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Abstract—In this paper, we propose a novel model-parallel
learning method, called local critic training, which trains neural
networks using additional modules called local critic networks.
The main network is divided into several layer groups and each
layer group is updated through error gradients estimated by the
corresponding local critic network. We show that the proposed
approach successfully decouples the update process of the layer
groups for both convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs). In addition, we demonstrate that
the proposed method is guaranteed to converge to a critical point.
We also show that trained networks by the proposed method
can be used for structural optimization. Experimental results
show that our method achieves satisfactory performance, reduces
training time greatly, and decreases memory consumption per
machine. Code is available at https://github.com/hjdw2/Local-
critic-training.

Index Terms—model-parallel learning, deep neural network,
structural optimization, convergence

I. INTRODUCTION

ECENTLY, deep learning has been successfully applied

in many fields, including speech recognition [2], [3],
machine translation [4], [5], image recognition [6], [7], etc.
This achievement is mainly due to the development of large-
sized neural network architectures having increased learning
capabilities and the advancement of devices that can handle the
huge amount of calculation for training such neural networks.
However, as the size of neural networks grows, the amounts
of computation and memory consumption that a machine needs
to handle increase significantly, which often becomes infeasible.
A potential way to alleviate this issue is model-parallel learning
by exploiting multiple computing nodes simultaneously. In this
approach, a deep neural network is divided into several modules
and then each module is distributed to a different computing
node for efficient computation. However, the backpropagation
training method that is commonly used is not suitable for this
type of learning due to its sequential nature: The given data have
to be processed through the entire network in the feedforward
direction, producing an output. Then, the output is compared to
the target using a loss function to produce an error signal. The
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error signal is propagated in the backward direction from the
output layer to the former layers to obtain the error gradient
by the chain rule, based on which the weight parameters of the
network are updated. This sequential procedure ties the whole
computation process into a non-breakable unit. Therefore, the
distributed modules in model-parallel learning cannot be trained
in an efficient way using the conventional backpropagation
approach.

A few methods have been proposed for model-parallel
learning. The method of auxiliary coordinates (MAC) in [8] and
the alternating direction method of multipliers (ADMM) in [9]
train a network by a sequence of minimization sub-steps without
gradient descent steps. These methods resolve the layer-wise
dependency to some extent. However, because they were only
applied to shallow fully-connected networks, it is difficult to
expect that the methods work well for deep network structures
such as convolutional neural networks (CNNs). In [10], a
concept of predicting error gradients of layers is proposed,
called the decoupled neural interface (DNI) method. Prediction
(instead of computation) of error gradients allows training of
a certain layer before the complete backward pass till the
layer. However, this method achieves poor performance when
compared to conventional backpropagation as shown in [11].
Besides, when the network becomes deeper, there are cases
where learning does not converge [12].

In this paper, we propose a novel method to train neural net-
works in a model-parallel way by introducing auxiliary neural
networks, called local critic networks, to unlock dependencies
in the update process of layers. We call our method local critic
training. The main network is divided into several modules by
the local critic networks and each local critic network delivers
an estimated error gradient to the corresponding module. In
this way, each module has no dependency on the other modules
except the corresponding local critic network, which enables
model-parallel learning. We show that the proposed method
is applicable to both convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). Besides, we provide a
theoretical analysis to demonstrate that the local critic training
method converges to a critical point under certain conditions.
In addition, by taking advantage of the fact that the outputs of
the local critic networks indirectly approximate the output of
the main network, we show that the trained networks can be
used for structural optimization.

The contribution of this paper is summarized as follows.

« We propose the local critic training method for model-
parallel training of deep neural networks including both
CNNs and RNNs. Experimental results demonstrate that
the proposed method achieves better performance of



the trained networks than [10] and faster training speed
and reduced memory consumption than the conventional
backpropagation training.

« We mathematically prove the convergence of the proposed
method.

« We show that the proposed method naturally performs
structural optimization. In other words, the main and
local critic networks trained by our method can form
multiple networks having different levels of complexity,
among which one can choose a compact one showing
good performance.

The rest of the paper is organized as follows. Section
I provides a brief survey of the related work. Section III
explains the algorithm and architecture of the proposed local
critic training method. Section IV elaborates the convergence
analysis. Extensive experimental results are provided in Section
V. Finally, conclusion is given in Section VI.

II. RELATED WORK
A. Efficient Learning

In order to alleviate the burden of training huge neural
networks, plenty of methods have been studied from var-
ious perspectives, such as quantization [!13], pruning [14],
knowledge distillation [15], hyperparameter optimization [16],
[17], parallel learning [18], etc. Quantization is an approach
using reduced precision floating-point numbers for weights,
activations, and gradients. In [13], a method using half-precision
floating point numbers is proposed, which reduces memory
usage by half without performance degradation. Pruning is
a method that removes weight parameters gradually during
training to reduce the network size. In [14], it is shown that
the proposed structured pruning and reconfiguration method
reduces the training time greatly. Knowledge distillation is
an approach using a pre-trained teacher network for training
a student network having reduced complexity. In [15], using
knowledge transfer with knowledge distillation, faster optimiza-
tion and improved performance are achieved. Hyperparameter
optimization is a method to find the optimal hyperparameters
for learning efficiently than brute-force methods. There exist
heuristic approaches using reinforcement learning to find the
optimal hyperparameters during training and make the learning
converge faster [16], [17]. Parallel learning uses multiple
computing machines at the same time to reduce training time,
which is surveyed in the following section in more detail.

B. Parallel Learning

Parallel learning is categorized into two types: data paral-
lelism and model parallelism.

