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Abstract—Power amplifier (PA) models, such as the neural 
network (NN) models and the multilayer NN models, have the 
problems of high complexity. In this paper, we firstly propose a 
novel behavior model for wideband PAs using a real-valued 
time-delay convolutional neural network (RVTDCNN). The input 
data of the model are sorted and arranged as the graph composed 
of the in-phase and quadrature (I/Q) components and envelope- 
dependent terms of current and past signals. We design a 
pre-designed filter using the convolutional layer to extract the 
basis functions required for the PA forward or reverse modeling. 
Then, the generated rich basis functions are modeled using a 
simple fully connected layer. Because of the weight sharing 
characteristics of the convolutional model’s structure, the strong 
memory effect does not lead to a significant increase in the 
complexity of the model. Meanwhile, the extraction effect of the 
pre-designed filter also reduces the training complexity of the 
model. The experimental results show that the performance of the 
RVTDCNN model is almost the same as the NN models and the 
multilayer NN models. Meanwhile, compared with the models 
mentioned above, the coefficient number and computational 
complexity of the RVTDCNN model are significantly reduced. 
This advantage is noticeable when the memory effects of PA are 
increased by using wider signal bandwidths. 

Index Terms—Real-valued time-delay convolutional neural 
network (RVTDCNN), power amplifiers (PAs), in-phase and 
quadrature phase (I/Q) components, neural network (NN), digital 
predistortion (DPD). 

I. INTRODUCTION 

S an indispensable component in the wireless 
communication system, power amplifiers (PAs) provide 
enough power for transmitting the signal through the 

channel to ensure that the receiver can collect the signal with 
relatively good signal to noise ratio [1]–[4]. However, PA’ 
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nonlinearity and memory effect can lead to the spectral 
expansion and decrease in Adjacent channel power ratio 
(ACPR) performance, thereby degrading the quality of 
communication [5]–[9]. Behavior modeling provides an 
effective method for nonlinear analysis and modeling of PAs. 
The behavior modeling often constructs the mathematical 
nonlinear modeling function by capturing the input and output 
responses of the system when driven with highly time varying 
signals to trig and observe the static nonlinear behavior of the 
system as well as the dynamics of the system are often 
designated as memory effects [10], [11]. With the incoming 5G 
standard calling for a sharp increase in data transmission rate up 
to multiple Gbps, the signal bandwidth needs to be increased 
significantly up to several hundred MHz. Accordingly, 
ultra-broadband PA behavior modeling and digital 
predistortion (DPD) have become the current research hotspot. 

Traditional behavioral models with memory effect, including 
the Volterra model and several compact Volterra models, have 
been widely used in the modeling of wideband PA [12], [13]. 
However, the high correlation between polynomial bases in 
these models makes it difficult to improve the modeling 
performance [14]. Recently, the outstanding achievements of 
artificial neural networks (ANNs) in the field of 
communication have attracted the attention of researchers in 
the field of wireless PA modeling. Due to ANN’s excellent 
performance for the approximation of nonlinear function, many 
works published in open literature have studied its application 
in PA modeling and predistortion area [15]–[19]. When PA 
exhibits complicated nonlinear characteristics and memory 
effects, it is difficult to achieve good modeling performance 
with low-complexity- based ANN models. This motivated this 
work to address the problem of how to derive broadband 
low-complexity NN based models that can provide accurate 
modeling performance for the forward and inverse 
(predistorters) models.  

To address the above issues and inspired by the emergence of 
artificial intelligence (AI) in the broadband communications 
area, advanced NN based models will be investigated [20]–[24]. 
Deep learning [25]–[28] in the AI field has shown excellent 
performance in discovering complex non-linear relationships 
using labeled data. In particular, convolutional neural networks 
(CNNs) [29], [30] and recurrent neural networks (RNNs) [31], 
[32] in deep learning have been proven to be effective in many 
fields including wireless communication [33]–[38]. However, 
according to the results of our research, the work on the use of 
deep learning to solve the problems of behavior modeling and 
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linearization of PAs [14], [39]–[42] is limited. One of the 
important reasons is that the regression algorithm based on 
RNNs learning is often utilized for natural speech processing 
and time series processing tasks. If they are used for modeling 
and linearization of PAs, although they have fewer parameters 
compared with feedforward neural networks due to their 
characteristics of weight sharing, the complex training 
algorithm seems to make the method complicated [43]. In 
addition, CNN is usually used as a classifier, and the output 
layer makes a discrete decision rather than outputting a 
continuous signal. However, with the present work, it will 
demonstrate for the first time that CNN can be adapted and used 
in the fields of behavior modeling and DPD synthesis of the 
PAs. The NN model’s complexity reduction will mainly result 
from the characteristic of weight sharing in CNN structures 
[29], [30]. The aspect of increasing the input dimension without 
changing network structure has attracted our attention. 

We firstly apply CNN to PA modeling and propose a 
real-valued time-delay convolutional neural network 
(RVTDCNN) behavior model for wideband wireless PA 
modeling. Due to CNN cannot be directly used to build the PA 
model since input signals are not graphs, the input data are 
sorted and arranged as the graph composed of the in-phase and 
quadrature (I/Q) components and envelope- dependent terms of 
current and past signals. And then, this model constructs a 
pre-designed filter using the convolutional layer to extract the 
basis functions required for PA forward or reverse modeling. 
Finally, the extracted basis functions are input into a simple 
fully connected layer to build the PA model. The model 
complexity of RVTDCNN is significantly reduced due to the 
weight sharing characteristic of the convolution structure. 
Meanwhile, the extraction effect of the pre-designed filter also 
reduces the training complexity of the model. In order to 
evaluate the model performance of the RVTDCNN model, we 
compared the RVTDCNN model with other existing models 
(including NN and multilayer NN model) by experiment and 
simulation. The results show that, compared with the existing 
state-of-the-art models, the model performance of the 
RVTDCNN model, especially the model complexity, is 
reduced in terms of the number of model’s coefficients. 

The contributions of this paper are as follows: 

 As the signal bandwidth increases, PA exhibits complicated 
nonlinear characteristics and memory effects. It is difficult to 
achieve good modeling performance with low complexity- 
based traditional behavioral models [14]. To address the 
problem of how to derive the broadband low complexity 
model, the first CNN-based architecture for extracting the 
PA behavioral model is proposed to improve nonlinear 
modeling performance. 

