
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/13 8 6 4 9/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Yang, Xinton g , Ji, Ze , Wu, Jing , Lai, Yu-ku n , Wei, Ch a n gyu n, Liu, Guolian g a n d

S e tc hi, Rossi tza 2 0 2 2. Hie r a r c hic al r einfo rc e m e n t lea r nin g wi th u nive r s al policies for

m ul ti-s t e p ro bo tic m a nip ula tion. IEEE Tra ns ac tions on N e u r al N e t wo rks a n d

Le a r ning Sys t e m s 3 3 (9) , p p . 4 7 2 7-4 7 4 1. 1 0.11 0 9/TN NLS.20 2 1.30 5 9 9 1 2

P u blish e r s p a g e: h t t p://dx.doi.or g/10.11 0 9/TN NLS.202 1.3 0 5 9 9 1 2

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Hierarchical Reinforcement Learning with Universal Policies for

Multi-Step Robotic Manipulation

Xintong Yang1, Ze Ji1 Member, IEEE, Jing Wu2, Yu-Kun Lai2, Changyun Wei3, Guoliang Liu4, Rossitza Setchi1

Abstract—Multi-step tasks, such as block stacking or parts
(dis)assembly, are complex for autonomous robotic manipulation.
A robotic system for such tasks would need to hierarchically
combine motion control at a lower level and symbolic planning
at a higher level. Recently, reinforcement learning (RL) based
methods have been shown to handle robotic motion control with
better flexibility and generalisability. However, these methods
have limited capability to handle such complex tasks involving
planning and control with many intermediate steps over a long
time horizon.

Firstly, current RL systems cannot achieve varied outcomes by
planning over intermediate steps (e.g., stacking blocks in different
orders). Secondly, exploration efficiency of learning multi-step
tasks is low, especially when rewards are sparse.

To address these limitations, we develop a unified hierarchical
reinforcement learning framework, named Universal Option
Framework (UOF), to enable the agent to learn varied outcomes
in multi-step tasks. To improve learning efficiency, we train both
symbolic planning and kinematic control policies in parallel,
aided by two proposed techniques: 1) an auto-adjusting explo-
ration strategy (AAES) at the low level to stabilise the parallel
training, and 2) abstract demonstrations at the high level to
accelerate convergence.

To evaluate its performance, we performed experiments on
various multi-step block-stacking tasks with blocks of different
shapes and combinations and with different degrees of freedom
for robot control. The results demonstrate that our method can
accomplish multi-step manipulation tasks more efficiently and
stably, and with significantly less memory consumption.

Index Terms—Robotic manipulation, multi-step tasks, hierar-
chical reinforcement learning, universal policy, option frame-
work, planning and control.

I. INTRODUCTION

HUMANS solve complex manipulation tasks by dividing

them into multiple steps. Similarly, for a robot to ac-

complish a task such as assembly, it is required to decompose

the task into a sequence of intermediate steps, e.g., moving

the gripper to a place, grasping an object, placing the object,

etc. Such a decomposition enables different combinations and

ordering of steps to achieve various desired outcomes.

This work seeks to solve such multi-step planning and

control tasks with a reinforcement learning-based solution.

Fig. 1 shows an example, where a robot is trying to stack

three blocks together. Learning such a task is difficult in

Corresponding author: Ze Ji (email: jiz1@cardiff.ac.uk)
1Centre for Artificial Intelligence, Robotics and Human-Machine Systems

(IROHMS), School of Engineering, Cardiff University, Cardiff, UK {yangx66,
jiz1, setchi}@cardiff.ac.uk

2School of Computer Science and Informatics, Cardiff University, Cardiff,
UK {wuj11, laiy4}@cardiff.ac.uk

3Robotics Engineering, Hohai University, Changzhou, China
c.wei@hhu.edu.cn

4School of Control Science and Engineering, Shandong University, Jinan,
China liuguoliang@sdu.edu.cn

Figure 1: Interdependent steps of a block-stacking task inves-

tigated in this paper.

two ways. Firstly, the robot needs to learn various desired

outcomes: grasping and placing the blocks in different orders

to build different towers, e.g., green-blue-red or blue-green-

red (in the top-down order). Secondly, the robot also needs

to learn the step dependencies to achieve a desired outcome.

For example, it is impossible to place a block if the block

has not been successfully grasped. Previous studies either

deal with only one particular order of steps or ignore the

orders [1], [2]. This means that, to achieve multiple desired

outcomes, repetitively training multiple policies is required,

costing additional computations, memory and time.

For tasks involving multiple steps or outcomes, we hy-

pothesise that the learnt skills, knowledge or experience can

be shared and reused. For example, placing a block at two

locations depends on the same former step of grasping the

block. This motivates us to learn high-level planning and low-

level kinematic control with universal policies in the context

of multi-goal reinforcement learning [3], [4].

However, the inter-dependency of steps makes such learning

extremely difficult when rewards are sparse. Considering the

task where an RL agent is learning to stack 2 distinct blocks

(A and B), with a reward function that only rewards task

completion, the agent will never learn to place A on B before

it successfully learns to grasp A. In other words, exploration

(i.e., collecting useful data) becomes more inefficient when

learning towards later steps, as the probability of encountering

meaningful rewards decreases.