Data parallelism basically replicates the same model on
multiple machines and partitions the training dataset. Then,
each machine is fed with the partitioned data to perform the
forward and backward passes. The calculated error gradients
are gathered at the center node to update the model parameters
using stochastic gradient descent (SGD). Thus, the center
node has to wait for all nodes to send the results before
updating the model, which is called synchronous SGD [19].

We have another choice, in which the center node does not
wait for all nodes and uses only the information available at
the time, which is asynchronous SGD [20]. Some examples
of recent studies on data parallelism are as follows. A method
of using minimal tensor swapping between CPU and GPU
is proposed in [21] to train large models beyond the GPU
capacity. In [22], the effects of increasing the batch size during
training for data parallelism are extensively investigated. In [18],
various types of concurrency for parallelism are analyzed in
the viewpoints of stochastic optimization, network architecture,
and communication mechanism.

In the model parallelism approach, the model is divided
into several modules and each module is trained on a different
machine. This approach can speed up learning while reducing
the computation burden per machine.

As a way of dividing a network, we can divide the network in
terms of the arithmetic operations of layers, such as addition or
multiplication. In [23], a framework for large-scale distributed
training is proposed, which divides the computation process of
a CNN into multiple machines, combining the asynchronous
SGD. Since then, various methods have been studied to partition
a network with respect to batch dimension, data dimension,
or channel dimension [24]-[27]. In addition, pipeline-based
model parallel methods are proposed in [28], [29]. In [30], a
method to automatically optimize parallelization strategies is
proposed. A hybrid approach is also proposed in [31], where
multiple devices are used for different parts of the model in each
data-parallel worker. These methods, like the data parallelism
methods, are usually independent of the network structure
and learning algorithm. Thus, they can be used together with
other model-parallel learning methods (including the proposed
method) described below.

The proposed method belongs to the approach that partitions
the network in the layer dimension. In [8], [9], the methods to
train a network by solving an equality-constrained optimization
problem are proposed, namely, MAC and ADMM, respectively.
Because they do not need the gradient descesnt steps, they
remove the dependencies in the update process of layers.
However, these methods have proven to work only for simple
networks. In [10], the method using additional neural networks
called decoupled neural interfaces (DNIs) is proposed. The
outputs of DNIs are the estimated error gradients of the layers
in the main network for the update of the layers. Since the
error gradients are provided from the DNIs, the backward pass
does not need to start from the loss function. Thus, each layer
can be updated independently in a layer-wise fashion. However,
this method causes performance degradation compared to the
backpropagation as shown in [I1]. The idea of employing
DNIs is also adopted in [1 1], where the DNIs approximate the
output of the main network instead the error gradients of the
layers. However, it aims to improve the performance of the
model, and does not implement parallel learning. Furthermore,
the methods in [10], [1 1] have been applied only to CNNs. In
contrast, we propose a method that improves these methods
to enhance the performance and also facilitate model-parallel
learning for both CNNs and RNNs.
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Fig. 1. Illustration of the proposed local critic training method. The black,
green, and red arrows indicate feedforward passes, error gradient flows, and
loss comparisons, respectively. Each orange box corresponds to a part that
can be allocated to a separate computing node.

C. Structural Optimization and Anytime Prediction

Structural optimization refers to the process of finding the
optimal neural network structure to perform a given task, which
has been one of the most challenging problems in neural
networks [32]-[35]. Here, the optimality can be noted as either
the least complex structure achieving the maximum possible
performance or the structure having a good balance between
the model complexity and performance. The anytime prediction
property means that given a certain computational budget that
is not sufficient to perform a complete feedforward propagation
through the trained network, an inference result can be still
obtained using part of the network [36], [37]. CNNs and RNNs
trained using the proposed local critic training algorithm are
readily used for structural optimization and anytime prediction
without any further training or optimization process.

ITII. PROPOSED APPROACH
A. Local Critic Training for CNNs

The core idea of the proposed local critic training method is
to train the main network using additional networks called local
critic networks. The local critic networks are added between
layers in the main network so that the main network is divided
into several layer groups, and produce outputs through softmax

layers in the same manner as the output of the main network.

Each local critic network is trained in such a way that the
loss of its output approximates the loss of the output of the
main network. Then, the corresponding layer group can be
trained using the output of the local critic network without the
necessity of waiting for the main network to produce the output
at its final layer through the complete feedforward computation.

When the main network is divided into /N layer groups,
we denote the ith layer group as f; (i =1,...,N) in the main
network and the ¢th local critic network inserted between f;
and f;11 as¢; (1 =1,...,N —1), as shown in Figure la. The
output of f;, denoted as h;, is propagated to ¢;, producing
output Z;. This output is compared to the target y through a
loss function, i.e.,

Li = U(Zi,y), )

where [ is the loss function such as cross-entropy or mean-
squared error'. Then, the error gradient for training f; is
obtained by differentiating L; with respect to h;, i.e.,

L
G

9; 2
which can be used to update the weight parameters of f;,
denoted by w;, via the gradient-descent rule:

Oh;

W; < w; — AV, Li = w; —a §; —, (3)
where « is a learning rate and V,,, denotes the partial derivative
with respect to w;. In order to train the weight of the layer group
correctly in this way, L; has to appoximate the final output of
the main network Ly =1(hy,y) so that §; approximates the
true gradient, i.e.,

_OLn

0; ~ .
Oh;

4)

Thus, we can set the objective function to train ¢; as [(L;, Ly ),
which enforces L; ~ L. However, this prevents ¢; from being
updated until L is obtained at the output layer of the main
network. In order to alleviate such a constraint, we employ a
cascaded training approach by setting the training loss for ¢;
as

Le, =1(Li, Lis1). &)

As a result, as learning progresses, L; can eventually approxi-
mate L. Thus, each local critic network can be also updated
to optimize the loss function given in (5) once the approximated
loss by the subsequent layer, L;.1, is available.

