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Imbalanced Data Classification via Cooperative
Interaction Between Classifier and Generator
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Abstract— Learning classifiers with imbalanced data can be
strongly biased toward the majority class. To address this issue,
several methods have been proposed using generative adversarial
networks (GANs). Existing GAN-based methods, however, do not
effectively utilize the relationship between a classifier and a
generator. This article proposes a novel three-player structure
consisting of a discriminator, a generator, and a classifier, along
with decision boundary regularization. Our method is distinctive
in which the generator is trained in cooperation with the classifier
to provide minority samples that gradually expand the minority
decision region, improving performance for imbalanced data
classification. The proposed method outperforms the existing
methods on real data sets as well as synthetic imbalanced data
sets.

Index Terms— Classification, decision boundary, deep learn-
ing, generative adversarial networks (GANs), imbalanced data,
supervised learning.

I. INTRODUCTION

THE imbalanced data problem is a phenomenon in which
the number of samples in minority and majority classes

has a large gap in training data. The medical domain is
representative fields of the imbalanced data problem [1].
Domains, including biology, network intrusion, and fraud
detection, also suffer from the same phenomenon [2]–[5]. The
imbalance ratio (IR) between minority and majority classes
varies depending on the application, and in severe cases, the
IR may be as high as 100 000 [6], [7]. In many applications,
it is more costly and important to classify the minority than
the majority class [8], [9]. Since imbalanced data causes
severe performance degradation in machine learning, it is an
important research topic in both academia and industry [5].
The decision boundary learned by standard machine learning
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with imbalanced data can be strongly biased by the majority
class, causing low precision of the minority class. Ultimately,
the goal of addressing the imbalanced data problem is to
increase the classification performance on the minority class.

Various methods have been proposed to overcome the
imbalanced data problem [10]. Among existing methods, the
data-level balancing approach has been widely used to balance
training samples [6], [7], [11]–[19] The loss-based (cost-
sensitive) balancing approach, which gives larger weights on
minority samples than the majority samples, has also been
widely used [20]–[22]. The classifier-design approach for
balancing is to design algorithmic techniques embedded in a
classifier to overcome the class-imbalance problem inherently
[23]–[26]. These conventional methods have been effectively
applied to the shallow learning classifier using handcrafted
features, such as SHIFT [27] and SURF [28]. In recent
years, deep learning classifiers outperform the shallow learning
classifiers by a large margin [29]. Hence, even when the
shallow learning classifiers adopt the imbalanced learning
scheme, they are difficult to exceed the baseline performance
of the deep learning classifier without an imbalanced learning
scheme. In this article, we aim to develop a method that can
be applied to a deep learning classifier that uses images as
inputs directly without handcrafted features.

Recently, to tackle the imbalanced problem in deep learning
classifiers, generative adversarial networks (GANs) [30] have
been used to generate high-dimensional synthetic samples in
the minority class [20]–[22], [31], [32]. Most of the existing
GAN-based methods do not consider the effect on a classifier
when training a generator and a discriminator of GAN, thus
limiting improvement opportunities for the generated samples.
To handle this issue, the concept of TripleGAN [33] has
been adopted to address imbalanced data classification [34].
However, since TripleGAN was proposed for semisupervised
learning, they have an adversarial relationship between a
classifier and a discriminator, which limits the performance
improvement.

In this article, instead of the adversarial relationship between
classifier and GAN (generator/discriminator), we propose a
novel cooperative relationship between classifier and GAN
(generator/discriminator). In deep classifiers, implicit fea-
ture embedding techniques via multiple layers are used to
obtain discriminative features that are easily separable between
classes. Nevertheless, when the training samples are not suffi-
cient or imbalanced, the deep features may not be embedded
well enough to form the trained borderline similar to the true
borderline between classes. In this perspective, to mitigate
the problem of training the deep network with imbalanced
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Fig. 1. Cooperative interaction between a generator and a classifier to expand
the skewed decision region of minority class.

data, we aim to balance the samples in the overlapping region
around the trained borderline by the proposed cooperative
structure of classifier, generator, and discriminator along with
a borderline regularization.

For an imbalanced data including between- and within-class
imbalance, we assume that the samples in the overlapping
region are also imbalanced and yield a biased training of
the classifier. In particular, when training with the within-
class imbalanced data, the imbalance would become more
severe around the borderline adjacent to the within-class
minority region. When training the deep classifier without any
consideration of the imbalance, the trained borderline on the
overlapping region can be biased toward the minority region.
Hence, as shown in Fig. 1, our approach tries to move the
trained borderline toward the majority region by training the
classifier with the generated minority samples via the proposed
cooperative training of classifier, generator, and discriminator,
along with the borderline regularization.

Our key concepts and contributions are as follows.

1) A three-player structure (a classifier, a discriminator, and
a generator) is proposed in a cooperative relationship
between the generator and the classifier to address
imbalanced data learning.

2) A novel regularization term is embedded to expand the
decision boundary of the minority class in a cooperative
interaction of the generator and the classifier.

3) We develop an alternating optimization strategy, along
with a regularization decaying scheme to prevent over-
generalization, in which the generator and the classifier
are trained alternately to learn a desirable distribution.

4) The proposed method is validated experimentally using
in-depth self-analysis as well as comparing with the
existing methods.