 It is found that the existing NN-based models [14], [19] still 
have a considerable complexity of model coefficients. To 
alleviate this issue, the input dataset is constructed as the 
graph and the convolution layer is studied and designed as a 
pre-designed filter to extract the basis functions required for 
the PA modeling. 

 If RNN or CNN is used in the modeling and linearization of 
PAs, they have high computational complexity for 

parameters training [43]. To reduce the computational 
complexity, a training methodology for PA modeling is 
proposed to accelerate the training of the PA model. 
The remainder of this paper is organized as follows. In 

Section II, the existing neural network models for PA modeling, 
including shallow neural network (NN) models and deep neural 
network (DNN) models, are briefly reviewed. Section III 
proposes the structure of the RVTDCNN model and describes it 
in a detailed manner. Section IV discusses the training process 
of the RVTDCNN model and analyzes the model complexity of 
the RVTDCNN model. Section V describes the platform for 
experimental validation. Section VI reports the measurement 
and validation results and compares the proposed model with 
other models. Finally, Section VII gives the conclusions.  

II. ANNS FOR PA MODELING 

A. Shallow Neural Networks for PA modeling 

  The shallow NN networks with fewer hidden layers are used 
to express the output characteristics of the PA due to its 
relatively simple network structure and training process, as 
shown in Fig. 1 (a) and (b) [15], [19].  
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Fig. 1.  Conventional ANN topologies for PA modeling. (a) Shallow NN 
Topology with input of the I/Q components. (b) Shallow NN Topology with 
input of the I/Q components and the envelope-dependent terms.  (c) DNN 
Topology. 
 

A commonly used shallow NN structure includes an input 
layer, a hidden layer structure with one or two layers, and an 
output layer. The model in Fig. 1 (a) considers injecting the 
in-phase and quadrature (I/Q) components of the input signal 
and embeds their corresponding time-delayed values into the 
spatial structure of the input layer of the network to reflect the 
corresponding memory effects, such as real-valued time-delay 
NN (RVTDNN) model in [15]. However, hidden and related 
information, such as envelope-dependent terms, requires 
further network computation capability, which leads to a 
complex network structure and additional hidden layers. To this 
end, the structure in Fig. 1(b) is proposed to simplify the 
network structure, which attempts to inject I/Q components and 
important envelope-dependent terms. The corresponding 
models include augmented radial basis function NN (ARBFNN) 
in [18] and augmented real-valued time-delay NN (ARVTDNN) 
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in [19]. However, with the increase of signal bandwidth, the 
memory depth considered will also increase, and the input 
dimension of the model will grow significantly, resulting in a 
complex network structure. Overall, to provide sufficient 
network capacity, the shallow NN structure makes the 
calculation relatively complex. 

B. Deep Neural Networks for PA modeling 

NN with multiple hidden layers is proposed to improve the 
performance of PA modeling. Instead of the simple hidden 
layer, DNNs’ architecture includes over three hidden layers to 
mimic and approximate the nonlinearity and memory effects of 
PA, as shown in Fig. 1(c). The corresponding models include 
the DNN model in [14]. As the number of the hidden layer 
increases, the fitting and generalization capabilities of the NN 
model increase [14], so it is fair to assume that the accuracy of 
modeling will increase with the number of the hidden layers. 
Different from the shallow neural networks, DNN can build 
more complex models with relatively low complexity. From the 
experiment conducted in [14], the networks can achieve the 
same accuracy with relatively low complexity. However, when 
PA exhibits complicated nonlinear characteristics and deep 
memory effects, it is difficult to achieve low complexity 
modeling performance with DNN. In addition, their 
implementation demands excessive signal processing resources 
as the signal bandwidth gets wider. 

To further reduce the complexity of DNN, CNN and RNN 
are alternative methods. However, regression algorithms based 
on RNNs learning were originally designed for natural speech 
processing. If they are used for modeling and linearizing of the 
PAs, they seem to have high complexity. Also, the weight 
sharing structure of the CNN network has a remarkable effect 
in reducing the complexity of the model.  

III. REAL-VALUED TIME-DELAY CONVOLUTIONAL NEURAL 

NETWORK 

The proposed RVTDCNN model structure is shown in Fig. 2. 
The RVTDCNN structure includes four layers, namely one 
input layer, one pre-designed filter layer, one fully connected 
(FC) layer, and one output layer. The pre-designed filter layer is 

constructed using a convolutional layer and is used to capture in 
an effective manner the important features and characteristics 
of the input data. Due to the characteristics of the weight 
sharing and data dimensionality reduction of the convolution 
kernel in the pre-designed filter structure, the input information 
can be extracted at a small network scale. The dimensions of 
each convolution kernel can be designed to yield low 
computation complexity while maintaining a good model’s 
prediction performance. After the pre-designed filter layer, a 
fully connected layer is used to integrate valid features. The 
final output layer consists of two neurons with a linear 
activation function, corresponding to the I/Q components of the 
samples. 

To construct the input graph of the convolutional network, 
the input data is a two-dimensional graph, including the I/Q 
components and the envelope-dependent terms of current and 
past signals. The input matrix is expressed as follows.  
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where  inI n  and  inQ n  represent the I/Q components of the 

PA input signal  x n , respectively;  x n  denotes the 

amplitude of the current signal;  inI n i ,  inQ n i  and 

 x n i ,  1,2, ,i M   denote the corresponding terms of past 

samples, respectively; M  represents the memory depth. 
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Fig. 2. Block diagram of proposed RVTDCNN model. 
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Fig.3 Two-dimensional convolution diagram. 

The reason why the input data is arranged from a 
one-dimensional vector to a two-dimensional graph is to put it 
in a format suitable to the convolutional processing. The input 
data items corresponding to the adjacent delay signals are 
arranged adjacently, which ensures that the two-dimensional 
convolution kernel extracts the cross-terms of the differently 
delayed signals. As shown in Fig. 3, the input graph nX  is 

transformed into a volume of the feature’s map by pre-designed 
filter layer. This is accomplished by convolving the input data 
with the multiple local convolution kernels and adding bias’s 
parameters to generate the corresponding local features, as 
shown in Fig. 4. The convolution operation is expressed as 
follows. 
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where  , 1,2,...,lh l L  represents the convolution output of the 

l-th convolution kernel with the input volume data nX  arranged 

in 2D graph as illustrated in Fig. 3; L  represents the number of 

convolution kernels; c
l  represents the coefficients of the l-th 

convolution kernel;   shows the operation of convolution. 
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Fig. 4 The convolutional kernel extraction range example. 
 

