
Faster Stochastic Quasi-Newton Methods

Qingsong Zhang qszhang1995@gmail.com

Xidian University, Xi’an, China, and also with JD Tech.

Feihu Huang huangfeihu2018@gmail.com, feh23@pitt.edu

Department of Electrical and Computer Engineering, University of Pittsburgh, USA

Cheng Deng chdeng@mail.xidian.edu.cn

School of Electronic Engineering, Xidian University, Xi’an, China

Heng Huang heng.huang@pitt.edu

JD Finance America Corporation

University of Pittsburgh, USA

Abstract

Stochastic optimization methods have become a class of popular optimization tools in machine learning.
Especially, stochastic gradient descent (SGD) has been widely used for machine learning problems such
as training neural networks due to low per-iteration computational complexity. In fact, the Newton or
quasi-newton methods leveraging second-order information are able to achieve better solution than the
first-order methods. Thus, stochastic quasi-Newton (SQN) methods have been developed to achieve better
solution efficiently than the stochastic first-order methods by utilizing approximate second-order information.
However, the existing SQN methods still do not reach the best known stochastic first-order oracle (SFO)
complexity. To fill this gap, we propose a novel faster stochastic quasi-Newton method (SpiderSQN) based
on the variance reduced technique of SIPDER. We prove that our SpiderSQN method reaches the best
known SFO complexity of O(n+ n1/2ε−2) in the finite-sum setting to obtain an ε-first-order stationary
point. To further improve its practical performance, we incorporate SpiderSQN with different momentum
schemes. Moreover, the proposed algorithms are generalized to the online setting, and the corresponding
SFO complexity of O(ε−3) is developed, which also matches the existing best result. Extensive experiments
on benchmark datasets demonstrate that our new algorithms outperform state-of-the-art approaches for
nonconvex optimization.

Keywords: Stochastic quasi-Newton method, nonconvex optimization, variance reduction, momentum
acceleration

1. Introduction

In this paper, we focus on the following unconstrained stochastic nonconvex optimization:

min
x∈Rd

f(x) :=


Eu∼P[fu(x)] (online)

1

n

n∑
i=1

fi(x) (finite-sum)
, (P)

where x ∈ Rd corresponds to the parameters defining a model, Eu∼P[fu(x)] denotes a population risk over
u ∼ P, and fi : Rd → R denotes the loss on the i-th sample for ∀ i ∈ 1, ..., n (or i ∼ P). Problem (P)
capsules a widely range of machine learning problems such as truncated square loss Xu et al. (2018) for
regression and deep neural network Goodfellow et al. (2016). In fact, the SGD Ghadimi et al. (2016) is a
representative method to solve the problem (P) due to its per-iteration computation efficiency. Recently,
there have been many works studying SGD and its variance reduction variants, including SVRG Reddi
et al. (2016a), SAGA Reddi et al. (2016b), SCSGLei et al. (2017), SARAH Nguyen et al. (2017b), SNVRG
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Zhou et al. (2018a) and SPIDER Fang et al. (2018); Wang et al. (2019). In particular, SPIDER has been
shown in Fang et al. (2018) to achieve the SFO complexity lower bound for a certain regime. Such idea
has been extended to optimization over mainfolds in Zhou et al. (2019b), zeroth-order optimization in
Huang et al.; Ji et al. (2019), cubic-regularized method in Zhou and Gu (2020), and alternating direction
method of multipliers in Huang et al. (2019).

Although SGD is very effective, its performance maybe poor owing that it only utilizes the first-order
information. In contrast, Newton’s method utilizing the Hessian information is more robust and can
achieve better accuracy Sohl-Dickstein et al. (2014); Allen-Zhu (2018), while it is extremely time consuming
to compute Hessian matrix and its inverse. Therefore, many works have been proposed toward designing
better SGD methods integrated with approximate Hessian information, i.e., the SQN methods. There
have been many works focusing on developing SQN methods such as SGD with quasi-Newton (SGD-QN)
studied in Bordes et al. (2009) and stochastic approximation based L-BFGS proposed in Byrd et al. (2016).
Recently, some SQN methods equipped with the variance reduction technique have been developed to
alleviate the effect of variance introduced by stochastic estimator Kolte et al. (2015); Lucchi et al. (2015);
Moritz et al. (2016); Gower et al. (2016). Besides above methods concerning convex or strongly convex
problems, progresses have been made toward designing SQN methods for nonconvex cases. Wang et al.
Wang et al. (2017) analyzed the convergence guarantee of the SGD-QN for nonconvex problems, Wang et al.
Wang et al. (2018a) developed a stochastic proximal quasi-Newton for nonconvex composite optimization,
and Gao et al. Gao and Huang (2018) proposed the stochastic L-BFGS method for nonconvex sparse
learning problems.

Stochastic quasi-Newton methods inherit many appealing advantages from both SGD and quasi-Newton
methods, e.g., efficiency, robustness and better accuracy. However, existing SQN methods still do not
reach the best known SFO complexity, resulting the limited application to machine learning. It is thus
of vital importance to improve the SFO complexity of SQN methods for nonconvex optimization. For
this reason, we propose a faster SQN method (namely SpiderSQN) by leveraging the variance reduction
technique of SIPDER.

Albeit SpiderSQN achieves the optimal SFO complexity for nonconvex optimization, its practical
performance may not exhibit such optimality. Thus, we consider utilizing momentum acceleration
technology to obtain better practical performance. Moreover, to deal with cases where the number of
training samples is extremely large or even infinite, the SpiderSQN based algorithms are extended to the
online case with theoretical guarantee. To give a thorough comparison of our proposed algorithm with
existing stochastic first-order algorithms and SQN for nonconvex optimization, we summarize the SFO
complexity of the most relevant algorithms to achieve an ε-first-order stationary point in Table 1. The
main contributions of this paper are summarized as follows.

1. We propose a novel faster stochastic quasi-Newton method (SpiderSQN) for nonconvex optimization
in the form of finite-sum. Moreover, we prove that the SpiderSQN can achieve the best known
optimal SFO complexity of O(n+ n1/2ε−2) to obtain an ε-first-order stationary point.

2. We extend the SpiderSQN to the online setting, and propose the faster online SpiderSQN algorithms
for nonconvex optimization. Moreover, we prove that the online SpiderSQN achieve the best known
optimal SFO complexity of O(ε−3).

3. To improve the practical performance of the proposed methods, we apply momentum schemes to
them, which are demonstrated to have satisfactory practical effects.

4. Moreover, we prove that our SpiderSQN methods have the lower SFO complexity of O(n1/2ε−1/2),
which achieves the optimal SFO complexity of O(n1/2ε−1/2).
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Table 1: Comparison of results on SFO complexity for smooth nonconvex optimization. Note that we
omit the poly-logarithmic factors of d, n, ε. Especially, SpiderSQN-M represents SpiderSQN with
different momentum schemes.

Algorithm Finite-sum Online

SGD Ghadimi et al. (2016) O(nε−2) O(ε−4)

SVRGReddi et al. (2016a) O(n+ n
2
3 ε−2) O(ε−

10
3 )

SARAH Nguyen et al. (2017b) O(n+ ε−4) O(ε−4)

SNVRG Zhou et al. (2018a) O(n+ n
1
2 ε−2) O(ε−3)

SPIDER Fang et al. (2018); Wang et al. (2019) O(n+ n
1
2 ε−2) O(ε−3)

SQN with SGD Wang et al. (2017) O(nε−2) N/A

SQN with SVRG Wang et al. (2017) O(n+ n
2
3 ε−2) N/A

SpiderSQN (Ours) O(n+ n
1
2 ε−2) O(ε−3)

SpiderSQN-M (Ours) O(n+ n
1
2 ε−2) O(ε−3)

2. Preliminaries

In this section, some preliminaries are presented. Since finding the global minimum of problem (P) is
general NP-hard Hillar and Lim (2013), this work instead focuses on finding an ε-first-order stationary point
and studies the SFO complexity of achieving it. First, we give the necessary definitions and assumptions.

Definition 1 An ε-first-order stationary point denotes that for x uniformly drawn from x1, · · · , xK , where
K is the total number of iterations there is E‖∇f(x)‖ ≤ ε, where ε > 0 is the accuracy parameter.

Definition 2 Given a sample i (i ∈ 1, · · · , n or i ∼ P) and a point x ∈ Rd, a stochastic/incremental
first-order oracle (SFO/IFO) Reddi et al. (2016a) returns the pair (fi(x),∇fi(x)).

Assumption 1 Function f is bounded below, i.e.,

f∗ := inf
x∈Rd

f(x) > −∞. (1)

Assumption 2 Individual function fi, i = 1, . . . , n or i ∼ P is L-smooth, i.e., there exists an L > 0 such
that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd, (2)

Above two assumptions are standard in the analysis of nonconvex optimization Ghadimi and Lan (2016);
Huang et al. (2019); Huang et al., where Assumption 1 guarantees the feasibility of problem (P) and
Assumption 2 imposes smoothness on the individual loss functions.

Assumption 3 For ∀i ∈ 1, · · · , n (or i ∼ P), function fi(x) is twice continuously differentiable with
respect to x. There exists a positive constant κ such that ‖∇2fi(x)‖ ≤ κ for ∀ x.

Note that Assumption 3 is standard for SQN methods focusing on nonconvex problem Wang et al. (2017).

Assumption 4 There exist two positive constants σmin, and σmax such that

σminI � Hk � σmaxI, (3)

where Hk is the inverse Hessian approximation matrix and notation A � B with A,B ∈ Rd×d means that
A−B is positive semidefinite.
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Assumption 5 For any k ≥ 2, the random variable Hk (k ≥ 2) depends only on vk−1 and ξk

E[Hkvk|ξk, vk−1] = Hkvk, (4)

where the expectation is taken with respect to |ξk| samples generated for calculation of ∇fξk .

Assumptions 4 and 5 are commonly used for SQN methods Wang et al. (2017); Moritz et al. (2016), where
Assumption 4 shows that the matrix norm of Hk is bounded and Assumption 5 means although Hk is
generated iteratively based on historical gradient information by a random process, given vk−1 and ξk the
Hkvk is determined.

2.1 SGD Methods for Nonconvex Optimization

Stochastic first-order optimization methods have been widely used for solving machine learning tasks. As
for nonconvex optimization, a classical algorithm is the SGD Ghadimi et al. (2016) which has an overall
SFO complexity of O(ε−4) to achieve an ε-first-order stationary point. Also, a variety of SGD variants
equipped with variance reduction have been proposed such as the SVRG, SAGA, and its application to
federated learning Zhang et al.. Moreover, the corresponding SFO complexity of obtaining an ε-first-order
stationary point is O(n2/3ε−2) Reddi et al. (2016a,b). Recently, some algorithms with a new type of
stochastic variance reduction technique have been exploited, including SNVRG, SARAH and SPIDER
Nguyen et al. (2017a); Zhou et al. (2018a); Fang et al. (2018), which uses more fresh gradient information
to evaluate the gradient estimator. Therefore, take the SNVRG as an example, it has an improved SFO
complexity of min{O(n1/2ε−2),O(ε−3)} to achieve an ε-first-order stationary point.

2.2 SQN Methods For Nonconvex Optimization

Newton’s methods using Hessian information have rapid convergence rate (both in theory and practice)
Moritz et al. (2016) and are popular for solving nonconvex problems Kohler and Lucchi (2017); Zhou et al.
(2018b, 2019a). However, time consumption of computing Hessian matrix and its inverse is extremely
high. To address this problem, many quasi-Newton (QN)-based methods have been widely studied such
as BFGS, L-BFGS, and the damped L-BFGS Nocedal and Wright (2006). In this paper, we adopt the
stochastic damped L-BFGS (SdLBFGS) Wang et al. (2017) for nonconvex optimization. Let k be current
iteration, based on history information, SdLBFGS uses a two-loop recursion to generate a descent direction
dk = Hkvk without calculating inverse matrix Hk explicitly. Specially, at step 1, vector pair {sk−1, ȳk−1}
is computed as sk−1 = xk − xk−1 and ȳk−1 = vk − vk−1, and γk = max{ ȳ

>
k−1ȳk−1

s>k−1ȳk−1
, δ}, where δ is a positive

constant. At setp 2, SdLBFGS introduces a vector ŷk−1

ŷk−1 = θk−1ȳk−1 + (1− θk−1)H−1
k−1,0sk−1, k ≥ 1, (5)

where Hk,0 = γ−1
k Id×d, k ≥ 0, and θk−1 is defined as

θk−1 =

{
0.75σk−1

σk−1−s>k−1ȳk−1
, if s>k−1ȳk−1 < 0.25σk−1

1, otherwise
, (6)

where σk−1 = s>k−1H
−1
k,0sk−1. Based on {sk−1, ŷk−1}, Hkvk can be approximated through steps 3 to 10.

Importantly, SdLBFGS is a computation effective program because the whole procedure takes only
(6m + 6)d multiplications. Especially, the SdLBFGS with variance reduction is proposed Wang et al.
(2017) by incorporating SdLBFGS into SVRG. However, its best SFO complexity to obtain an ε-first-order
stationary point is O(n2/3ε−2), which is not competitive to state-of-the-art stochastic first-order methods.
Therefore, it is desirable to improve the SFO complexity of existing SQN methods.
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Algorithm 1 Core step of stochastic damped L-BFGS Wang et al. (2017)

Require: Let k be current iteration. Given the stochastic gradient vk−1 at iteration k − 1, the samples
batch ξk at iteration k and vector pairs {sj , ȳj , ρj} j = k −m, . . . , k − 2, where m is the memory size,
and u0 = vk

1: Calculate sk−1, ȳk−1 and γk
2: Calculate ŷk−1 through Eq. 6 and ρk−1 = (s>k−1ŷk−1)−1

3: for i = 0, . . . ,min{m, k − 1} − 1 do
4: Calculate µi = ρk−i−1u

>
i sk−i−1

5: Calculate ui+1 = ui − µiŷk−i−1

6: end for
7: Calculate v0 = γ−1

k up
8: for i = 0, . . . ,min{m, k − 1} − 1 do
9: Calculate νi = ρk−m+iv

>
i ŷk−m+i

10: Calculate v̄i+1 = v̄i + (µm−i−1 − νi)sk−m+i.
11: end for
Ensure: Hkvk = v̄p.

Algorithm 2 SpiderSQN for Nonconvex Optimization

Require: |ξk| , η, q,K ∈ N.
1: for k = 0, 1, . . . ,K − 1 do
2: if mod(k, q) = 0 then
3: Compute vk = ∇f(xk),
4: else
5: Sample ξk

Unif∼ {1, . . . , n}, and compute
vk = ∇fξk(xk)−∇fξk(xk−1) + vk−1.

6: end if
7: Compute dk = Hkvk through SdLBFGS Wang et al. (2017),
8: xk+1 = xk − ηdk.
9: end for

10: Output (in theory): xζ , where ζ
Unif∼ {1, . . . ,K}.

11: Output (in practice): xK .

