
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 7, JULY 2022 2853

Low-Latency In Situ Image Analytics With
FPGA-Based Quantized Convolutional

Neural Network
Maolin Wang , Kelvin C. M. Lee , Bob M. F. Chung, Sharatchandra Varma Bogaraju , Ho-Cheung Ng ,

Justin S. J. Wong, Ho Cheung Shum , Kevin K. Tsia , Member, IEEE,

and Hayden Kwok-Hay So , Senior Member, IEEE

Abstract— Real-time in situ image analytics impose stringent
latency requirements on intelligent neural network inference
operations. While conventional software-based implementations
on the graphic processing unit (GPU)-accelerated platforms
are flexible and have achieved very high inference throughput,
they are not suitable for latency-sensitive applications where
real-time feedback is needed. Here, we demonstrate that high-
performance reconfigurable computing platforms based on field-
programmable gate array (FPGA) processing can successfully
bridge the gap between low-level hardware processing and high-
level intelligent image analytics algorithm deployment within a
unified system. The proposed design performs inference oper-
ations on a stream of individual images as they are produced
and has a deeply pipelined hardware design that allows all
layers of a quantized convolutional neural network (QCNN) to
compute concurrently with partial image inputs. Using the case of
label-free classification of human peripheral blood mononuclear
cell (PBMC) subtypes as a proof-of-concept illustration, our
system achieves an ultralow classification latency of 34.2 µs with
over 95% end-to-end accuracy by using a QCNN, while the cells
are imaged at throughput exceeding 29 200 cells/s. Our QCNN
design is modular and is readily adaptable to other QCNNs with
different latency and resource requirements.

Index Terms— Cell image classification, convolutional neural
network (CNN), field-programmable gate array (FPGA),
hardware architecture, low-latency inference, multiplexed
asymmetric-detection time-stretch optical microscopy (multi-

Manuscript received March 25, 2020; revised September 8, 2020; accepted
December 8, 2020. Date of publication January 12, 2021; date of current
version July 7, 2022. This work was supported in part by the Croucher
Foundation Croucher Innovation Award 2013; in part by the Innovation and
Technology Commission under Grant ITS/204/18; in part by the Research
Grants Council of Hong Kong under Grant CRF C7047-16G and Grant CRF
17307919, Grant GRF 17208918, Grant GRF 17209017, and Grant GRF
17245716; in part by the University of Hong Kong Platform Technology Fund;
and in part by the National Natural Science Foundation of China (NSFC)
under Scheme Excellent Young Scientists Fund (Hong Kong and Macau)
(Project Number: 21922816). (Corresponding author: Hayden Kwok-Hay So.)

Maolin Wang, Kelvin C. M. Lee, Kevin K. Tsia, and Hayden Kwok-Hay
So are with the Department of Electrical and Electronic Engineering, The
University of Hong Kong, Hong Kong (e-mail: hso@eee.hku.hk).

Bob M. F. Chung and Ho Cheung Shum are with the Department of
Mechanical Engineering, The University of Hong Kong, Hong Kong.

Sharatchandra Varma Bogaraju is with the Faculty of Computing, Engi-
neering and the Built Environment, Ulster University, Jordanstown Campus,
Newtownabbey BT37 0QB, U.K.

Ho-Cheung Ng is with the Department of Computing, Imperial College
London, London SW7 2AZ, U.K.

Justin S. J. Wong is with Conzeb Ltd., Hong Kong.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TNNLS.2020.3046452.
Digital Object Identifier 10.1109/TNNLS.2020.3046452

ATOM), quantized convolutional neural network (QCNN), recon-
figurable computing.

I. INTRODUCTION

RECENT advances in the deep neural network have given
image analytics powerful tools to extract the unprece-

dented amount of information by learning from massive data
sets. For the off-line, batch mode analysis, a number of
general-purpose [1], [2] and domain-specific [3], [4] soft-
ware frameworks are readily available for both training and
inference. Using state-of-the-art accelerators, such as graphic
processing units (GPUs), these software frameworks have
enabled researchers to study and develop even the most com-
plex application-specific neural networks with relative ease
with high processing throughput.

However, for online applications that require in situ single
item image analytics for immediate feedback control, real-time
implementation of such complex neural network inference
operation remains an open challenge. Existing acceleration
techniques using parallel computers or GPUs, while being
able to improve batch processing throughout, are not designed
for real-time applications that have the additional require-
ments on low processing latency and guaranteed performance.
In autonomous vehicle platooning control [5], for instance,
complex control decisions must be made by analyzing input,
such as the array of multispectral cameras and LIDAR with
low-processing latency. Similarly, in many novel cell-based
applications that are instrumental in cell biology research
and drug discovery, such as in high-speed cell sorting and
encapsulation, real-time actuation of each individual cell after
it is being imaged is required [6]–[8]. In these application
scenarios, the image analytic latency, as measured from the
time when an image is produced to the time when an analytic
decision can be made about that object, must be kept as
low and predictable as possible to minimize its impact on
the overall system design. Consider, for instance, the case of
actuating cells that are imaged while flowing in a microfluidic
channel at speed of 1 m/s, such as those demonstrated in [9]
and [10]. Every d additional microseconds of decision latency
will lead to a corresponding increase of d micrometers in
the microfluidic channel that requires precise control. In the
system developed in [11], the proposed GPU accelerated cell
classifier using a deep convolutional neural network (CNN)
incurred 3.2 ms of inference latency, which translates into a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7449-9834
https://orcid.org/0000-0002-6365-8825
https://orcid.org/0000-0001-9407-9191
https://orcid.org/0000-0002-6394-9657
https://orcid.org/0000-0002-8082-8822
https://orcid.org/0000-0002-5171-1318
https://orcid.org/0000-0002-6514-0237

2854 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 7, JULY 2022

3.2 cm microfluidic channel that the authors had to tightly
control for cell sorting at the end. While the authors have
developed a hardware-based cell velocity estimator to control
its sorting mechanism, it imposed substantial overhead to the
already complex system design.

Here, in this work, instead of relying on GPU for accel-
eration, we demonstrate that a hardware-only quantized
CNN (QCNN) implementation is superior in providing pre-
dictable and ultralow inference latency suitable for a range
of demanding real-time applications. We show that a field-
programmable gate array (FPGA)-based reconfigurable com-
puting system is superior in these application scenarios as it
can efficiently serve both as a low-level hardware integration
platform and as a high-level computing device for complex
analytics computations.

To illustrate this integrated hardware-processing concept,
we adopted this system architecture to a recently devel-
oped quantitative label-free imaging flow cytometry technique,
coined multiplexed asymmetric-detection time-stretch optical
microscopy (multi-ATOM), that achieved a high imaging line-
scan rate of 11.8 MHz [9]. The entire image processing chain,
from interfacing to the laser imaging sources and controlling
the two data acquisition analog-to-digital converters (ADCs),
to image formation and cell detection and classification using
a QCNN, are performed in hardware within the central FPGA
processing unit (CFPU). This unified, deeply pipelined process
chain allows the QCNN inference operation to execute in
parallel to the series of cell image formation operations, thus
ensuring that the lowest possible overall classification latency
by the time a cell is completely imaged.