The output of the convolution process is then passed through 
a nonlinear activation function to obtain the nonlinear fitting 
ability. The outputs of the activation function of the 
convolution kernel are written as 

 c c
l l lu f h b                                (3) 

where  , 1,2,...,lu l L  is the output feature maps of the l-th 

convolution kernel;  cf �  is the activation function of the 

convolution kernels. c
lb  represents the bias of the l-th 

convolution kernels. Through the pre-designed filter, the rich 
basis function features required for PA modeling are extracted, 
which is proved in the appendix. 

Then, the basis function features extracted by the pre- 
designed filter are arranged into a feature’s vector to be injected 
into the FC layer. The feature’s vector is expressed as  

 
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where m is a vector of L B C  ; the dimension of feature’s 

maps is B C . 

The output of the FC layer is obtained as follows. 
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where  , 1,2,...,ta t T  denotes the t-th neuron output; 

T represents the number of neurons in the FC layer; f
ti  and 

f
tb  represent weights and bias, respectively;  ff �  is the 

activation function in the FC layer. 
Finally, the output layer weights and sums the output 

characteristics of the FC layer to acquire the network output. To 
ensure continuous values for the output data, we adjust the 

activation function, of , of the output layer by setting it as a 

linear function y x . 
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where  outI n  and  outQ n  represent the neuron output in the 

output layer, which correspond to the prediction of the I/Q 

components of the output sample.  1 2 1 2, , ,o o o o
t t b b  represents the 

weights and biases of the output layer. 
The label data contains I/Q components of the output 

samples. The output data vector is represented as 

   ,
T

n out outY I n Q n                               (7) 

where  outI n  and  outQ n  represent the I/Q components of the 

PA output signal  y n , respectively.  

IV. ANALYSIS OF RVTDCNN BEHAVIOR MODEL 

A. Training, Validation, and Testing of RVTDCNN 

The input and output signals of PA are sampled and saved in 
the random access memory (RAM), and then the RVTDCNN 
model is trained. We first train all parameters 

 , , , , ,c c f f o o
k k k k k k kb b b     of the RVTDCNN model with the 

Adam optimization algorithm [44]. The trained convolutional 
layer is used as a pre-designed filter to extract the features of 
the input data. Due to the extraction effect of the pre-designed 
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filter on the basis function, only a simple fully connected layer 
can be used to fit the behavioral characteristics of the PA. 
Therefore, during the modeling, to fix the parameters of the 

pre-designed filter, only the parameters  , , ,f f f o o
k k k k kb b   of 

the fully connected layer and the output layer need to be 
adjusted to use the Levenberg- Marquardt (LM) algorithm [45]. 

The goal of network training is to minimize the error between 
the label (measured output) data and the RVTDCNN model 
output determined in the forward path by updating the 
parameters of epoch k  until convergence of the network. In the 

forward path, we define the mean square error (MSE) as a cost 
function, which can be expressed as  
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where  outI n  and  outQ n  represent the output of the 

RVTDCNN model, respectively;  outI n  and  outQ n  represent 

the I/Q components of the output samples, respectively; N  is 

the length of the training data. 
In this paper, 7,000 sets of modeling data are used for the 

modeling of RVTDCNN. Each set of modeling data contains 
input data and label data (measured output). The input data is a 
two-dimensional graph with a dimension of 5 M , where M  

is the memory depth, as shown in Eq. (1). The label data is a 
vector with a dimension of 2 1  and is composed of the I/Q 
components of the PA output, as shown in Eq. (7). We divide 
the modeling data into the training set and test set according to 
the ratio of 3:2. Therefore, the training set contains 4,200 sets of 
modeling data, and the test set contains 2,800 sets of modeling 
data. The training set is used to train the model, and the unseen 
test set is used to test the final model to verify the generalization 
ability of the model. The modeling performance is described by 
normalized mean square error (NMSE). 

          
      

2 2

1

2 2

1

1

10 lg
1

N

out out out out
n

N

out out
n

I n I n Q n Q n
N

NMSE

I n Q n
N





   

 






 (9) 

In the Adam optimization algorithm, the initialization 
parameters 1  and 2  are used to control the exponential 

decay rate of moving averages of the gradient and the squared 
gradient, which are required to be close to 1. Through 
experimental verification, this paper sets the parameters to 

default values 1 20.9, 0.999   . Initialized 1st moment vector 

0  and 2st moment vector 0  are often set to 0 0  , 0 0  . 

The constant   is used to prevent 2st moment vector from being 

0. This paper sets   to the default value of 810 . We analyzed 

the cost function values and corresponding NMSE performance 
at different learning rates, as shown in Table I. It can be found 
from Table I that when the learning rate is 31 10 , the NMSE 

performance is almost optimal, and the corresponding MSE is 
71.24 10 . At this time, the learning rate is also the choice of 

the fastest training speed at the best performance. Therefore, 
the learning rate is set to 31 10 , and the threshold for the cost 

function is set to 71.2 10 . The training process of the 

RVTDCNN model is shown in algorithm 1. 

TABLE I 
THE COST FUNCTION AND NMSE AT DIFFERENT LEARNING RATES 

Learning Rate 21 10  35 10  31 10  45 10  41 10  

MSE 71.75 10  71.49 10  71.24 10  71.14 10  71.03 10  

NMSE (dB) -35.13 -35.82 -36.44 -36.55 -36.63 

 

Algorithm 1 Training of the RVTDCNN model 

Definition: 

1. Determine the network structure of the RVTDCNN model; 

2. Get 4,200 sets of training data including input data and label data; 

3. Define the cost function  mseE  of the RVTDCNN network; 

4. Define the convergence threshold 7
0 1.2 10E   of the cost 

function. 
Extraction of the Pre-designed Filter: 

1. Initialization: 
1) Set the learning rate 310  , and the exponential decay 

rates 1 20.9, 0.999   ; 
2) Initialize 1st moment vector 0 0  and 2st moment vector 0 0  ; 
3) Set the constant 810  ; 

2. Training the RVTDCNN model: 

  Loop: k=1, 2, …, 20,0000 

1) Calculate the network output from Eq. (6) and the cost function 

from Eq. (8); 

2) Judgment: if performance requirements are met, exit the loop; 
3) Calculate partial derivative of the objective function to 

coefficients
 1

1

mse k
k

k

E
g













; 

4) Update biased first and second moment 
estimate  1 1 11k k kg        ,   2

2 1 21k k kg        ; 
5) Get bias-corrected first and second moment 

estimate  1
ˆ 1 k

k k    ,  2
ˆ 1 k

k k    ; 

TABLE II 
THE MODELING PERFORMANCES UNDER DIFFERENT CONVOLUTION KERNEL SCALES 

Series 
No. 