One popular approach to this problem is to hand-craft

a human prior-based reward function, which eliminates the

reward sparsity but demands complex design and introduces

human bias [5]. Another way is to use demonstrations [6].

For example, kinematic trajectories performed by a human

can help improve learning efficiency. However, such demon-

strations are exhausting to obtain and not readily available for

many tasks [1], [2], [6].

In short, given the research gaps identified above, this paper

studies the following questions:

1) How to learn the various desired outcomes of a multi-

1

step task?

2) How to improve the learning efficiency for such tasks

with easy-to-collect knowledge/demonstrations?

For question 1) we unify hierarchical reinforcement learning

(HRL) and universal policies, leading to our novel Universal

Option Framework (UOF). HRL enables the robot to learn

long-horizon multi-step tasks via high-level planning and low-

level motion control. It typically decomposes a task into

ordered steps (e.g., grasping followed by placing the grasped

object in a block stacking task), while universal policies, one

at the planning level and one at the control level, enable

multi-goal learning for various outcomes (planning level) and

manipulation skills (control level).

We propose to train both the high-level and low-level

policies in parallel. This will allow more computationally

efficient learning without the need of repetitive data collection.

However, parallel training can be highly unstable. This is

because the data for training the high-level policy is produced

by an exploring low-level policy, and thus is noisy and not

informative for most of the time [7]. Such noisy data prevents

the high-level policy from stable improvement. Most previous

works attempted to avoid this issue by simply training them

separately [8]–[10], while, in this work, we propose to stabilise

parallel training by adaptively reducing exploration of the low-

level policy based on the performance of achieving goals in

different steps.

To address question 2), we introduce an abstract form of

demonstrations, i.e., the correct orders of steps, to deal with

extremely sparse rewards. This is inspired by real-world exam-

ples such as instructions of building a Lego toy or assembling

a piece of furniture. Instead of collecting demonstrations of

kinematic trajectories or altering the reward function, using

abstract demonstrations, in our experiments, has been shown

to significantly improve the learning efficiency.

We test our methods by simulating a 7-DoF Fetch Robot to

learn a set of block-stacking tasks, as illustrated in Fig. 1.

Other similar tasks can also be easily accommodated. The

low-level (control) policy is trained with the DDPG (Deep

Deterministic Policy Gradient) algorithm with Hindsight Ex-

perience Replay (HER) [4], [11]. For the high-level (planning)

policy, we adapt the Intra-Option Learning algorithm [12] to

a deep learning and experience replay version (Section V-A).

The source codes including the simulation environment and

algorithms will be made available on GitHub1.

The rest of this paper is organised as follows. We re-

view related studies in Section II. Preliminaries (including

standard RL, the Option Framework and Goal-conditioned

RL) are reviewed in Section III. Our novel Universal Option

Framework (UOF) is presented in Section IV, with training

algorithms in Section V. Section VI introduces the tasks and

experimental setup, while Section VII analyses the experiment

results. Section VIII concludes this research.

II. RELATED WORK

This work relates closely to three topics, including hierar-

chical reinforcement learning (HRL), goal-conditioned rein-

1https://github.com/IanYangChina/UOF-paper-code

forcement learning (GRL), and robotic block-stacking tasks.

Options and HRL: The Option Framework (OP) [13] pro-

vides a promising architecture to enable temporally extended

actions. One research direction is to define or pre-train a fixed

set of options (low-level policies), given which one can train an

inter-option (high-level, gating) policy for symbolic planning

[14], [15] or skill composition [10].

Two challenges studied in this work are related to HRL. The

first is the non-stationary transition problem (see section IV-C

for details) that occurs when training policies at different

levels in parallel [7]. A typical approach for such problems

is to train them independently [8]–[10]. We propose a novel

exploration strategy to address this non-stationary issue during

parallel training (see section V-B). Different from methods

that focus on improving exploration efficiency [16]–[18], we

instead aim to reduce unnecessary exploration of the low-level

control policy and thus stabilise parallel training. Secondly,

we train a high-level policy to reuse the low-level policies

to achieve different final outcomes, e.g., stacking blocks in

different orders, while recent hierarchical methods only focus

on solving a single-outcome task [3], [8], [9], [19].

GRL: A goal-conditioned value function (or policy) in-

tegrates knowledge about pursuing different purposes in the

same environment [3], [20], [21]. This broadened definition

was further exploited by hindsight-goal-relabelling methods,

which significantly improve the sampling efficiency of contin-

uous Reinforcement Learning with sparse rewards [4]. Recent

implementations in robotics include language-based goals [9],

imitation learning [2], auxiliary tasks learning [22] and goal-

generation (related to intrinsic motivation) [16], [17], [23].

Our work casts the idea of GRL into the Option Frame-

work to obtain a universal hierarchical reinforcement learning

architecture. By doing this, our framework can learn multiple

outcomes and skills, while previous hierarchical frameworks

lack this ability [3], [8], [9], [19].

Robotic Block-stacking Tasks: Block-stacking is deemed

as a typical robotic task that requires long-horizon motion

planning and control. Conventionally, this task has been widely

used to validate various classic planning methods. These well-

researched classic methods for motion and task planning have

been proved to be effective in various settings [24].