The proposed QCNN featured a layer-parallel architecture
that was designed to perform inference on a single input
image without batch processing. The hardware design of
each layer, including the convolutional layer, the pooling
layer, and the fully connected layers, were parameterizable to
facilitate resource-latency tradeoff. Furthermore, computations
were performed with an 8-bit number representation with
quantized weights, which matches our input image data and
provided resource-efficient hardware implementations. Finally,
our hardware QCNN design was deeply pipelined to maintain
high processing throughput that was compatible with the input
cell imaging system.

With this system, we demonstrated an ultralow cell clas-
sification latency of 34.2 µs, i.e., three orders of magni-
tude reduction from state-of-the-art GPU-accelerated software
designs, with over 95% end-to-end accuracy when classi-
fying the subtypes of human peripheral blood mononuclear
cells (PBMCs) at a real-time throughput of 29200 cells/s.
In addition, compared with software-based solutions, our
FPGA-based analytic system is capable of producing results
with fixed and predictable latency that is needed for precise
feedback control.

This work, thus, advances the state of the art in the following
areas.

1) We demonstrate a first-of-its-kind hardware-only QCNN
inference machine co-optimized with the real-time imag-
ing front end to perform real-time in situ cell classifica-
tion with low and predictable latency.

2) We propose a streaming architecture for mix-granularity
pipelined operations, from image formation to cell
classification, which allows flexible latency–area trade-
off while maintaining high data processing throughput.

3) Using the hardware-based QCNN inference implemen-
tation, we demonstrate an ultralow-latency in situ image-
based cell classifier with 34.2-µs processing latency and
95% end-to-end accuracy.

In Section II, a brief review of related work in hardware-
based neural network inference will first be presented.
An overview of the in situ cell image analytic platform and the
integration between image formation and neural network infer-
ence will be shown in Section III. Details about our QCNN
implementation will be shown in Section IV. Performance
evaluation of the system will be shown in Section V before
we conclude this article in Section VI.

II. RELATED WORKS

Efficient hardware implementations of deep neural network
inference have been a topic of intense research interest.
Compared with typical software-based GPU-accelerated solu-
tions, hardware implementations of neural network inference
have been demonstrated with superior power-efficiency, mak-
ing them particularly useful for power-limited systems, such
as autonomous vehicles and intelligent edge devices. The
use of application-specific architectures, both from a system
and microarchitecture’s point of view, and custom numeric
precision computations have both been keys in enabling such
achievements.

In one of the earliest work, Farabet et al. [12] presented a
custom architecture for performing CNN inference on FPGA.
Subsequently, a number of large-scale frameworks have been
developed [13]–[17], each based on their own custom archi-
tecture for accelerating neural network inference, but with
a common thread focusing on developing efficient matrix
computations for maximum processing throughput.

Another important optimization strategy for hardware infer-
ence is to utilize nonstandard or reduced precision arithmetic
for inference. As observed in [18], the redundancy presented in
the vast parameter pool of parameters in deep neural networks
allows inference to compute with reduced-precision arithmetic
operations without significant effect on the model accuracy.
This allows researchers to utilize fixed-point or integer arith-
metic in place of more hardware-demanding floating-point
operations for most of the demanding operations. To that end,
a large body of works [19]–[21] has already demonstrated
neural network inference implementations with 8-bit weights
on FPGAs with negligible accuracy drop. Jacob et al. [22]
presented a series of models using 8-bit weights and activation
to provide a tradeoff between computation latency and classi-
fication accuracy. Tripathi et al. [23] also demonstrated a CNN
with 8-bit weights for object detection while maintaining the
model accuracy to be as good as its floating-point counterpart.
Baskin et al. [24] implemented AlexNet inference on FPGA
using 2-bit activation and demonstrated energy efficiency over
GPU. Pushing the technology limitation further, a number of
works have also studied the use of extreme low-bit-width
arithmetic, such as binary [25]–[30] and ternary weights

WANG et al.: LOW-LATENCY IN SITU IMAGE ANALYTICS WITH FPGA-BASED QCNN 2855

Fig. 1. FPGA-based reconfigurable computing platform for intelligent in situ image analytics in real time. The CFPU serves as a unified platform for
concurrent image formation, cell detection, and classification using a QCNN. Fully pipelined stream processing FPGA gateware results in predictable and
ultralow latency at high throughput.

[31]–[33] in various neural network inference operations,
while maintaining acceptable model performance degradation.

While the above QCNN designs on FPGA have successfully
resulted in good throughput performance, they were not par-
ticularly optimized for low-latency operations. To address the
need for low-latency inference, Venieris and Bouganis [34]
proposed a latency-driven design methodology for mapping
QCNN on FPGA. A flexible architecture was designed that can
be automatically derived based on the QCNN workload and
FPGA resources using a synchronous dataflow computation
model. Ma et al. [35] have implemented quantized VGG-16
on FPGA for ImageNet classification. By analyzing the loop
operation and dataflow in FPGA, a latency of 48 ms can
be achieved by balancing computation and memory traffic.
Finally, Geng et al. [36] have designed a low-latency binarized
neural network inference of AlexNet, VGGNet, and ResNet.
Our design also aimed at reducing inference latency but
with an additional requirement of maintaining a deterministic
latency. Furthermore, we achieved these goals by employing a
customized hardware architecture and by using 8-bit quantized
operations that matched with our imaging front end. Finally,
our QCNN was tightly coupled with the imaging formation
hardware to allow true in situ inference on cell images con-
currently as they were formed. To the best of our knowledge,
this is the first work that addresses total end-to-end infer-
ence latency with system-level co-optimization between the
imaging front end and the hardware neural network inference
engine to achieve an ultralow classification latency of 34.2 µs.

III. SYSTEM ARCHITECTURE

Fig. 1 shows an overview of our in situ cell image ana-
lytic platform. Our target QCNN was implemented inside

the central FPGA that provided a unified reconfigurable
computing platform for both low-level image formation and
high-level image analytics. This tight integration allowed us
to co-optimize the image formation and analytics operations
and to employ an end-to-end stream-based processing model
across all tasks that maximized concurrence through careful
pipelining at multiple levels of granularity. Most importantly,
such tight integration allowed our QCNN classifier to perform
image classification in situ. The QCNN inference computation
commenced as soon as the first few lines of input cell image
was produced, and it continued to operate on the subsequent
image in parallel as soon as they were produced.

In the following, the coarse-grained system-level pipeline
that included the optical front end, the image formation
process, data filtering, and, finally, QCNN inference will first
be described. The details of our fine-grained QCNN pipeline
will be shown in Section IV.

A. Concurrent Image Formation and Image Analytics

At the system level, coarse-grain parallelism in a unified
platform allowed our system to perform all subtasks of image
formation and image analytics concurrently as a pipeline. This
allowed analytic operations to commence before the input
images were completely formed. [see Fig. 2(a)].

