
1

MetaMixUp: Learning Adaptive Interpolation Policy
of MixUp with Meta-Learning

Zhijun Mai, Guosheng Hu, Dexiong Chen, Fumin Shen, Heng Tao Shen

Abstract—MixUp is an effective data augmentation method
to regularize deep neural networks via random linear interpo-
lations between pairs of samples and their labels. It plays an
important role in model regularization, semi-supervised learning
and domain adaption. However, despite its empirical success, its
deficiency of randomly mixing samples has poorly been studied.
Since deep networks are capable of memorizing the entire dataset,
the corrupted samples generated by vanilla MixUp with a badly
chosen interpolation policy will degrade the performance of
networks. To overcome the underfitting by corrupted samples,
inspired by Meta-learning (learning to learn), we propose a novel
technique of learning to mixup in this work, namely, MetaMixUp.
Unlike the vanilla MixUp that samples interpolation policy from
a predefined distribution, this paper introduces a meta-learning
based online optimization approach to dynamically learn the
interpolation policy in a data-adaptive way. The validation set
performance via meta-learning captures the underfitting issue,
which provides more information to refine interpolation policy.
Furthermore, we adapt our method for pseudo-label based semi-
supervised learning (SSL) along with a refined pseudo-labeling
strategy. In our experiments, our method achieves better per-
formance than vanilla MixUp and its variants under supervised
learning configuration. In particular, extensive experiments show
that our MetaMixUp adapted SSL greatly outperforms MixUp
and many state-of-the-art methods on CIFAR-10 and SVHN
benchmarks under SSL configuration.

Index Terms—Deep Learning, MixUp, Meta-learning, Regu-
larization.

I. INTRODUCTION

DESPITE their striking success in many challenging tasks,
deep neural networks have shown prone to overfitting,

especially when the number of annotated samples is scarce
as in the weakly-supervised [1], [2] and semi-supervised
learning [3], [4]. In addition, this is also reflected in high
generalization errors when the ability of deep CNNs overfits or
memorizes the corrupted samples that have slight distributional
shifts, which are also known as the imperceptible adversarial
perturbations [5]. These issues can make deep learning based
systems degrade the prediction performance in practice. It is
thus desirable to design effective regularization methods to
control the model complexity and reduce the gap between
training error and generalization error.

Recently due to the great advances of machine learning,
remarkable regularization methods have been proposed. In
addition to manual designed regularization architecture net-
work Shake-Shake Regularization [6], typically adding noise
to the deep model is important to reduce overfitting and learn
more robust abstractions, e.g., dropout [7] and randomized
data augmentation [8]. A simple and effective method, called
MixUp [9], has been proposed recently as a data augmentation

scheme to address generalization problems. Specifically, it
is performed to generate additional virtual samples during
training via a simple linear interpolation of randomly picked
training sample pairs, as well as their labels. However, its inter-
polation policy (the weights for interpolating paired samples)
is randomly chosen from some prior distribution (e.g. Beta
Distribution) for each pair of samples at each iteration, which
may lead to manifold intrusion and thus underfitting [10]. We
observe that the original MixUp is not robust in cases when
the generated virtual samples are adjacent to real samples of
different categories, the corresponding virtual labels becomes
ambiguous. Nevertheless, original MixUp method does not
take such ambiguities into account. Therefore, carefully choos-
ing an adequate interpolation policy to avoid underfitting is
crucial to achieve promising performance. It is not trivial to
learn better interpolation policy for MixUp technique since
deep CNNs are more prone to memorize corrupted samples
and improving deep CNNs on corrupted samples and labels is
clearly an under-studied problem and worthy of exploration.
AdaMixup[10] proposes to assess the quality of interpolation
policy with well selected triplet data and uses an additional
intrusion discriminator to judge whether the sample generated
by a policy collides with a real data point. Nevertheless,
relying on training an additional carefully designed network
that estimates the interpolation as a supervision signal, their
method has additional hyperparameters (e.g. triplets selection,
larger model architecture, more optimization parameters, etc.)
to tune and can be hard to deploy for a new dataset or task.

In this paper, we also propose a new theoretical perspective
of MixUp by showing its empirical risk as a lower bound
of the gradient Lipschitz constant of a neural network. This
observation not only helps understanding vanilla MixUp better
but also puts forward again the underfitting issue caused by
naive choice of the interpolation policy. Our method is inspired
by recent success of Meta-Learning, a learning paradigm
inspired by the cognitive process of human and animals, in
which a model is learning to learn better using validation set as
meta-data. This paper tackles manifold intrusion/underfitting
issue using meta-learning on MixUp to learn the interpolation
policy in a data-adaptive way. Meta-learning has successfully
shown to be powerful in learning data-adaptive rules and poli-
cies, such as initial neural network weights [11], optimization
hyperparameters [12], unsupervised learning rules [13] etc.,
making models more general and adaptive to the new datasets
and tasks. For our problem, our intuition is that a meta model
with random interpolation policy learns to gained knowledge
from metadata, can provide instructive supervision for vanilla
MixUp to refine interpolation policy in a data-driven style.

ar
X

iv
:1

90
8.

10
05

9v
1

 [
cs

.C
V

]
 2

7
A

ug
 2

01
9

2

A reasonable interpolation policy for MixUp can help deep
CNNs alleviate manifold intrusion problem made by corrupted
labels and samples. Our method, dubbed MetaMixUp, consists
of learning the interpolation policy of MixUp by adapting a
meta-learning method in a data-adaptive way. Specifically, we
aim to learn a interpolation policy to minimize the expected
loss for the training set. Meta model can be learned to
discover new data-driven interpolation policy from metadata.
The learned data-driven interpolation policy can be updated a
few times taking into account of the main model’s feedback.
Whenever the interpolation policy is learned, we turn the deep
CNNs from meta-stage to main-stage to minimize the learning
objective, where the main-stage controls training procedure to
learn each mixed sample. At the test time, deep CNNs makes
predictions alone in main-stage. Instead of searching a discrete
set of candidate interpolation policy, we relax the optimization
via an online gradient-based meta-learning to make it contin-
uous, so that the interpolation policy can be optimized with
respect to its validation set performance by gradient descent.
The data-adaptive of gradient-based optimization, as opposed
to selection from prior distribution, allows MetaMixUp to
achieve competitive even better performance for different
tasks.

To our best knowledge, our method is the first one that
applies meta-learning to guide interpolation policy learn-
ing for MixUp technique. It tackles the manifold intrusion
problem in a more direct and simple way and leads to
better performance over original MixUp and recent pro-
posed AdaMixUp on typical image classification benchmarks:
ImageNet, MNIST, SVHN, Fashion-MNIST, CIFAR-10 and
CIFAR-100 under supervised configuration. To demonstrate
its adaption for semi-supervised tasks, our method extends
MixUp to the pseudo-label based methods [14] and further
adopts an asynchronous pseudo labeling strategy. Our resulting
semi-supervised method improves the performance over the
original pseudo-label based SSL method by a large margin
and achieves comparable performance over state-of-the-art
methods on CIFAR-10 and SVHN under semi-supervised con-
figuration. Furthermore, we apply MetaMixUp to a powerful
MixUp augmented SSL method called MixMatch [15], and
improve the previous state-of-the-art results, which suggests
that our MetaMixUp is auxiliary to other methods of semi-
supervised learning.