Therefore, the loss approximation by the local critic networks
and the cascaded training of the local critic networks effectively
alleviate the dependencies between layers in both the forward
and backward passes. All layers in the network are dependent
only on adjacent layers so that we can train the entire network
in a model-parallel way by distributing the layer groups to
different computing nodes as shown in Figure la.

"More precisely, L; is a function of the weight parameters in the all layer
groups before (7 + 1)th layer group, i.e., L; = L;(w1,...,w;) = L;i(w1:).
Similarly, Ly = Ly (wi,...,wn) = Ly (w1:n). However, for simplicity,
we omit the arguments of L; in Section III.



B. Local Critic Training for RNNs

Figure 1b illustrates the architecture and training process of
the proposed method for RNNs. The ith layer group in the
main RNN, denoted as f; (i = 1,..., N) receives the output
of the previous layer group, h!_,, where t = 1,..., T indicates
the time index, and produces its output, h}. The final network
output Zy = [z}, 2%, ...,2%]" is obtained by aggregating the
Nth layer group’s outputs over time (i.e., k') through a linear
layer, where T is the transpose operation.

As in the case of CNNs, we introduce an additional local
critic network ¢; (¢ = 1, ..., N —1) attached to the ¢th layer group.
It takes all the outputs of the layer group (i.e., hf, t=1,...,7T)
as input and produces the output Z; = [z}, 22, ..., 27']7 that has

the same dimension to the output of the main network Zy.
Then, with L} = 1(z},y"), the loss L; of ¢; is obtained by

T
Li=3 L, (©)
t=1
which in turn allows approximation of the error gradient:
T T
o 87L11 87L12 oLT . oLY OL% oL%
" | OnlT OR2 T ORT OhY, o oL |
)

Then, the gradient descent rule is used to update the weight
parameters of f;, denoted as w;:

.
W; < W; — Ve, Ly =w; —a 0; gi, ®)
T
her i learning rate and g¢; = Ohj Ohj Oy In
where « is a lea g rate and g; = | 5u-, Futs o G | -

order to train the network in a model-parallel way, we use the
loss function in (5) to train the local critic networks. Therefore,
as in the case of CNNs, each layer group can be independently
updated based on the corresponding local critic network without
waiting for the complete feedforward and backward passes.

C. Structure Optimization and Anytime Prediction

Training of ¢; allows it to eventually approximate the main
network’s output since it is trained to minimize the loss
difference from the next local critic network c;.1 by the
objective (5). After the training finishes, thus, we have several
sub-models that can perform the same task, as shown in Figure
2, each of which consists of a certain number of layers and
a local critic network, i.e., fi through f; and ¢;. Depending
on the number of layers, each sub-model has different model
complexity (in terms of the number of weight parameters
and the number of floating number operations) and possibly
different performance. Among them, we can choose a suitable
one by considering the trade-off between the complexity and
the performance, accomplishing structural optimization for the
given task.

This is also equivalent to implementing a simple anytime
prediction mechanism. In other words, if the given computa-
tional budget is small, a shallow sub-model can be used for
producing output, whereas if the budget is sufficient, an output
can be obtained using a deeper sub-model or even the main
network, which is more reliable in general. Our approach is
beneficial in that generic CNNs and RNNs can be made to
perform anytime prediction, whereas previous approaches (e.g.,
[36], [37]) rely on special network structures.
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Fig. 2. Sub-models obtained by the proposed training approach.

IV. CONVERGENCE ANALYSIS

This section provides a theoretical analysis for convergence
of the proposed local critic training algorithm. By exploiting
the analysis in [38], we prove that the algorithm is guaranteed
to converge to a critical point.

Since we use the SGD method, the weight parameters of
each layer group in the main network are updated according
to (3), i.e.,

k+1 k k
wi+ =w; _akaiLi(wl:ivgk)7

9

where wf is the weight parameters of the ¢th layer group at
the kth training iteration (k =1,..., K), w’fz is the collection
of the weight parameters in the first to ith layer groups at the
kth training iteration, and & is the random variable for a set
of samples in the mini-batch SGD method?. Thus, we have
the following update rule for all the weight parameters of the
main network:

wint = why - Ve, L(w", &), (10)
where
vwl Ll (wlf? fk)
VoL(w*, &) = : (11)

Vuwy LN(wiﬁ:N7 gk)

First, as in [12], we build a connection between the true
gradient and the stochastic gradients from the local critic
networks in Assumption 1.

Assumption 1 It is assumed that w;.y is updated in a
descending direction of the true loss by the local critic training
method. For this, the estimated stochastic gradient direction
from the local critic networks, V,, L(w", &), is assumed to be

%In Section III, we omitted the dependence of &;, for simplicity.



a sufficient descent direction of the true loss, VL. In other
words, there exists a constant o > 0 such that

2
vLN(wlfN)TVUJL(wkagk) ZUHVLN(w]fN)”Q (12)

This means that when each layer group is trained by the
gradient from the loss function of the corresponding local critic
network, the learning direction is similar to the direction of
the gradient from the loss function of the main network. We
demonstrate the validity of this assumption in Section V-A
through experiments.

Next, we assume that the second moment of the stochastic
gradient descent is upper bounded to restict the variance of
the stochastic gradient descent.

Assumption 2 It is assumed that there exists a constant
M >0 such that

Ee, [|VuL(w*,60)[5] < M.