In our current implementation with the multi-ATOM imag-
ing front end [9], images of the fast-flowing target cells in a
microfluidic channel (at speed exceeding 1 m/s) were captured
by ultrafast laser line-scan illumination that was orthogonal
to the cell flow. The distinctive feature of multi-ATOM is
its ability to generate multiple raw image (phase-gradient)
contrasts of the same cell in each line scan. It has been
demonstrated that these multiple (four in total in this work)

2856 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 7, JULY 2022

Fig. 2. Concurrent image formation and analytics in a pipeline (using ultrafast flowing cell imaging by multi-ATOM as an example). (a) Snapshots of the
image formation process as a pipeline spanning multiple time steps (image formation, detection, and CNN execute in a pipeline). Every step operates on a
partial image such that analysis of an image may commence before the rest of the image is formed (last row). Note that only one raw image contrast is shown
here for simplicity. (d) In practice, four different image phase-gradient contrasts of the same cell are acquired in multi-ATOM. (b) Cell detection step selects
only relevant cell image to be processed by CNN (eliminated channel image). (c) Complete bright field image (left) and QPI (right) reconstructed from raw
image. (d) Raw image of four phase-gradient contrasts.

contrasts can be harnessed to compute quantitative phase
images (QPIs), which quantifies a multitude of valuable phys-
ical and mechanical cellular properties indicative of cell states
and functions [37], [38].

At each time step i [moving downward in Fig. 2(a)],
each subtask j of the pipeline (including image alignment,
background removal, cell detection, and the first convolution
layer of our CNN) passed the processing result from time
i − 1 to the right, while it began processing a new partial
image data delivered from task j − 1 on the left. Because of
this pipeline operation, as illustrated on the last two rows of
the figure, the sliding window operation of first convolution
layer conv1 (rightmost column) was able to commence on
the first part of a detected cell, while the rest of the cell was
still being imaged (leftmost column). Although not shown in
Fig. 2(a), this pipeline pattern continued throughout our CNN
classifier until the final classification decision was formed (see
Section IV for details).

It is worth noting that, because of this pipeline operation,
the complete image of a detected cell [see Fig. 2(c)] was never
available as a whole at any point in the system during real-time
in situ analytics. In applications where the complete recording
of the imaging channel or the detected cell images are needed,
they can be selected through the on-chip selection network
and transmitted to the data aggregation cluster for further
analysis. Furthermore, while each image snapshot shown in

Fig. 2(a) contains 25 lines of the input for illustration purposes,
in practice, our hardware implementation (see Section III-B)
operated on a much finer granularity of 16-pixel blocks that
were produced by the sampling ADC.

The aforementioned unification of image formation and
analytics into one seamless pipeline allows co-optimizations
between the two that are otherwise difficult to achieve.
To reduce complexity in the current imaging front end,
the usual step of QPI reconstruction in the original multi-
ATOM [see Fig. 2(c)] was omitted. Instead, our classifier
took the four raw phase-gradient images of each cell and
stitched them together into a single image [see Fig. 2(d)] for
training and inference by the QCNN. The integrated pipeline
also allowed us to adopt for the limited ADC bandwidth by
compensating the reduced cell image resolutions with QCNN
implementations that achieved similar accuracy at the same
data throughput.

B. Fine-Grained Reconfigurable Image
Processing Hardware Pipeline

In addition to the coarse-grain parallelism at the system
level, implementing our image analytics system on FPGA
further allowed us to exploit fine-grain parallelism at the
gateware implementation level. It was particularly important
for the stages closest to the imaging source where the data
bandwidth requirement was stringent.

WANG et al.: LOW-LATENCY IN SITU IMAGE ANALYTICS WITH FPGA-BASED QCNN 2857

Fig. 3. Processing pipeline design. (a) Raw image before line alignment. (b) Line alignment hardware. (c) Image after line alignment. Note the four phase-
gradient contrasts of the cell samples are now centered. (d) Background computation and removal hardware. (e) Image after background removal. (f) Object
detection hardware. (g) SAD values of lines around a target cell. Fifty lines before and after SAD exceeding a threshold T are included as part of the detected
object.

To illustrate this need for fine-grained pipeline design,
consider our current application that interfaced with the imag-
ing front end through a pair of high-speed ADCs. On each
channel, the ADC produced 8-bit samples at 3.9648 GHz and
transmitted 16 data in parallel to the FPGA at the system
clock rate of 247.8 MHz, which resulted in a sustained data
input throughput of 3.9648 GB/s. In other words, to process
these ADC samples in time, the first few stages of the image
processing pipeline must be able to process 16 pixels in
parallel every cycle.

Consequently, both the line alignment module [see
Fig. 3(b)] and the background removal module [see Fig. 3(d)]
employed a similar design strategy that relied on an off-
datapath module for estimation, while the main datapath
maintained the input data rate.

In the case of line alignment, the estimator observed the
first usable line of input to determine an offset that allowed the
system to center the cells in the images. It was achieved by
summing the values of each of the 16-pixel blocks with an
adder tree as they were read from the ADC. Each image
line contained 21 blocks, and the index of the block with the
lowest summed value was determined, which corresponds to
the dark color band in Fig. 3(a). Subsequent lines of the cell
images were aligned with respect to this index. The main

datapath dropped all pixels until the correct alignment was
obtained, and it maintained the input data throughput from
then on. Details of the line alignment operation are shown
in Algorithm 1.

Similarly, the background removal subsystem also relied on
an estimator that determined the background image by analyz-
ing the incoming image lines in parallel to the main dataflow.
Two common statistical methods (mean and median) were
considered for estimating background values along with the
image column data. The median method was used by our
collaborators for the off-line analysis since it was more robust
against sparse and asymmetric variations of pixel values in the
raw data and was able to provide more accurate background
estimations over the mean method in some cases. However,
the median computation involved data sorting, which intro-
duced substantially higher latency than the simpler hardware
pipeline for mean computation. Therefore, to maximize the
latency headroom for the remaining image analysis stages,
the mean method was adopted. Pixel values were accumulated
across eight rows of image data and then divided by 8 using
simple right shift by 3 bits [see Fig. 3(d)] to obtain the mean
values as background estimation along the image column of
336 pixels. The resultant background values were then sub-
tracted from the original image data as they streamed through

2858 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 7, JULY 2022

Algorithm 1 Line Alignment

/* Each scan line in our input
contained 21× 16 = 336 pixels */

Input : 16-pixel block stream b(i)
j ,

line scan number i ∈ {1, 2, · · · },
block index j ∈ {1, 2, . . . , 21},

Output: Aligned 16-pixel block stream B(i)
j

/* First line after initialization */
1 (p, minBlkVal)← (1,∞)
2 for j ← 1 to 21 do
3 s j ← sum of 16 pixel values within b(1)

j

4 if s j < minBlkVal then
5 (p, minBlkVal)← (j, s j)
6 end
7 end
/* Shift remaining lines by p blocks */

8 for i ≥ 2 do

9

(
B(i−1)

1 , . . . , B(i−1)
j , . . . , B(i−1)

21

)
←(

b(i)
p , . . . , b(i)

21 , b(i+1)
1 , . . . , b(i+1)

p−1

)
10 end

Algorithm 2 Background Removal

Input : Aligned block stream B(i)
j ,

line scan number i ∈ {1, 2, · · · },
block index j ∈ {1, 2, . . . , 21}

Output: Background-free 16-pixel block stream C (i)
j

1 for j ← 1 to 21 do
2 background accumulation buffer T j ← 0
3 end
/* Estimate background from the average

value of the first 8 lines */
4 for i ← 1 to 8 do
5 for j ← 1 to 21 do
6 T j ← T j + B(i)

j

7 end
8 end
9 for j ← 1 to 21 do

10 T j ← T j � 3 // divide by 8
11 end
/* All remaining lines */

12 for i ≥ 9 do
13 for j ← 1 to 21 do
14 C (i−8)

j ← B(i)
j − T j

15 end
16 end

the system to obtain pure cell images [see Fig. 3(e)] for the
next processing stage. Algorithm 2 describes this background
removal operation in more detail.