II. RELATED WORK

A. Imbalanced Data Classification

1) Data-Level Balancing Approach: The data-level
balancing approach is divided into three categories:
undersampling, oversampling, and hybrid methods. The
undersampling methods, such as clustering centroids
(C-Centroids) and condensed nearest neighbor (CN-Neighbor),
balance the training data by removing majority samples [11].
The oversampling methods generate synthetic minority
samples to balance training data. Representative methods

are the synthetic minority oversampling technique (SMOTE)
[6]. Several variants have been proposed to overcome the
limitations of SMOTE. Borderline-SMOTE (B-SMOTE)
[12], neighborhood rough set boundary-SMOTE (NRSB-
SMOTE) [35], and the adaptive synthetic sampling approach
(ADASYN) [13] adaptively generates samples considering
the proportions of adjacent majority data. To ensure that
the generated samples belong to a minority class, majority
weighted minority oversampling technique (MWMOTE) [7]
effectively identifies minority sample-dominated clusters
that become sources of oversampling. Gaussian SMOTE
(G-SMOTE) [15] achieves sample diversity by replacing the
uniform distribution of SMOTE with Gaussian distribution.
Real-value negative selection oversampling (RSNO) [16]
synthesizes a minority sample without accessing minority
samples. The hybrid methods, such as SMOTE editing the
nearest neighbor (SMOTENN) [17] and SMOTE-Iterative
partitioning filter (SMOTE-IPF) [18], filter out unsafe
samples after SMOTE-based oversampling. However, most
of these data-level methods consider only local information;
therefore, they cannot reflect the entire data distribution [21].
Furthermore, these methods are based on interpolation with
simple distance metrics (e.g., Euclidean), and therefore, they
only consider numerically featurized data, which do not
successfully address other types of data such as image [21].

2) Loss-Based (Cost-Sensitive) Balancing Approach: The
cost-sensitive approach modifies the existing classification
loss (cost) function (i.e., cross-entropy loss) to give addi-
tional considerations on minority class samples. Representative
methods include class rectification loss (CRL) [36], max-
pooling loss (MPL) [37], and focal loss (Focal) [38]. In detail,
CRL rectifies the incremental class bias in the model by
making use of batchwisely selected hard positive and negative
samples of the minority classes. In the case of MRL, it indi-
rectly addresses both interclass and intraclass imbalance by
performing a generalized max pooling of pixel-specific losses.
In the case of the focal loss, it reshapes the loss function
to downweight samples of the majority classes. The advan-
tage of the cost-sensitive approach is that it can be simply
applied to a training procedure for a deep learning network.
However, as illustrated in our experiments, the performance
improvements of cost-sensitive methods are bounded because
the amount of samples of the minority classes that can be used
for learning data distributions is still limited.

3) Classifier-Design Approach for Balancing: This
approach is to design algorithmic techniques embedded
in a classifier to overcome the class-imbalance problem
inherently. The representative methods in this approach are
the regression-based linear classifier minimizing one-pass area
under the receiver operating characteristic curve (AUC) convex
loss [23], the kernelized online imbalanced learning (KOIL)
of support vector machine (SVM) [24], the ensemble
strategy of SVMs [25], and Random forests combining
multiple decision trees to learn highly imbalanced medical
data [26]. However, since the above methods belong to
shallow learning, these methods cannot access extremely
high-dimensional data, such as raw images without handcraft
features. Recently, deep-network classifiers have shown more
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Fig. 2. Difference between (a) TripleGAN and (b) Proposed.

remarkable performance by directly learning raw images than
the shallow learning methods [39]. Thus, our work intends to
propose an imbalanced data learning approach applicable to
a deep-network classifier.

4) GAN-Based Balancing Approach: In recent years,
to reflect the actual distribution of a minority class in learning
a deep-network classifier, GAN has been used as oversam-
pling method. GAN-based works exploit the GAN model,
such as deep convolutional GAN (DCGAN) [20], conditional
GAN (cGAN) [21], or cycleGAN [22] to restore the actual
distribution by synthesizing data. Balancing GAN (BAGAN)
[31] is a slightly modified version of an auxiliary classifier
GAN [40] that specializes in the generation of minority class
samples. In all of these studies, the process of generating
samples through GAN and the process of learning a classifier
with the generated samples are independent. To handle this
issue, the concept of TripleGAN [33] has been adopted to
address imbalanced data classification [34]. However, Triple-
GAN and its variant, Enhanced TripleGAN (E-TripleGAN)
[41], are originally proposed for semisupervised learning, and
it has an adversarial relationship between a classifier and a
discriminator for pseudolabeling. This adversarial relation is of
no use for imbalanced data learning as unlabeled samples are
not present in an imbalanced data problem. Hence, we remove
the adversarial relationship and propose a novel cooperative
relationship between the generator and the classifier.

B. Effectiveness of Samples Near Class Boundary

The samples near the decision boundary play an important
role in training classifiers. For this reason, various research
works have attempted to utilize the concept of the decision
boundary, such as knowledge distillation via decision bound-
ary transfer [42], classifier training robust to adversarial attacks
[43], and out-of-distribution detection problems [44]. To the
best of our knowledge, however, our work is the first attempt
to address an imbalanced classification problem by generating
samples with GAN to expand the decision boundary of the
minority region. The novelty of our study is the decision
boundary regularization with its decay, which promotes the
convergence of the alternating optimization in training our
three-player structure for mitigating the imbalance issue.

III. PROPOSED METHOD

To formulate our concept for expanding the minority
decision region to have a desirable distribution, we design
a three-player structure for imbalanced data learning

Fig. 3. Proposed GAN architecture with notations.