Size of 
conv kernel 

Num. of 
conv kernel 

Num. of 
model coef 

NMSE 
(dB) 

ACPR (dB) 
(-/+20MHz) 

Series 
No. 

Size of 
conv kernel 

Num. of  
conv kernel 

Num. of 
model coef 

NMSE 
(dB) 

ACPR (dB) 
(-/+20MHz) 

1 2*1*1 1 385 -34.29 -44.49/-44.51 13 3*1*1 1 306 -33.81 -44.21/-43.79 
2 2*1*1 2 708 -35.90 -45.12/-45.33 14 3*1*1 2 550 -34.98 -45.11/-44.76 
3 2*1*1 3 1031 -36.63 -45.89/-46.04 15 3*1*1 3 794 -36.43 -45.68/-45.74 
4 2*1*1 4 1354 -36.72 -45.86/-46.13 16 3*1*1 4 1038 -36.30 -45.32/-45.79 
5 2*2*1 1 307 -32.52 -43.96/-43.83 17 3*2*1 1 249 -32.19 -43.44/-43.48 
6 2*2*1 2 552 -36.22 -45.41/-45.59 18 3*2*1 2 436 -36.27 -45.38/-45.57 
7 2*2*1 3 797 -36.42 -45.59/-45.96 19 3*2*1 3 623 -36.48 -45.68/-45.92 
8 2*2*1 4 1042 -36.39 -45.57/-45.78 20 3*2*1 4 810 -36.39 -45.59/-45.67 
9 2*3*1 1 229 -32.34 -43.68/-43.54 21 3*3*1 1 192 -32.16 -43.31/-43.58 

10 2*3*1 2 396 -36.41 -45.68/-45.87 22 3*3*1 2 322 -35.07 -45.19/-44.88 
11 2*3*1 3 563 -36.29 -45.44/-45.32 23 3*3*1 3 452 -36.64 -45.99/-45.94 
12 2*3*1 4 730 -36.42 -45.55/-45.87 24 3*3*1 4 582 -36.71 -45.87/-46.21 
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6) Update coefficients  1
ˆˆk k k k         . 

3. Save convolutional layer coefficients c and define them as 
pre-designed filter coefficients. 
PA Modeling: 

Training the RVTDCNN model: 

Loop: l=1, 2, …, 200 
1) Calculate the pre-designed filter output from Eq. (4) using the 

coefficients c ; 

2) Calculate model output and cost function; 

3) Judgment: if performance requirements are met, exit the loop; 

4) Update network coefficients using LM algorithm; 

End 

To get the desired modeling performance, we need to decide 
the specific parameters of RVTDCNN. The 100 MHz OFDM 
input signal is taken as an example for description. The peak to 
average power ratio (PAPR) of the OFDM signal is 10.4 dB. 
The test PA is a Doherty PA. The small-signal gain of the PA is 
28 dB, and the saturation power is 44 dBm. The choice of input 
data affects modeling performance and model complexity. An 
inappropriate input dimension of input data will increase the 
model coefficients. According to paper [19], the combination 

of the components I , Q ,      
2 3

, ,x n x n x n  is the best choice 

of the input signal to the NN yielding low  model complexity 
and good performance. Based on the determined input data, the 
appropriate size of the convolution kernel becomes a factor 
affecting the modeling performance. The modeling 
performance and ACPR performance in DPD under different 
sizes and number of the convolution kernels was verified, and 
the results are shown in Table II. To decouple the effects of the 
FC layer and the pre-designed filter settings, the number of 
neurons in the FC layer is set to 20, which can provide 
sufficient network modeling capacity at different convolution 
kernel sizes. At this time, the modeling performance of the 
RVTDCNN model is only affected by the number and size of 
convolution kernels. It was found that the convolution kernels 
number significantly affects the modeling performance. If the 
convolution kernel number is equal to or less than 2, the 
model’s NMSE performance increases with the increase of the 
convolution kernel number, regardless of the size of the 
convolution kernel. If the convolution kernel number exceeds 3, 
the NMSE performance does not increase significantly with the 
increase of the convolution kernel number. This can be 
explained by the fact that few convolution kernels cannot fully 
extract the features that reside in the input data. Meanwhile, 
when the convolution kernel number is kept constant, the size 
of the convolution kernel significantly affects the RVTDCNN 
model coefficient number. When the size of the convolution 
kernel is 3*3*1, the number of model coefficients is relatively 
small, and the NMSE performance is also quite good. The 
ACPR performance shows the same trend. Therefore, 
considering the modeling performance and model complexity, 
the convolution layer contains 3 convolution kernels of 3*3*1. 
The results in Table II correspond to the PA used in this paper. 
For different PAs, the optimal size and number of convolution 
kernels can be obtained through the scheme in our paper. 

The neuron number in the FC layer is also an important 
factor affecting modeling performance and model complexity. 

To obtain the minimum number of neurons in the FC layer that 
can achieve the required performance, based on the determined 
input data and pre-designed filter structure, the modeling 
performance under the different neuron number in the FC layer 
was verified, and the results are shown in Fig. 5. It can be found 
that when the number of neurons is less than 6, the NMSE 
performance of the model will drop dramatically, meaning that 
few neurons cannot provide the required network modeling 
capacity. When the number of neurons is greater than 6, the 
NMSE performance of the model will not be significantly 
improved. Considering the model complexity and modeling 
performance, the neuron number in the FC layer was 
determined to be 6. 
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Fig. 5 NMSE performance under different neuron number in FC layer. 

  
The activation functions commonly used in CNN are the 

sigmoid function, the Rectified Linear Unit (ReLU) function, 
the exponential linear unit (elu), the Leaky ReLU and the 
hyperbolic tangent sigmoid (Tanh) function, which are 
respectively defined in Eq. (10). To get the best modeling 
performance, the functions mentioned above were used to train 
the RVTDCNN model, and the results are shown in Table III, 
which can be summarized as the Tanh function solves the 
problem better than others. 