The cell detection module marked the point where the
stringent dataflow requirement began to relax as it filtered out
image data that would unlikely be needed for further analy-
sis [see Fig. 2(b)]. To facilitate efficient fine-grain pipeline
implementation at high bandwidth, a hardware-optimized

stream-based cell detection scheme was developed. The pro-
posed detection modules employed a thresholding scheme
based on the sum of absolute difference (SAD) of a scan line
against the moving average [see Fig. 3(g)].

IV. QCNN IMPLEMENTATION ON FPGA

Classifying cell images with CNN was the most compu-
tationally demanding subsystem in our processing pipeline.
It was the major contributor to the overall classification latency
and limited system hardware processing throughput. The main
challenge of our in situ QCNN design rested on the need to
maintain the high stream-processing throughput as determined
by the imaging front end and input ADC sampling speed
while achieving ultralow latency and high-accuracy classifi-
cation under tight hardware resource constraints. Our design
addressed these challenges by adopting a fully pipelined,
parallel design of the CNN that operated on image stream
immediately without buffering the whole image. Furthermore,
our neural network operated with reduced-precision arithmetic
as a QCNN, which reduced hardware resource requirements
and computation latency at the same time. Finally, based on
this CNN architecture, a system-level design space exploration
was performed to tradeoff between latency, throughput, and
classification accuracy under resource constraints.

A. Hardware Architecture

Our CNN consisted of two pairs of convolutional-
maxpooling layers followed by two fully connected layers
[see Fig. 4(b)].

Input to the CNN was 336×336 pixel cell images generated
from the cell detection module, while the CNN produced
classification results as output. As a continuation of the stream
processing paradigm for image formation, all the layers were
designed to operate in parallel as a pipeline [see Fig. 4(a)].
The layers, thus, relied only on partial results from its pre-
vious layer or the image formation subsystem for streaming
computation.

The network layout and the choice of metaparameters, from
the sizes and strides amount of the kernels to the number
of layers employed, were designed specifically to facilitate
efficient hardware implementation. For instance, in the input
convolution layer (conv1), the kernel size was chosen to be
8 × 8 pixels—a relatively large square shape with a power
of two number of pixels on the side—to allow efficiently
balanced adder trees to be implemented in hardware. A large
stride value of 4 was also chosen as a means to reduce the
amount of hardware resource consumption. These architectural
choices allowed efficient 2-D convolution operations to be
carried out by a pair of streaming convolutional units (SCUs).

Inspired by the idea proposed in [39] that optimized
computation efficiency, our SCU was optimized for reduced
computation latency by performing the partial sum of all
kernels1 that covered the 16 input pixels every cycle in parallel
[see Fig. 4(c)]. Finally, four such hardware structures were
instantiated, one for each feature kernel for the conv1 layer
[see Fig. 4(a)].

1The exception being that the last pair of kernels were delayed for
computation in the following cycle when following 16 pixels were input.

WANG et al.: LOW-LATENCY IN SITU IMAGE ANALYTICS WITH FPGA-BASED QCNN 2859

Fig. 4. QCNN design. (a) Hardware architecture overview. A fully pipelined parallel implementation of QCNN where all layers operate concurrently. The
architecture accepts 16-byte data block every cycle. (b) Layer configuration of the proposed QCNN. (c) Partial products of all sliding kernels that intersect
with the current input data block are computed concurrently in a single cycle. Kernels from conv1 shown for illustration. (d) Latency and hardware resource
usage analysis of the proposed QCNN.

2860 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 7, JULY 2022

This streaming processing model continued through the
interference operations with careful data rate control until
the end of the final fully connected layer (fc2). Such a
streaming process not only reduced the amount of on-chip
memory required for buffering but also significantly reduced
our classification latency.

B. Continuous Inference

From a data analytic perspective, our streaming architec-
ture was designed to perform inference operations on each
individual cell as it was imaged without first being buffered
to form a data processing batch. Compared with conventional
throughput-optimized CNN implementations that often oper-
ated with input data batches, single datum inference operation
avoided the need for batch buffering and was, thus, particularly
suitable for our latency-optimized designs. Specifically, let Nb

be the batch size and timg be the time required to form a cell
image. The first image needed to wait for the formation of
all Nb images in the batch before being sent to GPU for
computation. Similarly, the second image is needed to wait
for (Nb − 1)timg, while the last image is still needed to wait
for the formation of itself. Therefore, the average additional
waiting time for each image due to batch buffering was

Nb + (Nb − 1)+ (Nb − 2) · · · + 2 + 1

Nb
timg = 1

2
(Nb + 1)timg.

C. Quantization

While the streaming architecture described above promised
to achieve ultralow classification latency at high throughput,
it required a significant amount of configurable hardware
resources of the FPGA to physically implement operations
from all layers in parallel. As a result, the size of the CNN
implementable was ultimately constrained by the number of
available resources on the FPGA.

To reduce the number of configurable hardware
resources required, a QCNN implementation was adopted
[22], [25], [40]. In our implementation, all weights and
activation functions were represented as 8-bit fixed-point
numbers during inference. We used the network quantization
method proposed in [22] to explore efficient bitwidth of
weight and activation. Floating-point weights were used
to accumulate the gradient update during backward pass.
During forward pass, weights and activations were quantized
using integer quantization training scheme proposed in [22].
As illustrated in Table I, the classification accuracy of our
CNN naturally decreased as the number of bits used to
quantize the neuron weights decreased. Yet, compared with
the original single-precision floating-point implementation in
software, the accuracy of our QCNN remained competitive
even at 8-bit quantization. The network training only failed
to converge when the weights were quantized to fewer than
5 bits. As a result, to facilitate a simple hardware design that
matched with the 8-bit pixel input from the ADC, an 8-bit
number representation was chosen for our current QCNN
implementation.

TABLE I

MODEL DESIGN EXPLORATION

D. Design Space Exploration

In order to design a neural network model that achieved
low inference latency under the constraints set by: 1) the
high input data rate imposed by the imaging front end and
2) limited reconfigurable resource and I/O bandwidth of the
FPGA system, a design space exploration was conducted.

During our exploration, three models with a different num-
ber of feature maps, which directly affects their classification
accuracy and resource implications, were considered, as shown
in Table I. To avoid overfitting, we stopped increasing the
width of the network when the training error of the widest
model in Table I reached 99.94%.

Based on these network models, hardware implementations
with different resource requirements subject to the image
processing throughput constraint were explored. As shown in
Fig. 4(a), hardware resources can be adjusted by varying the
amount of parallelization employed in the QCNN implemen-
tation at the expense of reduced pixel processing rate.