(see Section III-A) and develop an alternating training scheme
with a cooperative training loop between the generator and the
classifier (see Section III-B).

A. Three-Player Structure for Imbalanced Data Learning

1) Motivation: As mentioned in Section II-A4, TripleGAN
[33] and E-TripleGAN [41] are designed to generate pseudo-
labels for unlabeled samples for facilitating semisupervised
learning. The discriminator (D) in TripleGAN discriminates
a given true label and a false label generated by the classi-
fier (C). TripleGAN has an adversarial relationship U(C, D)
between D and C , as shown in Fig. 2(a). In the proposed
model, a cooperative relationship is developed between the
generator (G) and C to ensure that both G and C are benefitted
by joint training. For developing the cooperative relation-
ship, additional utility terms U(G, C) and R(G, C) have
been proposed, as shown in Fig. 2(b). The proposed three-
player structure is designed to expand the minority region by
generating minority samples toward the borderline between
the majority and the minority in the early stage of training
and finally to provide densely distributed samples within an
expended minority region. In Section III-A2, we describe the
details of the proposed utility function and discuss its impact
on imbalanced data learning.

2) Utility Function: To describe our utility function for our
three-player structure shown in Fig. 3, we define notations. x
denotes the input data and y denotes the output label. Then,
x = G(z, y) denotes a generated sample from the randomly
generated z and y values. It is assumed that the observed
training samples are sampled from unknown p(x, y) and that
samples from both p(z) and p(y) can be easily obtained
by using simple known distributions (normal or uniform and
so on.) during training. The classified label is denoted by
y = C(x) and the output of D is denoted by D(x, y) for
given x and y. In addition, the joint distributions pg(x, y) and
pc(x, y) are defined as

pg(x, y) := p(y)pg(x|y) = p(y)p(G(z, y)|y) (1)

pc(x, y) := p(x)pc(y|x) = p(x)p(C(x)|x) (2)
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where pg(x|y) = p(G(z, y)|y) in (1) indicates the distribution
of synthetic samples generated by G for a given label y
and pc(y|x) = p(C(x)|x) in (2) indicates the distribution of
labels, determined by C , for the given samples (generated or
observed).

Our goal is to design a utility function U(C, D, G) for
imbalanced data learning in three-player game given by

min
C,G

max
D

U(C, D, G). (3)

In this article, the utility function for imbalanced data
learning is proposed as

U(C, D, G) = Ug(D, G) + Uc1(C)

+ (1 − λ)Uc2(G, C) + λR(G, C) (4)

where the last two terms are distinctive aspects against Triple-
GAN and they take key roles for cooperative training of G and
C in our method. The third term is for jointly training of G
and C , whereas the fourth term R(G, C) is for minority region
expansion. These two terms are linked by a hyperparameter λ
for tradeoff scheduling between the two terms (for details, see
Sections III-A3 and III-B3). Each term is defined formally in
the following.

The term Ug(D, G) is well known utility function of
cGAN [21], which is defined as

Ug(D, G) = Ep(x,y)[log D(x, y)]
+ Epg(G(z,y),y)[log(1 − D(G(z, y), y))]. (5)

The term Uc1(C) is for training C with only the
observed (real) data, whereas Uc2(G, C) is for joint training
of G and C , which are defined as

Uc1(C) = Ep(x,y)[− log pc(y|x)] (6)

Uc2(G, C) = Epg(G(z,y),y)[− log pc(y|G(z, y))]. (7)

In particular, Uc2(G, C) makes C be trained to well classify
the samples generated by G, whereas G be trained to generate
extra samples helpful for C .

Lastly, R(G, C) is introduced for expansion of the minority
region. To define R(G, C), the classification scores for the
minority and majority classes are denoted by Cmi(G(x)) and
Cma(G(x)), respectively, and a generated sample is denoted
by xg. Using these terms, R(G, C) is defined as

R(G, C) = Epg(x,y)[sg] (8)

where

sg =
{

[Cmi(xg) − Cma(xg)]2, if Cmi(xg) > Cma(xg)

0, otherwise

where Cmi and Cma have values between 0 and 1 since the
classifier uses the softmax activation in the output layer. The
role of R(G, C) is presented in Section III-A3.

3) Effect to Imbalanced Data Learning: In R(G, C) of (8),
if the generated sample (xg) is placed in the minority region
of the current classifier (C), the minority score (Cmi(xg)) is
greater than the majority score (Cma(xg)). This is the case
of upper condition in (8); in this case, the minimization
of R(G, C) forces to generate samples near the boundary

Fig. 4. Through cooperative training, G is trained to generate minority
samples (yellow) crossing the decision boundary between the minority class
and the majority class. As indicated by the dashed line, the samples generated
by the tuned G contribute to the expansion of the minority class region for
the next training of C .

satisfying Cmi(xg) = Cma(xg), as shown in Fig. 4. These
generated samples take a role in the next training of the
classifier to expand the decision boundary toward the majority
region, as shown in Fig. 1. If the generated sample (xg) is
already placed in the majority region [the lower condition in
(8)], this sample does not move to prevent the harmful effect
to the majority class. Hence, as shown in Fig. 4, minimizing
R(G, C) plays a role in generating samples to expand the
minority region in the direction of the majority region in
training C .

However, the endless expansion of the minority region
might cause overgeneralization of the minority class, i.e.,
potential overlapping issues, which degrades the classification
performance. To mitigate the potential overlapping problem,
we introduce a hyperparameter λ for a tradeoff scheduling
between Uc2(G, C) and R(G, C). By reducing λ gradually
to zero during the alternate training of C and G, the role
of R(G, C) vanishes and thus the overgeneralization of the
minority class stops. This implies that G is trained for the
expansion of the minority class decision region in the early
training stage only.