2.3 Momentum Acceleratation for Nonconvex Optimization

Momentum acceleration scheme is a simple but widely used acceleration technique for optimization problem.
Recently, a variety of accelerated methods have been developed for nonconvex optimization. For examples,
the stochastic gradient algorithms with momentum scheme is proposed in Ghadimi and Lan (2016), which
have been proved to converge as fast as gradient descent method for nonconvex problems. Li et al. Li
et al. (2017) explored the convergence of the algorithm proposed in Yao et al. (2016) under a certain
local gradient dominance geometry for nonconvex optimization. Furthermore, Wang et al. Wang et al.
(2018c) studied the convergence to a second-order stationary point under the momentum scheme. However,
existing works hardly ever study the acceleration of the SQN method for nonconvex optimization. To this
end, this paper focuses on accelerating SQN methods with different momentum schemes.

3. Faster SQN Methods for Nonconvex Optimization

In this section, we propose a novel faster SQN method to solve the nonconvex problem (P) for finite-sum
case.
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Algorithm 3 SpiderSQN-M for Nonconvex Optimization

Require: |ξk| , q,K ∈ N, {βk}K−1
k=0 > 0.

1: Set αk = 2
k+1 for k = 0, ...,K and λk ∈ [βk, (1 + αk)βk] for k = 0, ...,K − 1.

2: Initialize y0 = x0 ∈ Rd.
3: for k = 0, 1, . . . ,K − 1 do
4: zk = (1− αk+1)yk + αk+1xk,
5: if mod(k, q) = 0 then
6: Compute vk = ∇f(zk),
7: else
8: Sample ξk

Unif∼ {1, . . . , n}, and compute
vk = ∇fξk(zk)−∇fξk(zk−1) + vk−1,

9: end if
10: Compute dk = Hkvk through SdLBFGS Wang et al. (2017),
11: xk+1 = xk − λkdk,
12: yk+1 = zk − βkdk.
13: end for
14: Output (in theory): xζ , where ζ

Unif∼ {1, . . . ,K}.
15: Output (in practice): xK .

3.1 Spider Stochastic Quasi-Newton Algorithm

To improve the SFO complexity of SQN method, a new variance reduction technique SPIDER/SpiderBoost
is adopted to control its intrinsic variance. The proposed SpiderSQN with improved SFO complexity is
shown in Algorithm 2.

At each iteration, besides evaluating the full gradient every q iterations, the stochastic gradient vk is
updated as

vk = ∇fξk(xk)−∇fξk(xk−1) + vk−1, (7)

where ∇fξk(xk) = 1
|ξk|
∑

i∈ξk ∇fi(xk) and ξk is a mini-batch where samples are uniformly sampled with

replacement. It is obvious from Eq. (7), a more fresh stochastic gradient information vk−1 is utilized
to update vk, and thus SpiderSQN has an improved SFO complexity compared with existing stochastic
quasi-Newton methods. At step 8, xk is updated by the Hessian informative descent direction.

3.2 Spider Stochastic Quasi-Newton with Momentum Scheme

To improve the pratical performance of SpiderSQN, the momentum scheme is adopted for acceleration.
The framework of SpiderSQN with momentum scheme (referred as SpiderSQNM) is shown in Algorithm 3.
The momentum scheme in Algorithm 3 refers to steps 4, 11 and 12, where variables xk and yk are updated
through the dk, and zk is a convex combination of xk and yk controlled by the momentum coefficient αk.
In this algorithm, an iteration-wise diminishing scheme is applied, where the momentum coefficient is set
as αk = 2

k+1 .

3.3 Other Momentum Acceleration Strategies

The momentum scheme adopted in Algorithm 3 is a vanilla one whose momentum coefficient αk is
iteration-wise diminishing. When the iteration k becomes larger, αk can be considerably small, leading
to a limited acceleration. Thus, other momentum acceleration strategies are explored to alleviate this
problem. Following are two powerful momentum schemes, where αk can remain relatively large after many
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Algorithm 4 SpiderSQN for Online Nonconvex Optimization

Require: |ξ0| , |ξk| , η, q,K ∈ N.
1: for k = 0, 1, . . . ,K − 1 do
2: if mod(k, q) = 0 then
3: Draw |ξ0| samples, and compute vk = ∇fξ0(zk),
4: else
5: Draw |ξk| samples, and compute

vk = ∇fξk(zk)−∇fξk(zk−1) + vk−1.
6: end if
7: Compute dk = Hkvk through SdLBFGS Wang et al. (2017),
8: xk+1 = xk − ηdk.
9: end for

10: Output (in theory): xζ , where ζ
Unif∼ {1, . . . ,K}.

11: Output (in practice): xK .

Algorithm 5 SpiderSQN-M for Online Nonconvex Optimization

Require: |ξ0| , |ξk| , q,K ∈ N, {βk}K−1
k=0 > 0.

1: Set αk = 2
k+1 for k = 0, ...,K and λk ∈ [βk, (1 + αk)βk] for k = 0, ...,K − 1.

2: Initialize y0 = x0 ∈ Rd.
3: for k = 0, 1, . . . ,K − 1 do
4: zk = (1− αk+1)yk + αk+1xk,
5: if mod(k, q) = 0 then
6: Draw |ξ0| samples, and compute vk = ∇fξ0(zk),
7: else
8: Draw |ξk| samples, and compute

vk = ∇fξk(zk)−∇fξk(zk−1) + vk−1.
9: end if

10: Compute dk = Hkvk through SdLBFGS Wang et al. (2017),
11: xk+1 = xk − λkdk,
12: yk+1 = zk − βkdk.
13: end for
14: Output (in theory): xζ , where ζ

Unif∼ {1, . . . ,K}.
15: Output (in practice): xK .

epochs. One is the epochwise-restart scheme, whose αk is set as

αk =
2

mod(k, q) + 1
, k = 0, . . . ,K − 1. (8)

As the name suggests, αk restarts at the beginning of each epoch. Another effective momentum strategy
is the epochwise-diminishing scheme with following momentum coefficient

αk =
2

dk/qe+ 1
, k = 0, . . . ,K − 1, (9)

where d·e denotes the ceiling function. As defined in Eq. (9), the momentum coefficient αk is a constant
during a fixed epoch, and will diminish slowly as k growing sharply. To obtain the variants of SpiderSQN
with above two momentum schemes, one just replace the αk in Algorithm 3 as defined.
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Table 2: Total computational complexities of Algorithms 1 to 5 in an outer loop. Especially, the results
of Algorithm 1 are obtained for q iterations, an outer loop of Algorithms 2 to 5 includes q
computations of the stochastic gradient, q calls of Algorithm 1, and one computation of the full
gradient.

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5

step complexity step complexity step complexity step complexity step complexity
1 O(d) 3 O(nd) 4 O(d) 3 O(ε−2d) 4 O(d)
2 O(d) 5 O(n1/2d) 6 O(nd) 5 O(ε−1d) 6 O(ε−2d)
3-6 O(md) 7 O(md) 8 O(n1/2d) 7 O(md) 8 O(ε−1d)
7 O(d) 8 O(d) 10 O(md) 8 O(d) 10 O(md)
8-11 O(md) – – 11-12 O(d) – – 11-12 O(d)
total O(qmd) total O(nd+ qmd) total O(nd+ qmd) total O(ε−2d+ qmd) total O(ε−2d+ qmd)

4. Faster SQN Methods for Online Nonconvex Optimization

In super large-scale learning, sample size n can be considerably large or even infinite. It is thus desirable to
design algorithms with SFO complexity independent of n. Such algorithm are referred as online (streaming)
algorithm. For this reason, we propose the online faster stochastic quasi-Newton method to solve the
online problem:

min
x∈Rd

f(x) := Eu∼P[fu(x)], (10)

where Eu∼P[fu(x)] denotes a population risk over an underlying data distribution P. Since the problem
can be perceived as having infinite samples, it is impossible to evaluate the full gradient ∇f(x) by running
across the whole dataset. The stochastic sampling thus is adopted as a surrogate strategy. Algorithm 4
shows the detail steps of the proposed online SpiderSQN algorithm.

At steps 3 and 5 the gradient is estimated over the mini-batch samples drawn from the underlying
distribution P. Especially, due to the nature of the online data flow, these samples are sampled without
replacement. The variant with vanilla momentum scheme is shown in Algorithm 5. As for the counterparts
with epochwise-restart momentum and epochwise-diminishing momentum, one just replace the αk in
Algorithm 5 with the one defined in Eqs. (8) and (9), respectively.

5. Convergence Analysis

In this section, we analyse the convergence rate of the faster stochastic quasi-Newton method and its
online version. Detailed convergence analysis can be found in the Appendix.

5.1 Convergence Analysis of Faster SQN Method

First, the convergence properties of the four SpiderSQN-type of algorithms are presented. Let Assumptions
1 to 5 hold, and the following theorems are obtained.

Theorem 3 Apply Algorithm 2 to solve the problem (P), and suppose xζ is its output. Let q = |ξk| ≡
√
n,

and η ≡ (1+
√

5)σmin

2Lσ2
max

. Then, there is xζ satisfies E‖∇f(xζ)‖ ≤ ε for any ε > 0 provided that the iterations

number K satisfies

K ≥ O
(
f(x0)− f∗

ε2

)
. (11)

Moreover, the total number of SFO calls is at most in the order of O(n+ n1/2ε−2).
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Theorem 4 Apply Algorithm 3 to solve the problem (P), and suppose zζ is its output. Let αk = 2
k+1 ,

q = |ξk| ≡
√
n, βk ≡ σmin

(3+
√

15)Lσ2
max

and λk ∈ [βk, (1 + αk)βk]. Then, there is zζ satisfies E‖∇f(zζ)‖ ≤ ε for

any ε > 0 provided that the iterations number K satisfies

K ≥ O
(
f(x0)− f∗

ε2

)
. (12)

Moreover, the total number of SFO calls is at most in the order of O(n+ n1/2ε−2).

Theorem 5 Apply the SpiderSQN with either epochwise-restart momentum (SpiderSQNMER) or epochwise-
diminishing momentum (SpiderSQNMED) to solve the problem (P), and suppose zζ is its output. Let αk
defined as Eqs. (8) and (9) for SpiderSQNMER and SpiderSQNMED, respectively. Set q = |ξk| ≡

√
n,

βk ≡ σmin

(3+
√

15)Lσ2
max

and λk ∈ [βk, (1 +αk)βk]. Then, for both algorithms there is xζ satisfies E‖∇f(xζ)‖ ≤ ε
for any ε > 0 provided that the iterations number K satisfies

K ≥ O
(
f(x0)− f∗

ε2

)
. (13)

Moreover, the total number of SFO calls is at most in the order of O(n+ n1/2ε−2).

Remark 6 There are two differences between Algorithm 3 and Algorithm 4&5: 1) Algorithm 4&5 introduce
an extra parameter, i.e. αk, because of using momentum scheme; 2) the choice of βk in Algorithm 4&5 are
different from that of η in Algorithm 3 (note that βk plays a same role as η). Algorithm 4&5 are the same
except for the choice of αk due to using different momentum schemes. Moreover, given required conditions
in Algorithm ??, the SFO complexity of Algorithm 2 and its variants with different momentum schemes to
satisfy the ε-first-order stationary condition are O(n+ n1/2ε−2), which matches the state-of-the-art results
of first-order stochastic methods.

5.2 Convergence Analysis of Online Faster SQN Method

To study the SFO complexity of the online SpiderSQN-type of algorithms we let Assumptions 1 to 5 hold,
and make an extra standard assumption (Algorithm 6).

Assumption 6 There exists a constant σ1 > 0 such that for all x ∈ Rd and all random samples u ∼ P, it
holds that Eu∼P‖∇fu(x)−∇f(x)‖2 6 σ2

1.

Assumption 6 shows that the∇fu(x) is an unbiased estimator of∇f(x) with bounded variance. Assumption
6 is a standard assumption in online optimization analysis Zhou et al. (2019c) and is for online case only.

Theorem 7 Let additional Algorithm 6 hold. Apply Algorithm 4 to solve the online optimization problem
(10). Choose any desired accuracy ε > 0 and set parameters as

q = |ξk| =
√
|ξ0| ≡

√(
ησmax

β∗
+ 2 +

L2η3σ3
max

β∗

)
2σ2

1

ε2
,

where β∗ = ησmin
2 − Lη2σ2

max
2 − η3σ3

maxL
2

2 , and let η ≡ (1+
√

5)σmin

2Lσ2
max

. Then, the output xζ of this algorithm

satisfies E‖∇f(xζ)‖ ≤ ε given that the total number of iterations K satisfies

K ≥ O
(
f(x0)− f∗

ε2

)
. (14)

Moreover, the SFO complexity is in the order of O(ε−3).
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Figure 1: Comparison among algorithms for solving nonconvex SVM problems.

Theorem 8 Let additional Algorithm 6 hold. Apply online Algorithm 5 to solve the online optimization
problem (10). Choose any desired accuracy ε > 0 and set parameters as

αk =
2

k + 1
, q = |ξk| =

√
|ξ0| ≡

√
4(1 + β/β∗)σ2

1

ε2
,

where β∗ = β(σmin
2 − 3Lβσ2

max − 3L2β2σ3
max), β ≡ σmin

(3+
√

15)Lσ2
max

. Let βk = β, λk ∈ [βk, (1 + αk)βk]. Then,

the output zζ of this algorithm satisfies E‖∇f(zζ)‖ ≤ ε provided that the total number of iterations K
satisfies

K ≥ O
(
f(x0)− f∗

ε2

)
. (15)

Moreover, the SFO complexity is in the order of O(ε−3).

Theorem 9 Let additional Algorithm 6 hold. Apply the online SpiderSQNMER or online SpiderSQNMED
to solve the problem (10). Choose any desired accuracy ε > 0, let αk defined as Eqs. (8) and (9) for online
SpiderSQNMER and online SpiderSQNMED, respectively. And set parameters as

q = |ξk| =
√
|ξ0| ≡

√
4(1 + β/β∗)σ2

1

ε2
,

where β∗ = β(σmin
2 − 3Lβσ2

max − 3L2β2σ3
max), β ≡ σmin

(3+
√

15)Lσ2
max

. Let βk = β, λk ∈ [βk, (1 + αk)βk]. Then,

the output zζ of both algorithms satisfy E‖∇f(zζ)‖ ≤ ε provided that the total number of iterations K
satisfies

K ≥ O
(
f(x0)− f∗

ε2

)
. (16)

Moreover, the SFO complexity is in the order of O(ε−3).

10



1 100 200
SFO calls/n

0.01

0.1

1

2

f(
x)
-f
(x
*)

SpiderBoost 
SpiderMED 
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(a) Data: a9a

1 100 200
SFO calls/n

 0.01

 0.1

1

2

f(
x)

-f
(x

*)

SpiderBoost 
SpiderMED 
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(b) Data: w8a

1 100 200
SFO calls/n

 0.01

 0.1

 1

 3

f(
x)

-f
(x

*)

SpiderBoost 
SpiderMED 
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(c) Data: mnist

1 100 200
SFO calls/n

0.01

   0.1

    1

f(
x)
-f
(x
*)

SpiderBoost 
SpiderMED 
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(d) Data: ijcnn1

1 100 200
SFO calls/n

0.001

0.01

0.1

0.3

f(
x)

-f
(x

*)

SpiderBoost 
SpiderMED 
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(e) Data: covtype

1 100 200
SFO calls/n

0.01

0.1

0.5

f(
x)

-f
(x

*)

Spider
SpiderMED
SQNVR
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(f) Data: synthetic data

Figure 2: Comparison among algorithms for solving nonconvex robust linear regression problems.