To sum up, we highlight our threefold contributions as
follows.

1) We address underfitting issue caused by badly chosen
interpolation policy of vanilla MixUp. And we introduce
a new theoretical perspective that MixUp is a lower
bound of the Lipschitz constant of the gradient of the
neural network to help further understanding vanilla
MixUp.

2) We propose a gradient-based meta-learning algorithm
which is exploited to guide refining interpolation policy
of MixUp in a data-driven way. The model can be
optimized with respect to its validation set performance
by gradient descent. We relax the optimization with an
online approximation to improve training efficient. We
find that MetaMixUp achieves the best performance over

vanilla MixUp and AdaMixup.
3) We extend our MetaMixUp and MixUp to semi-

supervised learning tasks with an asynchronous pseudo
labeling strategy. Through extensive experiment we
show that our extensions achieve highly competitive
results on CIFAR-10 and SVHN, which we attribute to
their adaption for other tasks.

The rest of this paper is organized as follows. In section II,
we review the literature relevant to our work. In section III,
a new perspective of MixUp is introduced, and the proposed
MetaMixUp along with its extensions to SSL are presented
in detail, respectively. We provide experimental results and
analysis in section IV, and summarize this paper in section V.

II. RELATED WORK

A. Regularization
Regularization is an ongoing subject in machine learning

and has been widely studied. It refers to the general approach
of penalizing the amount of information neural network con-
tains to keep the parameters simple [16]. The constraints and
disturbance on model keep it from over-fitting to training data
and thus hopefully make it generalize better to test data. In
particular, a common regularization technique is to add a loss
term which penalizes the L2 norm of the model parameters.
When we are using simple gradient descent optimizer such
as Adam [17], this loss term is equivalent to weight de-
cay, which exponentially decaying the weight values towards
zero in training procedure. Data augmentation techniques are
commonly used regularizer by leveraging additional samples
generated by appropriate domain-specific transformations. For
instance, random cropping, flipping and rotating are typical
data-augmentation ways for image data [8], [18]. Dropout
is another very helpful regularizer in avoiding over-fitting
by randomly dropping units from the neural network during
training [7]. In contrast to these data-independent methods,
AutoAugment [19] has proposed a data-adaptive way to
search the best data-augmentation policy from a huge space
of policies, which are combinations of many sub-policies.
On the other hand, instead of operating on single image
sample, MixUp [9] and between-class learning [20] augment
training data points by interpolating multiples examples and
labels. Manifold Mixup[21] leverages semantic interpolations
in random layers as additional training signal to train neural
networks. Nonetheless, their interpolation policies are pre-
defined and are not data-driven. Our approach is a data-
driven extension of MixUp via meta-learning, which leverages
vicinal relations between examples and can alleviate manifold
intrusion problem introduced in [10]. It is closely related to
AdaMixup [10], which also learns the mixing policy from
data. While AdaMixup requires training an additional network
to infer the policy and also an intrusion discriminator with
well selected triplets, our method is directly applied to the
original MixUp method without adding further components
(e.g. a carefully designed discriminator) to the model.

B. Meta-learning
Meta-learning methods date back to the 90s [22], [23]

and have recently resurged with various techniques focused

3

on learning how to learn and thus quickly adapt to new
information [24]. Meta-learning approaches can be broadly
categorized into three groups, which has been proposed to
solve the few-shot learning problem. Gradient-based methods
[11], [24] use gradient descent to adapt the model parameters.
Nearest-neighbor methods [25] learn prediction rule over the
embeddings based on distance to the nearest class mean.
Neurons-based methods [26], [27] learn meta procedure of
how to adapt the connections between neurons for different
tasks. Our method is tightly related to gradient-based meta-
learning algorithm MAML [11]. MetaMixUp also implicitly
learns how to quickly adapt to new datasets and tasks through
a gradient-based meta-learning algorithm. Unlike MAML, our
optimization procedure works in an online fashion rather than
relying on heavy offline training stages. Similar to Meta-
learning, recent hashing researches focused on learning to
hash [28]. Their goal is to learn data-dependent hash func-
tions which generate more compact codes to achieve good
search accuracy [29], [30]. This paper is more similar to the
optimization-based meta-learning method for sample reweight-
ing [31], which has focused on imbalanced classification and
noisy label problems.

C. Hyperparameter optimization

Performance of machine learning algorithms depends crit-
ically on identifying a good set of hyperparameters. Recent
interest in complex and computationally expensive machine
learning models with many hyperparameters, such as au-
tomated machine learning (AutoML) frameworks and deep
neural networks, has resulted in a resurgence of research
on hyperparameter optimization (HPO). The current gold
standard methods for hyperparameter selection are blackbox
optimization methods. Due to the non-convex nature of the
problem, global optimization algotithms are usually applied.
The standard baseline methods involve training tens of mod-
els that select hyperparameters configurations randomly and
nonadptively[32], [33], e.g., grid or random search. Moreover,
the majority of recent work in this growing area focuses
on Bayesian hyperparameter optimization [34] with the goal
of optimizing hyperparameter configuration selection in an
iterative fashion. However, recent gradient-based techniques
for HPO have significantly increase the number of hyperpa-
rameters that can be optimized [35]. In this way, it is now
possible to tune large-scale weight vectors as hyperparameters
associated with neural networks. Such an approach is suited
for MixUp technique where the interpolation weight of each
sample pair are treated as hyperparameters across a set of
training episodes.

D. Semi-Supervised learning

Semi-Supervised learning has been extensively studied and
has a large variety of groups. Typical successful SSL methods
have involved some consistency regularization such as Π-
model [36], VAT [3], Mean Teacher [4] and simple label
propagation such as pseudo-labeling [14] or more gener-
ally self-training [37], [38]. Our method is more similar to
pseudo-labeling based methods. Basically, pseudo-labels are

the current predictions of the classifier assigned to unlabeled
examples. [38] proposed to leverage multiple networks to
asymmetrically give pseudo-labels to unlabeled samples. [39]
proposed moving average centroid alignment to reduce bias
caused by false pseudo-labels. However, these methods ignore
considering the stability of the pseudo-labels. We extend
MixUp and our MetaMixUp to SSL tasks with an asyn-
chronous pseudo-labeling strategy to stabilize the training.
Another recent proposed MixMatch [15] works by guessing
low-entropy labels for unlabeled examples under multiple data
augmentations for each sample. Likewise, it combines MixUp
with consistency regularization.

III. DATA-ADAPTIVE MIXUP VIA META LEARNING

In this section, we first introduce a new perspective of
MixUp. We then detail our algorithm of learning the inter-
polation policy for MixUp. Finally, we adapt our proposed
MetaMixUp for supervised and semi-supervised tasks respec-
tively.