As λ decays, the cooperative term of Uc2(G, C) contributes
to the generation of minority samples achieving sufficiently
balanced distribution within an expanded minority region by
utilizing the shareable low-level features from the majority
samples. When training the generator via the term Uc2(G, C),
the majority samples can provide shareable local feature infor-
mation (edge, blob, texture, and so on) helpful to the minority
sample generation, which can mitigate the overfitting problem
encountered when an only small number of minority samples
are used for generator training. This claim is supported by the
study [45], which reports that the lower (input-side) layers of a
convolution network learn the local features shareable among
various classes. When generating images, the generator such as
DCGAN [20] stores the local feature information in the higher
(output-side) layers contrary to the convolution network used
for a classifier. More details about the decaying scheme are
described in Section III-B.

Theorem 1 shows that the proposed utility function has an
equilibrium when λ decays to zero.
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Fig. 5. Overall scheme of alternating training of C an G/D. For details on each block, see the pseudocode in Algorithm 1.

TABLE I

EMPIRICAL UTILITY SUBFUNCTIONS

Theorem 1: The equilibrium of U(C, D, G) with λ = 0 is
achieved if and only if

p(x, y) = pg(x, y) = pc(x, y) = pc(G(z|y), y). (9)

Note that pc(x, y) = pc(G(z|y), y) means that the training of
C relies on the distribution of samples generated by G at the
equilibrium. Hence, how well G learns the true distribution
dominates the performance of C . The proof is shown in
Appendix A.

B. Training Scheme

1) Overall Scheme: To promote cooperation between G and
C , along with Uc2(G, C) and R(G, C), in the optimization
process, we adopt an alternating optimization between the
training of G/D and the training of C . The overall scheme of
the proposed method is outlined in Fig. 5. To stop the training
of G/D, C , or alternating loop, we adopt the validation-
based early stopping rule [46]. Before starting alternating
optimization, we pretrain G/D with the observed imbalanced
data for the initial generator. As the first step of the alternating
loop, C is trained with a balanced batch generated by fixed
G/D. Thereafter, G/D is trained in cooperation with C , along

with the decision boundary regularization R(G, C). These
two optimizations are repeated iteratively in an alternating
loop. Each optimization is described in the following. The
alternating loop induces G to generate minority samples that
help C expand the minority region during the initial training
phase. As λ decays with increasing of alternating iterations,
the joint term Uc(G, C) plays a major role in achieving a
desirable distribution within each decision region determined
by the trained C .

The training parameters of G, D, and C are denoted by θg,
θd , and θc, respectively. Then, letting Ũ(·) be an empirical
utility function that is parameterized from U(·) in (4), the
total empirical utility function Ũ(θd, θg, θc) of U(D, G, C) is
denoted by

Ũ(θd, θg, θc) = Ũg(θd, θg) + Ũc1(θc)

+ (1 − λ)Ũc2(θc, θg) + λR(θc, θg) (10)

where a decaying rule of λ is designed as λi for the i th
iteration in Section III-B3. The details of each term are given
in Table I. The details for the training of θc with a balanced
batch generated by G and the training of θg/θd in cooperation
with C are described in Sections III-B2 and III-B3.
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2) Training of C With Balanced Batch by G: In this
stage, only C is trained using the empirical utility function,
Ũ(θd, θg, θc), in (10), that is, only the parameter vector θc

of C is updated after fixing θg and θd . As θg is fixed, θc is
updated by descending the empirical utility function in (10)
along its stochastic gradient with respect to θc. The samples
of minority class for balancing are generated by the trained
G in a batchwise manner, whereas the existing GAN-based
balancing methods adopt a one-shot balancing policy. In a one-
shot balancing policy, the fixed number of minority samples
is generated before training C as a preprocessing step. In
batchwise balancing, however, new samples are generated for
each batch. Batchwise balancing is advantageous because it
can fully utilize G by generating an unlimited number of
samples, as new samples are generated repeatedly in a batch-
wise manner until C converges. Another advantage is memory
efficiency. Unlike one-shot balancing, batchwise balancing
requires only a small amount of memory for as much as one
batch size.

3) Training of G/D in Cooperation With C Along With
R: This training stage is designed to train G/D to pursue
a balanced distribution by expanding the minority decision
region and generating sufficient samples within the decision
region. To prevent overgeneralization of the minority region,
we designed a decaying rule of λ in the utility function (10).
Specifically, λi for the i th iteration is exponentially reduced
by multiplying hyperparameter γ ∈ (0, 1] every iteration
loop (i.e., λi = γ λi−1 for the i th iteration). The value of
γ is empirically selected in experiments. In each alternating
loop, by fixing θc, θg/θd are updated by descending/ascending
Ũ(θd, θc, θg) in (10) along their stochastic gradient with
respect to θg/θd . Note that θg/θd can also be trained for several
epochs in each loop, but one epoch was empirically sufficient.
The pseudocode of the proposed alternating training scheme
is given in Algorithm 1.