Remark 10 There are two differences between Algorithm 7 and Algorithm 8&9: 1) Algorithm 8&9
introduce an extra parameter, i.e., momentum coefficient αk because of using momentum scheme; 2) the
choice of βk in Algorithm 8&9 are different from that of η in Algorithm 7 (note that βk plays a same role as
η). Algorithm 8 and Algorithm 9 are the same except for the choice of αk due to using different momentum
schemes. Moreover, given required conditions in Algorithm ??, the SFO complexity of Algorithm 4 and
its variants with different momentum schemes to satisfy the ε-first-order stationary condition are O(ε−3),
which matches the state-of-the-art results of first-order stochastic methods.

5.3 The Lower Bound

We will present the optimality of our algorithms in the perspective of algorithmic lower bound result
Carmon et al. (2017), which can be obtained by following the analyses in Fang et al. (2018). For the
finite-sum case, given any random algorithm A that maps functions f : Rd → R to a sequence of iterates
in Rd+1, with

[xk; ik] = Ak−1
(
ξ,∇fi0(x0),∇fi1(x1), . . . ,∇fik−1

(xk−1)
)
,

k ≥ 1, (17)

where Ak denotes measure mapping into Rd+1, ik is the individual function chosen by A at iteration k,
and ξ is uniform random vector from [0, 1]. Moreover, there is [x0; i0] = A0(ξ), where A0 is a measure
mapping. The lower bound result for solving (P) is stated in Theorem 11.

Theorem 11 (Lower bound for SFO complexity for the finite-sum case) Fang et al. (2018) For
any L > 0, ∆ > 0, and 2 ≤ n ≤ O

(
∆2L2 · ε−4

)
, for any algorithm A satisfying (17), there exists a

dimension d = O
(
∆2L2 · n2ε−4

)
, and a function f satisfying Assumptions 1-6 for the finite-sum case, such

that in order to find an ε-first-order stationary point must cost at least O
(
L∆ ·n1/2ε−2

)
stochastic gradient

accesses.
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Note that the condition n ≤ O(ε−4) in Theorem 11 ensures the lower bound O(n1/2ε−2) = O(n+ n1/2ε−2).
Therefore, the upper bound in Theorem 3 matches the lower bound in Theorem 11 up to a constant factor
of relevant parameters, and is thus near-optimal. The proof of Theorem 11 provided in the Appendix
utilizes a specific counterexample function that requires at least O(n1/2ε−2) stochastic gradient accesses,
which is inspired by Fang et al. (2018); Carmon et al. (2017); Nesterov (2018).

Remark 12 Through setting n = O(ε−4) the lower bound complexity in Theorem 11 can achieve O(ε−4).
It is necessary to emphasize that this does not violate the upper bound in the online case, i.e. O(ε−3)
(Theorems 7-9), since the counterexample established in the lower bound depends not on the stochastic
gradient variance σ2

1 specified in Assumption 6 but the example number n. To obtain the lower bound
result for the online case with the additional Assumption 6, one can just construct a counterexample that
requires O(ε−3) stochastic gradient accesses with the knowledge of σ2

1 instead of n.

5.4 Computational Complexity

In the following, we will analyze the time complexity of the proposed algorithms and show that the extra
computation costs of computing inverse Hessian approximation matrix and using momentum acceleration
are negligible.

First, we analyze the computational cost of Algorithm 1. In Step 1, the computation of γ−1
k involves

two inner product, which takes 2d multiplications. In Step 2, the computation involves two inner product
and one scalar-vector product, which takes 3d multiplications. First recursive loop (i.e., Steps 3 to 5)
involves 2m scalar-vector multiplications and m vector inner products, which takes 3md multiplications. So
does the second loop (i.e., Steps 8 to 10). Step 7 involving a scalar-vector product takes d multiplications.
Therefor, the whole procedure takes (6m+ 6)d multiplications.

Then, we turn to Algorithm 3. Step 4 involves scalar-vector products, which takes 2d multiplications.
In Step 6, the computation of full gradient takes at least 2nd multiplications. In Step 8, the computation of
stochastic gradients with batch-size n1/2 takes 2n1/2d multiplications. In Steps 10, (6m+6)d multiplications
are necessary for calling Algorithm 1. Steps 11 and 12 involving scalar-vector products need dmultiplications.
Therefore, the total computational cost in an outer loop involves [(6m + 6)q + 2n + 2n1/2q + 4q]d
multiplications.

Based on above analyses, the computational cost of other algorithms can be obtained easily. For algo-
rithms without momentum acceleration, one needs to omit the extra computation cost (2d multiplications)
of computing momentum term. As for algorithms without using approximate Hessian information, one
needs to omit the extra computational cost of calling Algorithm 1.

We summarize the computational complexity of each algorithm during an outer loop with q iterations
(for finite-sum case there is O(q) = O(n1/2), while for online case there is O(q) = O(ε−1)) in Table 2. As
shown in Table 2, for finite-sum case, the extra computation costs of computing approximate Hessian

information and using momentum acceleration take up mn1/2

n+mn1/2 in the whole procedure. Since m usually

ranges from 5 to 20 as suggested in Nocedal and Wright (2006) and n is sufficiently large in big data
situation, the extra computation thus is negligible. So does the online case, when ε is considerably small.
Note that for analyses convenience, we reasonably assume 2d multiplications are needed when computing
a stochastic gradient for general machine learning problem.

6. Experiments

In this section, to demonstrate the promising performance of the proposed algorithms, we compare our
methods with some state-of-the-art stochastic quasi-Newton algorithms and stochastic first-order algorithms
for nonconvex optimization. Following are brief introductions of algorithms used in our experiments.
SpiderBoost Wang et al. (2018b): SpiderBoost is a boosting version of SPIDER, which takes up a more
aggressive stepsize than SPIDER and thus outperforms SPIDER in practice.
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Table 3: Descriptions of Datasets.

datasets #samples #features #classes

a9a 32,561 123 2
w8a 64,700 300 2

ijcnn1 141,691 22 2
mnist 60,000 780 2

covtype 581,012 54 2
synthetic data 100,000 5,000 2

SdLBFGSVR Wang et al. (2017): SdLBFGSVR is a SQN method (more specifically, stochastic damped
L-BFGS method) equipped with the SVRG variance reduction technique.
SpiderMED Zhou et al. (2019c): ProxSPIDER-MED Zhou et al. (2019c) is a proximal method that
uses the epochwise-diminishing momentum scheme to improve the practical performance of SpiderBoost.
Especially, ProxSPIDER-MED is the faster one among all momentum variants of SpiderBoost proposed in
Zhou et al. (2019c). Since our paper does not touch upon nonconvex nonsmooth optimization, we adopt
the ProxSPIDER-MED without proximal operator and call it SpiderMED.
Our methods: Our methods include four SpiderSQN (SSQN) type of methods, i.e., SSQN (Aslgorithm
2), SSQN with vanilla momentum scheme (SSQNM, i.e.., Algorithm 3), SSQN with epochwise-restart
momentum (SSQNMER) and SSQN with epochwise-diminishing momentum (SSQNMED). Note that
SSQNMER and SSQNMED are proposed in section 3.3.

Follow the experiment setting in Zhou et al. (2019c), we choose a fixed mini-batch size 256 and the
epoch length q is set to 2n/256. When implement the SdLBFGS Wang et al. (2017), we set the memory
size to m = 5 as suggested in Nocedal and Wright (2006), and fix the σ for each comparison. Moreover,
we implement experiments on synthetic data for the complement of real datasets, which are generated as
Wang et al. (2017).
Generating Synthetic Data: The training and testing points (a, b) are generated in the following manner.
First, we generate a sparse vector a with 5% nonzero components following the uniform distribution on
[0, 1]n, and then set b = sign(u, a) for some u ∈ Rn drawn from the uniform distribution on [−1, 1]n.
Descriptions of Datasets: We implement all experiments on five public datasets from the LIBSVM
Chang and Lin (2011) and a synthetic data as the complement to these public datasets is summarized in
Algorithm 3. Especially, as for the mnist dataset we use the one-vs-rest technique to convert it to a binary
class data.

6.1 Nonconvex Support Vector Machine

First, above algorithms are applied to solve the nonconvex support vector machine (SVM) problem with a
sigmoid loss function:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

(1− tanh(bi 〈x, ai〉)) + r‖x‖2,

where ai ∈ Rd denotes the i-th sample and bi ∈ ±1 is the corresponding label. In the experiments, the
learning rate η and regular coefficient r for all algorithms are both fixed as 0.001. Moreover, in algorithms
with momentum scheme βk is fixed as η, and λk remains the same for each comparison.

The experiment results on those four datasets are shown in Fig. 1, where f(x) is the function value
and f(x∗) is a suitable constant for each case. First, as for datasets w8a and ijcnn1 the initial solutions to
all algorithms are drawn from the standard norm distribution, while for datasets a9a and mnist they take
the original point. As Fig. 1 depicts, all these stochastic quasi-Newton methods (including SdlBFGSVR

13



1 100 200
SFO calls/n

0.01

0.1

1

2

f(
x)
-f
(x
*)

SpiderBoost
SpiderMED 
SdLBGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(a) Data: a9a

1 100 200
SFO calls/n

  0.01

   0.1

     1

f(
x)

-f
(x

*)

SpiderBoost 
SpiderMED 
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(b) Data: w8a

1 100 200
SFO calls/n

 0.001

  0.01

   0.1

     1

f(
x)

-f
(x

*)

SpiderBoost 
SpiderMED 
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(c) Data: mnist

1 100 200
SFO calls/n

0.001

0.01

0.1

 0.5

f(
x)
-f
(x
*)

SpiderBoost 
SpiderMED
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours
)

(d) Data: ijcnn1

1 100 200
SFO calls/n

0.001

0.01

0.1

0.5

f(
x)

-f
(x

*)

SpiderBoost 
SpiderMED
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours
)

(e) Data: covtype

1 100 200
SFO calls/n

0.1

0.5

1

2

f(
x)

-f
(x

*)

SpiderBoost 
SpiderMED 
SdLBFGSVR 
SSQN(ours) 
SSQNM(ours) 
SSQNMER(ours) 
SSQNMED(ours)

(f) Data: synthetic data

Figure 3: Comparison among algorithms for solving nonconvex logistic regression problems.

and four SpiderSQN (SSQN)-type of algorithms) outperform stochastic first-order methods (including
Spider and SpiderMED) by a considerably large margin, which demonstrates the promising nature of
stochastic quasi-Newton methods for nonconvex optimization. And one can see that the basic algorithm
SSQN converges more faster than SdLBFGSVR, which is corresponding to the theoretical result that the
proposed method has a lower SFO complexity than SdLBFGSVR. Meanwhile, among the four SSQN-type
of algorithms, three algorithms with different momentum schemes all have a better performance than
the SSQN. Moreover, among these three algorithms, the one using epochwise-diminishing momentum
(SSQNMED) achieves the best performance, while the one using the iterationwise-diminishing momentum
(SSQNM) achieves the poorest.

6.2 Nonconvex Robust Linear Regression

We consider comparing these algorithms for solving such a nonconvex robust linear regression problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

`(bi − 〈x, ai〉),

where the nonconvex loss function is defined as `(x) := log(x
2

2 + 1). The experiment settings are same
as those in the nonconvex SVM problem, except that the initial solutions in all cases are drawn from
the standard norm distribution. The learning curves on the gap between f(x) and f(x∗) are reported in
Fig. 2. As one can see from Fig. 2, the stochastic quasi-Newton methods still have a significantly better
performance than the stochastic first-order methods. Also, the proposed four SSQN-type algorithms
outperform the SdLBFGSVR with a considerably large margin. In most cases, SSQNMED outperforms
SSQNM and SSQNMER by a large gap, except in the dataset mnist where SSQNMER and SSQNMED
have similar performances and are both significantly better than that of SSQNM.
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6.3 Nonconvex Logistic Regression

Comparisons are conducted among all algorithms for solving a nonconvex logistic regression problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

`(bi, 〈x, ai〉) + r

d∑
i=1

x2
i

1 + x2
i

,

where the loss function ` is set to be the cross-entropy loss. For this problem, the initial solutions to all
algorithms on datasets w8a and a9a are drawn from the standard norm distribution, while experiments
on datasets ijcnn1 and mnist take the original point. Other experiment settings are same as those of
the nonconvex SVM problem. The learning curves on the gap between f(x) and f(x∗) are reported in
Fig. 3. Obviously, the stochastic quasi-Newton methods outperform those stochastic first-order methods
by a significantly large gap. Meanwhile, the proposed four SSQN-type of algorithms all have a better
performance than the SdLBFGSVR. As for the four SSQN-type of algorithms, their performance is related
to the momentum coefficient setting which means that algorithm with a larger momentum coefficient will
converge faster. Moreover, in all cases the SSQNMED has the best performance among four SSQN-type
algorithms, and SSQN has the worst.

7. Conclusion

In the paper, we presented the novel faster stochastic quasi-Newton (SpiderSQN) methods. Moreover, we
proved that the SpiderSQN methods reach the best known SFO complexity of O(min(n+ n1/2ε−2, ε−3))
for finding an ε-approximated stationary point. At the same time, we studied the lower bound of SFO
complexity of the SpiderSQN methods. As presented in the theoretical results, our methods reach the
near-optimal SFO complexity in solving the nonconvex problems. Moreover, we applied three different
momentum schemes to SpiderSQN to further improve its practical performance.

Acknowledgment

We thank the anonymous reviewers for their helpful comments. We also thank the IT Help Desk at
University of Pittsburgh. Q.S. Zhang and C. Deng were supported in part by the National Natural
Science Foundation of China under Grant 62071361, the National Key R&D Program of China under
Grant 2017YFE0104100, and the China Research Project under Grant 6141B07270429. F.H. Huang and
H. Huang were in part supported by U.S. NSF IIS 1836945, IIS 1836938, IIS 1845666, IIS 1852606, IIS
1838627, IIS 1837956. No. 61806093.

15



Appendix A. Proof of Algorithm 3

Throughout the paper, let nk = dk/qe such that (nk − 1)q ≤ k ≤ nkq − 1. Note that this convergence
analysis is mainly following Fang et al. (2018). We first present an auxiliary lemma from Fang et al. (2018).