In other words, the magnitude of the estimated gradient is
bounded and does not diverge. This is valid when the weights
are in a bounded set, which would hold in general.

Finally, we assume smoothness of the objective function,
i.e., the gradient of the objective function does not change
arbitrarily quickly with respect to the weight parameters.

Assumption 3 It is assumed that the objective function
Ly is continuously differentiable and the gradient of Ly is
Lipschitz continuous with Lipschitz constant A > 0, i.e.,

(13)

IVLy(win) = VLN (win) ]y <A wiy —wiyly.  (14)

The following theorem shows that the proposed method
converges to a critical point.
Theorem 1 Suppose that the local critic training method

is run with a learning rate sequence satisfying ). aj = oo

S 9
and Eo aj,
we further assume that the objective function Ly is twice

. . . X 2
differentiable, and the mapping wi.n — ||VL N (w’f N)|| , has
Lipschitz continuous derivatives, then

gELE[HVLN(waHE]:O‘

< oo. Under Assumptions 1, 2, and 3, and if

5)

Since the expected squared norm of the gradient converges to
zero, the proposed local critic training method converges to a
critical point. The proof of the theorem is given in Appendix
1.

V. EXPERIMENTS

In this section, we present experimental results to examine
the performance of our method in various aspects, including
classification accuracy, training time, memory consumption,
and structural optimization for CNNs and RNNs.

For CNNs, we evaluate the method with ResNet models
[39] (ResNet-50 and ResNet-101) on three image classifica-
tion benchmark datasets: CIFAR-10, CIFAR-100 [40], and
ImageNet [41]. We employ the SGD with a momentum of
0.9 for the main networks and the Adam optimization with
a fixed learning rate of 1 x 10~ for the local critic networks.
The L2 regularization is used with a fixed constant of 5x 1074

for the main networks. For the loss functions in (1) and (5),
we use the cross-entropy and the L1 loss, respectively, which
is determined empirically. For CIFAR-10 and CIFAR-100, the
batch size is set to 128 and the maximum training iteration
is set to 80,000. The learning rate for the main networks is
initialized to 0.1 and dropped by an order of magnitude after
40,000 and 60,000 iterations. We use one convolutional layer
with the ReLU activation function and a fully-connected layer
for each local critic network. For ImageNet, the batch size is
set to 32 and the maximum training epoch is set to 75. The
learning rate for the main networks is initialized to 0.0125
and dropped by an order of magnitude after 23, 40, 60, and
70 epochs. We use two convolutional layers with the ReLU
activation function and a 1-channel convolutional layer for
each local critic network.

For RNNs, two character-level datasets, Penn Tree Bank
(PTB) [42] and Hutter Wikipedia Prize (enwik8) [43], are
used for benchmarking with long short-term memory (LSTM)
units [44]. The bits per character (BPC) is used as a measure
of performance. The structures of the main network and each
local critic network are a multi-layer LSTM cell and a fully-
connected layer, respectively. As in the case of CNNs, the
cross-entropy and the L1 loss are used for the loss functions
in (6) and (5), respectively. The batch size is set to 128, the
backpropagation through time (BPTT) length is set to 150, and
the embedding size is set to 128 for both datasets. The L2
regularization is used with a fixed constant of 1.2x107° for the
main network. For PTB, we apply the Adam optimization for
100 epochs with a learning rate that is initially set to 2.7 x 1073
and reduced by 0.33 at every 20 epochs. For enwik8, we use
the Adam optimization with a fixed learning rate of 1.0 x 1074
for 50 epochs.

The locations of the local critic networks in the main network
are determined in such a way that the number of layers in each
layer group is distributed as evenly as possible for all cases.
We denote the case with n local critic networks by LCT_nn.

All experiments are performed using TensorFlow with
GTX1080Ti graphics processing units (GPUs). The number
of employed GPUs is equal to the number of layer groups,
i.e., N. Each layer group and the corresponding local critic
network are allocated to each GPU.

A. Sufficient Descent Direction

To demonstrate the validity of the analysis in Section IV,
we experimentally verify that Assumption 1 is satisfied. For
each training epoch, we calculate the gradient from the loss
function of the main network, VL (w’f ~)» and its squared
magnitude, |VL N(w’f: ~N) ;, and the gradient from the loss
function of the local critic network, V,,L(w*,£&), for each
layer group. Since the inequality (12) can be written as

VLN(wlf:N)vaL(wkagk) > (16)
D) =0,
”vLN(w]f:N)”z

N
we compute VLN(w’f:N)TVwL(wk,gk)/||VLN(w’f:N)||2 to
obtain the maximum value of o for each layer group and
check if this value is greater than zero during training.
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Figures 3 and 4 examine the obtained maximum value of
o in each layer group during training for the cases with one
local critic network (LCT_nl) and three local critic networks
(LCT_n3). We employ ResNet-50 for CNNs and four layers
of LSTM units for RNNs. We omit the result of the last layer
group in all cases since the last layer group is trained by the
regular backpropagation and thus o is always one.

The figures confirm that o is larger than O at all times
during training for all cases of CNNs and RNNs. Therefore,
Assumption 1 is satisfied and the convergence analysis in
Section IV is valid.

B. Performance Evaluation

1) CNN: We evaluate the classification performance of the
proposed local critic training method with different numbers
of local critic networks. We also compare the results of the
regular backpropagation and DNI method [10] as shown in
Table 1. For the DNI method, the layers of the main network
are grouped in the same way to our method, and each DNI is
implemented with three convolutional layers, which shows the
best performance in our experiment.