Denote pixel processing rate, pi , as the number of pixels
passed as input to the (i + 1)th layer of our layer-parallel
QCNN classifier per cycle. The activation output rate (pi)
of each pipeline stage i was balanced to avoid pipeline
congestion. Let ci , Hi , and Wi be the number, the height,
and the width of stage i ’s output feature maps. It took
((ci−1 Hi−1Wi−1)/(pi−1)) to feed all the input feature maps
into stage i . The pipeline congestion-free constraint implied
that all the output feature maps were fed into stage i+1 within
the same period after stage i ’s processing delay. Hence, pi−1

and pi satisfied the following equation:
ci−1 Hi−1Wi−1

pi−1
= ci Hi Wi

pi
. (1)

Note that both Hi and Wi were reduced to (1/si) of their orig-
inal size Hi−1, Wi−1 after passing through stage i . After rear-
ranging both sides of Equation (1), we obtained Equation (2)
to describe the relation between pi−1 and pi

pi = pi−1 · ci

ci−1
· 1

s2
i

. (2)

Given a CNN model specification, the data rate of
each pipeline stage could be computed recursively using
Equation (2) and was all proportional to p0, the input pixel
rate to the QCNN. As a result, we used p0 as a hardware
parallelism indicator.

WANG et al.: LOW-LATENCY IN SITU IMAGE ANALYTICS WITH FPGA-BASED QCNN 2861

Based on the value of p0, we can determine the number
of reconfigurable hardware resources needed for a particular
QCNN implementation. For example, the number of multipli-
ers for weight activation multiplication of convolutional stage i
was

ci−1 pici

(
ki

si

)2

(3)

where ki and si are the kernel size and stride of the convo-
lutional layer. Since pi was proportional to p0, the overall
hardware resources usage would also be proportional to p0.

At the same time, p0 was also closely related to the
classification latency. Assume that the image size was Nimg,
and it took (Nimg/p0) clock cycles to feed the entire image
into the pipeline. The classification latency would, therefore,
become (Nimg/p0) + PIPELINEDELAY, which was roughly
inversely proportional to p0. Fig. 4(d) shows the relation
between the number of multipliers required in the QCNN and
the classification latency of the models in Table I.

In our implementations, DSP blocks on the FPGA were
used exclusively for weight activation multiplications. As a
result, the number of DSP blocks required can be derived from
Equation (3) directly, which was also proportional to p0.

In terms of on-chip memory, weights and partial convolution
accumulations accounted for most of their usage in our design.
The on-chip memory used for weight storage was related to
the total number of parameters in each layer. In the case of
convolution layers, it was proportional to the neural network
width quantifying by the number of output feature maps ci of
each stage i . As the data coming into each convolution stage
followed the same line-by-line manner, a convolution could
only be completed after ki lines of input. Partial convolutions
of the first line were calculated immediately upon data arrival.
The resulting partial accumulations were stored in a first-
in-first-out (FIFO) waiting to be merged with other partial
accumulations that required the next ki − 1 lines’ data. Note
that each line was associated with other (ki/si) convolutions
due to the convolution window overlapping. For each output
feature map of convolution stage i , (ki/si) FIFOs of size Wi

were used for partial convolution accumulation. Total on-chip
memory used in stage i for partial convolution accumulations
could, therefore, be described using the following equation:

ci ·Wi · ki

si
(4)

where Wi is the linewidth of the output feature map. The
same as the weight storage, on-chip memory usage of partial
convolution accumulations was also proportional to network
width.

The DSP and BRAM usage models of our QCNN hardware
can be obtained by adding the resource usage of each stage i .
Note that ci , ki , si , and Wi were network configuration para-
meters that determined classification accuracy, and the BRAM
resource model in Equation (4) only contained these parame-
ters. A larger network gave better classification accuracy, while
it consumed more BRAMs. Except network configuration
parameters, DSP usage was also affected by input data rate p0

through Equation (3) and Equation (2), which directly affected

classification accuracy. For the same network configuration,
shorter classification latency did not require more BRAMs,
but the QCNN hardware consumed more DSPs. Experimental
results in hardware resource consumption that corresponds to
this analytical model are shown in Section V. From Table II,
we can see that, for the same network, using a large input data
rate p0 increases the number of DSP usage, while the number
of consumed BRAMs remains the same.

V. RESULTS AND EVALUATIONS

A. System Setup

Our system was designed around the FPGA (Xilinx
Virtex-6 XC6VSX475T) housed inside the ROACH-2 platform
from the CASPER collaboration [41]. Two external ADCs
(e2v EV8AQ160, 5 Gs/s, 8-bit) housed inside the CASPER
ADC1× 5000-8 board were used to interface with the multi-
ATOM photodetector output. Four CPU nodes are connected
to the ROACH-2 through eight 10-Gb/s Ethernet connections
where data were transmitted as custom UDP packets for
recording and analysis. A custom software aggregated and
demultiplexed data from the four data aggregation nodes
for downstream processing. The MATLAB 2012b with ISE
system generator 14.5 was used for block diagram design and
FPGA configuration file generation.

The imaging front end of our system was based on the multi-
ATOM imaging system [9]. In short, our multi-ATOM system
imaged fast-flowing single cells in a microfluidic channel
based on an ultrafast line-scanning approach, in which a series
of optical line scans was formed by illuminating broadband
time-stretched laser pulses (center wavelength = 1064 nm,
bandwidth = 10 nm, and repetition rate = 11.8 MHz) onto
a diffraction grating. Images were subsequently reconstructed
by stacking a series of line scans, while the targets flowed in
the microfluidic imaging channel (>1 m/s).

The repetition rate of the laser pulse from the multi-ATOM
imaging front end was used to serve as the master clock
source for all remaining hardware processing clock domains.
The laser pulse was first converted to an electrical pulse by
FPD 310 photodetector from MenloSystems. The converted
electrical pulse was then fed into a custom stretch and reshape
circuit to produce a square wave master clock signal, which
was synchronized to the original laser pulse with the same
11.8-MHz frequency. A Valon 5009 Dual Frequency Synthe-
sizer was used to multiply the frequency of the master square
wave clock signal by 168. Using the resulting 1982.4-MHz
clock output from the synthesizer, the ADC further doubled the
frequency internally to form a 3964.8-MHz sampling clock.
Each laser scan pulse from multi-ATOM was, thus, sampled
exactly 336 times by the ADC to form one image line.
An internal clock division circuit inside the ROACH2 divided
the 3964.8-MHz sampling clock into a 247.8-MHz system
clock for the remaining hardware processing pipeline.

B. Classification Latency

Fig. 5(a) shows a plot of execution time for image formation
and for various layers of the CNN to classify one cell. The
pipeline action, in which different parts of the design execute

2862 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 7, JULY 2022

Fig. 5. Latency and resource consumption. (a) Plot showing the timing of image formation and various layers of CNN inference that execute in a pipeline.
CNN computation begins as soon as a cell is detected. Depending on the exact timing when a cell is detected, the worst case latency for cell detection is
tce− tis. (b) Plot showing relative latency of CNN decision making compared with cell flow image. A classification decision is made soon after the sample cell
is completely imaged (tce − tie). (c) Resource consumption of the design relative to available resources on target FPGA. (d) Resource consumption breakdown
of each submodule.

concurrently, can easily be seen from the figure. Fig. 5(b)
further maps the execution time to the corresponding cell
image to highlight the spatial–temporal relationship between
cell flow and classification latency.