Lemma 13 (Fang et al. (2018), Lemma 1) Under Assumptions 1 and 2, the SPIDER estimator sat-
isfies for all (nk − 1)q + 1 ≤ k ≤ nkq − 1,

E‖vk −∇f(xk)‖2 ≤
L2

|ξk|
E‖xk − xk−1‖2 + E‖vk−1 −∇f(xk−1)‖2. (18)

Telescoping Algorithm 13 over k from (nk − 1)q + 1 to k, we obtain that

E‖vk −∇f(xk)‖2 ≤
k−1∑

i=(nk−1)q

L2

|ξk|
E‖xi+1 − xi‖2 + E‖v(nk−1)q −∇f(x(nk−1)q)‖2

≤
k∑

i=(nk−1)q

L2

|ξk|
E‖xi+1 − xi‖2 + E‖v(nk−1)q −∇f(x(nk−1)q)‖2. (19)

Note that the above inequality also holds for k = (nk − 1)q, which can be simply checked by plugging
k = (nk − 1)q into above inequality. As for finite-sum case, when mod(k, q) = 0 there is vk = ∇f(xk) for
all k such that E‖vk −∇f(xk)‖2 = 0, and then we obtain the following bound for finite-sum case

Lemma 14 Under Assumptions 1 and 2, the SPIDER estimator satisfies for all k ∈ N,

E‖vk −∇f(xk)‖2 ≤
k−1∑

i=(nk−1)q

L2

|ξk|
E‖xi+1 − xi‖2 ≤

k∑
i=(nk−1)q

L2

|ξk|
E‖xi+1 − xi‖2 (20)

Then, we return to the proof of Algorithm 3.
Proof Consider any iteration k of the algorithm. By smoothness of f , we obtain that

f(xk)
(i)

≤ f(xk−1) + 〈∇f(xk−1), xk − xk−1〉+
L

2
‖xk − xk−1‖2

= f(xk−1) + 〈∇f(xk−1),−ηHk−1vk−1〉+
Lη2

2
‖Hk−1vk−1‖2

= f(xk−1)− η 〈∇f(xk−1)− vk−1, Hk−1vk−1〉 − η 〈vk−1, Hk−1vk−1〉+
Lη2

2
‖Hk−1vk−1‖2

(ii)

≤ f(xk−1)− η 〈∇f(xk−1)− vk−1, Hk−1vk−1〉 − η‖vk−1‖‖Hk−1vk−1‖+
Lη2

2
‖Hk−1vk−1‖2, (21)

where (i) uses the Lipschitz continuity of ∇f and (ii) follows from 〈a, b〉 ≤ ‖a‖‖b‖. Rearranging the
above inequality yields that

f(xk) ≤ f(xk−1)− η(‖Hk−1‖ −
Lη‖Hk−1‖2

2
)‖vk−1‖2 + η‖Hk−1‖‖∇f(xk−1)− vk−1‖‖vk−1‖

(i)

≤ f(xk−1)− η(‖Hk−1‖ −
Lη‖Hk−1‖2

2
)‖vk−1‖2 +

η‖Hk−1‖
2

(‖∇f(xk−1)− vk−1‖2 + ‖vk−1‖2)

(ii)

≤ f(xk−1)− η(
σmin

2
− Lησ2

max

2
)‖vk−1‖2 +

ησmax

2
‖∇f(xk−1)− vk−1‖2. (22)

where (i) uses the inequality that 〈x, y〉 ≤ ‖x‖
2+‖y‖2

2 for x, y ∈ Rd, (ii) follows from Assumption 4. Taking
expectation on both sides of the above inequality yields that

Ef(xk+1)
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≤ Ef(xk) +
ησmax

2
E‖∇f(xk)− vk‖2 − (

ησmin

2
− Lη2σ2

max

2
)E‖vk‖2

(i)

≤ Ef(xk) +
ησmax

2

k∑
i=(nk−1)q

L2

|ξk|
E‖xi+1 − xi‖2 − (

ησmin

2
− Lη2σ2

max

2
)E‖vk‖2

(ii)
= Ef(xk) +

η3σ3
max

2

k∑
i=(nk−1)q

L2

|ξk|
E‖vi‖2 − (

ησmin

2
− Lη2σ2

max

2
)E‖vk‖2, (23)

where (i) follows from Eq. (20), and (ii) follows from the facts that xk+1 = xk − ηHkvk and Algorithm
4. Next, telescoping Eq. (23) over k from (nk − 1)q to k where k ≤ nkq − 1 and noting that for
(nk − 1)q ≤ j ≤ nkq − 1, nj = nk , we obtain

Ef(xk+1)

≤ Ef(x(nk−1)q) +
η3σ3

max

2

k∑
j=(nk−1)q

j∑
i=(nk−1)q

L2

|ξk|
E‖vi‖2 − (

ησmin

2
− Lη2σ2

max

2
)

k∑
j=(nk−1)q

E‖vj‖2

(i)

≤ Ef(x(nk−1)q) +
η3σ3

max

2

k∑
j=(nk−1)q

k∑
i=(nk−1)q

L2

|ξk|
E‖vi‖2 − (

ησmin

2
− Lη2σ2

max

2
)

k∑
j=(nk−1)q

E‖vj‖2

(ii)

≤ Ef(x(nk−1)q) +
η3σ3

maxL
2q

2|ξk|

k∑
i=(nk−1)q

E‖vi‖2 − (
ησmin

2
− Lη2σ2

max

2
)

k∑
j=(nk−1)q

E‖vj‖2

= Ef(x(nk−1)q)−
k∑

i=(nk−1)q

(
ησmin

2
− Lη2σ2

max

2
− η3σ3

maxL
2q

2|ξk|

)
E‖vi‖2

(iii)
= Ef(x(nk−1)q)−

k∑
i=(nk−1)q

β∗E‖vi‖2, (24)

where (i) extends the summation of the second term from j to k, (ii) follows from the fact that k 6 nkq− 1.
Thus, we obtain

k∑
j=(nk−1)q

k∑
i=(nk−1)q

L2

|ξk|
E‖vi‖2 ≤

(k + q − nkq + 1)L2

|ξk|

k∑
i=(nk−1)q

E‖vi‖2 ≤
qL2

|ξk|

k∑
i=(nk−1)q

E‖vi‖2, (25)

and (iii) follows from β∗ = ησmin
2 − Lη2σ2

max
2 − η3σ3

maxL
2q

2|ξk| .

We continue the proof by further driving

Ef(xK)−Ef(x0)

= (Ef(xq)− Ef(x0)) + (Ef(x2q)− Ef(xq)) + · · ·+ (Ef(xK)− Ef(x(nk−1)q))

(i)

≤
q−1∑
i=0

β∗E‖vi‖2 −
2q−1∑
i=q

β∗E‖vi‖2 − · · · −
K−1∑

i=(nK−1)q

β∗E‖vi‖2

=
K−1∑
i=0

β∗E‖vi‖2, (26)
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where (i) follows from Eq. (24). Note that Ef(xK) ≥ f∗ , infx∈Rd f(x). Hence, the above inequality
implies that

K−1∑
i=0

β∗E‖vi‖2 ≤ f(x0)− f∗. (27)

We next bound E‖∇f(xξ)‖2, where ξ is selected uniformly at random from {0, . . . ,K − 1}. Observe that

E‖∇f(xξ)‖2 = E‖∇f(xξ)− vξ + vξ‖2 ≤ 2E‖∇f(xξ)− vξ‖2 + 2E‖vξ‖2. (28)

Next, we bound the two terms on the right hand side of the above inequality. First, note that

E‖vξ‖2 =
1

K

K−1∑
i=0

E‖vi‖2 ≤
f(x0)− f∗

Kβ∗
, (29)

where the last inequality follows from Eq. (27). On the other hand, note that

E‖∇f(xξ)− vξ‖2
(i)

≤ E
ξ∑

i=(nξ−1)q

L2

|ξk|
E‖xi+1 − xi‖2 + E

ξ∑
i=(nξ−1)q

L2η2σ2
max

|ξk|
E‖vi‖2

(iii)

≤ E
min{(nξ)q−1,K−1}∑

i=(nξ−1)q

L2η2σ2
max

|ξk|
E‖vi‖2

(iv)

≤ q

K

K−1∑
i=0

L2η2σ2
max

|ξk|
E‖vi‖2

(v)

≤ L2η2σ2
maxq

K|ξk|β∗
(f(x0)− f∗) , (30)

where (i) follows from Eqs. (19) and (20), (ii) follows from the fact that xk+1 = xk−ηHkvk and Assumption
4, (iii) follows from the definition of nξ, which implies ξ 6 min{(nξ)q− 1,K − 1}, (iv) follows from the fact
that the probability that nξ = 1, 2, · · · , nK is less than or equal to q/(K), and (v) follows from Eq. (29).

Substituting Eqs. (29) and (30) into Eq. (28), we obtain

E‖∇f(xξ)‖2 ≤
2 (f(x0)− f∗)

Kβ∗
+

2L2η2σ2
maxq

K|ξk|β∗
(f(x0)− f∗)

=
2

Kβ∗

(
1 +

L2η2σ2
maxq

|ξk|

)
(f(x0)− f∗) . (31)

Next we set the parameters as

S1 = n, q =
√
n, ξk =

√
n, and η =

c

Lσmaxm
, (32)

where c = σmin/σmax ≤ 1, and m = (1 +
√

5)/2. Given the parameters setting of S1, q, and ξk the value of
m is determined as follow

β∗ =
ησmin

2
− Lη2σ2

max

2
− η3σ3

maxL
2

2

=
1

2L
(Lησmin − L2η2σ2

max − η3σ3
maxL

3)
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(i)
=

c2

2Lm3
(m2 −m− c)

(33)

where (i) follows from the definition of η together with the problem independent parameter c = σmin/σmax ≤
1. When c = 1 this reduces to the SpiderBoost algorithm with steosize η scaled by σmin (or σmax). Next,
we should determine a suitable value of m to ensure β∗ > 0 i.e.,

β∗ =
c2

2Lm3
(m2 −m− c) > 0

(34)

it is sufficient to ensure m2 −m − c > 0. Thus, we obtain m > (1 +
√

1 + 4c)/2. In the Spider-SQN
method there is c < 1, and we can let m = (1 +

√
5)/2. Plugging m = (1 +

√
5)/2 into Eq. (33) we obtain

β∗ =
c2

2Lm3
(1− c) > 0. (35)

therefore, m = (1+
√

5)/2 is reasonable and thus η = (1+
√

5)σmin

2Lσ2
max

. Plugging Eqs. (32) and (35) into Eq. (31),

we obtain that, after K iterations, the output of SpiderBoost satisfies

E‖∇f(xζ)‖2 ≤
2(1 + c2

m2 )

Kβ∗
(f(x0)− f∗) (36)

To ensure E‖∇f(xζ)‖ 6 ε, it is sufficient to ensure E‖∇f(xζ)‖2 6 ε2 (because (E‖∇f(xζ)‖)2 ≤ E‖∇f(xξ)‖2

due to Jensen’s inequality). Thus, we need the total numberK of iterations satisfies that
2(1+ c2

m2 )

Kβ∗ (f(x0)− f∗) ≤
ε2, which gives

K =
2(1 + c2

m2 )/β∗

ε2
(f(x0)− f∗) . (37)

Then, the total SFO complexity is given by⌈
K

q

⌉
· S1 +K · ξk 6 (K + q) · S1

q
+K · ξk = K

√
n+ n+K

√
n = O(

√
nε−2 + n),

where the last equation follows from Eq. (37), thus the SFO complexity of Algorithm 2 is O(
√
nε−2 + n).

Appendix B. Proof of Algorithm 4

B.1 Auxiliary Lemmas for Analysis of Algorithm 3

Note that in algorithm utilizing momentum scheme the βk remains the same for all k, thus we use β for
notation brevity. First, we collect some auxiliary results that facilitate the analysis of Algorithm 3. For
any k ∈ N, denote τ(k) ∈ N the unique integer such that (τ(k) − 1)q ≤ k ≤ τ(k)q − 1. We also define
Γ0 = 0,Γ1 = 1 and Γk = (1 − αk)Γk−1 for k = 2, 3, .... Since we set αk = 2

k+1 , it is easy to check that

Γk = 2
k(k+1) . Note that this convergence analysis is mainly following Zhou et al. (2019c). Besides the

auxiliary Algorithm 13 (Fang et al. (2018), lemma1), we prove the following auxiliary lemma.

Lemma 15 Let the sequences {xk}k, {yk}k, {zk}k be generated by Algorithm 3. Then, the following
inequalities hold

yk − xk = Γk

k∑
t=1

λt−1 − βt−1

Γt
Ht−1vt−1, (38)
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‖yk − xk‖2 ≤ σ2
maxΓk

k∑
t=1

λt−1 − βt−1

αtΓt
‖vt−1‖2, (39)

‖zk+1 − zk‖2 ≤ 2β2
kσ

2
max‖Hkvk‖2 + 2α2

k+2σ
2
maxΓk+1

k+1∑
t=1

(λt−1 − βt−1)2

αtΓt
‖vt−1‖2. (40)

Proof We prove the first equality. By the update rule of the momentum scheme, we obtain that

yk − xk = zk−1 − βk−1Hk−1vk−1 − (xk−1 − λk−1Hk−1vk−1)

= (1− αk)(yk−1 − xk−1) + (λk−1 − βk−1)Hk−1vk−1. (41)

Dividing both sides by Γk and noting that 1−αk
Γk

= Γk−1, we further obtain that

yk − xk
Γk

=
yk−1 − xk−1

Γk−1
+
λk−1 − βk−1

Γk
Hk−1vk−1. (42)

Telescoping the above equality over k yields the first desired equality.
Next, we prove the second inequality. Based on the first equality, we obtain that

‖yk − xk‖2 = ‖Γk
k∑
t=1

λt−1 − βt−1

Γt
Ht−1vt−1‖2

= ‖Γk
k∑
t=1

αt
Γt

λt−1 − βt−1

αt
Ht−1vt−1‖2

(i)

≤ Γk

k∑
t=1

αt
Γt

(λt−1 − βt−1)2

α2
t

‖Ht−1vt−1‖2

= Γk

k∑
t=1

(λt−1 − βt−1)2

Γtαt
‖Ht−1vt−1‖2 (43)

(ii)

≤ σ2
maxΓk

k∑
t=1

(λt−1 − βt−1)2

Γtαt
‖vt−1‖2, (44)

where (i) uses the facts that {Γk}k is a decreasing sequence,
∑k

t=1
αt
Γt

= 1
Γk

and Jensen’s inequality, (ii)
follows from the Algorithm 4.

Finally, we prove the third inequality. By the update rule of the momentum scheme, we obtain that
zk+1 − zk = yk+1 − zk + αk+2(xk+1 − yk+1). Then, we further obtain that

‖zk+1 − zk‖ ≤ ‖yk+1 − zk‖+ αk+2‖xk+1 − yk+1‖

≤ βk‖Hkvk‖+ αk+2

√
‖xk+1 − yk+1‖2

≤ βk‖Hkvk‖+ αk+2

√√√√Γk+1

k+1∑
t=1

(λt−1 − βt−1)2

Γtαt
‖Ht−1vt−1‖2

(45)

The desired result follows by taking the square on both sides of the above inequality and using the facts
that (a+ b)2 ≤ 2a2 + 2b2 and ‖Hk‖ is upper bounded by σmax.
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B.2 Proof of Algorithm 4

Consider any iteration k of the algorithm. By smoothness of f , we obtain that

f(xk) ≤ f(xk−1) + 〈∇f(xk−1), xk − xk−1〉+
L

2
‖xk − xk−1‖2

= f(xk−1) + 〈∇f(xk−1),−λk−1Hk−1vk−1〉+
Lλ2

k−1

2
‖Hk−1vk−1‖2

= f(xk−1)− λk−1 〈∇f(xk−1)− vk−1, Hk−1vk−1〉 − λk−1 〈vk−1, Hk−1vk−1〉+
Lλ2

k−1

2
‖Hk−1vk−1‖2

(i)

≤ f(xk−1)− λk−1 〈∇f(xk−1)− vk−1, Hk−1vk−1〉 − λk−1‖vk−1‖‖Hk−1vk−1‖+
Lλ2

k−1

2
‖Hk−1vk−1‖2,

(46)

where (i) follows from Cauchy-Swartz inequality. Rearranging the above inequality and using Cauchy-Swartz
inequality yields that

f(xk) ≤ f(xk−1)− λk−1(‖Hk−1‖ −
Lλk−1‖Hk−1‖2

2
)‖vk−1‖2 + λk−1‖Hk−1‖‖∇f(xk−1)− vk−1‖‖vk−1‖.