For CIFAR-10, the proposed method achieves comparable
performance to the regular backpropagation. The performance
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Fig. 4. Value of constant ¢ during training for RNNs with four layers of
LSTM units

varies with the number of local critic networks (and the
number of layer groups, accordingly), but the test accuracy
of the proposed method with four layer groups is almost the
same to that of the backpropagation (93.79% vs. 93.32% with
ResNet-50, and 93.77% vs. 93.34% with ResNet-101). When
compared to the DNI method, our method achieves much better
performance in all cases. For CIFAR-100, the test accuracy
of our method is slightly lower when compared to that of the
backpropagation. However, it is significantly higher than that
of the DNI approach. Similarly, for ImageNet, the proposed
method shows only slightly lowered accuracy compared to the
backpropagation, whereas DNI fails to converge in all cases.
These results show that our method can train the large-sized
CNNs in a model-parallel way at the cost of slight accuracy
drops and significantly outperform the existing DNI method.

Using more local critic networks allows us to exploit more
computing nodes simultaneously for faster training (Section
V-C), but intuitively, it causes larger accuracy drop because of
more approximation stages. Thus, the classification accuracy
and the number of local critic networks are in a tradeoff
relationship, which is observed in the results for ImageNet.
Such a relationship is not quite clear for CIFAR-10 and
CIFAR-100, which is probably because those datasets are
not significantly challenging and thus gradient estimation using
local critic networks does not impose significant difficulty in
training.

In order to validate that our method works for networks even
larger than ResNet-101, we employ ResNet-182, which is the
largest size that our single GPU machine (GTX1080Ti with
11GB memory) can afford. It has ten more 3-layer bottleneck
blocks than ResNet-152 on the feature map of 28x28 (i.e.,
conv4) [39]. Table II demonstrates that our method performs
well on this large-sized network, showing similar trends to



TABLE I
TEST ACCURACY (%) OF BACKPROPAGATION (BP), DNI, AND THE PROPOSED LOCAL CRITIC TRAINING METHOD (LCT).

ResNet-50 BP DNI_nl DNI_n2 DNI_n3 LCT_nl LCT_n2 LCT_n3
CIFAR-10 93.79 80.07 74.59 71.24 91.41 92.64 93.32
CIFAR-100 76.16 49.44 43.39 43.31 73.65 71.37 70.90
ImageNet Top-1  72.09 ) ) ) 67.80 67.67 65.81
g Top-5 90.51 88.24 88.07 86.79
ResNet-101 BP DNI_.nl DNI_n2 DNIL.n3 LCT_nl LCT_n2 LCT_n3
CIFAR-10 93.77 75.70 66.53 65.46 93.25 93.10 93.34
CIFAR-100 76.76 43.94 35.37 33.62 71.82 72.14 72.10
ImageNet Top-1  73.38 72.11 68.20 67.05
9 Top-5 91.37 . B . 90.66 88.34 87.80
TABLE 11 TABLE IV

TEST ACCURACY (%) OF BACKPROPAGATION (BP) AND THE PROPOSED
LOCAL CRITIC TRAINING METHOD (LCT) FOR RESNET-182.

BP LCT_nl LCT_n2 LCT_n3
CIFAR-10 94.80 92.89 94.10 93.00
CIFAR-100 77.46 73.29 72.50 72.74
ImageNet Top-1 7542 74.13 70.62 66.46
g Top-5 92.33 91.63 89.82 87.43
TABLE III

TEST ACCURACY (%) OF BACKPROPAGATION (BP), ADMM, DNI, AND
THE PROPOSED LOCAL CRITIC TRAINING METHOD (LCT) FOR A
MULTILAYER PERCEPTRON HAVING 300, 150, AND 10 UNITS.

BP ADMM DNI nl LCT_nl
MNIST 98.05 82.53 95.99 98.09
CIFAR-10 6122 19.29 35.75 61.28

those in Table I.

In contrast, we also examine if the proposed method
can achieve satisfactory performance for shallow networks
compared to the existing methods including ADMM [9] and
DNI. For this, we use a multilayer perceptron consisting of
three dense layers having 300, 150, and 10 units, respectively,
with the ReLU activation function. The results for MNIST and
CIFAR-10 are shown in Table III. Unlike ADMM and DNI
showing degraded performance, our method achieves almost
the same performance to backpropagation.

As shown in [45], using extra layers as early exits (like
our network structure) and combining the losses of the exits
for backpropagation may achieve higher performance than
the original network. Thus, we evaluate the performance of
backpropagation using the joint losses as in [45] with the same
network structure used for LCT_n3. However, the results pre-
sented in Table IV show that it is not clear whether using joint
losses improves performance than the original backpropagation.
For CIFAR-10, the performance of backpropagation using joint
losses is slightly improved than the original backpropagation,
but for CIFAR-100 and ImageNet, the performance is rather
reduced. Since the structures of our local critic networks are
extremely simple to reduce the computational burden, the losses

TEST ACCURACY (%) OF BACKPROPAGATION WITH JOINT LOSSES
OBTAINED FROM THE SAME NETWORK STRUCTURE TO LCT_N3.

ResNet-50  ResNet-101
CIFAR-10 94.80 94.52
CIFAR-100 76.39 75.37
imageNet P! 71.86 72.40
9N Tops  90.32 90.66
TABLE V

TEST BPC OF THE BACKPROPAGATION (BP) AND THE PROPOSED LOCAL
CRITIC TRAINING METHOD (LCT) WITH VARYING THE NUMBER OF LAYERS
IN THE MAIN NETWORK. THE NUMBER OF LSTM UNITS PER LAYER IS
ALSO SHOWN IN EACH CASE.