The closest topic to our work would be the Task-motion

planning (TMP) [25] that addresses the problem of gener-

ating high-level task sequences and uses a motion planner

to solve each task. For task level planning, most works use

symbolic planning methods [26], [27]. For the low-level task

solver, algorithms such as probabilistic random map (PRM)

or rapidly-exploring random trees (RRT) are common choices

[24]. However, these classic methods rely heavily on expert

knowledge and hard-coded rules, thus they are in general

very domain-specific. In addition, classic methods require re-

planning for every task, at both levels, while deep reinforce-

ment learning-based frameworks can output valid solutions

without any searching and provide better generalisibility [9].

Previously, some works have used RL approaches on sim-

plified tasks either with a block being grasped in hand [28]

or heavily shaped reward functions [5]. More recently, based

on GRL [4], researchers started to solve more complex cases

2

that require manipulating more blocks (up to 9 blocks) with

only sparse rewards [1], [2]. They extensively use human-

demonstrated kinematic motion trajectories [6], which are

not readily available. These works regarding RL have merely

learnt one particular order to stack blocks, typically in a fully

end-to-end fashion, without considering the combinatorial

nature of such multi-step problems.

III. PRELIMINARIES

The following sub-sections introduce the preliminaries for

the proposed UOF, namely the standard Reinforcement Learn-

ing, the Option Framework formalising a hierarchical archi-

tecture for learning low-level control and high-level planning

[13], and the GRL for learning tasks with multiple goals

[3]. Mathematical notations are summarised in supplementary

material.

A. Standard Reinforcement Learning (RL)

Standard RL problems are based on discrete time Markov

Decision Processes (MDPs), which is a model for sequential

decision-making. MDPs assume that the underlying system

dynamics is a Markov process, in which the future states are

only affected by the current state and action [29]. An MDP

is formalised by a set of states S , a set of actions A, a

distribution of initial states p(s0), a system transition function

p(st+1|st,at), a reward function r : S×A → R and a discount

factor γ ∈ [0, 1].
Given an MDP, a reinforcement learning agent interacts

with the system in the discrete timesteps. At a timestep t,

the agent observes a system state st and takes an action at.

The system then transits to the next state st+1 according to

the transition function, and emits a reward rt+1. In most

cases, it is hard to obtain an exact transition function for

complex environment interactions. Thus, as many other works,

we assume the transition function is unknown to the agent.

The reward function is usually defined to reflect the success

or failure of a given task.

The objective of the agent, i.e., of a standard RL problem,

is to find a policy π(a|s) : S → A that produces actions

for given states to maximise an expected discounted return

(i.e., cumulative rewards) E[R] = E[
∑T

t=0 γ
tr(st,at)]. The

policy could also be implicitly represented by an action-value

Q-function Qπ(s,a), which is itself the expected discounted

return after taking an action at a state and following a policy

thereafter [29].

B. The Option Framework (OF)

The OF is a classic hierarchical RL architecture. It intro-

duces the notion of ‘temporal abstraction’ into the standard RL

problem, enabling abstract planning with temporally-extended

actions, called options. An option can be regarded as a subtask,

a step or a skill, which may take several actions over a period

of time [13]. For example, robotic arm motions for grasping

and placing objects can be regarded as two options.

Formally, an option is denoted as o〈Io, πo, βo(s)〉, where,

Io ⊆ S is the set of initialisation states; πo is an intra-

option policy that can be pre-trained with standard RL using

a reward function specific to the subtask; and βo(s) ∈ [0, 1]
is the termination function indicating whether an option is

terminated at a state [13].

Given a set of pre-defined options, O, the aim of OF is

to find an inter-option policy Ω(o|s) : S → O that selects

options (i.e. steps) for given states to maximise an expected

discounted return. Similar to the standard RL, it can also be

represented by an option-value function QΩ(s, o) [13].

The inter-option policy plans over options to finish a task.

For instance, given two options that can grasp and place

blocks, the inter-option policy may learn to stack several

blocks by selecting the options in a particular order.

In the rest of the paper, intra- and inter-option policies are

referred to as low-level and high-level policies, denoted as πL

and πH, respectively.

C. Goal-conditioned Reinforcement Learning (GRL)

GRL formalises the problem of learning multiple goals in

one environment. A policy in GRL is called a universal policy

as it integrates knowledge about achieving different goals in

one environment [3]. Our framework is an integration of OF

and GRL.

In GRL, the MDPs remain the same with standard RL,

except that the reward function depends additionally on goals:

r : S × G → R. It is assumed that an achieved goal can be

easily found given a state. Typically, one can use part of the

system states to represent goals, e.g., the desired Cartesian

coordinates of blocks in a block stacking task.

It is assumed that every goal g ∈ G corresponds to a

predicate fg : S → {0, 1}, and a GRL agent aims to achieve

any state s such that fg(s) = 1. If a goal is a desired state and

S = G, the predicate is simply: fg(s) = [s = g]. More often

the predicate is defined by some relationships between the

achieved goals and desired goals, e.g., whether the L2-norm

of their difference is within a threshold.

The reward function can then be defined as r(s, a, g) =
−[fg(s) = 0], given a desired goal g ∈ G. Such a function

gives a reward of value 0 when a desired goal is achieved and

−1 otherwise. The objective is then to maximise the expected

return with respect to various goals [4].