(47)

Note that

‖∇f(xk−1)− vk−1‖ ≤ ‖∇f(xk−1)−∇f(zk−1)‖+ ‖∇f(zk−1)− vk−1‖
(i)

≤ L‖xk−1 − zk−1‖+ ‖∇f(zk−1)− vk−1‖
(ii)

≤ L(1− αk)‖yk−1 − xk−1‖+ ‖∇f(zk−1)− vk−1‖, (48)

where (i) uses the Lipschitz continuity of ∇f and (ii) follows from the update rule of the momentum
scheme. Substituting the above inequality into Eq. (47) yields that

f(xk) ≤ f(xk−1)− λk−1(‖Hk−1‖ −
Lλk−1‖Hk−1‖2

2
)‖vk−1‖2 + Lλk−1(1− αk)‖Hk−1‖‖vk−1‖‖yk−1 − xk−1‖

+ λk−1‖Hk−1‖‖vk−1‖‖∇f(zk−1)− vk−1‖

≤ f(xk−1)− λk−1(‖Hk−1‖ −
Lλk−1‖Hk−1‖2

2
)‖vk−1‖2 +

Lλ2
k−1‖Hk−1‖2

2
‖vk−1‖2 +

L(1− αk)2

2
‖yk−1 − xk−1‖2

+
λk−1‖Hk−1‖

2
‖vk−1‖2 +

λk−1‖Hk−1‖
2

‖∇f(zk−1)− vk−1‖2

(i)

≤ f(xk−1)− λk−1(
σmin

2
− 2Lλk−1σ

2
max

2
)‖vk−1‖2 +

L(1− αk)2

2
‖yk−1 − xk−1‖2

+
λk−1σmax

2
‖∇f(zk−1)− vk−1‖2

(ii)

≤ f(xk−1)− λk−1(
σmin

2
− 2Lλk−1σ

2
max

2
)‖vk−1‖2 +

LΓk−1

2

k−1∑
t=1

λt−1 − βt−1

αtΓt
σ2

max‖vt−1‖2

+
λk−1σmax

2
‖∇f(zk−1)− vk−1‖2, (49)

where (i) follows from and the Assumption 4, (ii) uses item 2 of Algorithm 15 and the fact that 0 < αk < 1.
Telescoping the above inequality over k from 1 to K yields that

f(xK) ≤ f(x0)−
K−1∑
k=0

λk(
σmin

2
− 2Lλkσ

2
max

2
)‖vk‖2 +

K−1∑
k=0

LΓk
2

k−1∑
t=1

λt−1 − βt−1

αtΓt
σ2

max‖vt−1‖2
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+
K−1∑
k=0

λkσmax

2
‖∇f(zk)− vk‖2

= f(x0)−
K−1∑
k=0

λk(
σmin

2
− 2Lλkσ

2
max

2
)‖vk‖2 +

Lσ2
max

2

K−1∑
k=0

k−1∑
t=1

λt−1 − βt−1

αtΓt
‖vt−1‖2(

K−1∑
t=k

Γt)

+
K−1∑
k=0

λkσmax

2
‖∇f(zk)− vk‖2, (50)

where we have exchanged the order of summation in the second equality. Furthermore, note that∑K−1
t=k Γt = 2

∑K−1
t=k

1
t −

1
t+1 ≤

2
k . Then, substituting this bound into the above inequality and taking

expectation on both sides yield that

E[f(xK)] ≤ f(x0)−
K−1∑
k=0

λk(
σmin

2
− 2Lλkσ

2
max

2
)E‖vk‖2 +

Lσ2
max

2

K−1∑
k=0

2(λk − βk)2

kΓk+1αk+1
E‖vk‖2

+
K−1∑
k=0

λkσmax

2
E‖∇f(zk)− vk‖2. (51)

Next, we bound the term E‖∇f(zk)− vk‖2 in the above inequality. By Algorithm 15 we obtain that

E‖∇f(zk)− vk‖2 ≤
k−1∑

i=(τ(k)−1)q

L2

|ξi|
E‖zi+1 − zi‖2

≤
k−1∑

i=(τ(k)−1)q

L2σ2
max

|ξi|
[
2β2

i ‖vi‖2 + 2α2
i+2Γi+1

i∑
t=0

(λt − βt)2

αtΓt
‖vt‖2], (52)

where the last inequality uses item 3 of Algorithm 15. Substituting Eq. (52) into Eq. (51) and simplifying
yield that

E[f(xK)] ≤ f(x0)−
K−1∑
k=0

[
λk(

σmin

2
− 2Lλkσ

2
max

2
)− Lσ2

max(λk − βk)2

kΓk+1αk+1

]
E‖vk‖2

+

K−1∑
k=0

λkσ
3
max

2
E
[ k−1∑
i=(τ(k)−1)q

L2

|ξi|

[
2β2

i ‖vi‖2 + 2α2
i+2Γi+1

i∑
t=0

(λt − βt)2

αt+1Γt+1
‖vt‖2

]]
︸ ︷︷ ︸

T

. (53)

Before we proceed the proof, we first specify the choices of all the parameters. Specifically, we choose a
constant mini-batch size |ξk| ≡ |ξ|, a constant q = |ξ|, a constant βk ≡ β > 0, λk ∈ [β, (1 +αk+1)β]. Based
on these parameter settings, the term T in the above inequality can be bounded as follows.

T
(i)

≤
K−1∑
k=0

λkσ
3
max

2
E
[ τ(k)q−1∑
i=(τ(k)−1)q

L2

|ξi|

[
2β2

i ‖vi‖2 + 2α2
i+2Γi+1

k−1∑
t=0

(λt − βt)2

αt+1Γt+1
‖vt‖2

]]
(ii)

≤
K−1∑
k=0

λkL
2qβ2σ3

max

|ξ|
E‖vk‖2 +

K−1∑
k=0

2λkL
2σ3

max

|ξ|[(τ(k)− 1)q + 1]3

k−1∑
t=0

(λt − βt)2

αt+1Γt+1
E‖vt‖2

(iii)

≤
K−1∑
k=0

λkL
2β2σ3

maxE‖vk‖2 +
2L2β2σ3

max

|ξ|

K−1∑
k=0

αk+1

Γk+1
E‖vk‖2(

K−1∑
t=k

λk
[(τ(t)− 1)q + 1]3

)
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(iv)

≤
K−1∑
k=0

λkL
2β2σ3

maxE‖vk‖2 +
4L2β3σ3

max

|ξ|

K−1∑
k=0

(k + 1)E‖vk‖2(

τ(K)q∑
t=(τ(k)−1)q

1

[(τ(t)− 1)q + 1]3
)

=

K−1∑
k=0

λkL
2β2σ3

maxE‖Gvk‖2 +
4L2β3σ3

max

|ξ|

K−1∑
k=0

(k + 1)E‖vk‖2(

τ(K)∑
t=τ(k)−1

q

(tq + 1)3
)

≤
K−1∑
k=0

λkL
2β2σ3

maxE‖vk‖2 +
2L2β3σ3

max

q

K−1∑
k=0

(k + 1)E‖vk‖2
1

[(τ(k)− 1)q + 1]2

(v)

≤
K−1∑
k=0

λkL
2β2σ3

maxE‖vk‖2 + 2L2β3σ3
max

K−1∑
k=0

E‖vk‖2
τ(k)

[(τ(k)− 1)q + 1]2

≤
K−1∑
k=0

λkL
2β2σ3

maxE‖vk‖2 + 2L2β3σ3
max

K−1∑
k=0

E‖vk‖2, (54)

where (i) follows from the facts that i ≤ k − 1 and k − 1 ≤ τ(k)q − 1, (ii) uses the fact that∑τ(k)q−1
i=(τ(k)−1)q α

2
i+2Γi+1 ≤ 2

(τ(k)−1)q+1)3
, (iii) uses the parameter settings q = |ξ| and λt − βt ≤ αtβ, (iv) uses

the facts that λk ≤ 2β and (τ(k)− 1)q ≤ k ≤ τ(k)q and (v) uses the fact that k ≤ τ(k)q − 1. Substituting
the above inequality into Eq. (53) and simplifying, we obtain that

E[f(xK)] ≤ f(x0)−
K−1∑
k=0

[
λk(

σmin

2
− 2Lλkσ

2
max

2
− L2β2σ3

max)− L(λk − βk)2σ2
max

kΓk+1αk+1
− 2L2β3σ3

max

]
E‖vk‖2

(55)

≤ f(x0)−
K−1∑
k=0

[
β(
σmin

2
− 2Lβσ2

max − L2β2σ3
max)− Lβ2σ2

max − 2L2β3σ3
max

]
E‖vk‖2

= f(x0)−
K−1∑
k=0

[
β(
σmin

2
− 3Lβσ2

max − 3L2β2σ3
max)

]
E‖vk‖2. (56)

Let β∗ = β(σmin
2 − 3Lβσ2

max− 3L2β2σ3
max). Following the analysis of Eq. (33), we choose β = c

L(3+
√

15)σmax
,

where c = σmin/σmax < 1 and then there is

β∗ =
3c2

Lm3
(1− c)

(i)
> 0 (57)

where m = 3 +
√

15 and (i) follows the definition of β. the above inequality further implies that

E[f(xK)] ≤ f(x0)−
K−1∑
k=0

β∗E‖vk‖2. (58)

Then, it follows that 1
K

∑K−1
k=0 E‖vk‖2 ≤ (f(x0)−f∗)/(Kβ∗). Next, we bound the term E‖∇f(zζ)‖2, where

ζ is selected uniformly at random from {0, . . . ,K − 1}. Observe that

E‖∇f(zζ)‖2 = E‖∇f(zζ)− vζ + vζ‖2
(i)

≤ 2E‖∇f(zζ)− vζ‖2 + 2E‖vζ‖2, (59)

where (i) uses the fact (a+ b)2 ≤ 2a2 + 2b2. Next, we bound the two terms on the right hand side of the
above inequality separately. First, note that

E‖vζ‖2 =
1

K

K−1∑
k=0

E‖vk‖2 ≤
(f(x0)− f∗)

Kβ∗
. (60)
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Second, note that Eq. (52) implies that

E‖∇f(zζ)− vζ‖2 ≤ E
ζ−1∑

i=(τ(ζ)−1)q

L2σ2
max

|ξi|
[
2β2

i ‖vi‖2 + 2α2
i+2Γi+1

i∑
t=0

(λt − βt)2

αt+1Γt+1
‖vt‖2

]

≤ 2L2β2σ2
max

|ξ|
E
( τ(ζ)q−1∑
i=(τ(ζ)−1)q

‖vi‖2
)

+
L2σ2

max

|ξ|
E
( ζ−1∑
i=(τ(ζ)−1)q

2α2
i+2Γi+1

i∑
t=0

(λt − βt)2

αt+1Γt+1
‖vt‖2

)

≤ 2L2β2σ2
max

|ξ|
1

K

K−1∑
ζ=0

( τ(ζ)q−1∑
i=(τ(ζ)−1)q

E‖vi‖2
)

+
L2β2σ2

max

|ξ|
1

K

K−1∑
ζ=0

( τ(ζ)q−1∑
i=(τ(ζ)−1)q

2α2
i+2Γi+1

ζ−1∑
t=0

(t+ 1)E‖vt‖2
)

≤ 2L2β2σ2
maxq

|ξ|
1

K

K−1∑
ζ=0

E‖vζ‖2 +
L2β2σ2

max

|ξ|
1

K

K−1∑
ζ=0

(
4

[(τ(ζ)− 1)q + 1]3

ζ−1∑
t=0

(t+ 1)E‖vt‖2
)

≤ 2L2β2σ2
max

(
1

K

K−1∑
ζ=0

E‖vζ‖2
)

+
L2β2σ2

max

|ξ|
1

K

K−1∑
ζ=0

(ζ + 1)E‖vζ‖2
K−1∑
t=ζ

4

[(τ(t)− 1)q + 1]3

≤ 2L2β2σ2
max

(
1

K

K−1∑
ζ=0

E‖vζ‖2
)

+ L2β2σ2
max

1

K

K−1∑
ζ=0

E‖vζ‖2
2τ(ζ)

[(τ(ζ)− 1)q + 1]2

≤ 3L2β2σ2
max

(f(x0)− f∗)
Kβ∗

, (61)

where we have used the fact that ζ is sampled uniformly from 0, ...,K − 1 at random.

Combining the above three inequalities we have

E‖∇f(zζ)‖2 = E‖∇f(zζ)− vζ + vζ‖2

(i)

≤ 2E‖∇f(zζ)− vζ‖2 + 2E‖vζ‖2

≤ (6L2β2σ2
max + 2)

Kβ∗
(f(x0)− f∗).

(62)

To ensure E‖∇f(zζ)‖ ≤ ε, it is sufficient to ensure E‖∇f(zζ)‖2 ≤ ε2 ( since (E‖∇f(zζ)‖)2 ≤ E‖∇f(zζ)‖2,
due to Jensen’s inequality.) Therefore, we need the total number K of iterations satisfies that and note

that (6L2β2σ2
max+2)

Kβ∗ (f(x0)− f∗) ≤ ε2, which gives

K =
(6L2β2σ2

max + 2)

β∗
(f(x0)− f∗)

ε2
. (63)

And then, the total SFO complexity is given by

(K + q)
n

q
+K|ξ| ≤ O(n+

√
nε−2).

Thus the SFO complexity of the Algorithm 3 is O(n+
√
nε−2) corresponding to Algorithm 4.
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Appendix C. Proof of Algorithm 5

The convergence proof of Algorithm 5, including both SpiderSQNMER and SpiderSQNMED , follows from
that of Algorithm 4, and therefore we only describe the key steps to adapt the proof.