# of layers 2 3 4
(# of LSTM units)  (950)  (750)  (600)
PTB BP 1275 1.288 1.275
LCT 1276  1.265  1.269
enwik8 BP 1476 1509 1.618
LCT 1469 1492 1.541

of the early exits seem to have a negative effect on the whole
learning for complex data.

2) RNN: We evaluate the performance of the proposed
local critic training method in comparison to the conventional
backpropagation with respect to the number of layers in the
main network. In this experiment, we deploy local critic
networks between every layer pair in the main network. The
number of LSTM units in each layer of the main network is
determined by the memory limitation of the used GPU for
backpropagation.

The results are shown in Table V. The performance of
the local critic training method is similar to or, in most
cases, even better than that of the backpropagation, which
demonstrates that using the estimated error gradients is effective
particularly for training RNNs. Therefore, we can conclude that
the proposed method can unlock the layer-wise dependencies
without performance degradation over a wide range of the
number of RNN layers.

C. Complexity

We evaluate the computation and memory complexities of
the proposed method.



1) Training Time: We compare the training time of LCT_nl,
LCT_n3, and the backpropagation for CNNs and RNNs until
the maximum epoch (or iteration) reaches. In Figure 5, we
show the loss with respect to the training time of ResNet-
50 and ResNet-101 for CIFAR-10 and CIFAR-100. In all
cases, the training time of LCT_n3 is the shortest, followed
by that of LCT_nl. For CIFAR-10, training time is reduced
by 27.8% for LCT_nl and 33.6% for LCT_n3 in comparison
to the backpropagation with ResNet-50. With ResNet-101, the
relative training time reduction is 31.9% for LCT_n1 and 40.9%
for LCT_n3. For CIFAR-100, the amounts of training time
reduction are 32.0% for LCT_nl and 34.2% for LCT_n3 with
ResNet-50, and 32.4% for LCT_nl and 43.9% for LCT_n3
with ResNet-101. Figure 6 shows the BPC of LSTM networks
having four layers with respect to the training time for PTB.
The training time is reduced by 16.7% for LCT_nl and 35.8%
for LCT_n3 for PTB in comparison to backpropagation. These
results demonstrate that the proposed method can implement
efficient model-parallel training.

The training time of the proposed method includes the time
for communication between different computing nodes. We
investigate the relative amount of such communication time.
Since it is difficult to directly measure it during training, we
measure the time required for a variable of the same size
with the data to be transmitted (i.e., the outputs of the layer
groups for the feedforward pass and the losses from the local
critic networks for the backward pass). For CIFAR-10, the
time for communication is 3.79% of the total training time for
LCT_nl and 8.67% for LCT_n3 with ResNet-50, and 1.47% for
LCT_nl and 3.58% for LCT_n3 with ResNet-101. Therefore,
although the communication time increases as the network is
divided more, its proportion to the total learning time decreases
as the network becomes larger. Overall, we can say that the
communication time is relatively short or even negligible.

In addition, we compare our method with a simple pipelined
version of backpropagation. In other words, after splitting
the network into several layer groups that are allocated to
different computing nodes, each node can concurrently run
the feedforward pass by delivering the output to the next
node and then immediately receiving a new input from the
previous node. Thus, it is a basic model-parallel learning
strategy that has no performance difference from the original
backpropagation and can reduce the learning time. Note that,
since this method is implemented in Pytorch, its result cannot
be directly compared with the results shown above. In order
to enable comparison between these results and the results
of our method implemented in Tensorflow, we normalize the
training time of the pipelined backpropagation with that of the
original backpropagation. We compare the training time of the
pipelined backpropagation using 2 GPUs and 4 GPUs, which
correspond to LCT_nl and LCT_n3, respectively. As shown in
Figure 7, for CIFAR-100, the training time of our method is
shorter by 15.7% for LCT_nl and 3.5% for LCT_n3 than that
of the corresponding pipeline backpropagation for ResNet-101.
Therefore, our method is more effective even when compared
to a pipelined version of backpropagation. Moreover, it would
be also possible to combine this pipelining method into our
method for further improvement of our method.

TABLE VI
MEMORY CONSUMPTION (MIB) PER GPU BY BACKPROPAGATION (BP)
AND THE PROPOSED LOCAL CRITIC TRAINING METHOD (LCT_N3) FOR THE
IMAGENET AND PTB DATASETS.

ResNet-50 (ImageNet) GPU1 GPU2 GPU3 GPU¢4
BP 8807 - - -
LCT_n3 3207 3077 7141 7171
ResNet-101 (ImageNet) GPU1 GPU2 GPU3 GPU4
BP 8789 - - -
LCT_n3 4663 7141 5863 5127
4-layer LSTM (PTB) GPU1 GPU2 GPU3 GPU4
BP 8695 - - -
LCT_n3 4573 2441 2441 4489

2) Memory Consumption: By splitting the computation for
training among multiple computing nodes, the proposed method
can additionally reduce the amount of memory usage per
computing node. We compare the memory consumption per
GPU by our method and the backpropagation for ImageNet
and PTB in Table VI. It is shown that even if the total amount
of memory consumption increases, we can alleviate the burden
of the memory consumption per GPU. Additionally, when
compared to the DNI method for CIFAR-100, there is almost
no difference between our method and the DNI method; the
memory usage of our method is 4659, 5461, 5463, and 5459
MiB for each GPU, respectively, and that of DNI is 4693,
5453, 4943, and 5459 MiB for each GPU, respectively.

Note that the layer grouping and the location of the local
critic networks were not determined by considering the memory
usage. If the memory constraints are significant, the layer
grouping can be designed in a more memory-efficient way.