To measure classification latency, recall that image lines of
a cell were formed, while the cell flowed in the microfluidic
imaging channel in our system. The cell detection module
continuously analyzed the latest 50 lines of images to deter-
mine if a cell was presented. Once a cell was detected,
the classification process using QCNN commenced. This
inference operation continued as new image lines of the cell
were formed. The CNN input ended after all 336 lines were
captured, which translated into a complete 336 × 336 pixel
input to the CNN. The inference operation is completed when
all computations from the final fc2 layer are completed.

There are, thus, two important latency measurements. First,
inference latency is the time measured from the start to the end
of CNN inference operation (tcs → tce). Using an image size
of 336×336 pixels, our CNN completed inference operations
in 7436 cycles, which translated to 30.0 µs when the FPGA
system was running at 247.8 MHz. Second, the detection
latency must be taken into account, which measures from the
start of an image to the time CNN operation starts (tis → tcs).
In the worst case, our cell detection module required 50 lines
of input to detect a cell (4.2 µs) before it would trigger the start
of CNN inference. As a result, the maximum classification
latency our system is determined to be 34.2 µs (tis→ tce).

Finally, combining Fig. 5(a) and (b) illustrates the spatial
relationship between a cell flowing at 2.3 m/s and its corre-
sponding classification result. It can be observed that, with our

FPGA classifier, the classification decision is available at most
78.66 µm after a cell passes through the imaging channel.

C. Resource Consumption

Table II summarizes the detailed resources usage of each
module in our hardware. We adopt the QCNN design config-
uration narrow and p0 = 16 as wider QCNN clock frequency
failed to catch up with the ADC sampling rate, which is
closely coupled with the imaging front end, as explained in
Section V-A. Fig. 5(c) shows the overall resource consumption
of chosen classifier and other system components. Currently,
the overall design consumes 39% of on-chip digital signal
processing (DSP) units, 12% of slice registers, 17% of slice
lookup tables (LUTs), and 5% of on-chip memory, which
includes the QCNN implementation, the image formation
hardware, ADC controllers, the data selection network, and
other system support designs. Fig. 5(d) further breaks down
the resource consumption according to different submodules.
Among them, the QCNN, being the most computationally
demanding, is responsible for almost all DSP block usages,
while the eight 10-Gbe controllers consume the most on-chip
memory for buffering.

D. Object Detection Accuracy

To evaluate the detection performance of our hardware
image-based detection module, a continuous full system cap-
ture of both the phase-gradient contrast and fluorescence
detection channels was performed on a flow of stained beads.
From the full recording of the flow, by correlating against

WANG et al.: LOW-LATENCY IN SITU IMAGE ANALYTICS WITH FPGA-BASED QCNN 2863

TABLE II

SUMMARY OF FPGA RESOURCE USAGE

Fig. 6. Object detection using hardware image-based detection and fluorescence detection. (a) Objects detected by both fluorescence and image-based detection
modules (true positive examples). (b) Objects identified by image-based module without a corresponding fluorescence signal (false-positive examples). (c) ROC
curve showing the image-based detection hardware module is capable of producing comparable detection result as fluorescence detection.

the fluorescence detection signals, a total of 1079 beads were
detected in the captured flow. Fig. 6(a) shows samples of
beads detected by the image-based detection module, which
are also verified by the presence of the fluorescence signal.

Fig. 6(b) shows samples of false-positive images detected
by the image-based module. These false-positive objects are
mostly debris in the flow. As shown in the ROC curve [see
Fig. 6(c)], the image-based detection module is capable of

2864 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 7, JULY 2022

detecting beads with high confidence compared with conven-
tional fluorescence detection methods.

E. Cell Classification Accuracy

We used three subtypes of PBMC, imaged by multi-ATOM,
as the target to evaluate our classification system. Each subtype
was first negatively isolated (purified) from PBMCs using a
targeted magnetic separation protocol with minimal stress and
perturbation on the isolated cells. Subsequently, the purified
subtypes (each of which was labeled with targeted fluorescence
surface marker for validation) were imaged by our system.
Flowing and imaging the cells of the purified PBMC subtypes
separately allowed us to apply the correct label to the cell
images for training, validating, and testing of our QCNN.
In total, 4485 B cells, 104 975 monocytes, and 21 114 NK
cell images were collected.

To balance the number of each class, 20% of the captured
monocyte images were randomly chosen from the whole
capture set and combined with all the captured B and NK
cells to construct the evaluation data set. The evaluation set
was further split into ten shares to perform standard tenfold
cross-validation. Overall, our QCNN achieved an average clas-
sification top-one accuracy of 0.9545 and an average F1-score
of 0.9542 in the tenfold cross-validation.

F. Comparison With GPU-Based Cell Classification

Finally, we have also performed an extensive comparison
between our FPGA-based classifier and the state-of-the-art
real-time GPU-based cell classifier demonstrated in [11].
To evaluate classification accuracy, the data set released
by [11] that contained 65 534 single, aggregated platelet and
leukocytes images was used. Since the label for each image
was not available, we used the label generated by the pre-
trained model in [11] as a baseline to evaluate the accuracy
of our model. According to the classification results from the
pretrained model, there were 18 176 single platelet images,
2205 leukocytes images, and 45 153 aggregated platelet
images. Since the number of leukocyte images was too small,
they were dropped from our evaluation. Finally, we randomly
selected 18 000 images from each of the remaining two cell
types to form our evaluation data set. The 36 000 images were
split into a 4:1 proportion for training and testing.

The fivefold cross-validation results show that our QCNN
was able to achieve classification results that are 94.03%
in agreement with the baseline labels produced from [11]
while incurring three orders of magnitude lower inference
latency. The key factors that result in the significantly reduced
classification latency in our system rest on the tight integration
between the imaging front end and the QCNN classifier
in our case, as well as the use of low-latency hardware
QCNN for in situ classification. Compared with the system
in [11] where image construction and classification were
performed using separate computation node connected through
10G Ethernet, our integrated in situ classifier eliminates most
of the system overheads, including the Ethernet connection
and the CPU–GPU communication. Our hardware-based fully
pipelined and parallel implementation in combination with

cut-through processing of the cell images as they are formed
also contributes to the lowered latency. By eliminating most
of the variable latency from the network and I/O system,
the proposed solution also provides predictable classification
latency that facilitates precise control in ultrahigh-speed real-
time systems.

VI. CONCLUSION

We have developed an integrated reconfigurable FPGA-
based cell imaging and analytic platform that demonstrates
real-time ultralow processing latency needed for applications
with real-time feedback requirements. We demonstrate its
capability with real-time cell classification using a QCNN,
where unmatched low latency is achieved through carefully
structured QCNN hardware that allows image formation, cell
detection, and computation of different layers of QCNN to
execute with pipeline parallelism. The success of our system
demonstrates the feasibility and benefits of performing in situ
image analytics applications using FPGA-based reconfigurable
hardware, especially in applications with stringent real-time
feedback requirements. Most importantly, the platform is flex-
ible and allows easy reconfiguration, providing a foundation
on which systems with similar streaming architecture can be
developed for future applications.