We first prove the result of SpiderSQNMED. Under the epochwise-diminishing momentum scheme,
the momentum coefficient is set to be αk = 2

dk/qe+1 . Consequently, we have Γk = 2
dk/qe(dk/qe+1) . First,

one can check that Eq. (50) still holds, and now we have
∑K−1

t=k Γt ≤ 2
dk/qe . Then, we follow the steps

that bound the accumulation error term T in Eq. (53). In the derivation of (ii), we now have that∑τ(k)q−1
i=(τ(k)−1)q α

2
i+2Γi+1 ≤ 2

τ(k)3
. Substituting this new bound into (ii) and noting that in (iii) we now have

αk+1

Γk+1
= (dk/qe+ 1), one can follow the subsequent steps and show that the upper bound for T in Eq. (54)

still holds. Moreover, in Eq. (55) we should replace L(λk−βk)2

kΓk+1αk+1
with L(λk−βk)2

dk/qeΓk+1αk+1
, and consequently Eq. (56)

is still valid. Then, one can follow the same analysis and show that Eq. (58) is still valid. In summary, given
the same parameters as for SpiderSQNM the convergence rate and the corresponding oracle complexity of
SpiderSQNMED remain in the same order as SpiderSQNM, that is, O(n+

√
nε−2) given the parameters

as Algorithm 5.
The convergence proof of SpiderSQNMER follows from that of SpiderSQNM. The core idea is to apply

the result of SpiderSQNM to each restart period. Specifically, consider the iterations k = 0, 1, ..., q − 2.
Firstly, we can rewrite Eq. (61) as

E‖∇f(zζ)− vζ‖2 ≤ 3L2β2σ2
max

(f(x0)− f∗)
Kβ∗

,

= O(
(f(x0)− f∗)

K
). (64)

As no restart is performed within these iterations, we can apply the result in Eq. (64) (note that f∗ is the
relaxation of f(xK)) obtained from the analysis of Algorithm 4 and conclude that

E‖∇f(zζ)‖2 ≤ O
(

(f(x0)− E[f(xq−1)])

q − 1

)
, where ζ

Unif∼ {0, ..., q − 2}. (65)

Due to the periodic restart, the above bound also holds similarly for the iterations k = tq, tq+1, ..., (t+1)q−2
for any t ∈ N, which yields that

E‖∇f(zζ)‖2 ≤ O
(

(f(xtq)− E[f(x(t+1)q−1)])

q − 1

)
, where ζ

Unif∼ {tq, ..., (t+ 1)q − 2}. (66)

Next, consider running the algorithm with restart for iterations k = 0, ...,K − 1, and the output index ζ is

selected from {k : 0 ≤ k ≤ K − 1,mod(k, q − 1) 6= 0} uniformly at random. Let T =
⌈
K
q−1

⌉
. Then, we can

obtain the following estimate

E‖∇f(zζ)‖2 ≤
1

K − T

T∑
t=0

(t+1)q−2∑
k=tq

E‖∇f(zk)‖2

(i)

≤ O

(
1

K − T

T∑
t=0

E(f(xtq)− f(x(t+1)q−1))

)
(ii)

≤ O

(
(f(x0)− f∗)

K

)
,

where (i) uses the results inductively derived from Eq. (66) and (ii) uses the fact that x(t+1)q−1 = x(t+1)q

due to restart.
Therefore, it follows that E‖∇f(zζ)‖ ≤ ε whenever K ≥ O( (f(x0)−f∗)

ε2
), and the total number of

stochastic gradient calls is in the order of O(n+
√
nε−2) given the parameters as Algorithm 5.
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Appendix D. Proof of Algorithm 7

As for online case when mod(k, q) = 0, the Algorithm 4 samples ξ0 data points to estimate the gradient,
and we obtain the following variance bound based on Algorithm 6.

E‖vk −∇f(xk)‖2 = E
∥∥∥∥ 1

|ξ1|

|ξ1|∑
i=1

∇`ui(xk)−∇f(xk)

∥∥∥∥2

≤ 1

|ξ1|2

|ξ1|∑
i=1

E ‖∇`ui(xk)−∇f(xk)‖2 ≤
σ2

1

|ξ0|
. (67)

Through telescoping 13 and using the above bound, we obtain the following lemma.

Lemma 16 Under Assumptions 1, 2 and 6 , the estimation of gradient vk constructed by Algorithm 4
satisfies that for all k ∈ N,

E‖vk −∇f(zk)‖2 ≤
k−1∑

i=(τ(k)−1)q

L2

|ξi|
E‖zi+1 − zi‖2 +

σ2
1

|ξ0|
. (68)

Then we can begin the proof of Algorithm 7 by applying Algorithm 16 to step (i) at Eq. (23), and we
can get

Ef(xk+1)

≤ Ef(xk) +
ησmax

2
E‖∇f(xk)− vk‖2 − (

ησmin

2
− Lη2σ2

max

2
)E‖vk‖2

(i)

≤ Ef(xk) +
ησmax

2

k∑
i=(nk−1)q

L2

|ξk|
E‖xi+1 − xi‖2 +

ησmax

2
E‖v(nk−1)q −∇f(x(nk−1)q)‖

− (
ησmin

2
− Lη2σ2

max

2
)E‖vk‖2

(ii)
= Ef(xk) +

η3σ3
max

2

k∑
i=(nk−1)q

L2

|ξk|
E‖vi‖2 +

ησmax

2

σ2
1

|ξ0|
− (

ησmin

2
− Lη2σ2

max

2
)E‖vk‖2. (69)

Then, one can follow the same analysis and obtain:

E‖∇f(xζ)‖2 ≤
2

β∗

(
1 +

L2η2σ2
maxq

|ξk|

)
(f(x0)− f∗)

K
+

(
ησmax

β∗
+ 2 +

L2η3σ3
maxq

|ξk|β∗

)
σ2

1

|ξ0|
. (70)

To make the right hand side be smaller than ε2, K ≥ 2
β∗

(
1 + L2η2σ2

maxq
|ξk|

)
2(f(x0)−f∗)

ε2
, |ξ0| ≥

(
ησmax

β∗ + 2 + L2η3σ3
maxq

|ξk|β∗

)
2σ2

1
ε2

is necessary. Let

q = |ξk| =
√
|ξ0|, η ≡

(1 +
√

5)σmin

2Lσ2
max

, (71)

where |ξ0| is set as |ξ0| =
(
ησmax

β∗ + 2 + L2η3σ3
max

β∗

)
2σ2

1
ε2

. This proves the desired iteration complexity, and

the total number of stochastic gradient oracle calls is at most (K + q) |ξ0|q +K|ξk|. With the parameters

setting, we obtain the total SFO complexity as O(ε−3).

Appendix E. Proof of Algorithm 8

Firstly, one can check that Eq. (51) still holds in the online case. And then, one can apply Algorithm 16

to Eq. (52) and follow the proof of Eq. (58). One can check that there is an additional term
∑K−1

k=0
λkσ

2
1

2|ξ1| in
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the online case, and we obtain the following bound.

E[f(xK)] ≤ f(x0)−
K−1∑
k=0

β∗E‖vk‖2 +
K−1∑
k=0

λkσ
2
1

2|ξ0|

≤ f(x0)−
K−1∑
k=0

β∗E‖vk‖2 +
Kβσ2

1

|ξ0|
. (72)

Then, it follows that 1
K

∑K−1
k=0 E‖vk‖2 ≤ (f(x0)− f∗)/(Kβ∗) +

βσ2
1

β∗|ξ0| . One can check that Eq. (59) still

holds, and we only need to update the bound for the term E‖∇f(zζ)− vζ‖2 as follows

E‖∇f(zζ)− vζ‖2 ≤ 3L2β2 16(f(x0)− f∗)
Kβ∗

+
σ2

1

|ξ0|
. (73)

Then, we finally obtain that

E‖∇f(zζ)‖2 ≤
6L2β2 + 2

β∗
(f(x0)− f∗)

K
+ 2(1 +

β

β∗
)
σ2

1

|ξ0|
. (74)

To make the right hand side be smaller than ε2, we can set K ≥ 2(6L2β2+2)(f(x0)−f∗)
β∗ε2 , |ξ0| ≥

4(1+β/β∗)σ2
1

ε2
,

and let

q = ξk =
√
|ξ0|, βk ≡

σmin

(3 +
√

15)Lσ2
max

, (75)

where |ξ0| is set as |ξ0| =
4(1+β/β∗)σ2

1
ε2

. The total number of stochastic gradient oracle calls is at most

(K + q) |ξ0|q +K|ξk|. By parameters setting as Eq. (75) we obtain the total SFO complexity as O(ε−3).

Appendix F. Proof of Algorithm 9

The convergence proof of Algorithm 9, including both online SpiderSQNMER and online SpiderSQNMED,
follows from that of Theorem 5. Especially, one just consider the additional variance bounded by σ1 and
therefore we only describe the key steps to adapt the proof.

We first prove the result of online SpiderSQNMED. Under the epochwise-diminishing momentum
scheme, the momentum coefficient is set to be αk = 2

dk/qe+1 . Consequently, we have Γk = 2
dk/qe(dk/qe+1) .

First, one can check that Eq. (47) still holds, and now we have
∑K−1

t=k Γt ≤ 2
dk/qe . Then, we follow the

steps that bound the accumulation error term T in Eq. (53). In the derivation of (ii), we now have that∑τ(k)q−1
i=(τ(k)−1)q α

2
i+2Γi+1 ≤ 2

τ(k)3
. Substituting this new bound into (ii) and noting that in (iii) we now have

αk+1

Γk+1
= (dk/qe+ 1), one can follow the subsequent steps and show that the upper bound for T in Eq. (54)

still holds. Moreover, in Eq. (55) we should replace L(λk−βk)2

kΓk+1αk+1
with L(λk−βk)2

dk/qeΓk+1αk+1
, and consequently Eq. (56)

is still valid. Then, one can check that Eq. (74) that is

E‖∇f(zζ)‖2 ≤
6L2β2 + 2

β∗
(f(x0)− f∗)

K
+ 2(1 +

β

β∗
)
σ2

1

|ξ0|
, (76)

is still valid. To make the right hand side of above equation be smaller than ε2, we can set K ≥
2(6L2β2+2)(f(x0)−f∗)

β∗ε2 , |ξ0| ≥
4(1+β/β∗)σ2

1
ε2

, and let

q = ξk =
√
|ξ0|, βk ≡

σmin

(3 +
√

15)Lσ2
max

, (77)
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where |ξ0| is set to |ξ0| =
4(1+β/β∗)σ2

1
ε2

.The total number of stochastic gradient oracle calls is at most

(K + q) |ξ0|q +K|ξk|. By setting q = |ξk| =
√
|ξ0|, and we obtain the total SFO complexity as O(ε−3).

In summary, given the same parameters as for SpiderSQNM the convergence rate and the corresponding
oracle complexity of SpiderSQNMED remain in the same order as SpiderSQNM that is O(n+

√
nε−2).

One can follow the same analysis as Algorithm 8 and. The convergence proof of online SpiderSQNMER
follows from that of online SpiderSQNM. The core idea is to apply the result of online SpiderSQNM to
each restart period. Specifically, consider the iterations k = 0, 1, ..., q − 2. Firstly, we can rewrite Eq. (74)
as

E‖∇f(zζ)‖2 ≤
6L2β2 + 2

β∗
(f(x0)− f∗)

K
+ 2(1 +

β

β∗
)
σ2

1

|ξ0|

= O(
(f(x0)− f∗)

K
+

1

|ξ0|
). (78)

As no restart is performed within these iterations, we can apply the result in Eq. (64) (note that f∗ is the
relaxation of f(xK)) obtained from the analysis of Algorithm 4 and conclude that

E‖∇f(zζ)‖2 ≤ O
(

(f(x0)− E[f(xq−1)])

q − 1
+

1

|ξ0|

)
, where ζ

Unif∼ {0, ..., q − 2}. (79)

Due to the periodic restart, the above bound also holds similarly for the iterations k = tq, tq+1, ..., (t+1)q−2
for any t ∈ N, which yields that

E‖∇f(zζ)‖2 ≤ O
(

(f(xtq)− E[f(x(t+1)q−1)])

q − 1
+

1

|ξ0|

)
, where ζ

Unif∼ {tq, ..., (t+ 1)q − 2}. (80)

Next, consider running the algorithm with restart for iterations k = 0, ...,K − 1, and the output index ζ is

selected from {k : 0 ≤ k ≤ K − 1,mod(k, q − 1) 6= 0} uniformly at random. Let T =
⌈
K
q−1

⌉
. Then, we can

obtain the following estimate

E‖∇f(zζ)‖2 ≤
1

K − T

T∑
t=0

(t+1)q−2∑
k=tq

E‖∇f(zk)‖2

(i)

≤ O

(
1

K − T

T∑
t=0

(E(f(xtq)− f(x(t+1)q−1) +
q − 1

|ξ0|
))

)
(ii)

≤ O

(
(f(x0)− f∗)

K
+

1

|ξ0|

)
,

where (i) uses the results inductively derived from Eq. (80) and (ii) uses the fact that x(t+1)q−1 = x(t+1)q

due to restart. To make the right hand side be smaller than ε2, we can set K ≥ 2(6L2β2+2)(f(x0)−f∗)
β∗ε2 ,

|ξ0| ≥
4(1+β/β∗)σ2

1
ε2

, and let

q = |ξk| =
√
|ξ0|, βk ≡

σmin

(3 +
√

15)Lσ2
max

, (81)

where |ξ0| is set as |ξ0| =
4(1+β/β∗)σ2

1
ε2

. The total number of stochastic gradient oracle calls is at most

(K + q) |ξ0|q +K|ξk|. By parameters setting as Eq. (81) we obtain the total SFO complexity as O(ε−3).
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F.1 Proof of Theorem for Lower Bound

When do convergence analyses, we only use the first-order information, as defined in Carmon et al. (2017),
our method is a first-order method. Therefore, the proof can be a direct extension of Carmon et al. (2017);
Fang et al. (2018). Before drilling into the proof of Theorem 11, it is necessary for us to introduce the
hard instance f̂M with M ≥ 1 constructed by Carmon et al. (2017).

f̃M (x)−Ψ(1)Φ(x1) +
M∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] , (82)

where the component functions are

Ψ(x) =

{
0 x ≤ 1

2

exp
(

1− 1
(2x−1)2

)
x > 1

2

(83)

and

Φ(x) =
√
e

∫ x

−∞
e−

t2

2 , (84)

where xi denote the value of i-th coordinate of x, with i ∈ [d]. f̃M (x) constructed by Carmon et al. (2017)
is a zero-chain function, that is for every i ∈ [d], ∇if(x) = 0 whenever xi−1 = xi = xi+1. Therefore, any
deterministic algorithm can just recover “one” dimension in each iteration Carmon et al. (2017). Moreover,
it satisfies that : If |xi| ≤ 1 for any i ≤M ,∥∥∥∇f̃M (x)

∥∥∥ ≥ 1. (85)

Then to handle random algorithms, Carmon et al. (2017) further consider the following extensions:

f̂M,BM (x) = f̃M
(
(BM )Tρ(x)

)
+

1

10
‖x‖2 = f̃M

(〈
b(1), ρ(x)

〉
, . . . ,

〈
b(M), ρ(x)

〉)
+

1

10
‖x‖2, (86)

where ρ(x) = x√
1+‖x‖2/R2

and R = 230
√
M , BM is chosen uniformly at random from the space of

orthogonal matrices O(d,M) = {C ∈ Rd×M |C>C = IM }. The function f̂M,B(x) satisfies the following:

1.

f̂M,BM (0)− inf
x
f̂M,BM (x) ≤ 12M. (87)

2. f̂M,BM (x) has constant l (independent of M and d) Lipschitz continuous gradient.

