images, so this example fits the purpose.

Again, following the steps presented in Sections III-B
and III-C for both SGN-C and SGN-D methods leads to a
set of correlated uniforms and correlated samples, û and x̂,
respectively. The covariance method is not enough to obtain a

Fig. 4. Comparison of 2-D samples generated using SGN-C, Archimedean
and empirical copulas (blue samples), and SGN-D (orange samples)
approaches.

smooth detailed picture [see the generated digits in Fig. 5(b)];
nevertheless, it is able to capture and reproduce in most of
the cases the essence of the picture, i.e., digit 4. On the
other hand, it is interesting to note that the digits generated
by the generator Gx [see Fig. 5(f)] cannot be distinguished
from the real, whereas the digits marginally backprojected
from dependent uniforms coming from generator Gu [see
Fig. 5(e)] are rather blurry. Such an effect is due to the
discrete nature of the handwritten digit data set distribution.
Indeed, the joint distribution is mostly nonzero around small
spheres centered in 0 and 1; therefore, the approximation of
the marginals FXi (xi) results poor in the intermediate values
(due to the steepness of the cumulative function). At the same
time, the output of Gu is a set of dependent uniforms with
values uniformly distributed from 0 to 1 which have to be
transformed into the sample space, using the poorly estimated
1D inverse cumulative distribution function. The second GAN
Gx solves this numerical issue by mapping the data from the
uniform space into the sample one through highly nonlinear
smooth transformations.

3) Celebrity Faces Database: As the last example, we pro-
pose a set of (cropped) 32×32 color images representing faces
of celebrities covering some pose variations and including
different backgrounds. The motivation resides in the intrinsic
continuous property of the distribution since all the colors are
feasible, yielding to robust cumulative marginals. The CelebA
data set [34] contains more than 200k faces. To be coherent
with previous examples and to focus more on the correct
identification of the block components charged to generate
both correlated and dependent uniforms rather than to their
quality, we considered only the first 20 000 samples of the
data set. Fig. 6 shows the results.

LETIZIA AND TONELLO: SGNs: DATA GENERATION IN THE UPS 1345

Fig. 5. Comparison of high-dimensional samples (digits) generated using
(b)–(d) SGN-C and (e) and (f) SGN-D approaches. Original data (a).

Fig. 6. Comparison of high-dimensional samples (faces) generated using
(b)–(d) SGN-C and (e) and (f) SGN-D approaches. Original data (a).

The methods involving covariance and parametric copulas
perform poorly in terms of quality of the details but capture
the relevant information of the image and replicate it in
new blurry faces. On the contrary, GANs introduce higher
nonlinear dependence and thus harmonic details, the more the
network trains itself.

The most interesting part is that, conversely to the MNIST
case where the dependent uniforms were correctly generated
but erroneously backprojected to sample domain due to poor
quantiles, this time the estimated marginals do not have
steep gradients. Therefore, the projected generated samples
are smooth, as shown in Fig. 6(e). Moreover, these samples
are extremely similar to the output of the generator Gx [see
Fig. 6(f)] accordingly to the interpretation that Gx mimes
the quantile functions F−1

Xi
(xi) ∀i ∈ {1, . . . , 1024}. Fig. 7(a)

and (b) shows an example of data representation and data
generation in the uniform space, respectively.

B. Quantitative Evaluation

While several measures have been introduced so far to
assess the performance of a specific generative model, there is

Fig. 7. Dependent uniforms (a) obtained from transform sampling of original
data and (b) obtained as output of Gu .

no consensus as to which measure is the most appropriate [38].
Nevertheless, lately, measures that deal with embedding layers
and feature space have found extensive use. For the purpose of
this article, we decided to adopt three of them, in particular,
the inception score (IS) [39], the Frèchet inception distance
(FID) [40], and the kernel inception distance (KID) [41]
metrics.

The IS computes the average KL divergence between
the conditional distribution of the images label p(y|x)
and the marginal distribution p(y) = Ex[p(y|x)],
on the pretrained Inception Net [42]. It is defined as
exp(Ex[DKL(p(y|x)||p(y))]) and assumes high values for a
low entropy of p(y|x), achieved when samples are easily
classifiable, and for a high entropy of p(y), to favor diversity.