REFERENCES

[1] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. NIPS
Autodiff Workshop, 2017, pp. 1–4.

[2] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: https://www.tensorflow.org/

[3] A. E. Carpenter et al., “CellProfiler: Image analysis software for iden-
tifying and quantifying cell phenotypes,” Genome Biol., vol. 7, no. 10,
p. R100, Oct. 2006, doi: 10.1186/gb-2006-7-10-r100.

[4] G. Pau, F. Fuchs, O. Sklyar, M. Boutros, and W. Huber, “EBImage—An
r package for image processing with applications to cellular phenotypes,”
Bioinformatics, vol. 26, no. 7, pp. 979–981, Apr. 2010, doi: 10.1093/
bioinformatics/btq046.

[5] C. Campolo, A. Molinaro, G. Araniti, and A. O. Berthet, “Better
platooning control toward autonomous driving: An LTE device-to-device
communications strategy that meets ultralow latency requirements,”
IEEE Veh. Technol. Mag., vol. 12, no. 1, pp. 30–38, Mar. 2017.

[6] M. Khine, C. Ionescu-Zanetti, A. Blatz, L.-P. Wang, and L. P. Lee,
“Single-cell electroporation arrays with real-time monitoring and feed-
back control,” Lab Chip, vol. 7, no. 4, pp. 457–462, 2007, doi: 10.1039/
B614356C.

[7] X. Ding, M. P. Stewart, A. Sharei, J. C. Weaver, R. S. Langer, and
K. F. Jensen, “High-throughput nuclear delivery and rapid expression of
DNA via mechanical and electrical cell-membrane disruption,” Nature
Biomed. Eng., vol. 1, no. 3, p. 39, Mar. 2017, doi: 10.1038/s41551-017-
0039.

[8] Y.-C. Wu et al., “Massively parallel delivery of large cargo into
mammalian cells with light pulses,” Nature Methods, vol. 12, no. 5,
pp. 439–444, Apr. 2015, doi: 10.1038/nmeth.3357.

[9] K. C. M. Lee et al., “Multi-ATOM: Ultrahigh-throughput single-
cell quantitative phase imaging with subcellular resolution,” J. Bio-
photonics, vol. 12, no. 7, no. 2019, Art. no. e201800479, doi:
10.1002/jbio.201800479.

[10] K. Goda et al., “High-throughput single-microparticle imaging flow
analyzer,” Proc. Nat. Acad. Sci. USA, vol. 109, no. 29, pp. 11630–11635,
Jul. 2012. [Online]. Available: https://www.pnas.org/content/109/29/
11630

[11] N. Nitta et al., “Intelligent image-activated cell sorting,” Cell, vol. 175,
no. 1, pp. 266–276, Sep. 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0092867418310444

[12] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-based
processor for convolutional networks,” in Proc. Int. Conf. Field Program.
Log. Appl., Aug. 2009, pp. 32–37.

http://dx.doi.org/10.1186/gb-2006-7-10-r100
http://dx.doi.org/10.1038/s41551-017-0039
http://dx.doi.org/10.1038/s41551-017-0039
http://dx.doi.org/10.1038/nmeth.3357
http://dx.doi.org/10.1002/jbio.201800479
http://dx.doi.org/10.1093/bioinformatics/btq046
http://dx.doi.org/10.1093/bioinformatics/btq046
http://dx.doi.org/10.1039/B614356C
http://dx.doi.org/10.1039/B614356C

WANG et al.: LOW-LATENCY IN SITU IMAGE ANALYTICS WITH FPGA-BASED QCNN 2865

[13] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2017, pp. 1–12.

[14] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” Acm Sigplan Notices, vol. 49, no. 4,
pp. 269–284, 2014.

[15] S. Yin et al., “A high throughput acceleration for hybrid neural net-
works with efficient resource management on FPGA,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 4, pp. 678–691,
Apr. 2019.

[16] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing the convolution
operation to accelerate deep neural networks on FPGA,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 7, pp. 1354–1367,
Jul. 2018.

[17] A. Aimar et al., “NullHop: A flexible convolutional neural net-
work accelerator based on sparse representations of feature maps,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 3, pp. 644–656,
Mar. 2019.

[18] M. Denil et al., “Predicting parameters in deep learning,” in Proc. Adv.
Neural Inf. Process. Syst., 2013, pp. 2148–2156.

[19] N. Suda et al., “Throughput-optimized OpenCL-based FPGA accelerator
for large-scale convolutional neural networks,” in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, Feb. 2016, pp. 16–25.

[20] Y. Ma, N. Suda, Y. Cao, J.-S. Seo, and S. Vrudhula, “Scalable and
modularized RTL compilation of convolutional neural networks onto
FPGA,” in Proc. 26th Int. Conf. Field Program. Log. Appl. (FPL),
Aug. 2016, pp. 1–8.

[21] M. Motamedi, P. Gysel, and S. Ghiasi, “PLACID: A platform for
FPGA-based accelerator creation for DCNNs,” ACM Trans. Multimedia
Comput., Commun., Appl., vol. 13, no. 4, p. 62, 2017.

[22] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[23] S. Tripathi, G. Dane, B. Kang, V. Bhaskaran, and T. Nguyen, “LCDet:
Low-complexity fully-convolutional neural networks for object detection
in embedded systems,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jul. 2017, pp. 94–103.

[24] C. Baskin, N. Liss, E. Zheltonozhskii, A. M. Bronstein, and
A. Mendelson, “Streaming architecture for large-scale quantized neural
networks on an FPGA-based dataflow platform,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp. Workshops (IPDPSW), May 2018,
pp. 162–169.

[25] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,”
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016,
pp. 525–542, doi: 10.1007/978-3-319-46493-0_32.

[26] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays, Feb. 2017, pp. 65–74.

[27] R. Zhao et al., “Accelerating binarized convolutional neural networks
with software-programmable FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2017, pp. 15–24.

[28] Y. Li, Z. Liu, K. Xu, H. Yu, and F. Ren, “A 7.663-TOPS 8.2-W energy-
efficient FPGA accelerator for binary convolutional neural networks
(Abstract Only),” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, Feb. 2017, pp. 290–291.

[29] N. J. Fraser et al., “Scaling binarized neural networks on reconfigurable
logic,” in Proc. 8th Workshop 6th Workshop Parallel Program. Run-
Time Manage. Techn. Many-core Archit. Design Tools Archit. Multicore
Embedded Comput. Platforms - PARMA-DITAM, 2017, pp. 25–30.

[30] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN: Binarized
neural network on FPGA,” Neurocomputing, vol. 275, pp. 1072–1086,
Jan. 2018.

[31] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quanti-
zation,” 2016, arXiv:1612.01064. [Online]. Available: http://arxiv.org/
abs/1612.01064

[32] A. Prost-Boucle, A. Bourge, F. Petrot, H. Alemdar, N. Caldwell, and
V. Leroy, “Scalable high-performance architecture for convolutional
ternary neural networks on FPGA,” in Proc. 27th Int. Conf. Field
Program. Log. Appl. (FPL), Sep. 2017, pp. 1–7.

[33] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Petrot, “Ternary neural
networks for resource-efficient AI applications,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), May 2017, pp. 2547–2554.