IV. THE UNIVERSAL OPTION FRAMEWORK

In this section, we propose the Universal Option Framework

(UOF). In the original OF, a high-level policy plans over

options to accomplish one task, while low-level policies of

these options take low-level actions over a period of time to

complete different subtasks [13]. We extend both the levels

to be goal-conditioned, such that only one universal option

is needed for different subtasks by setting different low-level

goals, and only one universal high-level policy is needed to

plan for different tasks.

Briefly, Section IV-A defines the universal option and the

goal-conditioned high-level policy, followed by Section IV-B

illustrating the links between the two levels. Section IV-C

discusses the non-stationarity of parallel training. Section

IV-D provides specific representations of the main components

(states, actions, goals and rewards) of the UOF for multi-step

3

Figure 2: The procedure of the Universal Option Framework in the context of multi-step block-stacking tasks. The numbers

in dashed circles indicate the four sub-processes: 1) an episode starts with a high-level goal (e.g., a desired order of blocks:

Green→Blue→Red); 2) the high-level policy takes an action, which relates to a low-level goal (e.g., “Grasping Green Block”);

3) the low-level policy selects several actions (e.g., continuous gripper movements) to interact with the environment and try to

achieve the low-level goal; 4) the low-level policy is terminated when the low-level goal is achieved, upon which the high-level

policy selects another low-level goal.

block-stacking tasks. Mathematical notations are summarised

in supplementary material.

A. Universal Option and High-level Policy

1) A universal option, denoted as og〈Ig, π
L
g , β

L
g 〉, eliminates

the need of training multiple low-level policies. It has three

components.

Ig is the set of states where a goal is achievable. In this

work, we assume that every goal can be achieved from any

state, though it may need several intermediate actions. Thus,

the initialisation set for any goal is the state space: Ig = S .

πL
g (a

L|s,gL) is a goal-conditioned low-level policy where

gL ∈ GL is a low-level goal. This policy produces actions

according to different states and goals, e.g., controlling a

gripper.

βL
g (s) is the goal-conditioned termination function. For any

goal, it gives the probability of that goal being achieved at a

state and so the option terminates. We assume it to be a known

deterministic mapping:

fgL : S → {0, 1}, ∀gL ∈ GL, where fgL is the human-

specified predicate used in GRL problems to identify whether

a goal is achieved at a state [4].

A sparse reward function for training the universal policy

can thus be defined as rLg (s,a
L) = −[fgL = 0].

2) A universal high-level policy is denoted as

πH
g (aH|s,gH), where gH ∈ GH is a high-level goal. It

learns to achieve various high-level goals by assigning

low-level goals to the universal option. Given a predicate

fgH that indicates whether a high-level goal is achieved at a

state, a sparse high-level reward function can be defined as

rHg (s,aH) = −[fgH = 0].

B. Links between Low-level Control and High-level Planning

This subsection illustrates the links between a universal

option (with a low-level control policy) and a high-level

planning policy. In this paper, we manually decompose a task

into N crucial steps. Then, we assume the available access

to a mapping ψN : S → GL1 ,G
L
2 , ...,G

L
N from states to N

subsets of desired low-level goals, each of which corresponds

to a step.

To enable planning over steps, we assume the high-level

policy has N discrete actions, corresponding to the N steps.

When a high-level action is taken, the low-level policy receives

a low-level goal related to the chosen step, generated by the

mapping ψN based on the current state. Thus, the high-level

policy acts at a higher level as it demands the low-level policy

to achieve different steps. Note that, the low-level policy can

only act according to the low-level goals assigned by the high-

level policy.

Such a mapping that generates desired goals is usually

deployed for simulation-based tasks [4], [8], [9]. Table I

gives a mapping example for a two-step block-stacking task

(N = 2). The first row is the state s. Two distinct low-

level goals (second and third rows) that correspond to two

distinct steps are mapped from the state. The second row

corresponds to the step ‘grasping the blue block’ and the third

row corresponds to the step ‘placing the blue block on top

of the red block’. The high-level policy thus has two actions,

related to the two steps, whilst the low-level policy needs to

learn to achieve these steps by controlling a gripper.

The universal high-level policy and the universal option

linked by the mapping define the UOF. Fig. 2 summarises

the running procedure of the UOF in the context of multi-step

task learning. It comprises four sub-processes:

1) An episode starts with a random high-level goal gH;

2) The high-level policy πH
g takes an action aH, i.e., selects

a step, that maps to a low-level goal gL via ψN ;

Table I: An example of ψN for a two-step block-stacking task

Pos.Red Pos.Blue Pos.Grip. Wid.Fin.

s ∈ S (xr, yr, zf , || xb, yb, zf , || xgr, ygr, zgr, || wgr)

g1 ∈ GL
1

(xr, yr, zf , || xb, yb, zf , || xb, yb, zf , || sblock)

g2 ∈ GL
2

(xr, yr, zf , || xr, yr, zf + h, || xr, yr, zf + h, || sblock)

Abbreviation: Pos.: position (as Cartesian coordinates); Grip.: gripper;
Wid.Fin.: gripper finger width; x/yr/b/gr : the x and y coordinates of the

red or blue block or the gripper tip; zf : the absolute height of the block centre
when laying on the workbench; h: the absolute height of a block; sblock: size
of blocks; ||: Vector concatenation.