 

   

 
 
 

1

1

Re max 0,

, 0

1 , 0

_ ReLU max( , )

exp(2 ) 1
tanh( )

exp(2 ) 1

x

x
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e

LU x x

x if x
Elu x

e if x

Leaky x x x

x
x

x






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




 

 








                          (10) 

TABLE III 
THE NMSE PERFORMANCE OF DIFFERENT ACTIVATION FUNCTION 

Activation function NMSE(dB) 

sigmoid -34.75 
ReLU -33.86 

elu -35.21 
Leakly ReLU -33.53 

Tanh -36.44 

B. Complexity analysis of RVTDCNN 

The complexity analysis aims to evaluate the capability of 
different models to assess if the training procedure of 
RVTDCNN is simpler than other typical model models. In 
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terms of the model complexity, it refers to both the number of 
coefficients and the argument floating-point operations 
(FLOPs). The comparison of complexity, including the total 
number of coefficients of the network structure and the FLOPs, 
is shown in Table IV. Based on the theory and experimental 
data, RVTDCNN proposed in this paper has superior 
performance than traditional models for its convolution 
calculation. The following is a specific calculation process for 
the complexity of RVTDCNN. 

Based on RVTDCNN, it can be stated that the convolution 
structure decreases the model size, which makes the extraction 
of the model’s features more efficient. Compared to the 
standard feedforward network, the coefficient number of the 
convolutional structure to generate the same feature points is 
much less due to the weight sharing feature, which reduces the 
coefficient complexity of the RVTDCNN model. The total 
number of coefficients is equal to the sum of the weight number 
and the bias number between layers. Thus, the number of 
coefficients of the pre-designed filter layer can be calculated as 
follows. 

conv conv convP W B

r s z L L

 

    
                          (11) 

where the kernel size is r s z  , the number of kernels is L . 

The coefficient number of the FC layer can be calculated as 
follows. 

fc fc fcP W B

B C L T T

 

    
                      (12) 

where B C L   denotes the size of the output tensor of the 

pre-designed filter, T is the number of neurons of the FC layer. 
The number of coefficients of the output layer can be 

obtained as follows. 

out out out

out out

P W B

T T T

 

  
                        (13) 

where outT represents the neuron number of the output layer.  

In summary, the number of coefficients of RVTDCNN can 
be calculated as follows. 

TDCNN conv fc outP P P P                       (14) 

For a typical generalized memory polynomial (GMP) model, 
the complex coefficient number of the model represents the 
number of basis function terms considered. The number of real 
coefficients of the GMP model can be expressed as. 

2 2 2GMP a a b b b c c cP K L K L M K L M                    (15) 

where ,a aK L  are the index for aligned signal and envelope; 

, ,b b bK L M  are the index for signal and lagging envelope; 

, ,c c cK L M   are the index for signal and leading envelope. 

The ARVTDNN in [19], the RVTDNN in [15] and the DNN 
model in [14] are all fully connected networks. The coefficient 
number of the fully connected networks can be obtained as 
follows. 

 
1

1 1

1

1
2

1
I

MNNs i i
i

P N N


                       (16) 

where 1iN  means the neurons of the i1-th layer, 1I  means the 

number of layers ( 1 3I  , including the input and output layer). 

For the LSTM model in [41], the number of model 
coefficients of the LSTM layer is 

 4 1LSTM inP I N I                         (17) 

where inN  means the input number of the LSTM layer at each 

moment; I is the number of neurons in the LSTM layer. 
Except for the total number of the coefficients, the argument 

FLOPs are also introduced to assess the network complexity. 
For the convolutional process, considering the complexity of 
the activation function, the formula for calculating the number 
of FLOPs can be derived as follows. 

2 13convFLOPs rsz BCL BCL                    (18) 

For the FC layer in the RVTDCNN model, the FLOPs can be 
calculated as follows. 

 2 13fcFLOPs B C L T T                     (19) 

TABLE IV 
THE COMPLEXITY CALCULATIONS FOR DIFFERENT MODELS 

Model 
category 

Model 
The number of coefficients FLOPs(Computation complexity) 

Formula Parameter Description Formula Parameter Description 

Traditional 
model 

GMP 
in [46] 

2
2
2

a a

b b b

c c c

K L
K L M
K L M


  

,a aK L : index for aligned signal and envelope 

, ,b b bK L M : index for signal and lagging envelope 

, ,c c cK L M : index for signal and leading envelope 

8 8
8 2

a a b b b

c c c

K L K L M
K L M


 

 

,a aK L : index for aligned signal and envelope 

, ,b b bK L M : index for signal and lagging envelope 

, ,c c cK L M : index for signal and leading envelope 

Shallow 
NNs 

ARVTDNN 
in [19] 1

1

( 1)

( 1)

i

o

N N

N N



 
 

iN : Number of neurons in the input layer 

1N : Number of neurons in the hidden layer 

oN : Number of neurons in the output layer 
The number of hidden layers is 1 

1 1

1
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N N N

N N


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iN : Number of neurons in the input layer 

1N : Number of neurons in the hidden layer 

oN : Number of neurons in the output layer 
The number of hidden layers is 1 

RVTDNN in 
[15] 

DNN DNN in [14]  
1

1

2

( 1)

1

( 1)

i
F
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f

F o
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N N

N N




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

 
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iN : Number of neurons in the input layer 

fN : Number of neurons in the f-th hidden layer 
F : The number of hidden layers 

oN : Number of neurons in the output layer 
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iN : Number of neurons in the input layer 

fN : Number of neurons in the f-th hidden layer 
F : The number of hidden layers 

oN : Number of neurons in the output layer 

RNN LSTM in [41] 
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I : Number of neurons in the LSTM layer 

fN : Number of neurons in the f-th hidden layer 
F : The number of hidden layers 

oN : Number of neurons in the output layer 
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iN : Number of neurons in the input layer 
M : Memory depth 
I : Number of neurons in the LSTM layer 

fN : Number of neurons in the f-th hidden layer 
F : The number of hidden layers 

oN : Number of neurons in the output layer 

CNN RVTDCNN conv fc outP P P   
convP : Coefficient number of pre-designed filter 

fcP : Coefficient number of fully connected layer 

outP : Coefficient number of output layer 
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convFLOPs : FLOPs number of pre-designed filter 

fcFLOPs : FLOPs number of fully connected layer 

outFLOPs : FLOPs number of output layer 
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For the output layer in the RVTDCNN model, the FLOPs can 
be calculated as follows. 