3. if d ≥ 52 · 2302M2 log(2M2

p ), for any algorithm A solving P (finite-sum case) with n = 1, and

f(x) = f̂M,BM (x), then with probability 1− p,∥∥∥∇f̂M,BM (xk)
∥∥∥ ≥ 1

2
, for every k ≤M. (88)

The above properties found by Carmon et al. (2017) is very technical. One can refer to Carmon et al.
(2017) for more details.
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Proof [Proof of Theorem 11] Our lower bound theorem proof is as follows. Following the proof in Fang
et al. (2018), we further take the number of individual function n into account which is slightly different
from Theorem 2 in Carmon et al. (2017). Set

fi(x) =
ln1/2ε2

L
f̂M,BMi

(DT
i x/b) =

ln1/2ε2

L

(
f̃M
(
(BM

i )Tρ(DT
i x/b)

)
+

1

10

∥∥DT
i x/b

∥∥2
)
, (89)

and

f(x) =
1

n

n∑
i=1

fi(x). (90)

where BnM = [BM
1 , . . . ,BM

n ] is chosen uniformly at random from the space of orthogonal matrices
O(d,M) = {C ∈ R(d/n)×(nM)|C>C = I(nM) }, with each BM

i ∈ {C ∈ R(d/n)×(M)|C>C = I(M) }, i ∈ [n],

D = [D1, . . . ,Dn] is an arbitrary orthogonal matrices O(d,M) = {C ∈ Rd×d|C>C = Id }, with each

DM
i ∈ {C ∈ R(d)×(d/n)|C>C = I(d/n) }, i ∈ [n]. M = ∆L

12ln1/2ε2
, with n ≤ 144∆2L2

l2ε4
(to ensure M ≥ 1),

b = lε
L , and R =

√
230M . We first verify that f(x) satisfies Assumption 1. For Assumption 1, from (87),

we have

f(0)− inf
x∈Rd

f(x) ≤ 1

n

n∑
i=1

(fi(0)− inf
x∈Rd

fi(x)) ≤ ln1/2ε2

L
12M =

ln1/2ε2

L

12∆L

12ln1/2ε2
= ∆1.

For Assumption 2, for any i, using the f̂M,BMi
has l-Lipschitz continuous gradient, we have∥∥∥∇f̂M,BMi

(DT
i x/b)−∇f̂M,BMi

(DT
i y/b)

∥∥∥2
≤ l2

∥∥DT
i (x− y)/b

∥∥2
, (91)

Because ‖∇fi(x)−∇fi(y)‖2 =
∥∥∥ ln1/2ε2

Lb Di

(
∇f̂M,BMi

(DT
i x/b)−∇f̂M,BMi

(DT
i y/b)

)∥∥∥2
, and using D>i Di =

Id/n, we have

‖∇fi(x)−∇fi(y)‖2 ≤

(
ln1/2ε2

L

)2
l2

b4
∥∥DT

i (x− y)
∥∥2

= nL2
∥∥DT

i (x− y)
∥∥2
, (92)

where we use b = lε
L . Summing i = 1, . . . , n and using each Di are orthogonal matrix, we have

E‖∇fi(x)−∇fi(y)‖2 ≤ L2‖x− y‖2. (93)

Then with

d ≥ 2 max(9n3M2, 12n2MR2) log

(
2n3M2

p

)
+ n2M ∼ O

(
n2∆2L2

ε4
log

(
n2∆2L2

ε4p

))
,

from Lemma 2 of Carmon et al. (2017) (or Lemma 12 in Fang et al. (2018), also refer to Lemma 17 in this
paper), with probability at least 1− p, after T = nM

2 iterations (at the end of iteration T − 1), for all IT−1
i

with i ∈ [d], if IT−1
i < M , then for any ji ∈ {IT−1

i +1, . . . ,M}, we have
〈
bi,ji , ρ(DT

i x/b)
〉
≤ 1

2 , where IT−1
i

denotes that the algorithm A has called individual function i with IT−1
i times (

∑n
i=1 I

T−1
i = T ) at the end

of iteration T − 1, and bi,j denotes the j-th column of BM
i . However, from (88), if

〈
bi,ji , ρ(DT

i x/b)
〉
≤ 1

2 ,

we will have ‖∇f̂M,BMi
(DT

i x/b)‖ ≥ 1
2 . So fi can be solved only after M times calling it.

1. If x0 6= 0, we can simply translate the counter example as f ′(x) = f(x− x0), then f ′(x0)− infx∈Rd f ′(x) ≤ ∆.

30



From the above analysis, for any algorithm A, after running T = nM
2 = ∆Ln1/2

24lε2
iterations, at least n

2
functions cannot be solved (the worst case is when A exactly solves n

2 functions), so

∥∥∥∇f(xnM/2)
∥∥∥2

=
1

n2

∥∥∥∥∥ ∑
i not solved

ln1/2ε2

Lb
Di∇f̂M,BMi

(DT
i xnM/2/b)

∥∥∥∥∥
2

a
=

1

n2

∑
i not solved

∥∥∥n1/2ε∇f̂M,BMi
(DT

i xnM/2/b)
∥∥∥2 (88)

≥ ε2

8
, (94)

where in
a
=, we use D>i Dj = 0d/n, when i 6= j, and D>i Di = Id/n.

Lemma 17 Let {x}0:T with T = nM
2 is informed by a certain algorithm in the form (17). Then when

d ≥ 2 max(9n3M2, 12n3MR2) log(2n2M2

p ) + n2M , with probability 1− p, at each iteration 0 ≤ t ≤ T , xt

can only recover one coordinate.

Proof The proof is essentially same to Carmon et al. (2017) and Fang et al. (2018). We give a proof here.
Before the poof, we give the following definitions:

1. Let it denotes that at iteration t, the algorithm choses the it-th individual function.

2. Let Iti denotes the total times that individual function with index i has been called before iteration
k. We have I0

i = 0 with i ∈ [n], i 6= it, and I0
i0 = 1. And for t ≥ 1,

Iti =

{
It−1
i + 1, i = it.

It−1
i , otherwise.

(95)

3. Let yti = ρ(DT
i xt) =

DT
i x

t

√
R2+‖DT

i x
t‖2

with i ∈ [n]. We have yti ∈ Rd/n and ‖yti‖ ≤ R.

4. Set V t
i be the set that

(⋃n
i=1

{
bi,1, · · ·bi,min(M,Iti )

})⋃{
y0
i ,y

1
i , · · · ,yti

}
, where bi,j denotes the j-th

column of BM
i .

5. Set U t
i be the set of

{
bi,min(M,It−1

i +1), · · · ,bi,M
}

with i ∈ [n]. U t =
⋃n
i=1 U

t
i. And set Ũ t

i ={
bi,min(M,1), · · · ,bi,min(M,It−1

i )

}
. Ũ t

=
⋃n
i=1 Ũ

t
i.

6. Let P t
i ∈ R(d/n)×(d/n) denote the projection operator to the span of u ∈ V t

i. And let P t⊥
i denote its

orthogonal complement.

Because At performs measurable mapping, the above terms are all measurable on ξ and BnM , where ξ is
the random vector in A. It is clear that if for all 0 ≤ t ≤ T and i ∈ [n], we have∣∣〈u,yti〉∣∣ < 1

2
, for all u ∈ U t

i. (96)

then at each iteration, we can only recover one index, which is our destination. To prove that (96) holds
with probability at least 1− p, we consider a more hard event Ht as

Ht =
{∣∣∣〈u,P(t−1)⊥

i yti

〉∣∣∣ ≤ a‖P(t−1)⊥
i yti‖ | u ∈ U t (not U t

i), i ∈ [n]
}
, t ≥ 1, (97)
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with a = min
(

1
3(T+1) ,

1
2(1+

√
3T )R

)
. And G≤t =

⋂t
j=0 H

j .

We first show that if H≤T happens, then (96) holds for all 0 ≤ t ≤ T . For 0 ≤ t ≤ T , and i ∈ [n], if
U t
i = ∅, (96) is right; otherwise for any u ∈ U t

i, we have∣∣〈u,yti〉∣∣
≤

∣∣∣〈u,P(t−1)⊥
i yti

〉∣∣∣+
∣∣∣〈u,P(t−1)

i yti

〉∣∣∣
≤ a‖P(t−1)⊥

i yti‖+
∣∣〈u,P t−1

i yti
〉∣∣ ≤ aR+R

∥∥P t−1
i u

∥∥ , (98)

where in the last inequality, we use ‖P(t−1)⊥
i yti‖ ≤ ‖y

(t−1)
i ‖ ≤ R.

If t = 0, we have P t−1
i = 0d/n×d/n, then

∥∥P t−1
i u

∥∥ = 0, so (96) holds. When t ≥ 1, suppose at t− 1,

H≤t happens then (96) holds for all 0 to t− 1. Then we need to prove that ‖P t−1
i u‖ ≤ b =

√
3Ta with

u ∈ U t
i and i ∈ [n]. Instead, we prove a stronger results: ‖P t−1

i u‖ ≤ b =
√

3Ta with all u ∈ U t and i ∈ [n].
Again, When t = 0, we have ‖P t−1

i u‖ = 0, so it is right, when t ≥ 1, by Graham-Schmidt procedure on
y0
i ,bi0,min(I0

i0
,M), · · · ,yt−1

i ,bit−1,min(It−1

it−1 ,M), we have

∥∥P t−1
i u

∥∥2
=

t−1∑
z=0

∣∣∣∣∣
〈

P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,u

〉∣∣∣∣∣
2

+
t−1∑

z=0, Iziz≤M

∣∣∣∣∣∣
〈

P̂(z−1)⊥
i biz ,Iziz

‖P̂(z−1)⊥
i biz ,Iziz ‖

,u

〉∣∣∣∣∣∣
2

, (99)

where

P̂(z−1)
i = P(z−1)

i +

(
P(z−1)⊥
i yzi

)(
P(z−1)⊥
i yzi

)T

∥∥∥P(z−1)⊥
i yzi

∥∥∥2 .

Using biz ,Iziz⊥u for all u ∈ U t, we have∣∣∣〈P̂(z−1)⊥
i biz ,Iziz ,u

〉∣∣∣ (100)

=
∣∣∣0− 〈P̂(z−1)

i biz ,Iziz ,u
〉∣∣∣

≤
∣∣∣〈P(z−1)

i biz ,Iziz ,u
〉∣∣∣+

∣∣∣∣∣
〈

P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,biz ,Iziz

〉〈
P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,u

〉∣∣∣∣∣ .
For the first term in the right hand of (100), by induction, we have∣∣∣〈P(z−1)

i biz ,Iziz ,u
〉∣∣∣ =

∣∣∣〈P(z−1)
i biz ,Iziz ,P

(z−1)
i u

〉∣∣∣ ≤ b2. (101)

For the second term in the right hand of (100), by assumption (97), we have∣∣∣∣∣
〈

P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,biz ,Iziz

〉〈
P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,u

〉∣∣∣∣∣ ≤ a2. (102)

Also, we have ∥∥∥P̂(z−1)⊥
i biz ,Iziz

∥∥∥2

(103)

= ‖biz ,Iziz ‖
2 −

∥∥∥P̂(z−1)
i biz ,Iziz

∥∥∥2
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= ‖biz ,Iziz ‖
2 −

∥∥∥P(z−1)
i biz ,Iziz

∥∥∥2
−

∣∣∣∣∣
〈

P(z−1)⊥
i yzi

‖P(z−1)⊥
i yzi ‖

,biz ,Iziz

〉∣∣∣∣∣
2

≥ 1− b2 − a2.

Substituting (100) and (103) into (99), for all u ∈ U t, we have

∥∥P t−1
i u

∥∥2 ≤ ta2 + t
(a2 + b2)2

1− (a2 + b2)

a2+b2≤(3T+1)a2≤a
≤ Ta2 + T

a2

1− a
a≤1/2

≤ 3Ta2 = b2. (104)

Thus for (98), t ≥ 1, because u ∈ U t
i ⊆ U t, we have

∣∣〈u,yti〉∣∣ ≤ (a+ b)R

a≤ 1

2(1+
√
3T )R

≤ ≤ 1

2
. (105)

This shows that if H≤T happens, (96) holds for all 0 ≤ t ≤ T . Then we prove that P(H≤T ) ≥ 1− p. We
have

P
(
(H≤T )c

)
=

T∑
t=0

P
(
(H≤t)c |H<t

)
. (106)

We give the following definition:

1. Denote ît be the sequence of i0:t−1. Let Ŝt be the set that contains all possible ways of ît (|Ŝt| ≤ nt).

2. Let Ṽj

ît
= [bj,1, · · · ,bj,min(M,It−1

j )] with j ∈ [n], and Ṽît = [Ṽ1
ît
, · · · , Ṽn

ît
]. Ṽît is analogous to Ũ t,

but is a matrix.

3. Let Vj

ît
= [bj,min(M,Itj)

; · · · ; bj,M ] with j ∈ [n], and Vît = [V1
ît
, · · · ,Vn

ît
]. Vît is analogous to U t, but

is a matrix. Let V̄ = [Ṽît ,Vît ].

We have that

P
(
(H≤t)c |H<t

)
(107)

=
∑
ît0∈Ŝt

Eξ,V
ît0

(
P
(

(H≤t)c |H<t, ît = ît0, ξ,Vît0

)
P
(
ît = ît0 |H<t, ξ,Vît0

))
.

For
∑

ît0∈Ŝt
Eξ,V

ît0

P
(
ît = ît0 |H<t, ξ,Vît0

)
=
∑

ît0∈Ŝt
P
(
ît = ît0 |H<t

)
= 1, in the rest, we show that the

probability P
(

(H≤t)c |H<t, ît = ît0, ξ = ξ0, Ṽît0
= Ṽ0,

)
for all ξ0, Ṽ0 is small. By union bound, we have

P
(

(H≤t)c |H<t, ît = ît0, ξ = ξ0, Ṽît0
= Ṽ0

)
(108)

≤
n∑
i=1

∑
u∈Ut

P
(〈

u,P(t−1)⊥
i yti

〉
≥ a‖P(t−1)⊥

i yti‖ |H<t, ît = ît0, ξ = ξ0, Ṽît0
= Ṽ0

)
.