A. MixUp as A Lower Bound of the Gradient Lipschitz Con-
stant

MixUp, originally proposed by [9], augments the training
set by linearly interpolating a random pair of examples and
their corresponding labels selected in a minibatch through
permutation:

x̃i = λxi + (1− λ)xj ,

ỹi = λyi + (1− λ)yj ,
(1)

where (xi, yi) and (xj , yj) are two data-target samples ran-
domly drawn from the training set, and λ ∈ [0, 1] is the
interpolation weighting coefficient. Then the objective of a
supervised problem becomes minimizing the empirical risk
over the MixUp-generated samples.

Despite the empirical effectiveness of MixUp, how it con-
trols the smoothness of a neural network has hardly been
investigated. As discussed in [10], bad interpolation coefficient
λ can lead to underfitting caused by the manifold intrusion.
This occurs when the MixUp-generated sample collides with
an existing real example with a label different from the
interpolated pair’s, and thus leads to performance degradation.
Here, we consider MixUp from a regularization point of view
and show that it is a lower bound of the Lipschitz constant of
the gradient of the neural network.

While many previous works have controlled the smoothness
of a neural network by controlling its Lipschitz constant [40],
[41], [3], we consider here to control a stronger condition,
which is the Lipschitz constant of its (sub)gradient. Specif-
ically, we assume that the predictive function f : Rd → R
is a differentiable function and its gradient is κ-Lipschitz
continuous:

∀x, x′ ∈ Rd ‖∇f(x)−∇f(x′)‖ ≤ κ‖x− x′‖ (P1)

On the other hand, we consider the following inequality:

|f(λx+ (1− λ)x′)− [λf(x) + (1− λ)f(x′)]|

≤ λ(1− λ)κ

2
‖x− x′‖2

(P2)

4

∇𝜃

Train-State

𝑥

Training Loss

𝜆

𝜃′

Meta-State

𝑥𝑣

Meta Loss

𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭 𝐝𝐞𝐬𝐜𝐞𝐧𝐭 𝐬𝐭𝐞𝐩
𝜃

1
. F

o
rw

ar
d

 m
ix

e
d

 i
m

ag
e

Interpolation policy
2

. B
ac

kw
ar

d
 w

e
ig

h
ts

3
. F

o
rw

ar
d

 v
al

id
at

io
n

4. Backward updates

Validation

Inputs ∇λ

Fig. 1. Computation Graph of Our MetaMixUp

where λ ∈ [0, 1]. Under MixUp setting, x and x′ in (P2) can
represent xi and xj in (1). Noting that the left term of (P2)
is equivalent to the empirical risk of MixUp by replacing the
`1-loss with a general loss function and the prediction f(x)
and f(x′) with their true labels. MixUp loss can be considered
as a proxy of the left term.

Now we announce the following proposition which builds
the relation between the Lipschitz continuity of the gradient
and the empirical risk of MixUp.

Proposition 1 (Link between MixUp and gradient Lipschitz
continuity). The property (P1) ⇒ (P2).

Proof. For all x and x′ in Rd we have
f(λx+ (1− λ)x′)

=f(x′) + λ

∫ 1

0

〈
∇f(λtx+ (1− λt)x′), x− x′

〉
dt

=f(x′) + λ[f(x)− f(x′)]

+λ

[∫ 1

0

〈
∇f(λtx+ (1− λt)x′), x− x′

〉
dt− (f(x)− f(x′))

]
(2)

Therefore
|f(λx+ (1− λ)x′)− (λf(x) + (1− λ)f(x′)|

=λ

∣∣∣∣∫ 1

0

〈
∇f(λtx+ (1− λt)x′)−∇f(tx+ (1− t)x′), x− x′

〉
dt

∣∣∣∣
≤λ
∫ 1

0

∣∣〈∇f(λtx+ (1− λt)x′)−∇f(tx+ (1− t)x′), x− x′
〉∣∣ dt

≤λ
∫ 1

0

‖∇f(λtx+ (1− λt)x′)−∇f(tx+ (1− t)x′)‖‖x− x′‖dt

≤λ
∫ 1

0

(1− λ)tκ‖x− x′‖2dt

=
λ(1− λ)κ

2
‖x− x′‖2,

(3)

where the second inequality follows Cauchy-Schwarz inequal-
ity and the third inequality is the property P1.

This proposition suggests controlling the Lipschitz constant
of the gradient necessarily requires minimizing MixUp loss.
However when x is far from x′, the mixing policy λ has
a much greater effect on the Lipschitz constant. Therefore,
minimizing the MixUp loss with a badly chosen interpolation
policy λ cannot help control the Lipschitz constant but leads
to unexpected degradation. This observation shows the impor-
tance of elaborating a smarter way to choose λ, especially for
dealing with distant pairs.

B. MetaMixUp: Learning Data-Driven Interpolation Policy

To solve the above problem, we propose MetaMixUp, a
meta-learning based method to optimize the interpolation pol-
icy of MixUp via an online optimization. Unlike the original
MixUp in Eq. (1) which uses a predefined distribution for the
interpolation coefficient λ and a unique value in each mini-
batch, we consider using different interpolation coefficients λi
in each mini-batch to improve the diversity and to make them
all learnable. Our target is to tackle manifold intrusion problem
through learning adaptive interpolation policy, rather than
directly using the fixed interpolation coefficients of MixUp.
Specifically, the MetaMixUp is defined as:

x̃i = λixi + (1− λi)xj ,
ỹi = λiyi + (1− λi)yj ,

(4)

where λi is optimized via meta-learning, by optimizing the
meta-objective on a validation set [11], [31].

5

The optimal weight of a network is given by minimizing
the loss function over the training set D = {(x̃i, ỹi)}Ni=1:

θ∗(λ) = arg min
θ

1

N

N∑
i=1

`(f(x̃i; θ), ỹi;λi) (5)

where θ denotes the network parameters. Analogous to archi-
tecture search using progressive evolution [42], the validation
set performance is treated as fitness. The optimal λ is then
optimized on the validation set Dv = {(xi, yi)}Mi=1 via

λ∗ = arg min
λ∈[0,1]

1

M

M∑
i=1

`(fv(xi; θ
∗(λ)), yi) (6)

where fv denotes the meta network which has the same
architecture as f . While f is used for prediction, and fv is only
used to optimize λi. Similar to other meta learning methods
where parameters of a network can be quickly adapted to the
task guided by meta-objective, our meta network (fv(θ) =
f(θ;λi)) aims to search the optimal λi to interpolate the
training samples, but using gradient descent.

Optimization of (6) indicates a bilevel optimization problem
[43] with λ as the upper-level variable and θ as the lower-
level variable. The nested formulation also arises in gradient-
based hyperparameter optimization [35], which is relevant in a
manner that interpolation policy could be regarded as a special
type of hyperparameter, although its magnitude is substantially
higher than scalar-valued hyperparameters such as the learning
rate, and it is harder to optimize.