4outFLOPs T                             (20) 

The FLOPs of the fully connected networks can be obtained 
as follows. 

1

1 1 1 1

1

1
2

2
I

MNNs i i i i
i

FLOPs N N K N


                      (21) 

where 
1iK  is the FLOPs that calculate the activation function of 

the i1-th layer. 
For the LSTM model in [41], considering the complexity of 

the activation function, the FLOPs of the LSTM layer is 

 8 8 71LSTM inFLOP I N I                          (22) 

According to the above formula, the calculation formulas of 
the complexity of the RVTDCNN model and other models are 
listed in Table VI. 

V. EXPERIMENTAL SETUP 

The experimental setup in Fig. 6 is used to evaluate the 
linearization performance of the proposed model. The test 
signal is a 100 MHz OFDM signal with a PAPR of 10.4 dB, 
which is generated by MATLAB on a personal computer (PC). 
The OFDM signal is compounded of multiple OFDM symbols, 
generated by 16-QAM symbols modulated onto 64 subcarriers 
and then filtered by a raised-cosine with the roll-off factor of 
0.1. The test signal was first downloaded into the arbitrary 
waveform generator (AWG) 81180A. Then, the AWG 
transmits the generated baseband signal to the performance 
signal generator (PSG) E8267D through cable, which 
implements digital-to-analog (DAC) conversion and 
frequency-up conversion. The modulation frequency in PSG is 
2.14-GHz. Then, the RF signal generated by PSG is fed into 
PA.  

The PA output signal is fed into the coupler, whose output is 
connected to a high-power load. In the feedback loop, the 
output of the coupler is captured through the oscilloscope 
(MSO) 9404A. Then, the Keysight 89600 Vector Signal 
Analyzer (VSA) software running on the MSO analyzes the 
captured RF input signal, including frequency-down 
conversion and analog-to-digital (ADC) conversion. The 
sampling rate is set to 625-MHz. Then, the output baseband 
signal is captured by VSA and downloaded to the PC. The 
acquired input and output signals are processed in the Python 
software in a PC to construct the behavior model of PA. The 
3.5.2 version of Python used is installed in the Windows 
environment, using the 2017.3.4 version of PyCharm as its 
integrated development environment. 

PA

Trigger

100MHZ 
ref

Coupler

LAN

AWG
(Agilent 81180A)

PSG
(Agilent E8267D)

Oscillascope
(Agilent MSO9404A)PC with Python

LAN

 Fig. 
6. Experimental setup. 

VI. MEASUREMENT RESULTS 

A. Modeling Performance 

RVTDCNN, as shown in Fig. 2, is used to illustrate the 
performance of this behavioral model. The proposed modeling 
method and other modeling methods are evaluated herein using 
the NMSE performance in Eq. (9) and ACPR performance in 
DPD. The optimal network structure of different methods for 
100MHz is shown in Table V. 

TABLE V 
NETWORK STRUCTURE OF DIFFERENT METHODS (M=3). 

Parameter Settings 
PA 
Saturation power 
Frequency 
Center frequency 
Small-signal gain (SSG) 
Output backoff (OBO) 
Power added efficiency (PAE) 
Output power at 1dB compression 

RVTDCNN 
Input data 
Num. of input neuron 
Num. of convolution kernels 
Size of convolution kernels 
Activation (Convolution layer) 
Num. of neurons in FC layer 
Activation (FC layer) 
Num. of output neuron 

ARVTDNN 
Input data 
Num. of input neuron 
Num. of neurons in the hidden layer 
Activation (hidden layer) 
Num. of output neuron 

RVTDNN 
Input data 
Num. of input neuron 
Num. of neurons in the hidden layer 
Activation (hidden layer) 
Num. of output neuron 

DNN 
Input data 
Hidden layer structure 
Activation (hidden layer) 
Num. of output neuron 

GMP 
The index arrays for aligned signal 
and envelope 
The index arrays for signal and 
lagging envelope 
index arrays for signal and leading 
envelope 

LSTM 
Input data 
Num. of input neuron 
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Num. of neurons in the LSTM layer 
Num. of neurons in FC layer 
Activation (FC layer) 
Num. of output neuron 

8 
[7,5] 
‘ReLU’ 
2 

Fig. 7 shows the convergence curve of the RVTDCNN 
model training process. As shown in Algorithm 1, the threshold 

value of the cost function is set to 71.2 10 . When the cost 

function value of the network is less than the threshold, the 
network converges. It was found that the model convergence 
requires only 83 iterations (LM algorithm), so the RVTDCNN 
model has less training complexity. At the same time, the 
model converges synchronously on the training set and the test 
set, and MSE is almost the same, despite that the test data has 
never been used in training. Therefore, the model does not have 
overfitting problems. The NMSE performance of the model on 
the training set and test set is about -36.4 dB. Therefore, 
RVTDCNN has good generality for PA modeling. 
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Fig. 7. Convergence curve of the training process. 
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Fig. 8. Spectral comparison of modeling errors between RVTDCNN and other 
models at 100 MHz OFDM source signal. 

Fig.8 compares the spectrum of modeling errors between the 
RVTDCNN model and other typical models at 100 MHz 
OFDM source signal. Modeling error is defined as the 
difference between model prediction output and PA output, 
which represents the modeling accuracy of the model. It can be 
seen from the figure that the error spectrum of RVTDCNN 
model is lower than -40 dB both out-of-band and in-band, 

which shows the effectiveness of the proposed method. 
Meanwhile, the error spectrum of the RVTDCNN model is 
lower than that of the GMP and RVTDNN model both 
out-of-band and in-band. Compared with the DNN model, the 
ARVTDNN and the LSTM model, the modeling performance 
of the proposed RVTDCNN model is also not reduced, which 
verifies the superiority of the proposed method in modeling 
performance.  