D. Structural Optimization and Anytime Prediction

1) CNN: As depicted in Figure 2, we obtain several trained
sub-models in addition to the trained main network as a result of
application of the local critic training method. Table VII shows
their performance, and Table VIII analyzes their complexity
in terms of computational complexity (the number of floating-
point operations (FLOPs)) required for one feedforward pass
and memory complexity (the number of weight parameters) for
the case using three local critic networks (LCT_n3). In Table
VIII, the complexity of each local critic network itself with
the percentage over the total complexity of the corresponding
sub-model is also shown.

As expected, the larger the network is, the higher the
classification accuracy is, which is reasonable because a larger
network has a greater capability of learning the data. However,
the largest network (i.e., the main network) is not necessarily
the optimal structure when both the accuracy and model
complexity are considered. For CIFAR-10, Sub_3 of ResNet-
50 and Sub_2 of ResNet-100 show almost the same accuracy
to the corresponding main networks, each of which reduces
the complexity by about 59% (47.55 to 19.53 million FLOPs
and 23.82 to 9.79 million parameters) and 72% (85.17 to
23.99 million FLOPs and 42.68 to 12.03 million parameters),
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respectively. Interestingly, these sub-models have roughly
similar complexities, showing that regardless of the starting
network (ResNet-50 or ResNet-100), the structural optimization
results could be similar. For CIFAR-100, the same result of
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structural optimization can be obtained with minor accuracy
loss (0.93 to 1.61%). For a more challenging dataset, i.e.,
ImageNet, reduction of the complexities via choosing the
best sub-model (i.e., Sub_3) is obtained at the cost of slight
accuracy loss.

Choosing smaller sub-models results in larger accuracy loss
but more significant complexity reduction. Therefore, when
there exist resource limitations in a target application, the
model can be chosen among the sub-models and main network
by considering the trade-off between the performance and the
complexity.

Anytime prediction can be implemented in a similar way.
When a computational budget is given, a sub-model satisfying
the budget can be chosen to produce the output. As shown in
Table VII, the more budget we have, the more accurate the
prediction is.

2) RNN: We show the performance (BPC) of the sub-
models and the main model of RNNs in Table IX and their
computational complexity for one feedforward pass and the
number of weight parameters in Table X for the case using
three local critic networks (LCT_n3). The complexity of each
local critic network itself with the percentage over the total
complexity of the corresponding sub-model is also shown.



Train LCT_N1
=+ + Test LCT_N1
——Train LCT_N3

Loss

0.1

=+« Test LCT_N3
Train BP_pipeline_N1
Test BP_pipeline_N1
Train BP_pipeline_N3 b

A
Test BP_pipeline_N3
0.01 ; . . T -
0 5000 10000 15000 20000

Training time (s)

Fig. 7. Training and test losses of the pipelined backpropagation and the
proposed method with respect to the elapsed time with ResNet-101 for CIFAR-
100

TABLE VII
TEST ACCURACY (%) OF THE MAIN MODEL AND THE SUB-MODELS FOR
CNNSs (LCT_N3).

ResNet-50 Sub_1 Sub_2  Sub_3 Main
CIFAR-10 86.78 91.40 93.24  93.32
CIFAR-100 60.03 66.71 69.29  70.90
ImageNet Top-1 36.59 49.98 60.73  65.81

g Top-5  62.18 75.08 83.30  86.79
ResNet-101 Sub_1 Sub_2 Sub_3 Main
CIFAR-10 91.68 93.35 93.33  93.34
CIFAR-100 67.22 71.17 7159  72.10
ImageNet Top-1 49.44 62.68 63.69  67.05

9 Top-5  75.11 84.80 8544  87.80

As in the CNN cases, an optimal network structure can
be chosen by considering the trade-off relationship between
the performance and complexity. The largest sub-models
(Sub_3) achieve almost the same performance to that of the
main model (1.272 vs. 1.269 for PTB, and 1.551 vs. 1.541
for enwik8), while they can reduce the computational and
memory complexities by about 28% (401 to 290 billion FLOPs
and 10.43 to 7.55 million parameters). The performance of
the smaller sub-models is slightly worse than that of the
main model, but the complexity reduction is more significant
(reductions by about 55% and 83% with Sub_2 and Sub_1,
respectively). Anytime prediction can be also performed using
the sub-models requiring lower complexities than the main
model.

VI. CONCLUSION

In this paper, we proposed the local critic training method for
model-parallel training of CNNs and RNNs. The mathematical
analysis showed the convergence of the proposed method.
Through the experiments, we confirmed the effectiveness of the
method, including the satisfactory classification performance,
faster training speed, and lower memory consumption per GPU.

It was also shown that structural optimization and anytime
prediction can be achieved using the models trained by the
proposed method.
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APPENDIX A
PROOF OF THEOREM 1

Let us begin with rewriting Ly (w¥4l) as

1 9L : kfl _ k.
LN(wk+1) :LN(wlf~N) +[0 9 N(wl.N +T8(7’-wl.N wl.N)) dr (17)
= L)+ [ VEx (b + r(dS - wh)) (whY ~why)dr (8)

= Ly(wiy) + VLy (wh ) (wiiy - wl:N)+f (VLy (why + T(wiN —wiin)) = VLN (whiy) T (wiiy - why) dr

(19)
< L (k) + VEn (ko) @S~ ) + [ 9Ll + 7 (b~ wh)) = TLac (), ok - k], dr.
(20)
Under Assumption 3, we obtain
Ly (wii) < Ly (why) + VL (wh ) (Wi - why) + f M (iR = wip) |, Jwiy - win, dr @D
A
= Ln(wiy) + VEn (wiy) (why - win) + 3 ety - whnls- (22)
By the SGD update rule (3) and (8), the above inequality can be written as
L (wihh) = Ly (wh y) < —an VLN (Wi N) TV L(w", &) + ak)\vaL(w (23)
which, under Assumption 1, becomes
Ly (win) = Ly (wiy) < Oékff”VLN(wm)H + akAHVUJL(w ’fk)Hz 24