Note that ît0 is a constant. Because given ξ and Ṽît0
, under G≤t, both P(t−1)

i and yti are known. We prove

P
(
Vît0

= V0 |H<t, ît = ît0, ξ = ξ0, Ṽît0
= Ṽ0

)
= P

(
Vît0

= ZiV0 |H<t, ît = ît0, ξ = ξ0, Ṽît0
= Ṽ0

)
, (109)
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where Zi ∈ Rd/n×d/n, ZT
i Zi = Id, and Ziu = u = ZT

i u for all u ∈ V t−1
i . In this way,

P(t−1)⊥
i u

‖P(t−1)⊥
i u‖

has

uniformed distribution on the unit space. To prove it, we have

P
(
Vît0

= V0 |H<t, ît = ît0, ξ = ξ0, Ṽît0
= Ṽ0

)
=

P(Vît0
= V0,H<t, ît = ît0, ξ = ξ0, Ṽît0

= Ṽ0)

P(H<t, ît = ît0, ξ = ξ0, Ṽît0
= Ṽ0)

=
P(H<t, ît = ît0 | ξ = ξ0,Vît0

= V0, Ṽît0
= Ṽ0)p(ξ = ξ0,Vît0

= V0, Ṽît0
= Ṽ0)

P(H<t, ît = ît0, ξ = ξ0, Ṽît0
= Ṽ)

, (110)

And

P
(
Vît0

= ZiV0 |H<t, ît = ît0, ξ = ξ0, Ṽî0
= Ṽ0

)
=

P(H<t, ît = ît0 | ξ = ξ0,Vît0
= V0, Ṽît0

= ZiṼ0)p(ξ = ξ0,Vît0
= ZiV0, Ṽît0

= Ṽ0)

P(H<t, ît = ît0, ξ = ξ0, Ṽît0
= Ṽ0)

(111)

For ξ and V̄ are independent. And p(V̄) = p(ZiV̄), we have p(ξ = ξ0,Vît0
= V0, Ṽît0

= Ṽ0) = p(ξ =

ξ0,Vît0
= ZiV0, Ṽît0

= Ṽ0). Then we prove that if H<t and ît = ît0 happens under Vît0
= V0, ξ = ξ0, Ṽît0

=

Ṽ0, if and only if H<t and ît = ît0 happen under Vît0
= ZiV0, ξ = ξ0, Ṽît0

= Ṽ0.

Suppose at iteration l−1 with l ≤ t, we have the result. At iteration l, suppose H<l and îl = îl0 happen,
given Vît0

= V0, ξ = ξ0, Ṽît0
= Ṽ0. Let x′ and (̂i′)j are generated by ξ = ξ0,Vît0

= ZiV0, Ṽît0
= Ṽ0.

Because H<l happens, thus at each iteration, we can only recover one index until l − 1. Then (x′)j = xj

and (̂i′)j = îj . with j ≤ l. By induction, we only need to prove that Hl−1′ will happen. Let u ∈ U l−1,
and i ∈ [n], we have∣∣∣∣∣

〈
Ziu,

P(l−2)⊥
i yl−1

i

‖P(l−2)⊥
i yl−1

i ‖

〉∣∣∣∣∣ =

∣∣∣∣∣
〈

u,ZT
i

P(l−2)⊥
i yl−1

i

‖P(l−2)⊥
i yl−1

i ‖

〉∣∣∣∣∣ a=
∣∣∣∣∣
〈

u,
P(l−2)⊥
i yl−1

i

‖P(l−2)⊥
i yl−1

i ‖

〉∣∣∣∣∣ , (112)

where in
a
=, we use P(l−2)⊥

i yl−1
i is in the span of V l

i ⊆ V t−1
i . This shows that if H<t and ît = ît0 happen

under Vît0
= V0, ξ = ξ0, Ṽît0

= Ṽ0, then H<t and ît = ît happen under Vît0
= ZiV0, ξ = ξ0, Ṽît0

= Ṽ0.

In the same way, we can prove the necessity. Thus for any u ∈ Vt, if ‖P(t−1)⊥
i yti‖ 6= 0 (otherwise,∣∣∣〈u,P(t−1)⊥

i yti

〉∣∣∣ ≤ a‖P(t−1)⊥
i yti‖ holds), we have

P

(〈
u,

P(t−1)⊥
i yti

‖P(t−1)⊥
i yti‖

〉
≥ a |H<t, ît = ît0, ξ = ξ0, Ṽît0

= Ṽ0

)
a
≤ P

(〈
P(t−1)⊥
i u

‖P(t−1)⊥
i u‖

,
P(t−1)⊥
i yti

‖P(t−1)⊥
i yti‖

〉
≥ a |H<t, ît = ît0, ξ = ξ0, Ṽît0

= Ṽ0

)
b
≤ 2e

−a2(d/n−2T )
2 , (113)

where in
a
≤, we use ‖P(t−1)⊥

i u‖ ≤ 1; and in
b
≤, we use

P(t−1)⊥
i yti

‖P(t−1)⊥
i yti‖

is a known unit vector and
P(t−1)⊥
i u

‖P(t−1)⊥
i u‖

has uniformed distribution on the unit space. Then by union bound, we have P
((
H≤t

)c |H<t
)
≤

2(n2M)e
−a2(d/n−2T )

2 . Thus

P
((

H≤T
)c) ≤ 2(T + 1)n2M exp

(
−a2(d/n− 2T )

2

)
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T=nM
2

≤ 2(nM)(n2M) exp

(
−a2(d/n− 2T )

2

)
.https : //www.overleaf.com/project/5df9fe6b72d0630001ce4cd4(114)

Then by setting

d/n ≥ 2 max(9n2M2, 12nMR2) log(
2n3M2

p
) + nM

≥ 2 max(9(T + 1)2, 2(2
√

3T )2R2) log(
2n3M2

p
) + 2T

≥ 2 max(9(T + 1)2, 2(1 +
√

3T )2R2) log(
2n3M2

p
) + 2T

≥ 2

a2
log(

2n3M2

p
) + 2T, (115)

we have P
((

H≤T
)c) ≤ p. This completes the proof.

F.2 Proof of Assumptions 4 and 5

Following the proof in Wang et al. (2017) we prove that Hk generated by Algorithm 1 satisfies assumptions
4 and 5. For convenience, we restate the formulations have already been stated in our manuscript. First,
we prove that Hk generated by SdLBFGS satisfies assumptions 4 and then we prove that Hk generated by
the two-loop SdLBFGS also satisfies assumptions 4.

At current iteration k (refers to iteration k in Algorithms 2) to 5, the stochastic gradient difference is
defined as

ȳk−1 := vk − vk−1 = ∇fξk(xk)−∇fξk(xk−1). (116)

The iterate difference is still defined as sk−1 = xk − xk−1. We introduce ŷk−1 as

ŷk−1 = θk−1ȳk−1 + (1− θk−1)H−1
k−1,0sk−1, (117)

where

θk =


0.75s>k−1H

−1
k,0sk−1

s>k−1H
−1
k,0sk−1−s>k−1ȳk−1

, if s>k−1ȳk−1 < 0.25s>k−1H
−1
k,0sk−1

1, otherwise,
(118)

Then we prove that there is s>k−1ŷk−1 ≥ 0.25s>k−1H
−1
k,0sk−1

Lemma 18 Given ŷk−1 defined in (117), there is s>k−1ŷk−1 ≥ 0.25s>k−1H
−1
k,0sk−1. Moreover, if Hk,0 � 0,

then Hk,j � 0, j = 1, . . . ,m.

Proof From (117) and (118) we have that

s>k−1ŷk−1 = θk(s
>
k−1ȳk−1 − s>k−1H

−1
k,0sk−1) + s>k−1H

−1
k,0sk−1

=

{
0.25s>k−1H

−1
k,0sk−1, if s>k−1ȳk−1 < 0.25s>k−1H

−1
k,0sk−1,

s>k−1ȳk−1, otherwise,

which implies s>k−1ŷk−1 ≥ 0.25s>k−1Hk,0sk−1. Therefore, if Hk,0 � 0, there is s>k−1ŷk−1 > 0. Using sj and
ŷj , j = k −m, . . . , k − 1, the formula of SdLBFGS is defined as

Hk,i = (I − ρjsj ŷ>j )Hk,i−1(I − ρj ŷjs>j ) + ρjsjs
>
j , j = k − (m− i+ 1); i = 1, . . . ,m, (119)
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where ρj = (s>j ŷj)
−1. Note that when k < m, we use sj and ŷj , j = 1, . . . , k to perform SdLBFGS updates.

As a result, for Hk,i defined in (119) and any nonzero vector z ∈ Rd, and given Hk−1 � 0 we have

z>Hk,iz = z>(I − ρjsj ŷ>j )Hk,i−1(I − ρj ŷjs>j )z + ρj(s
>
j z)

2 > 0, j = k − (m− i+ 1); i = 1, . . . ,m,

where (z>(I − ρjsj ŷ>j ))> = (I − ρj ŷjs>j )z. Through above analysis we have that given Hk,0 � 0, Hk,j � 0,
j = 1, . . . ,m. This completes the proof.

Note that, above proof relies on the assumption that Hk,0 � 0 thus we turn to the discussion of
choosing Hk,0. In this paper we set

Hk,0 = γ−1
k Id×d, where γk = max

{
ȳ>k−1ȳk−1

s>k−1ȳk−1
, δ

}
≥ δ. (120)

Given δ > 0 it is obvious that Hk,0 � 0.
To prove that Hk = Hk,m (in Algorithm 1, there is Hkvk = Hk,mvk = v̄m) generated by (119)-(120)

satisfies assumptions 4 and 5, we need use Assumption 3. In the following analysis, we just focus on the
finite-sum case, and that of online case is similar. Note that Assumption 3 is equivalent to requiring that
−κI � ∇2fi(x) � κI for i = 1, . . . , n. The following lemma shows that the eigenvalues of Hk are bounded
below away from zero under Assumption 3.

Lemma 19 Suppose that Assumption 3 holds. Given Hk,0 defined in (120), suppose that Hk = Hk,m is
updated through the SdLBFGS formula (119). Then all the eigenvalues of Hk satisfy

‖Hk‖ ≥
(

4mκ2

δ
+ (4m+ 1)(κ+ δ)

)−1

, (121)

where δ is a predefined positive constant and m is the memory size.
Proof According to Lemma 18, Hk,i � 0, i = 1, . . . ,m. To prove that the eigenvalues of Hk are bounded
below away from zero, it suffices to prove that the eigenvalues of Bk = H−1

k are bounded from above.
From the formula (119), Bk = Bk,m can be computed recursively as

Bk,i = Bk,i−1 +
ŷj ŷ
>
j

s>j ŷj
−
Bk,i−1sjs

>
j Bk,i−1

s>j Bk,i−1sj
, j = k − (m− i+ 1); i = 1, . . . ,m,

starting from Bk,0 = H−1
k,0 = γkI. Since Bk,0 � 0, Lemma 18 indicates that Bk,i � 0 for i = 1, . . . ,m.

Moreover, the following inequalities hold:

‖Bk,i‖ ≤

∥∥∥∥∥Bk,i−1 −
Bk,i−1sjs

>
j Bk,i−1

s>j Bk,i−1sj

∥∥∥∥∥+

∥∥∥∥∥ ŷj ŷ>js>j ŷj

∥∥∥∥∥ ≤ ‖Bk,i−1‖+

∥∥∥∥∥ ŷj ŷ>js>j ŷj

∥∥∥∥∥ = ‖Bk,i−1‖+
ŷ>j ŷj

s>j ŷj
. (122)

From the definition of ŷj in (117) and the facts that s>j ŷj ≥ 0.25s>j Bj+1,0sj and Bj+1,0 = γj+1I from
(120), we have that for any j = k − 1, . . . , k −m

ŷ>j ŷj

s>j ŷj
≤ 4
‖θj ȳj + (1− θj)Bj+1,0sj‖2

s>j Bj+1,0sj
= 4θ2

j

ȳ>j ȳj

γj+1s>j sj
+ 8θj(1− θj)

ȳ>j sj

s>j sj
+ 4(1− θj)2γj+1. (123)

Note that from (116) we have

ȳj =
1

|ξj+1|
∑
i∈ξj+1

(∇fi(xj+1)−∇fi(xj) =
1

|ξj+1|

 ∑
i∈ξj+1

∇2fi(xj , sj)

 sj , (124)
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where ∇2fi(xj , sj) =
∫ 1

0 ∇
2fi(xj + tsj)dt, because g(xj+1) − g(xj) =

∫ 1
0
dg
dt (xj + tsj)dt =

∫ 1
0 ∇

2fi(xj +
tsj)sjdt. Therefore, for any j = k − 1, . . . , k − m, from (123), and the facts that 0 < θj ≤ 1 and
δ ≤ γj+1 ≤ κ + δ (according to Eq. 124 and Eq. 120, there is max{δ, κ} ≤ γj+1), and the assumption
Assumption 3 it follows that

ŷ>j ŷj

s>j ŷj
≤

4θ2
jκ

2

γj+1
+ 8θj(1− θj)κ+ 4(1− θj)2γj+1 ≤

4θ2
jκ

2

δ
+ 4[(1− θ2

j )κ+ (1− θj)2δ] ≤ 4κ2

δ
+ 4(κ+ δ).

(125)

Combining (122) and (125) yields

‖Bk,i‖ ≤ ‖Bk,i−1‖+ 4

(
κ2

δ
+ κ+ δ

)
.

By induction, we have that

‖Bk‖ = ‖Bk,m‖ ≤ ‖Bk,0‖+ 4m

(
κ2

δ
+ κ+ δ

)
≤ 4mκ2

δ
+ (4m+ 1)(κ+ δ),

which implies (121).

We now prove that Hk is uniformly bounded above.

Lemma 20 Suppose that Assumption 3 holds. Given Hk,0 defined in (120), suppose that Hk = Hk,m is
updated through formula (119). Then Hk satisfies

‖Hk‖ ≤
(
α2m − 1

α2 − 1

)
4

δ
+
α2m

δ
, (126)

where α = (4κ+ 5δ)/δ, δ is a predefined positive constant and m is the memory size.

Proof For notational simplicity, we omit the subscript, and let H = Hk,i−1, H+ = Hk,i, s = sj , ŷ = ŷj ,
ρ = (s>j ŷj)

−1 = (s>ŷ)−1. Now Eq. (125) can be written as

H+ = H − ρ(Hŷs> + sŷ>H) + ρss> + ρ2(ŷ>Hŷ)ss>.

Using the facts that ‖uv>‖ ≤ ‖u‖ · ‖v‖ for any vectors u and v, ρs>s = ρ‖s‖2 = s>s
s>ŷ
≤ 4

δ , and

‖ŷ‖2
s>ŷ
≤ 4

(
κ2

δ + κ+ δ
)
< 4

δ (κ+ δ)2, which follows from (125), we have that

‖H+‖ ≤ ‖H‖+
2‖H‖ · ‖ŷ‖ · ‖s‖

s>ŷ
+
s>s

s>ŷ
+
s>s

s>ŷ
· ‖H‖ · ‖ŷ‖

2

s>ŷ
.

Noting that ‖ŷ‖‖s‖
s>ŷ

=
[
‖ŷ‖2
s>ŷ
· ‖s‖

2

s>ŷ

]1/2
, it follows that

‖H+‖ ≤

(
1 + 2 · 4

δ
(κ+ δ) +

(
4

δ
(κ+ δ)

)2
)
‖H‖+

4

δ
= (1 + (4κ+ 4δ)/δ)2‖H‖+

4

δ
.

Hence, by induction we obtain (126).

Lemmas 19 and 20 indicate that Hk generated by (117)-(119) satisfies Assumption 4. Moreover, since
ȳk−1 defined in (116) depends on random samplings in the k-th iteration i.e., ξk, it follows that given ξk
and vk−1 Hk is determined and Assumption 5 is satisfied.

37



References

Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. In Advances in neural information
processing systems, pages 2675–2686, 2018.
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