C. Extension to Multiclass and Multilabel

To apply our method to multiclass problems, we expand
a decision boundary between a minority and its neighboring
majority class, which is the most influential class to the
minority class. Hence, the majority class is determined by the
class i∗, where i∗ = argmaxi,i �=miCi (xmi

g ).
For multilabel classification, let the multilabel vector for the

i th sample be denoted by yi = [yi
1, . . . , yi

j , . . .], where j is
an attribute index. For CelebA, either 0 or 1 is assigned to yi

j .
For balancing with the mini-batch generation, we make the
multilabel vectors as inputs for G. Let y j = {yi

j |i = 1, . . . , N}
be a set of the j th elements of label vectors in a mini-batch,
as shown in Fig. 6. Note that y and ȳ indicate a given training
batch and a generated batch, respectively. The minority labels
in ȳ j are randomly chosen by a probability 1 − p j , where
p j is the ratio of minority samples in y j of the training
data set. The remaining elements are assigned to the majority
labels. During G/D training with C , the utility function is
obtained by summation of all utilities,

∑
(U j +R j), from each

attribute.

Algorithm 1 Alternating Training Scheme of C and G/D
Notation:

λ : the trade-off control parameter between Uc2 (θg, θc) and R(θg, θc)
γ ∈ (0, 1] : hyper-parameter for λ decaying by λi = γ λi−1

Procedure:
1: Initialize λ0 = 1 and i = 1
2: [G/D Pre-Training]
3: while not converge by early stop during training θg/θd do
4: Sample a batch from the given data
5: Train θg and θd by solving min-max problem with Ũg(θd , θg))
6: end while
7: [Alternating Loop]
8: while not converge by early stop during alternating loops do
9: Set λi = γ λi−1

10: [C Training with Balanced Data]
11: while not converge by early stop during training θc do
12: Sample a batch from the given data
13: Balance the batch with minority samples generated by G
14: Train θc by minimizing the utility in (10)
15: end while
16: [G/D Training in cooperation of C via R]
17: while not converge by early stop during training θg/θd do
18: Sample a batch from the given data
19: Train θg and θd by solving min-max problem in (10)
20: end while
21: i + +
22: end while

Fig. 6. Way how to choose multilabel for generate the samples.

IV. EXPERIMENTAL RESULTS

A. Data Sets

In our evaluation, we utilized CIFAR-10 [47], Ima-
geNet [29], Dementia diagnosis [48], and CelebA (multi-
label) [49] data sets. CIFAR10 is a low-resolution image
data set, and ImageNet is a large data set including high-
resolution images. Dementia is a diagnosis data set for binary
classification (control versus patient) of neuropsychological
assessment profiles, where the number of control subjects is
six times more than that of dementia (IR (IR) = 6). CelebA
is a data set including portraits with multilabels, and some
attributes (labels) are extremely imbalanced, such as baldness
or hat wearing. The aspects of the data sets for our experiments
are given in Table II.

Dementia and CelebA are inherently imbalanced data sets,
but CIFAR10 and ImageNet are not imbalanced. Hence,
we artificially constructed imbalanced data sets by subsam-
pling the original data set of CIFAR10 for a minority class. For
ImageNet, we constructed an imbalanced data set where the
majority class is chosen by a class including many subclasses
and the minority class is chosen by a class including a few
subclasses.

To construct the minority class, two factors should be
considered so that they cannot be easily classified from the
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TABLE II

SUMMARY OF EVALUATION DATA SET

majority classes. The first factor is the degree of similarity
between classes. Learning will be easy if both classes are
distinct from each other even if a considerably small number
of samples is provided for the minority class. Therefore, con-
structing classes with high similarity is desirable for evaluating
the performance of imbalanced data learning. The second
factor is the IR between classes. Previous studies constructed
an imbalanced data set with a low IR, not higher than 2.5
(100:40) [31]; however, these low IR data are insufficient to
verify the methods for an extremely imbalanced case. It is
therefore desirable to set a sufficiently large value for the IR.

Considering these two factors, we constructed imbalanced
data sets from the CIFAR10 [47]. Based on the first factor,
we selected two highly similar classes from the original data
set. For example, car (majority class) and truck (minority
class) are highly similar to each other. Based on the second
factor, we set IR to 20 (100:5) for CIFAR10. We used all sam-
ples in the majority class data set and randomly selected 5%
of the samples from the minority class data set. A validation
data set was constructed with 20% of samples in the selected
training data set. For the test data set, we used the original
test data set in CIFAR10. For evaluation on real-imbalanced
images with high resolution, we conducted experiments on
ImageNet [29]. We set up an imbalanced binary class data set
where the majority class is “dog” containing 117 species and
the minority class is “cat” containing four species, and thus,
IR becomes 29.25. To verify the effectiveness of the proposed
method on the multiclass classification problem, according to
[50], we constructed an imbalanced multiclass data set by
extracting 5% of the samples for five (half) classes (0, 2, 4,
6, and 8) in CIFAR10.

B. Evaluation Metrics

Several previous studies [20], [22], [31] have used accuracy
as an evaluation metric. However, for extremely imbalanced
data, the accuracy metric cannot precisely evaluate the minor-
ity class classification because high accuracy can be achieved
with a simple zero-rule classifier, which determines all samples
as the majority class. To avoid this problem, we adopted the
metrics in the following table:

Fig. 7. Effect of λ along with R(G, C). The proposed method (with λ decay)
shows more stable and higher performance than the other two cases.