FID compares the statistics of generated samples to real
ones by computing the Frèchet distance between two multi-
variate Gaussian distributions. Indeed, both data are projected
into a feature space (Inception representations) in which a
Gaussian distribution fits them

FID(r, g) = ||μr − μg||22 + Tr

(
�r +�g − 2(�r�g)

1
2

)
(25)

where Xr ∼ N (μr ,�r) and Xg ∼ N (μg,�g) are outputs of
a pool layer in the Inception Net [42] for real and generated
samples, respectively. Low FID values correspond to better
similarity in distribution.

However, the Gaussianity of the Inception representations
is often not guaranteed. As a result of the ReLU activations,
the representations are not negative with some components
equal to zero [41]. To overcome such limitation, we decided
to use the KID metric [41]. KID is the squared MMD (see
Section III-C) between the inception representations. In partic-
ular, if φ(·) is the function mapping the real (xr) and generated
(xg) samples into the inception representation, then

KID(r, g) = MMD2(H, φ(xr), φ(xg)). (26)

We used the polynomial kernel k(x, y) = ((1/d)x · yT + 1)3,
where d is the representation dimension. Compared with FID,
KID has the advantage of being independent of the distribution
of the latent representation.

We evaluated the scores only for the generated samples
in the CelebA data set scenario. The inception network is a
deep CNN (convolutional neural network) pretrained on the

1346 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 3, MARCH 2022

TABLE III

PERFORMANCE OF SGN-C AND SGN-D USING THE IS, FID, AND KID
MEASURES ON THE CELEBA DATA SET

ImageNet data set. Hence, data sets that are too semantically
different from ImageNet would lead to poor ISs. Since we
are not interested in getting the best performance out of our
architecture, but rather in a fair comparison between the dif-
ferent methodologies, we look at relative results. In particular,
Table III reports the scores for the different methodologies
adopted.

The IS, FID, and KID scores are consistent with human
visual perceptions. Indeed, as depicted from visual intuition,
there is almost no difference between the scores obtained from
covariance and parametric copulas methods, while there is a
significant gap between the achieved scores with the linear
(SGN-C) and nonlinear dependence (SGN-D) approaches.

V. CONCLUSION

This article has first discussed some known procedures to
generate correlated variables from a sample set, highlighting
the need of a domain transformation (from the sample to the
uniform variables domain). The same domain adaptation has
been exploited for the generation of statistically dependent
variables, recalling the concept of copula. This mathematical
tool enables the partitioning and segmentation of the depen-
dence structure generation into two well-defined steps, an ini-
tial step that creates the data dependence between uniform
random variables (copula) and a second step that projects
the uniform random variables back into the sample domain
(inverse transform sampling), leading to new data. The former
case has been analyzed through the aid of different copula
structures, whereas the latter case has been analyzed through
an estimation of the marginal cumulative distribution (and
its inverse), where the more samples are available, the better
the approximation is. Such segmentation totally disregards the
semantics of the input data and, in principle, can be applied
to any type of data/signal.

This procedure has led to the design of an SGN architec-
ture, based on GANs, successfully implemented as proved
by several qualitative and quantitative results. This goes in
the direction of explainable machine learning, i.e., a full
comprehension of the design of a neural network through a
mathematical segmentation of the problem.

REFERENCES

[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, Jan. 1989.

[2] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[4] H. E. Gerhard, F. A. Wichmann, and M. Bethge, “How sensi-
tive is the human visual system to the local statistics of nat-
ural images,” PLoS Comput. Biol., vol. 9, no. 1, Jan. 2013,
Art. no. e1002873.

[5] A. van den Oord and J. Dambre, “Locally-connected transformations
for deep gmms,” in Proc. Int. Conf. Mach. Learn. (ICML) Deep Learn.
Workshop Abstr., 2015, pp. 1–8.

[6] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv.
Neural Inf. Process. Syst., Montreal, QC, Canada, Dec. 2014,
pp. 2672–2680.

[7] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4401–4410.

[8] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts, “Gansynth: Adversarial neural audio synthesis,” in Proc.
Int. Conf. Learn. Represent., 2019, pp. 1–17.