Given the original MixUp examples, at t-th step, we first
take a step forward with meta network to update model
weights θ:

θt+1 = θt − η∇θ
1

n

n∑
i

`(fv(x̃i; θ), ỹi), (7)

where η is the learning rate. Then, the ideal optimal λ∗ can
be calculated on the validation set by

λ∗ = arg min
λ∈[0,1]

1

M

M∑
i=1

`(fv(xi; θt+1), yi) (8)

However, the complete optimization of the above objective
exactly can be prohibitive due to the expensive inner optimiza-
tion. We therefore propose a simple approximation scheme
and some relaxation to make it more scalable in practice. To
achieve this, we consider using an online approximation, by
performing only a single gradient descent step on the valida-
tion set, without solving the inner optimization completely by
training until convergence.

The generalization performance of the model is measured
with a validation loss based on an unregularized meta model.
Hence the value of the loss depends only on elementary
parameter updates [44]. The gradient of the validation loss
with respect to interpolation policy λ is:

∇λ`(fv,Dv) =
∂

∂λ

1

m

m∑
i=1

`(fv(xi; θt+1), yi), (9)

where m denotes the batch size.

To achieve our objective, we only consider the influence
of the interpolation policy on the current elementary param-
eter update, ∇λ`(fv,Dv). The interpolation policy update is
therefore:

λ := λ− α∇λ`(fv,Dv), (10)

where α is the step size for updating λ. Since λ is free to span
the entire set of real numbers, we project λ back to [0, 1] with
a sigmoid function:

λ∗ := sigmoid(λ), (11)

The complete computation graph of MetaMixUp is summa-
rized and visualized in Fig. 1.

Given the refined interpolation policy, we re-mixup the
training examples and update the weight of network in training
state. It is straightforward to adopt MetaMixUp in supervised
learning (SL). We detail the outline of our MetaMixUp algo-
rithm in Algorithm 1.

Algorithm 1 MetaMixUp for supervised learning
Input: Training data D, validation Dv .
Parameters: Deep neural network Φ(θ), batch size B,
learning rate η, step size α.
Output: Deep neural network Φ(θ) and λ∗.

1: for t = 1, 2, ... , Itermax do
2: Random initialize λ = {λi}Bi=1 ;
3: Turn network to meta stage Φ(θ)→ Φ

′
(θ);

4: MixUp examples with λ to construct D̃;
5: Update θ

′
= θ − η∇θ`(Φ

′
(θ), D̃);

6: Update λ∗ = λ− α∇λ`(Φ
′
(θ

′
),Dv);

7: MixUp examples with updated λ∗ to reconstruct D̃;
8: Update nework θ := θ − η∇θ`(Φ(θ), D̃);
9: end for

10: return Φ(θ) and λ∗

C. Extension of MetaMixUp for Semi-Supervised Learning

It is non-trivial to apply MixUp and its variants to semi-
supervised learning (SSL) tasks since MixUp performs the
interpolation in both data and label space, which is not
applicable for unlabeled data. In this section, we present the
strategy of adapting MetaMixUp to SSL.

Before presenting the SSL extension of MetaMixUp, we
first detail the notations. We denote by D = L ∪ U the
entire training set with a relatively small labeled data set
L = {(xi, yi)|i = 1, 2, . . . , L} and a large unlabeled data
set U = {(xi)|i = L+ 1, ..., L+U}. Consider here a C-class
classification problem, each yi = [y1i , y

2
i , ..., y

C
i]T ∈ {0, 1}C

denotes the corresponding one-hot true label, such that yji = 1
if xi belongs to the j-th class and yji = 0 otherwise. Let
N = L + U be the total number of training samples, and
usually we have L� U .

As the main challenge of adapting MixUp and MetaMixUp
to SSL is the lack of labels for unlabelled data, pseudo-
label seems to be a natural choice of the basic SSL method
for MixUp. Typically, pseudo-labeling based methods simply

6

leverage the high-confident predictions as the true labels and
results in high performance in practice. We employ standard
cross-entropy loss as classification loss. For a pseudo-label
based SSL method, the loss function is

`(X , Ȳ; θ) =
1

N

N∑
i=1

`(f(xi; θ), ȳi), (12)

where Ȳ = {ȳi}Ni=1 denotes all the true or pseudo labels for
the training set X = {xi}Ni=1. If xi ∈ L, ȳi is fixed to its
corresponding true label vector ȳi = yi throughout the entire
training process. For an unlabeled training sample xi ∈ U ,
ȳi is the estimated label vector by the network at current
iteration. Utilizing pseudo-labels, we can implicitly generate
the ‘augmented’ set D̃ = {(x̃i, ỹi)}Ni=1 during training process.
Then unsupervised MetaMixUp can be transformed to the
supervised one.

Asynchronous Pseudo Labeling. A commonly known is-
sue of pseudo-label based method is that the incorrect pseudo-
labels of the newly labeled examples can propagate errors
and thus degenerate the performance. To solve this issue,
we propose an asynchronous strategy, named asynchronous
pseudo labeling (APL), to improve deduced pseudo label
quality for unlabeled data and thus stabilize the training.
Specifically, to filter out the unconfident pseudo-labels, we
predefine a threshold σ such that all the unlabeled samples
with the maximal prediction probability under σ will be elim-
inated from performing back propagation of the loss function.
This threshold allows to mitigate influence from the uncertain
predictions of the unlabeled samples. Accordingly, unlabeled
training samples are dynamically relabeled with more accurate
labels since easy examples are generally predicted with high
confidence while those with low confidence are more likely to
be hard examples. Instead of using a constant threshold, we
asynchronously decrease the threshold to make more unlabeled
data to be labeled after further epochs as shown effective in
[38]. The threshold σ is decreased by σd every K epochs and
is defined at t epoch, by σt = σt−1 − σd × [tK] ×K, where
[·] denotes the round-off operation. We set initial threshold
σ0 = 0.95 and K = 30 in all experiments to avoid the frequent
update of pseudo-label. The framework is summarized in
Algorithm 2.

IV. EXPERIMENTS

We study here the regularization properties of our
MetaMixUp on typical image classification benchmarks. The
aim of the following experiments is threefold. First, we inves-
tigate the impact of the vanilla interpolation policy of original
MixUp on the quality of the solution on multiclass classi-
fication problems. Second, we test our proposed MetaMixUp
methods in context of supervised learning and semi-supervised
learning. Finally, we constrast the MetaMixUp technique
against classical MixUp approaches to learn models with better
regularization properties.

A. Datasets

MNIST and Fashion. Both datasets contain 60,000 training
and 10,000 test images (28×28) of 10 classes. Both datasets

Algorithm 2 MetaMixUp for Semi-Supervised Learning
Input: Labeled training data DL, unlabeled training data
DUL, validation Dv ,
Parameters: Deep neural network Φ(θ), batch size B,
learning rate η, step size α, pseudo-label threshold σ,
decrease step σd, maximum iterations Itermax.
Output: Deep neural network Φ(θ) and λ∗

1: for t = 1, 2, ... , Itermax do
2: Random initialize λ = {λi}2Bi=1;
3: Labeling ȳj = arg max Φ(xj , θ) if Φ(xj , θ) > σ
4: if t reach update period then
5: σ = σ − σd
6: end if
7: Turn network to meta stage Φ(θ)→ Φ

′
(θ);

8: MixUp examples with λ to construct D̃L and D̃UL;
9: Calculate MetaLoss

MetaLoss = L̄s(Φ
′
(θ), D̃L) + L̄us(Φ

′
(θ), D̃UL)

10: Update θ
′

= θ − η∇θMetaLoss;
11: Update λ∗ = λ− α∇λ`(Φ

′
(θ

′
),Dv);

12: MixUp examples with λ∗ to reconstruct D̃L and D̃UL;
13: Calculate Loss

Loss = Ls(Φ(θ), D̃L) + Lus(Φ(θ), D̃UL)
14: Update θ := θ − η∇θLoss;
15: end for
16: return Φ(θ) and λ∗

are used for supervised learning under the standard training
and test splits.

CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100
have 10 and 100 classes of natural images (32 × 32) respec-
tively. For supervised learning, we use the standard data split
for training (50000) and test (10000). For semi-supervised
learning, we follow [45], where 1000 or 4000 images (100
or 400 per class) in CIFAR-10 are selected from the training
set as the labeled training examples, and the remaining as
the unlabeled data. CIFAR-100 is only used for supervised
learning task.

SVHN. The Street View House Numbers (SVHN) dataset
[46] contains real world 32× 32 images of house numbers. It
contains 73,257 training and 26,032 test images. We use the
standard training/test split for supervised learning. For semi-
supervised learning, we follow [45] to randomly select 50 or
100 samples per class from the training set as the labeled data,
the remaining as the unlabeled data.

ImageNet. ImageNet-2012 is a dataset for classification
[47] with 1.3 million training images, 50,000 testing images,
and 1,000 classes. We used the standard data split for super-
vised training, and followed the data processing approaches
used in AdaMixUp [10], in which the crop size is 100×100
instead of 224×224 due to limited computational resources.

B. Implementation Details

To make a fair comparison and follow the settings of
existing works, we train all the models from scratch. We set
step size α to 5.0 and choose SGD as the optimizer for all the

7

experiments with the momentum 0.9 and weight decay 10−4.
We train our models on two NVIDIA GTX 1080 Ti GPUs.

Supervised Learning (SL) Following [10], a 3-layer CNN
is used for the tasks on MNIST and Fashion. For CIFAR-
10, CIFAR-100, SVHN and ImageNet, the PreAct-ResNet-18
[48], PreAct-ResNet-34 and Wide-ResNet-28-10 architectures
are used for all the considered methods. We set the batch
size as 128, initial learning rate as 0.1 followed by cosine
annealing [49], number of epochs as 600. We randomly sample
1000 images (100 per class) from the original training set to
construct our meta validation set. For data augmentation, we
only use horizontal flipping following [9] for all of the training
datasets.

Semi-Supervised Learning (SSL) We follow the unified
evaluation platform [45] for SSL to make fair comparisons.
We set batch size 100 for both CIFAR-10 and SVHN. All the
models are trained with 200 epochs using data augmentation
(horizontal flip and 2-pixel translation) following [45]. We
select 500 images (50 per class) from the training set as
our meta validation set. For asynchronous pseudo-labeling
threshold decreasing step size, we set σd = 0.05. Following
[50], learning rate starts from 0.1, and is divided by 10 after
60, 120 and 180 epochs respectively. For a fair comparison, we
run all methods with WideResNet-28-2 [50] and the average
accuracy is obtained by 5 runs.

C. Results

Results of Supervised Learning. We compare MetaMixUp
with the baseline method (w/o MixUp) and two counterpart
methods (MixUp and AdaMixUp) on five popular supervised
databases. We train a variety of residual network for each
method. The error rates presented in Table I show that
our MetaMixUp substantially outperforms the baseline (w/o
MixUp), MixUp and AdaMixUp on all the five datasets.

Surprisingly, training with MixUp does not always improve
the performance. For instance, baseline method (w/o MixUp)
excels MixUp (0.54% vs. 0.59% on MNIST and 52.84%
vs. 55.06% on ImageNet). The error rate rise of MixUp
over baseline (w/o MixUp) on ImageNet is more distinct,
which is also observed on PreActResNet34 and Wide-ResNet-
28-10 architectures (3.01% and 2.55% top-1 error rate rise
respectively). This issue strongly indicates that MixUp is not
rubust to all datasets or tasks with its default interpolation
policy, and a smart refinement method is needed.

As described in [9], interpolation policy λ of vanilla MixUp
is drawn according to a Beta distribution: λ ∼ β(α, α), where
α is an extra hyperparameter needed to turn. With α = 1.0, this
is equivalent to sampling from an uniform distribution U(0, 1).
To investigate the impact of α and λ on the performance,
we operate hyperparameter tuning on α which determines the
distribution of λ. The influence is presented by experimental
error rate on three datasets in Table II. We find that for α,
vanilla MixUp has different behaviors on disparate datasets,
i.e., original MixUp somehow increases the error rate on
MNIST and SVHN compared to baseline. This on the contrary
suggests that mixing samples in a data-adaptive way tends
to provide positive impacts on generalization performance.

To further study how interpolation policy impacts the gen-
eralization performance, we directly fix λ for each pair of
training samples in the training process, in this scenario, the
performance becomes more unstable even worse than training
without MixUp. The findings above substantially supports our
goal to directly make optimization on λ to generate data-
adaptive interpolation policy for better MixUp techniques.
As we see, the proposed MetaMixUp significantly improves
vanilla MixUp without need of turning interpolation policy
distribution.

Our MetaMixUp improves vanilla MixUp by a large margin
on easier tasks (0.38% vs. 0.59% on MNIST and 5.15%
vs. 7.31% on Fashion) as well as on harder tasks, SVHN
(2.96% vs. 3.83%), CIFAR-10 (3.12% vs. 4.57%), CIFAR-
100 (20.36% vs. 21.35%) with PreActResNet18. Compared
with the original MixUp, the promotion is more obvious
while outperforming the original version by 7.71% top-1
accuracy on ImageNet. This improvement is consistent at dif-
ferent architectures, where MetaMixUp (top-1 error 47.35%,
top-5 error 24.43%) outperforms the original MixUp (top-
1 error 55.06%, top-5 error 31.32%) with PreActResNet34
and (top-1 error 46.38%, top-5 error 23.91% versus top-
1 error 52.96%, top-5 error 29.28%) with Wide-Resnet28-
10. These comparisons suggest the significant of learning
a suitable interpolation policy. As a competitive counterpart
of MetaMixUp, AdaMixUp has a generator that outputs the
interpolation policy and a discriminator that judges the qual-
ity of the generated policy. As Table I shows, MetaMixUp
distinctly outperforms AdaMixup which is strengthened with
a discriminator (0.38% vs. 0.49%) on MNIST, (5.15% vs.
6.21%) on Fashion, (2.96% vs. 3.12%) on SVHN, (3.12% vs.
3.52%) on CIFAR-10, and (20.36% vs. 20.97%), (47.55% vs.
49.17%) on the more challenging CIFAR-100 and ImageNet
benchmark respectively. Moreover, experiments on three dif-
ferent architectures consistently demonstrate the remarkable
improvement gained by MetaMixUp, and the best results are
achieved on Wide-ResNet-28-10. These comparisons firmly
demonstrate the effectiveness of MetaMixUp.