G-score (geometric mean score) is a metric that measures
the balance between classification performances on both the
majority and minority classes. B-ACC (balanced accuracy)
is a metric for evaluating learning processes in two-class
imbalanced domains. While G-score and B-ACC are specific
to particular decision thresholds, AUROC and AUPR are not
specific to decision thresholds. Hence, AUROC and AUPR
are more valid than the accuracy metric for performance
evaluations of the trained model. AUROC is more common
than AUPR, but AUPR is more sensitive than AUROC for
highly imbalanced data sets [52]. For imbalanced data, the
AUPR value is very low. Furthermore, as the analytical power
of a classifier for the minority class increases, the AUPR value
remarkably increases. Thus, AUPR is the most appropriate
metric for imbalanced data classification. Furthermore, using
Delong et al.’s method [55], we test the statistically significant
difference in AUROC values against other methods.

C. Self-Analysis

Using the imbalanced data set constructed by two similar
classes of the car (majority class) and truck (minority class)
CIFAR-10, we deeply self-analyze our method in various
aspects detailed in this section.

1) Effect of λ Along With R(G, C): To analyze the influence
of λ and its decay scheme along with R(G, C) in (4),
we evaluated the convergence of the optimization process
for each of the three settings: without R(G, C), without λ
decay scheme, and with λ decay scheme. Fig. 7 shows the
results of the three cases using CIFAR10. In the case without
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Fig. 8. Distribution of each class and generated minority samples in feature space. Without cooperative training, generated samples are located within the
training data distribution. However, with cooperative training along with R(G, C), generated samples tend to be located on the borderline. As λ decays,
generated samples return to the distribution with broader coverage.

Fig. 9. Feature space mappings and images of generated minority samples (truck) against majority samples (car) in (a) early-stage iteration and (b) late-stage
iteration.

R(G, C) (green line), using the utility function in (3), the
performance was not much improved due to the premature
convergence explained in Section III-A3. In the case without
a λ decay scheme (blue line), performance degraded after
approximately 100 iterations, due to overexpansion of the
minority region. In contrast, the case with λ decay (proposed,
brown line), using the utility function in (4), the high and
stable performance was achieved as expected. The degree of
decay for λ = γ i is determined by the value of γ , which is
observed to be dependent on the data set. We determined γ
empirically as 0.9, 0.1, and 0.5 for CIFAR10, Dementia, and
CelebA, respectively.

2) Validity of Samples Generated Throughout Cooperative
Training: Fig. 8 shows a map of the samples generated by
the proposed GAN in the feature space. The blue and red
contours represent the majority and minority class distribu-
tions, respectively, for the given training data. The dark red
dots represent the 64 samples generated by G. Features in
the intermediate layer of C were extracted for all samples
and were visualized in 2-D space using the parametric t-
distributed stochastic neighbor embedding scheme [56]. For
fair visualization, we used a fixed z to generate samples at
each iteration.

In Fig. 8, the leftmost panel shows the samples gen-
erated by cGAN learning, which was only trained in the

initial phase, without cooperative training. Most of the sam-
ples are mapped in a small region within the training
data distribution. The remaining panels show a map of
the samples generated through repeated cooperative training.
Although the samples were generated using the same z val-
ues, they are mapped in different positions of the feature
space in every iteration. Especially, in the first cooperative
training, as the value of λ is 1, most of the generated
minority samples cross the decision boundary between two
classes. We can see that as the λ value decays, the ten-
dency of generating samples cross the decision boundary
decreases.

Fig. 9 shows the locations of the generated minority samples
in feature space. The top-right images in Fig. 9(a) and (b)
are the generated sample images. The numbers left to the
generated images are the indexes that correspond to the
numbers written in feature space. Fig. 9(a) shows the generated
sample locations after the first cooperative interaction training.
As discussed in Section IV-E, due to λ = 1, the generated
minority samples are located around the borderline of two
classes. Fig. 9(b) shows the generated sample locations after
the 80th cooperative interaction training. As λ converges
to 0, the generated samples are located within the original
distribution rather than the borderline. Even though the images
with the same index in Fig. 9(a) and (b) are generated with the
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Fig. 10. Radar chart for ablation comparison of classifier performance
on CIFAR10. Scores are from the validation∗ and test† sets. For better
visualization, each score is normalized with mean and variance of four variants
because AUPR and AUROC have different ranges from each other.

same value of z, appearances of the two images with the same
index are different from each other. Many of the generated
images in Fig. 9(a) appear to be a car (low and round).
This figure illustrates that G trained in the initial cooperative
interaction phase can generate the ambiguous minority sam-
ples that look like majority samples. These ambiguous minor-
ity samples are beneficial to the expansion of the minority
region. However, as λ converges to zero, the generated images
become similar to truck image (high and box-style), as shown
in Fig. 9(b).

As most data-level sampling methods provide samples only
in the inner region of the training data distribution, they
risk overfitting [57]. In contrast, we can observe that several
samples generated by our method are positioned over the
decision boundary between two classes. This result implies
that the proposed method can expand the minority region to
improve the generalization performance of C on the minority
class. After the regularization term vanishes by reducing λ to
almost zero, the generated samples cover a wide region of the
minority class, as shown in the fourth map of Fig. 8.

3) Ablation Study: The ablation study was conducted with
CIFAR10 by sequentially adding each ablation component
because each component could not be implemented without
the previous components. The role of the components is vali-
dated through an ablation study on CIFAR10 through ablation
of one baseline and three variants as listed in following table:

Fig. 10 shows the results of the ablation study. First,
on Variant 1 (orange line), performance improves slightly
compared to learning using only C (blue line). As this variant
corresponds to the existing cGAN, the amount of improvement
is not significant. On Variant 2 (green line), a significant
improvement of performance is achieved in addition to the first
ablation (green line). This implies the terms for joint training
of G and C along with alternating training contributes to both
G and C so that C helps G generate samples beneficial to
C , consequently improving C’s performance. Finally, when
the R(G, C) term was added as Variant 3, it significantly
improved since G generated samples to interactively expand
the minority region (red line).