4

3) The low-level policy πL
g (i.e., the universal option) then

tries to achieve the given goal. Each low-level action aL

causes the environment to transit to a new state and emit

rewards (rHg , r
L
g);

4) The low-level policy is terminated when a low-level goal

is achieved (βL
g (s) = 1), only upon which can the high-

level policy select a new action.

This architecture summarises recent studies in combining

goal-conditioned and hierarchical reinforcement learning [8],

[9], [16], [17], [22], [23], emphasising the idea of knowledge

sharing and integration in a hierarchical RL system.

C. Parallel Training Instability

Parallel training is promising as it allows the high-level

policy to learn simultaneously with the low-level one. There

are two benefits of doing so. First, parallel training is less

computationally expensive as the high-level policy can start

learning without waiting for the pre-training of the low-level

policy to finish. Secondly, when trained separately, the pre-

trained low-level policy needs to be fine-tuned while training

the high-level policy [9], [14], [15], whereas parallel training

allows both levels to adapt intermediately.

Parallel training is unstable for the high-level policy due

to an exploratory low-level policy [7]. This can be examined

from the transition function for the high-level MDPs, i.e., the

probability of the policy entering a new state s′, written as

pH(s′) = pH(s) πH
g (aH|s) pH(s′|aH, s)

= pH(s) πH
g (aH|s) πL

g (a
L|aH, s) pE(s′|aL, s)

where, pE is the system dynamics. The equation reveals that

pH(s′) depends on the probability of the low-level policy

selecting an action, e.g., πL
g , given a low-level goal chosen

by the high-level policy πH
g . This means that a randomly

exploring low-level policy will cause the high-level transition

probability distribution to be non-stationary.

A policy with a constant exploring ratio will let the agent

have the same probability to deviate from the correct trajectory

at every timestep. This benefits the low-level policy in terms of

better exploration [4], [11]. However, it harms the high-level

policy in parallel training because the high-level only obtains

reward when the low-level achieves the desired goal. For a

task that takes several steps to finish, a constantly exploring

low-level policy and the massive search space impede the

success of the task and, hence, considerably hinder the learning

efficiency of the high-level policy. Previous works separately

trained both levels because separate training ensures the low-

level policy to be fully deterministic, and thus the high-level

policy to learn stably.

In this work, we propose a novel exploration strategy

that adapts the low-level exploration to resolve this problem

(in Section V-B). We demonstrate that with this strategy,

parallel training can achieve better performance with lower

computational demands (in Section VII-C).

D. Task-specific Definitions for UOF

This subsection describes the numerical representations

of states, actions, goals and rewards for the block-stacking

tasks in this work, as an example of applying our proposed

UOF. The two levels have different actions, goals and reward

functions, but share states and the initial state distribution.

1) States & initial state distribution: For a block-stacking

task with M blocks, we define a state s as a vector of

states for the gripper sgrip and the blocks (sb1||s
b
2||...||s

b
M),

where || denotes vector concatenation. The gripper state is

a vector concatenated by the absolute Cartesian coordinates

and the linear velocity of the gripper, the linear velocity of

the gripper fingers (symmetric), and the gripper stroke width,

formulated as sgrip = (xa
grip||v

a
grip||v

a
finger||wfinger). The

state of the i-th block is represented by a vector concatenating

its relative Cartesian coordinates, linear and angular veloci-

ties with respect to the gripper’s local frame, formulated as

sbi = (xr
i ||v

r
i ||w

r
i), ∀i ∈ {1, ...,M}. Therefore, a state of the

system can be defined as s = (sgrip||s
b
1||s

b
2||...||s

b
M).

The initial pose of the robot gripper is fixed at the same

place for all tasks, while the initial positions of blocks are

randomised and the initial orientations are always aligned with

the world frame. For the i-th block, its initial position, (xi0, y
i
0),

is uniformly sampled on the planar workspace within a square

centred at the gripper position (xgr0 , y
gr
0), i.e., xi0 ∼ U(x

gr
0 −

δ, x
gr
0 + δ) and yi0 ∼ U(y

gr
0 − δ, y

gr
0 + δ), where δ is half of

the square edge length. In this work, δ = 15 cm.

2) Actions: A low-level action comprises four elements,

including the motion of the end effector in the Cartesian space

(∆xgr,∆ygr,∆zgr) and the gripper stroke width wfinger, de-

noted as aL = (∆xgr||∆ygr||∆zgr||wfinger). All dimensions

are continuous within [−1, 1]. An exception is the Rotation

Task (see section. VI-A2), where the agent is additionally

allowed to rotate the gripper around its Z-axis.

As discussed in Section IV-B, there are N high-level actions

related to the N steps, i.e., aH ∈ {1, 2, ..., N}.
3) Low-level goals & reward function: Low-level goals are

represented by the absolute Cartesian coordinates of blocks

and the gripper as well as the gripper stroke width. Thus,

given M blocks, a low-level goal is described as gL =
(xa

grip||wfinger||x
a
1 ||x

a
2 ||...||x

a
M).