Results of Semi-Supervised Learning. Using a standard
unified and fair SSL evaluation framework [45], we compare
our pseudo-labeling extension of MixUp and MetaMixUp
with the state-of-the-art methods on CIFAR-10 and SVHN
benchmarks. The error rates are presented in Table III. The
best performance of pseudo-label based methods is achieved
by MetaMixUp combining with asynchronous pseudo labeling
(MetaMixUP+APL) introduced in Section 3.4. The improve-
ment over its purely pseudo-labeling counterpart is about
6.2% on CIFAR-10 (4K labels) and 2.5% on SVHN (1K
labels) in terms of accuracy. When comparing on fewer label
settings, the best performance of our MetaMixUP+APL reports
in error rate 20.66% on CIFAR-10 (1K labels) and 6.05%
on SVHN (500 labels). More importantly, all the pseudo-
based MetaMixUp outperform its MixUp counterparts, show-
ing the effectiveness of the interpolation policies learned by
MetaMixUp.

We also notice that using asynchronous pseudo labeling
(APL) for both MixUp and MetaMixUp provides a slight
improvement benefit. To illustrate the capability of correctly

8

TABLE I
ERROR RATES (%) OF SUPERVISED LEARNING ON TEST SET. ‡ REFERS TO THE RESULTS FROM [10].

Datasets MNIST Fashion SVHN CIFAR-10 CIFAR-100 ImageNet
Top-1 Top-5

Architecture 3-layer CNN PreActResNet18
Baseline 0.54 7.31 4.62 5.62 25.20 52.84 29.48
MixUp [9] 0.59 6.74 3.83 4.57 21.35 55.06 31.32
AdaMixup w/o Discriminator ‡ [10] - - - 3.83 24.75 - -
AdaMixup w Discriminator ‡ [10] 0.49 6.21 3.12 3.52 20.97 49.17 25.78
MetaMixUp (ours) 0.38 5.15 2.96 3.12 20.36 47.35 24.43
Architecture PreActResNet34
Baseline - - 4.46 5.32 24.63 50.25 28.59
MixUp [9] - - 3.35 4.14 20.85 53.26 29.83
MetaMixUp (ours) - - 2.42 2.51 18.51 46.89 23.93
Architecture Wide-Resnet-28-10
Baseline - - 4.34 4.74 22.33 50.41 28.38
MixUp [9] - - 3.31 3.07 19.21 52.96 29.28
MetaMixUp (ours) - - 2.33 2.48 18.45 46.38 23.91

TABLE II
TEST ERROR RATES (%) OF SUPERVISED LEARNING FOR DIFFERENT α AND λ ON TEST SET OF CIFAR-10, CIFAR-100, SVHN AND MNIST. NOTE

THAT α = 0 INDICATES STANDARD TRAINING WITHOUT MIXUP.

Method CIFAR-10 CIFAR-100 SVHN MNIST

MixUp (α = 0) 5.62 25.20 4.62 0.54
MixUp (α = 0.5) 4.65 21.67 4.71 0.66
MixUp (α = 1) 4.57 21.35 4.03 0.59
MixUp (α = 2) 4.78 21.49 3.86 0.61
MixUp (λ = 0.1) 5.02 22.56 4.21 0.56
MixUp (λ = 0.2) 4.69 22.83 4.14 0.59
MixUp (λ = 0.3) 4.71 22.44 4.42 0.64
MixUp (λ = 0.4) 5.29 23.29 4.73 0.71
MixUp (λ = 0.5) 5.88 23.62 4.78 0.70
MetaMixUp (ours) 2.48 18.45 2.33 0.38

TABLE III
TEST ERROR RATES (%) OF SSL APPROACHES ON TEST SET OF CIFAR-10 (1K MEANS 1K LABELLED DATA) AND SVHN. ’SUPERVISED-ONLY’ REFERS

TO NO UNLABELED DATA. † REFERS TO THE RESULTS REPORTED IN [45].

Method CIFAR-10 CIFAR-10 SVHN SVHN
1K Labels 4K Labels 500 Labels 1K Labels

Supervised-Only 35.95 ± 0.25 20.34 ± 0.33 17.71 ± 0.33 12.93 ± 0.37
Pseudo-Label 25.13 ± 0.46 17.73 ± 0.55 9.91 ± 0.37 7.82 ± 0.31
Π-Model † [36] 24.81 ± 0.51 16.37 ± 0.63 8.82 ± 0.20 7.19 ± 0.27
Mean Teacher † [4] 23.38 ± 0.24 15.87 ± 0.28 8.01 ± 0.22 5.65 ± 0.47
VAT † [3] 21.52 ± 0.31 13.86 ± 0.27 6.21 ± 0.46 5.63 ± 0.20
VAT + EM † [3] 21.28 ± 0.37 13.13 ± 0.39 6.14 ± 0.41 5.35 ± 0.19
MixUp + Pseudo-Label 23.47 ± 0.45 15.04 ± 0.33 7.42 ± 0.44 6.42 ± 0.25
MixUp + APL 22.85 ± 0.39 14.79 ± 0.22 6.73 ± 0.31 6.37 ± 0.37
MetaMixUp + Pseudo-Label (ours) 21.29 ± 0.31 12.64 ± 0.45 6.18 ± 0.46 6.17 ± 0.35
MetaMixUp + APL (ours) 20.66 ± 0.24 11.50 ± 0.22 6.05 ± 0.43 5.34 ± 0.31
MixMatch w/o MixUp - 10.97 ± 0.34 - 4.89 ± 0.41
MixMatch 7.87 ± 0.36 6.42 ± 0.21 3.79 ± 0.65 3.32 ± 0.43
MixMatch + MetaMixUp (ours) 7.69 ± 0.29 6.21 ± 0.24 3.63 ± 0.45 3.25 ± 0.41

updating pseudo labels for unlabeled data, we also perform a
specialized comparison between APL and the baseline pseudo-
labeling method (see Table IV). In contrast, APL gradually
utilizes the more reliable and stable pseudo labels to enforce
classification loss, and hence outperforms pseudo-labeling

method [14] on both CIFAR-10 and SVHN datasets without
additional computation cost.

As a complimentary experiment to further provide evidence
about improvement obtained by MetaMixUp, we replaced
MixUp with our MetaMixUp on MixMatch [15] to generate

9

TABLE IV
TEST ERROR RATES (%) OBTAINED WITH A UNIFIED IMPLEMENTATION OF

VARIOUS SSL METHODS.

Method CIFAR-10 CIFAR-10 SVHN SVHN
1K Labels 4K Labels 500 Labels 1K Labels

Pseudo-Label 25.13 ± 0.46 17.73 ± 0.55 9.91 ± 0.37 7.82 ± 0.31
APL 24.36 ± 0.62 16.96 ± 0.32 8.68 ± 0.72 7.46 ± 0.27

interpolation policy for data augmentation. We find that the
error rates of MixMatch + MetaMixUp are consistently lower
than MixMatch over all datasets, surpassing the published
state-of-the-art approaches by a significant margin to our best
knowledge. On dataset CIFAR-10, we achieved test error of
7.69% (MixMatch + MetaMixUp) with 1K labels and 6.21%
with 4K labels. We achieved an error rate of 3.63% with only
500 labels on SVHN compared to MixMatch performance
of 3.79%, showing the great success of the adaptation of
MetaMixUp to semi-supervised learning.