DPD is one of the most effective ways to alleviate the 
nonlinearity and memory effects of PA [2]. The DPD model is 
the inverse model of PA. Based on the indirect learning 
structure [19], the DPD can be implemented by placing the 
RVTDCNN model on the main path, as shown in Fig. 9. Then, 
the trained DPD model is used to update the DPD on the main 
path for the linearization of the PA. The input data of the DPD 
model is a two-dimensional matrix as shown in Eq. (1), 
including the I/Q components and envelope-dependent terms of 
the current and past signals of the PA output. The label data of 
the DPD model is the I/Q components of the input signal, as 
shown in Eq. (7). Take the signal of 100MHz as an example, 
when implementing DPD, the parameters and training 
methodology of the RVTDCNN model are the same as those 
for PA modeling. 

Fig. 10 shows the output spectrum after the linearization of 
the PA using the RVTDCNN model at 100 MHz OFDM source 
signal. The same dimension was used to derive the inverse 
model, and it was found that the RVTDCNN inverse model 
(DPD model) has a significant effect in reducing the PA 
distortion when cascaded with the nonlinear PA. Using 
RVTDCNN to linearize the PA, the ACPR performance is 
reduced from -31 dBc to -46 dBc.  
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Fig. 9. The diagram of the proposed DPD architecture. 
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Fig. 10. Linearization performance of the PA using RVTDCNN at 100MHz 
OFDM source signal. 
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B. Comparison of Modeling Performance with Various 
Methods 

To prove the superiority of the RVTDCNN model, Table VI 
compares the NMSE performance and ACPR performance of 
DPD with the proposed modeling method and other methods, 
where the experimental results are based on the optimal 
dimension of the model structure. The structure and model 
dimensions of other models have been set to yield the best 
performance, as shown in Table V. The best NMSE value that 
the traditional GMP model can achieve is -33.19 dB, and the 
corresponding number of real model coefficients is 214. The 
results show that RVTDCNN can improve NMSE performance 
by about 3 dB compared to the traditional GMP model with 
about one-third less in the number of the model’s coefficients 
when implemented in digital processors. Compared with the 
RVTDNN model, the RVTDCNN model can improve NMSE 
by about 1.3 dB with fewer model coefficients and FLOPs. It 
can be interpreted as that when the input contains only the I/Q 
components of the current and past signals, the single hidden 
layer network cannot generate sufficiently rich basis functions 
features, resulting in poor modeling performance [19]. 
Meanwhile, the RVTDCNN model can lead to almost the same 
NMSE performance with the ARVTDNN model, the DNN 
model and the LSTM model but with less than half of the 
required number of coefficients, as shown in Table VI. 

TABLE VI 
THE MODELING PERFORMANCE AND COMPLEXITY OF VARIOUS METHOD 

 
FLOPs 

(/sample) 
Num. of model 

coefficients 
NMSE 
(dB) 

ACPR (dB) 
(-/+20MHz) 

GMP in [46] 854 214 -33.19 -44.09/-43.65 
ARVTDNN in [19] 1008 393 -36.47 -46.01/-45.29 
RVTDNN in [15] 1155 387 -35.09 -45.74/-44.79 

DNN in [14] 2306 801 -36.42 -45.63/-45.60 
LSTM in [41] 5034 467 -36.27 -45.54/-45.49 
RVTDCNN 876 158 -36.44 -45.87/-46.11 

 
Fig.11 shows the complexity comparison between the 

RVTDCNN model and other models when obtaining similar 
modeling performance. At this time, the ARVTDNN model, 
DNN model, LSTM model, and the proposed RVTDCNN 
model have similar modeling performance, and the NMSE 
performance is about -36.30 dB. The GMP model and the 
RVTDNN model perform best modeling performance, and the 
NMSEs are -33.19 dB and -35.09 dB, respectively. It can be 
found that the proposed method has a significant decrease in the 
number of model coefficients and the number of FLOPs due to 
the weight sharing feature, while the modeling performance 
does not decrease. 
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Fig. 11 Comparison of the complexity of the proposed RVTDCNN model and 
other models under similar modeling performance. 

 
To further verify the performance of the RVTDCNN model 

under different transmitter’s hardware impairment conditions, 
we evaluate three cases of the transmitter, as shown in Table 
VII. Case 1 indicates that only the nonlinear distortion of the 
PA is considered in the transmission chain. Case 2 indicates the 
existence of both the PA nonlinear distortion and I/Q imbalance. 
In Case 3, PA nonlinear distortion, I/Q imbalance and DC 
offset are included in the transmission chain. The specific 
distortion level is shown in Table VII.  

TABLE VII 
DIFFERENT CASED OF SIGNAL DISTORTION AT TRANSMITTER 
 Various Distortions Distortion Level 

Case 1 
PA nonlinearity: Yes 
I/Q imbalance: No 
DC offset: No 

PA nonlinearity: 3 dB gain 
compression. 

Case 2 
PA nonlinearity: Yes 
I/Q imbalance: Yes 
DC offset: No 

PA nonlinearity: Same as Case 1; 
I/Q imbalance:1 dB gain imbalance 
and 3-degree phase imbalance 

Case3 
PA nonlinearity: Yes 
I/Q imbalance: Yes 
DC offset: Yes 

PA nonlinearity: Same as Case 1; 
I/Q imbalance: Same as Case 2; 
DC offset: 3% for I and 5% for Q. 

Table VIII shows the NMSE and ACPR of the RVTDCNN 
model under different cases of the transmitter. It was found that 
RVTDCNN shows good modeling performance in case 1 
because the system only contains the nonlinear distortion of the 
PA at this time. Meanwhile, RVTDCNN also shows superior 
performance in NMSE and ACPR performance for case 2 and 
case 3. The reason is that RVTDCNN can also eliminate the 
imperfections of transmitter besides PA’s nonlinearity, such as 
DC offset and I/Q imbalance. 

TABLE VIII 
THE NMSE AND ACPR PERFORMANCE OF RVTDCNN MODEL UNDER 

DIFFERENT CASES 
 NMSE (dB) ACPR (dB) (-/+20MHz) 

Case 1 -36.44 -45.87/-46.11 

Case 2 -36.07 -45.57/-45.89 

Case 3 -35.89 -45.37/-45.48 

Fig. 12 compares the gain and phase characteristics of the PA 
output between 100 MHz input signal and 200 MHz input 
signal. It can be found that the PA output of the 200 MHz input 
signal exhibits much stronger nonlinearity and memory effect 
than that of the 100M input signal. 
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(a) 

 
(b) 

Fig. 12. Gain characteristics and phase characteristics of the PA output under 
different bandwidths. (a) Gain characteristics. (b) Phase characteristics. 
 