D. Comparative Analysis

To verify the validity of the proposed method, we compared
the classification performance based on four metrics to existing
techniques using five configurations from four data sets.

1) Compared Methods: For the conventional data-level
methods, we adopted 11 methods described in Section II-A.
For implementing SMOTE [6], B-SMOTE [12], ADASYN
[13], C-Centroids [11], CN-Neighbor [11], and SMOTE-ENN
[17], we used imbalanced-learn library [58]. For MWMOTE
[7], NRSB-SMOTE [35], SMOTE-IPF [18], and G-SMOTE
[15], we used smote-variants library [59]. For RSNO [16],
we acquired MATLAB code from the authors. However,
because all the conventional data-level methods support CPU
computation only, we could not conduct some of experiments
on high-dimensional and large number of samples (marked
by “−” in Table III). The compared loss-based methods
are CRL [36], MPL [37], and focal loss [38]. GAN-based
techniques were compared to three other methods. The first
method is based on cGAN, which is used in most GAN-
based approaches. The structure of cGAN is the same as that
used in our work. The second method is BAGAN [31]. The
authors of BAGAN released the source code, and the structure
and hyperparameters specified in their paper were used. The
third GAN-based method is TripleGAN [33], E-TripleGAN
[41], and HexaGAN [34] use the concept of TripleGAN for
imbalanced data problem.

2) Hyperparameters and Experimental Settings: For a fair
comparison, hyperparameters of the classifier for each data
set are searched for the classifier only (baseline) case. Then,
the same set of classifier’s hyper-parameters was used for the
others. Besides, the unique hyperparameters of each method,
such as γ of focal loss [38], were searched within a specific
range following their guidelines and selected with the values
that showed the best validation performance. In the case of
GAN-based techniques, the same structure of G and D was
used, except for BAGAN having its own structure. Further
training details about network structures and hyperparameter
values are provided in Appendix B.

3) Comparison Results: The comparative results are listed
in Tables III–V. Our method outperformed all the compared
methods on all the data sets consistently. Most GAN-based
methods tend to give consistent improvements against the
baseline “classifier-only” on all data sets. Some loss-based
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Fig. 11. Performance changes of representative methods depending on IR changes.

TABLE III

TEST SET PERFORMANCE OF BINARY-CLASS DATA SETS

TABLE IV

TEST SET PERFORMANCE OF MULTICLASS CIFAR10

(cost-sensitive) methods give improvements on most data sets
except the multiclass data set (CIFAR10). However, most of
the data-level methods do not give improvements on high-
dimensional image data and show improvements only on low-
dimensional table data (Dementia). As shown in the underlined
scores of Table III, in Delong et al. AUROC test, the proposed
method shows statistically significant improvement against all

TABLE V

TEST SET PERFORMANCE OF MULTILABEL CELEBA

the methods except the underlined cases on the Dementia data
set.

In addition, we investigated the trend of performance change
with IR variation for the representative methods of data-level,
loss-based, and GAN-based approach. Every data set except
CIFAR10 has fixed IR. Thus, we used CIFAR10 to see
the change in performance (G-score, AUPRmi, and AUPRmj)
according to IR change, which is shown in Fig. 11. In
G-score, the proposed method outperforms the other methods
consistently in the most range of IR.

When IR = 20, AUPR of majority class of our method is
slightly degraded instead of remarkably improving AUPR of
minority class as shown in the right two graphs in Fig. 11.
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Fig. 12. Two possible cases, (a) easy and (b) hard, for a multiclass problem.

In the range of IR less than 10, our method shows outper-
forming AUPR for both majority and minority classes.

4) Discussion on Performance Improvements: Although our
method consistently outperforms comparative methods, the
amount of improvement depends on the data set. Here, we dis-
cuss possible causes of the improvement differences.

1) High Baseline: The dementia data have small IR and
low dimensions. Small IR mitigates the difficulty of
imbalanced data problem, and low dimension alleviates
the curse of dimensionality. Thus, the baseline accuracy
is already high and so the room for improvement is
limited.

2) Complex Decision Boundary in Multiclass Problem:
As the number of classes increases in the multiclass
problem, the decision boundary generally becomes more
complex. As shown in Fig. 12(a), it is relatively easy to
decide the direction of expansion. However, for the case
shown in Fig. 12(b), because the expansion directions
are opposite to each other, a complex decision boundary
in the multiclass problem might provoke ineffective
expansion.

3) Unrealistic Sample Generation in Multilabel Problem:
Since the multilabel vectors of generated samples are
sampled randomly, it has a possibility to sample an
unrealistic combination of labels such as women-with-
mustache. Because this unrealistic image does not exist
in the test data, it may not contribute to or even be
harmful to the performance. However, this phenomenon
inevitably occurs when balancing for the multilabel
case.

V. CONCLUSION

To overcome the difficulty of imbalanced data learning,
we proposed a novel methodology based on a three-player
game and decision boundary regularization. First, we designed
a three-player structure to improve imbalanced data learn-
ing performance and analyzed the equilibrium point of the
proposed utility function. Second, we introduced a decision
boundary regularization to expand the minority region deter-
mined by the trained classifier with samples generated by
the generator in our three-player structure. Third, we pro-
posed an alternating training scheme to effectively train
the three-player structure, in cooperation with the decision
boundary regularization. The experiment illustrated that the
proposed method outperforms the existing methods by yield-
ing abundant samples to expand the minority decision region,
which is beneficial in addressing imbalanced data learning
problems.