[34] S. I. Venieris and C.-S. Bouganis, “Latency-driven design for FPGA-
based convolutional neural networks,” in Proc. 27th Int. Conf. Field
Program. Log. Appl. (FPL), Sep. 2017, pp. 1–8.

[35] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing loop operation
and dataflow in FPGA acceleration of deep convolutional neural net-
works,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
Feb. 2017, pp. 45–54.

[36] T. Geng et al., “LP-BNN: Ultra-low-latency BNN inference with layer
parallelism,” in Proc. IEEE 30th Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), Jul. 2019, pp. 9–16.

[37] Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in
biomedicine,” Nature Photon., vol. 12, no. 10, pp. 578–589, Oct. 2018,
doi: 10.1038/s41566-018-0253-x.

[38] K. C. M. Lee et al., “Quantitative phase imaging flow cytometry
for ultra-large-scale single-cell biophysical phenotyping,” Cytometry A,
vol. 95, no. 5, pp. 510–520, May 2019, doi: 10.1002/cyto.a.23765.

[39] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[40] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869–6898, 2017.

[41] J. Hickish et al., “A decade of developing radio-astronomy instru-
mentation using CASPER open-source technology,” J. Astronomical
Instrum., vol. 5, no. 4, Dec. 2016, Art. no. 1641001, doi: 10.1142/
S2251171716410014.

Maolin Wang received the B.Eng. degree in electri-
cal engineering from Tsinghua University, Beijing,
China, in 2015, and the Ph.D. degree from the
Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong, Hong Kong,
in 2020.

He is currently a Post-Doctoral Fellow with The
University of Hong Kong. His research interests
include efficient hardware architectures and algo-
rithms for the training and inference of deep neural
networks.

Kelvin C. M. Lee received the B.Eng. degree in
medical engineering and the Ph.D. degree in electri-
cal and electronic engineering from The University
of Hong Kong, Hong Kong, in 2015 and 2019,
respectively.

He is currently a Post-Doctoral Fellow in the
Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong. His research
interests cover high-throughput imaging flow cytom-
etry, inertial microfluidics, and biophotonics for
translational medicine.

Bob M. F. Chung received the B.Eng. degree
in medical engineering and the Ph.D. degree in
mechanical engineering from The University of
Hong Kong, Hong Kong, in 2013 and 2020,
respectively.

He is currently a Post-Doctoral Fellow with the
Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong. His research
focus is on the microfluidic cell sorting in high-
throughput single-cell imaging platform and its
implementation in biomedical applications.

Sharatchandra Varma Bogaraju received the mas-
ter’s degree in VLSI-CAD from Manipal Univer-
sity, Manipal, India, and the Ph.D. degree from
IIT Delhi, New Delhi, India, in 2007 and 2015,
respectively.

He was a Post-Doctoral Research Fellow with
Queen’s University Belfast, Belfast, U.K., and The
University of Hong Kong, Hong Kong. He was
an Assistant Professor with the National Institute
of Technology Goa, Ponda, India, and a Visiting
Faculty with the Indian Institute of Space Science

and Technology (IIST) Thiruvananthapuram, Thiruvananthapuram, India. He
is currently a Lecturer with the Faculty of Computing, Engineering and the
Built Environment, Ulster University, Jordanstown Campus, U.K. His research
interests include field-programmable gate array (FPGA)-based hardware accel-
erators, reconfigurable computing, and bioinformatics.

http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1038/s41566-018-0253-x
http://dx.doi.org/10.1002/cyto.a.23765
http://dx.doi.org/10.1142/S2251171716410014
http://dx.doi.org/10.1142/S2251171716410014

2866 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 7, JULY 2022

Ho-Cheung Ng received the B.Eng. and M.Phil.
degrees from The University of Hong Kong,
Hong Kong, in 2012 and 2016, respectively. He is
currently pursuing the Ph.D. degree with the Depart-
ment of Computing, Imperial College London,
London, U.K.

His research interests include high-performance
computing, real-time image processing, and compu-
tational biology.

Justin S. J. Wong received the M.Eng. and
Ph.D. degrees in electrical and electronic engineer-
ing from Imperial College London, London, U.K.,
in 2006 and 2011, respectively.

He was a Research Associate with the Circuits and
Systems Group, Imperial College London, in 2014,
and received the Charted Engineer (CEng) Qual-
ification. He then worked in ZMP Inc., Tokyo,
Japan, on real-time sensor and imaging systems for
autonomous vehicles until 2016. He is currently
the Vice President Chief Engineer of Conzeb Ltd.,

Hong Kong, and is collaborating closely with HKU to develop field-
programmable gate array (FPGA)-based ultrahigh throughput real-time imag-
ing and classification systems for a cancer diagnostic. His research interests
include ultrahigh-speed real-time image processing, super-resolution, and
convolutional neural network (CNN)-based image classification on FPGAs
and graphic processing units (GPUs).

Ho Cheung Shum received the B.S.E. degree
(summa cum laude) in chemical engineering from
Princeton University, Princeton, NJ, USA, in 2005,
and the M.S. and Ph.D. degrees in applied physics
from Harvard University, Cambridge, MA, USA, in
2007 and 2010, respectively.

He is currently a Professor with the Depart-
ment of Mechanical Engineering, The University
of Hong Kong, Hong Kong. His research interests
include biomicrofluidics and soft matter.

Dr. Shum is a fellow of the Royal Society of
Chemistry, a Founding Member of the Hong Kong Young Academy of
Sciences, and an Associate Editor for Biomicrofluidics [American Institute
of Physics (AIP)].

Kevin K. Tsia (Member, IEEE) received the Ph.D.
degree from the Electrical Engineering Department,
University of California at Los Angeles (UCLA),
Los Angeles, CA, USA, in 2009.

He is currently a Professor with the Department
of Electrical and Electronic Engineering and the
Program Director of the Biomedical Engineering
Program, The University of Hong Kong, Hong Kong.
He holds four granted and four pending U.S.
patents on ultrafast optical imaging technologies.
His research interest covers ultrafast optical imaging

for imaging flow cytometry and cell-based assay, high-speed in vivo brain
imaging, and single-cell analysis.

Dr. Tsia is the HK Research Grants Council (RGC) Research Fellow.

Hayden Kwok-Hay So (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in elec-
trical engineering and computer sciences from the
University of California at Berkeley, Berkeley, CA,
USA, in 1998, 2000, and 2007, respectively.

He is currently an Associate Professor and the
Co-Director of the Computer Engineering Pro-
gram at the Department of Electrical and Electronic
Engineering and the Co-Director of the Joint Lab
on Future Cities, The University of Hong Kong,
Hong Kong. His research focuses on highly efficient

reconfigurable computing systems and their applications.
Dr. So received the Croucher Innovation Award in 2013, the University

Outstanding Teaching Award (Team) in 2012, and the Faculty Best Teacher
Award in 2011. He was the Technical Program Chair for various international
conferences, including the ARC 2020, ASAP 2015, FPT 2014, and HEART
2014. He was also the Multiprocessor Systems and Networks on Chip Track
Co-Chair of ReConfig and a Guest Editor of the Journal of Signal Processing
Systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