Taking the expectation with respect to the distribution of &, and noting that wf:f! but not w¥,, depends on &, we obtain the
desired bound:

Ee, [Ly(wh)] - Ly (wh ) < —ono HVLN(w]f:N)H; +Ee, [%ai)\ ||VwL(wk7§k)H;] . (25)
Under Assumption 2, this becomes
Ee, [Ly(wii)] - Ly (wh ) < —axo ||VLN(wf:N)||§ + %ai)\M. (26)
Taking the total expectation E[Ly (wF )] =E¢, Ee, ... Ee,_, [Ln(wh )] yields
E[Ly(w" )] - E[Ly(wk )] < o E [HVLN(w'f:N)Hz] + %aiAM. @7)
If we take summation from k =0 to K — 1, we obtain

K-1 1 K-1
E[Ln(wi)] - Ly(wiy) < -0 3. ax E[|[VLx(wln)[5] + SAM Y. af. (28)
k=0 k=0

For the optimal solution of Ly (w¥ ), w},x,

Ly (wiy) = Ln(wiy) < E[Ly(wiin)] = Ly (wl ). (29)
Combining (28) and (29) yields
o K-1 Lo21 1 KL
Ly(wiy) - Ly(wiy)<-0 > axE [HVLN(wLN)”Q] +5AM Y af, (30)
k=0 k=0
which can be rearranged as
K-1
AM Y oF

1 & k 2 LN(w?:N)_LN(w;:N) k=0
i ];)Ozk]E[”VLN(wLN)HQ] < P Py 31)



K-1
where A, = Y. ay. Since hm Ai = Z ay = oo and Z ak < oo, taking the limit on both sides of the above equation yields

k=0 K—co k=0 k=0
i E| - S a IVIn ()2 | =0 (32)
Pl k ~(win)|, .

Thus, we have

liminf E [ |V Ly (why)];] = 0 (33)

Let us define G(wf.y) = || VL (wf, N)“ Then, VG(w}.y) = 2V2 Ly (wh ) VLN (wh.y ). G(w§h}) can be written as

(wllﬁj—\}) G(wl N) + / aC;(u}l:N + T(wI:N - wl:N)) (34)
or
- Gk + [ 9Oy + (k3 - wk) (wh - why) dr (35)
= G(wiy) + VG(whn) (wiiy —why) + f (VG(why + T(wiN - wiy)) = VG(why)) (wily - why) dr
(36)
1
<G(wiy) + VG(wiy) (wiky —wiy) + /(; HVG(w’f:N + (Wil —wiy)) - VG(wy, N)” ||wk+1 wlf:N”g dr.
(37
Let A be the Lipschitz constant of VG(w? ). Then, we obtain
GwiN) < Gwiy) + VG(win) (wiiy —wiy) + / Ac ||T(warl wy; N)” ”wml wlf:N”g dr (38)
= G(wiy) + VG(wiy) T (why —wliy) + “ - | ; (39)
which becomes
2
G(wiiy) - G(wiy) < VG(why) T (wiiy —wiy) + = AG |lwin - winl, - (40)
By the SGD update rule (3) and (8),
1 2
G(wiy) - Gwhy) <~ VG(why) VuL(w" &) + SofAe [VuL(w" &), 0
1 2
< =203V Ly (wfy) V2 Ly (i) VuL (0" ) + ofAc [ VuL(w". &), - (42)
Under Assumption 1, we have
G(wiy) - G(wiy) < 20,0 ||VLN(w1 N)H V2 Ly (wiy)" + O‘kAG vaL(w ,fk)H (43)
< 2ay0 HVLN(UJM\,)H2 HVQLN(wl:N)H2 + §ak)\g HVwL(w ’Ek)”z . (44)
Taking the expectation with respect to the distribution of & yields
2 1 2
]Efk [G(wk+1 :| - G(wlfN) < QOsz' ||VLN(w]1€N) ”2 ||v2LN(w11€:N) ”2 + Eék [gai)‘G ||va(wk? gk)”Q:I . (45)
Under Assumptions 2 and 3,
2 1
Ee, [G(wi)] - G(wly) < 2000\ [VLn (why)||, + §aiAGM. (46)
By taking the total expectation, we obtain
27 1
[G(wk+1 ] _E[G(w]f:N)] <2ap0\E I:HVLN(w]f:N)”2:| + 5(12)\@]\4. a7

From (32), E L(Z g HVL N(wlf:N)“2] < o0. In addition, the theorem assumes Y, ai < o0. Therefore, if we take summation
k=0 k=0

from k=0 to K for (47), we obtain

E[G(win")] - E[G(w].y)] < oo. (48)



Let us define two nondecreasing sequences

K
Sk = I;)max{o,E[G(w’fsvl 1-E[G(win)]} (49)
Sk = kzomax{o, E[G(w}n)] - E[G(wiy)]}- (50)

Since E[G(wEiM)] - E[G(w) )] = Sk — Sk < oo according to (48), the positive component of E[G(wEiN)] - E[G(w? \)],
i.e., S, satisfies S}, < oco. Furthermore,

E[G(win")] = E[G(w}y)] + Sk ~ Sk 20 (51

holds for any K, and thus Sy also converges. Therefore, E[G(w! )] = E[”VLN(w{(N)Hz] converges and, according to (33),
this limit must be zero, i.e.,

Tim E[|[VEx (why)]] = 0. (52)
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