Table IX shows the model complexity and modeling 
performance of RVTDCNN under different signal bandwidths. 
It can be deduced that as the signal bandwidth increases, the 
length of memory required for modeling increases accordingly. 
The same network structure is used to model PAs with different 
signal bandwidths, resulting in good modeling performance. If 
the signal bandwidth is further increased, we can achieve good 
modeling performance by increasing the number of 
convolution kernels and neurons in the fully connected layer. It 
can be found that for the traditional ANN models, such as 
ARVTDNN, the strong memory effect leads to a rapid increase 
in the model complexity. The memory depth increased from 2 
to 5, and the number of the model coefficients of ARVTDNN 
increases to 563. For the proposed model, the memory depth 
increases from 2 to 5, and the number of model’s coefficients is 
266 that can be considered as reasonable, which is half the 
number of model coefficients of the ANN model. The 
coefficient number of the LSTM model does not increase with 
the signal bandwidth, but it is still about twice the coefficient 
number of RVTDCNN model. In other words, with the increase 
in signal bandwidth, the proposed model has more advantages 
in model complexity and fewer model coefficients. At the same 

time, the ACPR performance of RVTDCNN also verified this 
conclusion. 
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Fig. 13. Linearization performance of the PA using RVTDCNN at 200MHz 
OFDM source signal. 
 

Fig. 13 shows the output spectrum after the linearization of 
the PA using the RVTDCNN model at the 200MHz OFDM 
source signal. The results show that under a wide signal 
bandwidth, the RVTDCNN model still has a significant 
linearization effect on the power amplifier. 

VII. CONCLUSION 

In this paper, RVTDCNN is proposed for modeling the 
nonlinear and memory effects of wideband PA. RVTDCNN 
extracts the effective features of the two-dimensional input 
graph data with a convolutional structure. Doherty PA, with an 
OFDM signal from 40 MHz to 200 MHz, is tested to verify the 
effectiveness of the RVTDCNN model. For the PA with 100 
MHz under different cases, the NMSE can reach about -36 dB, 
with an ACPR around -46 dBc with DPD. The results show that 
the RVTDCNN still has a good modeling effect when there are 
I/Q imbalance and DC offset, which verifies that the proposed 
model has strong adaptability. Compared with the existing 
shallow NN and DNN in terms of the number of model 
coefficients and FLOPs, the proposed RVTDCNN is verified to 
reduce the number of model coefficients by better than 50% 
under different signal bandwidth. 

APPENDIX 

Extraction Effect of Pre-Designed Filter on Basis Function 

Because the pre-designed filter can completely capture 
the basis function features required for modeling, the 
number of neurons in fully connected layer required is 

TABLE IX 
THE MODELING PERFORMANCE AND COMPLEXITY OF THE RVTDCNN MODEL UNDER DIFFERENT INPUT SIGNAL BANDWIDTH 

Input  
Signal  

Bandwidth 

Memory  
Depth 

ARVTDNN in [19] DNN model in [14] LSTM in [41] RVTDCNN model 
Num. of  

model coef 
NMSE 
(dB) 

Num. of  
model coef 

NMSE 
(dB) 

Num. of  
Model coef 

NMSE 
(dB) 

Num. of 
model coef 

NMSE 
 (dB) 

40-MHz 2 308 -36.78 767 -36.60 467 -36.66 104 -36.87 
60-MHz 3 393 -36.71 801 -36.43 467 -36.40 158 -36.62 
100-MHz 3 393 -36.47 801 -36.42 467 -36.27 158 -36.44 
200-MHz 5 563 -36.49 869 -35.84 467 -36.13 266 -36.47 
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significantly reduced, thereby reducing the complexity of 
the model. To verify that the pre-designed filter can generate 
rich basis functions, we introduce a baseband PA model [2], 
which is expressed as follows. 

         
11 1

0 1 1

QK K
k k

k kq
k k q

y n a x n x n c x n x n q
 

  

        (A.1) 

where K and Q  are the nonlinearity order and the lagging 

cross terms index, respectively. ka and kqc are the 

coefficients of the model. For simplicity, the memory terms 
in (A.1) have been omitted 

To simplify the derivation process, the coefficients of the 
model including ka ’s and kqc ’s have been omitted in Eq. 

(A.1). Thus, Eq. (A.1) can be expanded to be as follows. 
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(A.2) 

If these items in Eq. (A.2) can be fitted by the 
pre-designed filter, the pre-designed filter can generate rich 
basis functions, and the modeling performance of the 
proposed model can reach the modeling performance of the 
model. In the pre-designed filter, the 3*3 convolution 
kernels are used to extract features from the input signal. In 
the convolution process, the stride is set to be 1 until the 
input tensors are all convolved. And the convolution process 
is shown in Fig. 4. The convolution output under different 
convolution steps represents the capture of different local 
features of the input. We take out the local input convoluted 
by the first step. 

         
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     (A.3) 

where b  is the bias. For the convenience of calculation, the 

corresponding coefficient is ignored in the formula.  
This paper deduced the item in Eq. (A.2) through the 

above local input, and the other input term with memory 
effect can be deduced through the same method. The 
convolution output described above is input into a nonlinear 
activation function to obtain the output of the pre-designed 
filter. The output 11u  can be expressed as follows. 
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where  tanh �  is the activation function given.  

The hyperbolic tangent sigmoid function can be expanded 
by the Taylor series, and the approximate output is described 
as follows. 

3 51 2
tanh( )

3 15 2
x x x x x

 
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 
              (A.5) 

Bring Eq. (A.3) into 3x , while considering the critical 
correlation items related to the justification process, ignore 
the irrelevant, redundant terms. The result will be shown in 
Eq. (A.6).  
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In summary, we combine Eq. (A.4) - Eq. (A.6), while 
omitting both the irrelevant, redundant terms and the 
multiplication factors. The output of the pre-designed filter 
can be expressed approximately using by Eq. (A.7). 
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By arranging Eq. (A.7), Eq. (A.7) can be rewritten as 
follows. 
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Comparing Eq. (A.8) and Eq. (A.2), we can find that the 
linear term, the nonlinear term, and the lagging cross-terms 
in Eq. (A.2) both exist in Eq. (A.8). Therefore, the terms 
produced by the pre-designed filter are corresponding to the 
terms of the polynomials, and more terms can be provided. 
Namely, the pre-designed filter can generate enough rich 
basis set to get an excellent performance. 
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