Although the proposed method showed promising results,
certain issues remain. In this study, with a relatively simple
form of cGAN (DCGAN), the proposed method achieved a
considerable performance improvement in imbalanced data
classification. As further work, the use of more precise gen-
erators and discriminators such as Wasserstein GAN [60] is
expected to yield higher and stable performance for the imbal-
anced data learning. In addition, for the λ decay schedule,
an exponential decay rule was used where the decaying degree
was empirically determined depending on the data sets. For
further improvement, an elaborate design or adaptive scheme
for λ decay should be adopted, which would consider the IR
and complexity of the target data set. As open problems, inter-
pretability and authenticity are critical topics to be pursued in
a machine learning field. Recently, several types of research
have been proposed to interpret GANs [61]–[64]. By applying
them to our method, we can take one step closer to solving
the open problems.

APPENDIX A
PROOF OF THEOREM 1

The proof of the following Lemma 1 is equivalent to
the proof1 the original GAN [30], and thereby, we briefly
summarize the original proof by rewriting it. For the details,
refer to the reference in a footnote. Here, we add Theorem
1 for the proof of the three-player game proposed in this
article.

Lemma 1: For any fixed G in Ug(D, G), the optimal
discriminator D is given by

D∗(x, y) = p(x, y)

p(x, y) + pg(x, y)
. (11)

Proof: Given G, Ug(D, G) can be rewritten as

Ug(D, G) =
∫ ∫

p(x, y) log D(x, y)dydx

+
∫ ∫

pg(x, y) log(1 − D(x, y))dydx. (12)

This function achieves the maximum at
((p(x, y))/(p(x, y) + pg(x, y))). �

Theorem 1: For given D∗, the equilibrium of U(C, D, G)
is achieved if and only if

p(x, y) = pg(x, y) = pc(x, y) = pc(G(z|y), y). (13)

Proof: Given D∗, we can reformulate the minimax game
with value function Ug(D, G) as

Ug(D, G) =
∫ ∫

p(x, y) log
p(x, y)

p(x, y) + pg(x, y)
dydx

+
∫ ∫

pg(x, y) log
pg(x, y)

p(x, y) + pg(x, y)
dydx.

(14)

Following the proof in GAN, Ug(D, G) can be rewritten as

Ug(D, G) = − log 4 + 2JSD(p(x, y)||pg(x, y)) (15)

1https://srome.github.io/An-Annotated-Proof-of-Generative-Adversarial-
Networks-with-Implementation-Notes/
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where JSD is the Jensen–Shannon divergence. In addition,
according to the definition of Kullback–Leibler (KL) diver-
gence, Uc(C, G) can be rewritten as

Uc(C, G) = E(x,y)∼p(x,y)[− log pc(y|x)]
+ E(x,y)∼pg(x,y)[− log pc(y|G(z|y))]

= DKL(p(x, y)||pc(x, y)) + Hp(y|x)

+ DKL(pg(x, y)||pc(G(z|y), y))

+ Hpg(y|G(z|y)). (16)

From (15) and (16), U(C, D, G) becomes

U(C, D, G) = Ug(D, G) + Uc(C, G)

= 2JSD(p(x, y)||pg(x, y))

+ DKL(p(x, y)||pc(x, y))

+ DKL(pg(x, y)||pc(G(z|y), y))

+, (Hp(y|x) + Hpg(y|G(z|y)) − log 4). (17)

Since JSD(·) and DKL(·) are nonnegative, their minimum
values become zero if and only if p(x, y) = pg(x, y),
p(x, y) = pc(x, y), and pg(x, y) = pc(G(z|y), y). Hence, the
equilibrium of U(C, D, G) becomes p(x, y) = pg(x, y) =
pc(x, y) = pc(G(z|y), y). �

APPENDIX B
IMPLEMENTATIONS AND HYPERPARAMETERS

For the classifier on CIFAR10 and CelebA data, we used the
architecture of Resnet18 [39]. For Dementia data set, we used
the same classifier as in the original paper that first used
the Dementia data set [48], where the classifier is composed
of 2-D convolutional neural networks with skip connection
and Hilbert curve transform. Both the classifiers used the
softmax activation in the output layer. In the case of GAN-
based techniques, the same structure of DCGAN [65] was used
for every comparison. However, as BAGAN adopts their own
sophisticated architecture, we used their own architecture for
BAGAN.

Besides, the unique hyperparameters of each method were
searched within a specific range following their guidelines
and selected with the values that showed the best validation
performance. The list of hyperparameters and their ranges is
as follows.

1) The number of nearest neighbor, k, of conventional data-
level methods: [5, 10].

2) The ratio of CRL loss: [0.1, 0.8].
3) The γ of Focal loss: [2, 4].
4) The number of triplet, k, of CRL loss: [10, 40].
5) The learning rate of BAGAN: [0.00005, 0.0005].
6) The α of tripleGAN: [0.5, 1].
The common training details for every case are as follows.

1) Batch Size: 128.
2) Optimizer: ADAM (with β1: 0.5, β2: 0.999, and learning

rate: 0.0002).
3) Weight initialization: Xavier normalization with mean =

0, std = 0.02.
4) The number of patient for early stop: 30.
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