[9] H. Zhang et al., “StackGAN++: Realistic image synthesis with stacked
generative adversarial networks,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 8, pp. 1947–1962, Aug. 2019.

[10] A. M. Tonello, N. A. Letizia, D. Righini, and F. Marcuzzi, “Machine
learning tips and tricks for power line communications,” IEEE Access,
vol. 7, pp. 82434–82452, Jun. 2019.

[11] D. P Kingma and M. Welling, “Auto-encoding variational Bayes,”
2013, arXiv:1312.6114. [Online]. Available: http://arxiv.org/
abs/1312.6114

[12] L. Dinh, D. Krueger, and Y. Bengio, “NICE: Non-linear independent
components estimation,” 2014, arXiv:1410.8516. [Online]. Available:
http://arxiv.org/abs/1410.8516

[13] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1 × 1 convolutions,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 10215–10224.

[14] N. Lawrence, “Probabilistic non-linear principal component analysis
with Gaussian process latent variable models,” J. Mach. Learn. Res.,
vol. 6, pp. 1783–1816, Nov. 2005.

[15] M. Titsias and N. D. Lawrence, “Bayesian Gaussian process latent
variable model,” in Proc. 13th Int. Conf. Artif. Intell. Statist., May 2010,
pp. 844–851.

[16] B. J. Frey, G. E. Hinton, and P. Dayan, “Does the wake-sleep algorithm
produce good density estimators,” in Proc. Adv. Neural Inf. Process.
Syst., 1996, pp. 661–667.

[17] F. R. Kschischang and B. J. Frey, “Iterative decoding of com-
pound codes by probability propagation in graphical models,”
IEEE J. Sel. Areas Commun., vol. 16, no. 2, pp. 219–230,
Feb. 1998.

[18] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra, “Deep
autoregressive networks,” in Proc. Int. Conf. Mach. Learn. (ICML),
2014, pp. 1242–1250.

[19] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves,
and K. Kavukcuoglu, “Conditional image generation with PixelCNN
decoders,” CoRR, vols. abs/1606.05328, pp. 1–13, Jun. 2016.

[20] G. E. Hinton and S. Osindero, “A fast learning algorithm for deep belief
nets,” Neural Comput., vol. 18, no. 7 pp. 1527–1554, 2006.

[21] G. Alain et al., “GSNs: Generative stochastic networks,” Inf. Inference,
vol. 5, no. 2, pp. 210–249, Jun. 2016.

[22] M. C. Cario and B. L. Nelson, “Modeling and generating random
vectors with arbitrary marginal distributions and correlation matrix,”
Dept. Ind. Eng. Manage. Sci., Northwestern Univ., Evanston, IL, USA,
Tech. Rep., 1997.

[23] M. Falk, “A simple approach to the generation of uniformly distributed
random variables with prescribed correlations,” Commun. Statist. Simul.
Comput., vol. 28, no. 3, pp. 785–791, Jan. 1999.

[24] R. B. Nelsen, An Introduction to Copulas (Springer Series in Statistics).
Berlin, Germany: Springer-Verlag, 2006.

[25] A. Sklar, “Fonctions de répartition à n dimensions et leurs marges”
Publications de l’Institut de Statistique de l’Université de Paris, vol. 8,
pp. 229–231, 1959.

[26] T. Bedford, A. Daneshkhah, and K. J. Wilson, “Approximate uncertainty
modeling in risk analysis with vine copulas,” Risk Anal., vol. 36, no. 4,
pp. 792–815, Apr. 2016.

[27] S. Demarta and A. J. McNeil, “The t copula and related copulas,” Int.
Stat. Rev., vol. 73, no. 1, pp. 111–129, Jan. 2007.

LETIZIA AND TONELLO: SGNs: DATA GENERATION IN THE UPS 1347

[28] T. Bedford and R. Cooke, “Probability density decomposition for con-
ditionally dependent random variables modeled by vines,” Ann. Math.
Artif. Intell., vol. 32, no. 1–4, pp. 245–268, 2001.