We measure the difference between an achieved low-level

goal gL′ and a desired low-level goal gL via the L2-Norm of

their difference, formulated as ||gL−gL′||2. Given a threshold

ǫg , a predicate fgL(s′) = [||gL − gL′||F < ǫg] is used to

define a sparse reward function:

rL(s,aL,gL) =

{

0, fgL(s′) = 1
−1, fgL(s′) = 0

where s′ is the state that occurs after an action a is executed

at state s. In this work, we set ǫg = 0.02.

It is worth mentioning that most existing works represent

goals for the block-stacking tasks with only the absolute Carte-

sian coordinates of the blocks [1], [2], [4], and we call such

goals block-informed goals. In contrast in our work, the goals

consist of not only the coordinates of blocks but also the grip-

per and its stroke width, which we call block-gripper-informed

5

goals. We notice through experiments (Section VII-A) that

training with block-informed goals is inefficient and results

in inconsistent behaviours. We hypothesise that this is due to

the lack of information about gripper motion provided by the

goals (and thus by rewards).

On the one hand, when rewards are only related to block

positions, exploration is difficult in a block-stacking task with

sparse rewards. If goals contain information about the gripper,

then some rewards are expected to ‘teach’ the policy about the

direct effects of actions, which are correspondingly gripper

movements in this context. It is therefore expected that the

policy would first learn to control its gripper to move around

before learning to use it to manipulate blocks.

On the other hand, block-informed goals incline to induce

a mixture of undesirable or unpredictable behaviours, includ-

ing slicing, pushing, grasping and moving several objects

simultaneously. We hypothesise that this is because block-

informed goals (and corresponding rewards) encourage the

robot to finish tasks, but ignore how the tasks are achieved.

Thus, only the blocks’ positions are considered insufficient

for representing the goals in accomplishing tasks that favour

certain behaviours.

We therefore adopt block-gripper-informed goals and

demonstrate empirically (in Section VII-A) that such goals

alleviate the severe exploration problem and produce more

consistent behaviours.

4) High-level goals & reward function: We have experi-

mented on two types of representations for high-level goals,

including the block-gripper-informed representation (discussed

in section IV-D3) as applied to the low-level goals and a binary

representation.

The binary representation is a binary vector with N di-

mensions, where N is the number of steps for a task. The

value of each dimension is computed using the predicate

of the according low-level goal, fgL . Using the task given

in Table I as an example which has 2 steps (N = 2)

with two distinct low-level goals (g1 and g2), a high-level

goal is then represented by a 2-dimensional binary vector:

gH = (f
g
L
1

, f
g
L
2

), where fgL
n
∈ {0, 1}.

As an example, in Table I, a high-level goal with values

(1, 0) means gL
1 should be achieved, while (0, 1) means that

gL
2 should be achieved. The high-level reward function is

defined simply by checking whether the desired high-level goal

is achieved, using the element-wise equality with the actual

achieved goal gH′, as formulated below:

rH(s,aL,aH,gH) =

{

0, gH = gH
′

−1, gH 6= gH
′ (1)

where s′ is the state after a low-level action aL is executed at

the last state s.

V. TRAINING APPROACH

In this section, we first propose a deep learning version of

the Intra-Option Learning algorithm [12], [13], named Deep

Intra-Option Learning (DIOL), for training the high-level pol-

icy. Next, we propose an exploratory strategy to stabilise the

parallel training, named Auto-Adjusting Exploration Strategy

(AAES), and abstract demonstrations to improve the learning

efficiency. Finally, we review the popular goal-relabelling

method, Hindsight Experience Replay (HER), that boosts the

efficiency for GRL problems [4].

For updating the low-level policy, we apply the Deep De-

terministic Policy Gradient (DDPG [11]) algorithm following

the implementation in [4], but with a second critic to reduce

the overestimation error [30]. The pseudo-code of the training

process is presented in Algorithm 1. Algorithm parameters are

given in Appendix A. Mathematical notations are provided in

the supplementary material.

Algorithm 1 Parallel training pseudo-codes

Input: maximum epochs, cycles and episodes M0,M1,M2

Initialise DIOL (section V-A) and DDPG [11]
Initialise AAES (Section V-B)
for epoch = 1 to M0 do
| for cycle = 1 to M1 do
| | for episode = 1 to M2 do
| | | Sample a high-level goal
| | | for t = 0 to T − 1 do
| | | | if use demonstrations (section V-C, VII-D)
| | | | | Obtain the correct next low-level goal
| | | | else

| | | | | Sample a low-level goal from the high-level policy
| | | | end if
| | | | while not low level goal achieved

| | | | | Sample an action from the low-level policy with AAES
| | | | | Execute the low-level action and observe the next state
| | | | | Store the transition
| | | | end while

| | | end for

| | end for

| | Perform HER on RL with the “episode” strategy [4]
| | Perform Topt optimisation steps with DDPG [11]
| | Perform Topt optimisation steps with DIOL (Eq. 2, 3)
| end for

| Perform tests to obtain current low-level performance
| Update AAES (Section V-B, Eqs. 4, 5)

end for

A. Deep Intra-Option Learning (DIOL)

To train a high-level policy, a typical approach is to repre-

sent the policy by an option-value function Q(s, o) updated

by the classic Semi-MDP Q-Learning method, which has

been adopted in recent hierarchical RL studies [8], [9]. It

updates Q(s, o) with a discounted return, only when an option

terminates. This is not data efficient as it discards all the

data generated by a low-level policy except at the point of

termination. An alternative is the Intra-Option Learning (IOL)

method, which learns more efficiently from data generated at

every timestep [12], [13]. The original IOL update rule for

tabular problems is defined as:

Q(s, o)← Q(s, o) + α [(r + γ U(s′, o))−Q(s, o)]

where α is a step size and U(s′, o) is the option value upon

arrival defined as:

U(s′, o) = (1− β(s′)) Q(s′, o) + β(s′)max
o′∈O

Q(s′, o′)

6

We extend it to a goal-conditioned, experience replay-

based mini-batch update for neural network approximators.

In training, off-line transitions are uniformly drawn from

the replay buffer D. A transition is denoted by ξ =
(s,gH,aH, r, bs′gL , s′), where, s is the encountered state, gH

is the desired high-level goal, aH is the action (a low-level

goal) selected by the policy, r is the reward, bs′gL is a

binary value indicating whether the selected low-level goal

is achieved and s′ is the next state. The loss function for

computing the gradient is:

Lθi = Eξ∼U(D)[(r + γU(s′,gH,aH′, bs′gL ; θ−i)

−Q(s,g,aH; θi)]
(2)

where U(s′,gH,aH′, bs′gL ; θ−i) is the goal-conditioned option

value upon arrival estimated by the target network, defined as:

U(·) = (1− bs′gL) Q(s′,gH,aH; θ−i)

+ bs′gL max
aH′∈AH

Q(s′,gH,aH′; θ−i)
(3)

where θ−i denotes the target network parameters (a partial or

delayed copy of the parameters of the main network θi [11],

[30], [31]).

Equations 2 and 3 are used to update the high-level policy

in our framework. For better learning stability with neural

network approximations, we employ two individual value

networks, each of which has a target network, to reduce value

overestimation as suggested by [30]. The estimated option

value upon arrival (Equation 3) takes the minimum value

between those computed by the two target networks. Both

target networks are updated w.r.t. their main networks softly

with a parameter τ ≪ 1, i.e., θ− ← τθ+ (1− τ)θ− [11]. We

name this algorithm ‘Deep Intra-Option Learning’ (DIOL), as

it is a deep learning and experience replay extension of the

original IOL algorithm [12].

B. Auto-Adjusting Exploration Strategy (AAES)

As mentioned in Section IV-C, when training policies at

different levels of a hierarchical RL system in parallel, the

transition of higher level MDPs is non-stationary due to

the instability of the low-level policy caused by the random

exploration nature [7]. Previous works typically avoid this

issue by training two levels separately, keeping the low-level

policy unchanged when training the high-level one [8], [10].

Separate training is a viable but costly solution, especially

when the data-collection process is expensive (e.g., real-

life tasks or complex simulations). One existing approach

to this, Hierarchical Actor Critic (HAC), modifies the high-

level transitions as if the low-level policy is an optimal policy

[7]. However, it cannot fundamentally eliminate the non-

stationarity.

Based on the theoretical analysis in section IV-C, we

propose the AAES method, which adaptively reduces un-

necessary exploration of the low-level policy according to

its performance. AAES builds upon a common exploration

strategy for continuous reinforcement learning agents [11].

Specifically, the agent will either sample a random action from

a uniform distribution with a probability of α or takes an action

(with a probability of 1− α) using the learnt policy π(a|s, g)
with added Gaussian noises according to N (0, σ2). The policy

can be then formalised as πb(a|s, g) = π(a|s, g) +N (0, σ2).
In the former case, the agent explores the environment more

aggressively by randomly sampling actions in a large search

space globally. On the contrary, the noisy actions will explore

more locally. On top of this, AAES adjusts α and σ after each

epoch according to the testing success rate of each step:

αe+1 = cα (1− Se); σe+1 = cσ (1− Se) (4)

where cα, cσ ∈ (0, 1] are the upper bound constants of the

random action probability and noise standard deviation; the

subscript e denotes the epoch index; αe+1 and σe+1 are N -

dimensional vectors of random action probabilities and noise

standard deviations at epoch e+ 1; and Se is a N -dimension

vector of the averaged success rates of the N steps after

epoch e. Equations 4 allow the agent to adjust its exploration

adaptively such that an increase of the testing success rate,

after the e-th epoch, will result in a decreased probability of

taking random actions and a reduced deviation of action noise,

in the (e+ 1)-th training epoch.

In other words, at the beginning of training, AAES assigns

the highest probability of taking random actions and the

highest deviation of sampling action noise, since the success

rates are all 0. As the low-level policy becomes more skilled

at achieving a particular step (as its success rate grows),

AAES reduces the random action probability and action noise

deviation related to that step. When a step is well-learnt by

the agent (with its success rate approaching 1), AAES tends to

stop exploration and only takes greedy actions without noises.

This thus ensures the high-level policy to stably move forward

to later steps while learning a task. The upper bound constants

cα and cσ are empirically determined (see Appendix A).