MetaMixUp

Vanilla MixUp

Epoch

L
o
ss

Fig. 2. The loss of the supervised training with MetaMixUp and MixUp on
CIFAR-10.

D. Further Discussion

In this section, we experimentally study some properties
of MetaMixUp and try to answer the following questions: (i)
how sensitive is MetaMixUp to the validation size; (ii) does
MetaMixUp really mitigate the manifold intrusion issue; (iii)
how does the relative frequency of the learned interpolation
weighting coefficient differ from the Beta distribution used in
MixUp [9] on MNIST; (iv) how does the distribution of the
learned interpolation policy change during training on CIFAR-
10 and (v) how sensitive is MetaMixUp with APL to the
confidence threshold hyperparameter in SSL tasks.

1) Trade-off of validation size: Validation size controls the
quantity of examples of each class for meta-stage. In order
to make a trade-off and understand the sensitivity to the
size of validation. Figure 3 plots the classification error rate
when we vary the size of validation set on MetaMixUp under
supervised configuration. Surprisingly, using 10 examples for
each class only results in 0.25% drop on CIFAR-10 and 0.1%
on SVHN. In contrast, we observe that overall error rate does

not drop when having more than 100 examples for each class
of validation set. It suggests that our method dose not rely on
a larger size of validation set for better performance.

Fig. 3. Error rate for different validation size of MetaMixUp on CIFAR-10
and SVHN under supervised configure.

2) Alleviation of manifold intrusion issue: Manifold intru-
sion [10] means improper selection of MixUp weight λ can
cause the conflicts of the labels of original data and those of
mixuped data, leading to degraded performance. To verify the
effectiveness of our method on mitigating manifold intrusion,
we train a simple CNN network on MNIST with MetaMixUp
under supervised setting and extract the features of all the
mixed images during training. For each mixed sample, we
compute the minimal Euclidean distance in the feature space
of the trained network between this mixed sample and all
the different labeled samples. Then, we compute the average
and the minimum of these distances respectively for MixUp
and MetaMixUp. The results are reported in Figure 5. The
generated samples for MetaMixUp turn out to be farther to the
set of the existing real samples. On the other hand, we also plot
in Figure 4 the features learned by a network with 2 hidden
dimensions. The representation learned with MetaMixUp is
more discriminative and thus the collision in the feature occurs
with lower probability. Both of the above experiments confirm
that MetaMixUp mitigates manifold intrusion to great extent.

Figure 2 plots the training loss curve of vanilla MixUp
and MetaMixUp under a representative setting: ResNet-50
on CIFAR-10, where the x-axis denotes the training epochs.
The y-axis is the training loss on training data. The figure
shows two insights. First, the training error of MetaMixUp
approaches zero. This empirically verifies the convergence
of the model. Second, the loss curve in Figure 2 generally
satisfy the condition in Proposition 1, i.e., minimizing MixUp
loss helps controlling the Lipschitz constant. The training loss
of MetaMixUp is substantially lower than vanilla MixUp.
It suggests that the proposed meta-learning schema to learn
mixing policies alleviates the manifold intrusion/underfitting
issue in vanilla Mixup and thus optimizes an underlying robust
objective.

3) Relative frequency of interpolation coefficient on MNIST:
The relative frequency of the interpolation coefficient λ gener-
ated via MetaMixUp and vanilla MixUp of α = 1.0 is shown

10

Fig. 4. Feature of MixUp (left) and MetaMixUp (right) on MNIST.

Fig. 5. The distance between mixed samples and different labeled original
examples.

in Figure 6, when trained on MNIST. A higher frequency of
0 and 1 has occurred in MetaMixUp compared to MixUp.
Since manifold intrusion is more likely to occur on MNIST.
A possible explanation of this observation is: when mixed
samples may cause useless or negative effects, MetaMixUp
tries to maintain the original examples to avoid possible
collisions or unexpected performance degradation and thus
mitigate underfitting.

Fig. 6. Relative frequency of λ generated via MixUp (red) and MetaMixUp
(blue) on MNIST.

4) Distribution of learned interpolation coefficient on
CIFAR-10: Figure 7 visualizes the distribution of generated
interpolation policy during training on CIFAR-10 in our
experiments, where z-axix denotes the λ learned by our
MetaMixUp; the y and x axes denote the class of training
samples xi and xj . Two observations can be found in Figure
7. First, the learned interpolation policy changes during the
training process. Figure 7 (a), (b), (c) and (d) are distribution
of λ learned at different epochs. As shown, the interpolation

(a) epoch = 3 (b) epoch = 30

(c) epoch = 90 (d) epoch = 120

Fig. 7. The data-driven interpolation policy distribution learned by
MetaMixUp with Resnet-50 on CIFAR-10 at epoch 3 in (a), epoch 30 in
(b), epoch 90 in (c) and epoch 120 in (d).

policy is learned from a random form to a data specific
distribution. Second, the learned λ gradually converge in
idiographic sections for samples of different classes. It satisfy
our intuition that the proposed method learns data-driven
interpolation policy for MixUp technique.

5) Sensitivity to σd: As introduced in Section 3.4, σd
controls the decay rate of the confidence threshold for pseudo-
labeling in SSL. We conduct experiments with σ varying from
0.01 to 0.2 to understand the sensitivity to this hyperparameter.
The results (see Table V) shows that influence of changing σd
on performance is small and MetaMixUp is not sensitive to
σd.

TABLE V
TEST ERROR RATE (%) FOR METAMIXUP+APL WITH DIFFERENT σd

σd 0.01 0.05 0.1 0.2
CIFAR-10 11.84 11.50 11.22 11.98

SVHN 5.94 5.34 5.55 5.67

V. CONCLUSIONS AND FUTURE WORK

In this paper, we show that vanilla MixUp loss is a
lower bound of the Lipschitz constant of the gradient of the
classifier function. If not smartly choosing the interpolation
coefficient for each pair samples, the model suffers from
the underfitting problem leading to a degradation of per-
formance. The proposed MetaMixUp addresses this problem
by optimize the interpolation policy of MixUp method with
meta-learning scheme in an online fashion. The interpolation
policy of MetaMixUp is learned data-adaptively to improve
the generalization performance of the model. Experimental
results illustrate that MetaMixUp is adaptive to supervised and
semi-supervised learning scenarios with remarkable perfor-
mance improvement over original MixUp and its variants. Our
proposed methods achieve competitive performance across
multiple supervised and semi-supervised benchmarks. In the

11

future, it would be more interesting to explore the power
of MetaMixUp in other challenging tasks. We believe that
application-specific adaption of the MetaMixUp of the training
objective and optimization trajectories will further improve
results over a wide range of application specific areas, includ-
ing domain adaption [51], generative adversarial networks, or
semi-supervised natural language processing.