[29] N. Tagasovska, D. Ackerer, and T. Vatter, “Copulas as high-dimensional
generative models: Vine copula autoencoders,” 2019, arXiv:1906.05423.
[Online]. Available: http://arxiv.org/abs/1906.05423

[30] R. Fortet and E. Mourier, “Convergence de la répartition empirique
vers la répartition théorique,” Annales Scientifiques de l’École normale
supérieure, vol. 70, no. 3, pp. 267–285, 1953.

[31] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel two-sample test,” J. Mach. Learn. Res., vol. 13, pp. 723–773,
Mar. 2012.

[32] G. K. Dziugaite, D. M. Roy, and Z. Ghahramani, “Training generative
neural networks via maximum mean discrepancy optimization,” in Proc.
31st Conf. Uncertainty Artif. Intell., Amsterdam, The Netherlands, 2015,
pp. 258–267.

[33] Y. LeCun and C. Cortes. (2010). MNIST Handwritten Digit Data-
base. Accessed: Apr. 10, 2019. [Online]. Available: http://yann.lecun.
com/exdb/mnist/

[34] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 3730–3738.

[35] M. Abadi et al., “Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems,” CoRR, vols. abs/1603.04467, pp. 1–19,
Mar. 2016.

[36] J. Li, J. Jia, and D. Xu, “Unsupervised representation learning of
image-based plant disease with deep convolutional generative adver-
sarial networks,” in Proc. 37th Chin. Control Conf. (CCC), Jul. 2018,
pp. 9159–9163.

[37] D. G. Clayton, “A model for association in bivariate life tables and its
application in epidemiological studies of familial tendency in chronic
disease incidence,” Biometrika, vol. 65, no. 1, pp. 141–151, 1978.

[38] A. Borji, “Pros and cons of GAN evaluation measures,” Comput. Vis.
Image Understand., vol. 179, pp. 41–65, Feb. 2019.

[39] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, “Improved techniques for training gans,” CoRR,
vols. abs/1606.03498, pp. 1–10, Jun. 2016.

[40] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 6626–6637.

[41] M Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystify-
ing MMD GANs,” in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–36.

[42] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” CoRR,
vols. abs/1512.00567, pp. 1–10, Dec. 2015.

Nunzio A. Letizia (Graduate Student Member,
IEEE) received the Laurea Magistrale degree in
electrical engineering (summa cum laude) from the
University of Udine, Udine, Italy, in 2018. He is cur-
rently pursuing the Ph.D. degree with the University
of Klagenfurt, Klagenfurt, Austria.

He is currently a University Assistant with the
University of Klagenfurt. During his studies, he was
awarded with a full scholarship at Scuola Superiore
dell’Universitá degli studi di Udine. His research
interests spread from mathematics and physics to

communication engineering. His research areas are in the field of signal
processing and statistical learning.

Andrea M. Tonello (Senior Member, IEEE)
received the Dr.Eng. degree (Hons.) in electronics
and the Dr.Res. degree in electronics and telecom-
munications from the University of Padova, Padua,
Italy, in 1996 and 2002, respectively.

From 1997 to 2002, he was with Bell Labs-Lucent
Technologies, Whippany, NJ, USA, as a Member of
the Technical Staff. Then, he was promoted to the
Technical Manager and appointed to the Managing
Director of the Bell Labs Italy Division. In 2003, he
joined the University of Udine, Udine, Italy, where

he became an Aggregate Professor in 2005 and an Associate Professor in 2014.
He is currently a Professor of embedded communication systems with the
University of Klagenfurt, Klagenfurt, Austria. He is also the Founder of the
spinoff company, WiTiKee, Basagliapenta, Italy.

Dr. Tonello received several awards, including the Distinguished Visiting
Fellowship from the Royal Academy of Engineering, U.K., in 2010, the IEEE
VTS and COMSOC Distinguished Lecturer Awards in 2011, 2015, and
2018, the UC3M Chair of Excellence for the term 2019–2020, and nine
best paper awards. He served/serves as an Associate Editor for the IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON

COMMUNICATIONS, IEEE ACCESS, and IET Smart Grid. He was the Chair
of the IEEE ComSoc Technical Committee on Power Line Communications
from 2014 to 2018. He is also the Chair of the IEEE ComSoc Technical
Committee on Smart Grid Communications. He has been appointed as the
Director of Industry Outreach of the IEEE ComSoc for the term 2020–2021.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