REFERENCES

[1] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization for
free? - weakly-supervised learning with convolutional neural networks,”
in CVPR, 2015.

[2] T. Durand, T. Mordan, N. Thome, and M. Cord, “WILDCAT: weakly
supervised learning of deep convnets for image classification, pointwise
localization and segmentation,” in CVPR, 2017.

[3] T. Miyato, S.-i. Maeda, S. Ishii, and M. Koyama, “Virtual adversarial
training: a regularization method for supervised and semi-supervised
learning,” IEEE transactions on pattern analysis and machine intelli-
gence, 2018.

[4] A. Tarvainen and H. Valpola, “Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised deep
learning results,” in NeurIPS, 2017.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
CoRR, vol. abs/1312.6199, 2013.

[6] X. Gastaldi, “Shake-shake regularization of 3-branch residual networks,”
in 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings,
2017.

[7] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017.

[9] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” CoRR, vol. abs/1710.09412, 2017.

[10] H. Guo, Y. Mao, and R. Zhang, “Mixup as locally linear out-of-manifold
regularization,” CoRR, vol. abs/1809.02499, 2018.

[11] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017.

[12] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in NeurIPS, 2012.

[13] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein,
“Learning unsupervised learning rules,” CoRR, vol. abs/1804.00222,
2018.

[14] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on Challenges
in Representation Learning, ICML, 2013.

[15] D. Berthelot, N. Carlini, I. J. Goodfellow, N. Papernot, A. Oliver, and
C. Raffel, “Mixmatch: A holistic approach to semi-supervised learning,”
CoRR, vol. abs/1905.02249, 2019.

[16] G. E. Hinton and D. van Camp, “Keeping the neural networks simple
by minimizing the description length of the weights,” in Proceedings of
the Sixth Annual ACM Conference on Computational Learning Theory,
COLT 1993, Santa Cruz, CA, USA, July 26-28, 1993., 1993, pp. 5–13.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[19] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Au-
toaugment: Learning augmentation policies from data,” arXiv preprint
arXiv:1805.09501, 2018.

[20] Y. Tokozume, Y. Ushiku, and T. Harada, “Between-class learning for
image classification,” in CVPR, 2018.

[21] V. Verma, A. Lamb, C. Beckham, A. C. Courville, I. Mitliagkas,
and Y. Bengio, “Manifold mixup: Encouraging meaningful on-manifold
interpolation as a regularizer,” CoRR, vol. abs/1806.05236, 2018.

[22] S. Thrun and L. Pratt, “Learning to learn: Introduction and overview,”
in Learning to learn. Springer, 1998.

[23] Y. Bengio, S. Bengio, and J. Cloutier, Learning a synaptic learning rule.
Université de Montréal, Département d’informatique et de recherche
opérationnelle, 1990.

[24] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in ICLR, 2017.

[25] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-
shot learning,” in Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, 2017, pp. 4080–4090.

[26] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings, 2018.

[27] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler, “Rapid adapta-
tion with conditionally shifted neurons,” in Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018, pp. 3661–
3670.

[28] F. Shen, C. Shen, A. van den Hengel, and Z. Tang, “Approximate least
trimmed sum of squares fitting and applications in image analysis,” IEEE
Trans. Image Processing, vol. 22, no. 5, pp. 1836–1847, 2013.

[29] F. Shen, X. Gao, L. Liu, Y. Yang, and H. T. Shen, “Deep asymmetric
pairwise hashing,” in Proceedings of the 2017 ACM on Multimedia
Conference, MM 2017, Mountain View, CA, USA, October 23-27, 2017,
2017, pp. 1522–1530.

[30] F. Shen, C. Shen, W. Liu, and H. T. Shen, “Supervised discrete hashing,”
in IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, 2015, pp. 37–45.

[31] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight
examples for robust deep learning,” in ICML, 2018.

[32] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vi-
sion architectures,” in Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
2013, pp. 115–123.

[33] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
combined selection and hyperparameter optimization of classification
algorithms,” in The 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA,
August 11-14, 2013, 2013, pp. 847–855.

[34] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States., 2012, pp. 2960–2968.

[35] F. Pedregosa, “Hyperparameter optimization with approximate gradient,”
in Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24, 2016, 2016, pp.
737–746.

[36] S. Laine and T. Aila, “Temporal ensembling for semi-supervised learn-
ing,” CoRR, vol. abs/1610.02242, 2016.

[37] V. R. de Sa, “Learning classification with unlabeled data,” in NeurIPS,
1994.

[38] K. Saito, Y. Ushiku, and T. Harada, “Asymmetric tri-training for unsu-
pervised domain adaptation,” in Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, 2017, pp. 2988–2997.

[39] S. Xie, Z. Zheng, L. Chen, and C. Chen, “Learning semantic rep-
resentations for unsupervised domain adaptation,” in Proceedings of
the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018, pp.
5419–5428.

[40] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier,
“Parseval networks: Improving robustness to adversarial examples,” in
ICML. JMLR. org, 2017.

[41] Y. Tsuzuku, I. Sato, and M. Sugiyama, “Lipschitz-margin training: Scal-
able certification of perturbation invariance for deep neural networks,”
in NeurIPS, 2018.

[42] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li, L. Fei-Fei,
A. L. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Computer Vision - ECCV 2018 - 15th European Conference,

12

Munich, Germany, September 8-14, 2018, Proceedings, Part I, 2018, pp.
19–35.

[43] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel opti-
mization,” Annals OR, vol. 153, no. 1, pp. 235–256, 2007.

[44] J. Luketina, T. Raiko, M. Berglund, and K. Greff, “Scalable gradient-
based tuning of continuous regularization hyperparameters,” in Proceed-
ings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, 2016, pp. 2952–2960.

[45] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and I. J. Goodfellow,
“Realistic evaluation of deep semi-supervised learning algorithms,” in
NeurIPS, 2018.

[46] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and
F. Li, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in ECCV, 2016.

[49] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with
warm restarts,” in ICLR, 2017.

[50] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in BMVC,
2016.

[51] G. French, M. Mackiewicz, and M. H. Fisher, “Self-ensembling for
visual domain adaptation,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings, 2018.

	I Introduction
	II Related Work
	II-A Regularization
	II-B Meta-learning
	II-C Hyperparameter optimization
	II-D Semi-Supervised learning

	III Data-adaptive MixUp via Meta Learning
	III-A MixUp as A Lower Bound of the Gradient Lipschitz Constant
	III-B MetaMixUp: Learning Data-Driven Interpolation Policy
	III-C Extension of MetaMixUp for Semi-Supervised Learning

	IV Experiments
	IV-A Datasets
	IV-B Implementation Details
	IV-C Results
	IV-D Further Discussion
	IV-D1 Trade-off of validation size
	IV-D2 Alleviation of manifold intrusion issue
	IV-D3 Relative frequency of interpolation coefficient on MNIST
	IV-D4 Distribution of learned interpolation coefficient on CIFAR-10
	IV-D5 Sensitivity to d

	V Conclusions and Future Work
	References