In practice, directly computing αe and σe using the original

success rate results in bumping changes of the two values

that may not reflect the real performance of the policy. For

example, if a success rate occasionally grows up significantly

after an epoch, it is more possible that it is tested in a more

familiar task distribution region than that it truly performs well

in all cases. Thus, we smooth out the bumping changes using

a delayed copy of the original success rate vector: S−
e . This

value is updated slowly via

S−
e+1 ← τsSe + (1− τs)S

−
e (5)

with τs ≪ 1. Finally, we use this delayed copy to compute

αe and σe, obtaining smoothly changing curves of the two

values and thus more smoothly auto-adjusting exploration.

C. Abstract Demonstrations

We introduce an abstract form of demonstrations to accel-

erate the learning for multi-step tasks with sparse rewards.

As mentioned, most existing works use human demonstrations

at the trajectory level that can be difficult to obtain and are

usually not readily available [2], [6], [16].

7

In this work, we provide the agent with the correct orders

of steps at the symbolic level for achieving final outcomes,

hence named ‘abstract demonstrations’. For example, if a

desired step is to place a blue block on top of a red block,

the demonstration would be a sequence of steps: 1) grasping

the blue block and 2) placing it on top of the red block. In

our implementation, they are represented by different ordering

of step indexes. Such abstract demonstrations are relatively

easier to obtain, and resemble many human instructions in real-

world scenarios, e.g., instructions of building a Lego house,

assembling/disassembling a machine, etc.

Despite its simplicity, we consider that this form of demon-

strations would benefit both levels. For the low-level policy,

it serves as a pre-designed curriculum, guiding the low-level

policy to learn to achieve goals in a reasonable order (i.e.,

from easy to hard). For the high-level policy, it serves as the

right action sequences that lead to desired outcomes.

D. Hindsight Experience Replay (HER)

HER is a data augmentation method, which relabels rewards

and desired goals of experienced transitions, aiming to im-

prove the sample efficiency for sparse reward GRL problems

[4]. A transition is collected after the system passes one

timestep. In GRL, a transition commonly consists of a state,

a desired goal, the next state, an achieved goal, and a reward.

Before pushing the transitions of a full trajectory into a replay

buffer, HER samples (k) goals using a sampling strategy. Then,

another k synthetic trajectories are produced by copying the

old trajectories and replace their desired goals with the ones

sampled previously. Rewards for these new transitions are

recomputed according to the goal-conditioned reward function.

We use the episode strategy for all low-level policies to

sample goals, which samples the k goals uniformly within a

collected trajectory, with k = 4 working reasonably well [4].

VI. EXPERIMENTS SETUP

This section introduces a set of block-stacking tasks exper-

imented in this work and the training and testing procedures.

To begin with, we declare two general assumptions used in this

work. First, we assume that any given task to be solved by the

agent can be decomposed into a finite number of intermediate

steps (based on human prior). Second, we assume that there

is always an achieved goal given a system state, which is the

required assumption for using the hindsight experience replay

technique [4].

A. Task configurations

We conduct simulation experiments on eight variants of

block-stacking tasks in the Open AI Gym environment with

the MuJoCo engine [32]. A 7-DOF Fetch robot is used in the

simulation.

1) Basic tasks: Table II lists the configurations of four basic

block-stacking tasks, where a robot needs to stack some cuboid

blocks on top of one another to form a tower. Three blocks of

different colours (Red, Blue, Green) are used in these tasks.

(a) (b)

Figure 3: (a) The ‘B→G→R’ outcome of the fourth basic task;

(b) the ‘R→BG’ outcome of the pyramid task.

Each task has a different number of desired outcomes (high-

level goals), and thus requires different number of steps to

accomplish them all.

For example, ‘B→G→R’ is one desired planning outcome

that denotes the desired top-down order of three blocks of

task 4 (Fig. 3a). This ‘B→G→R’ order would require five

steps: 1) grasping block G, 2) placing G on the top of R, 3)

grasping block B, 4) placing B on the top of G and R, and

5) moving the grip away. Since the robot also has to learn

the other order ‘G→B→R’, there are in total 10 steps in task

4. ‘Training timesteps’ and ‘Testing timesteps’ represent the

number of actions the robot can take before the system resets

(i.e., the length of a training or testing episode).

Among the four basic tasks, we analyse the effect of dif-

ferent representations of goals with tasks 1 and 2. The effects

of the AAES, parallel training and abstract demonstrations are

validated on only task 2. All basic tasks are used to evaluate

the ability of learning diverse desired planning outcomes with

a single policy.

2) Additional tasks: We also propose four additional tasks

in different configurations that are considered more complex

than the basic block-stacking task. The first one is designed

to demonstrate that the proposed UOF can handle tasks of

different stacking types, while the second one is the same

with the task 1 in Table II, except that the gripper is allowed to

rotate along the Z-axis, providing one more degree-of-freedom

in control. The third and fourth tasks are designed to test the

generalisation ability of our method by randomising the sizes

of blocks. For the sake of clarity, the first task is termed as

‘pyramid task’, the second task is termed as ‘rotation task’ and

third and forth are termed as ‘randomised block size (RBS)

tasks’.

The pyramid task is more difficult than the basic tasks

as it requires the robot to place one or two blocks at one

level (compare Fig. 3a and 3b). In Table III, ‘R→BG’ in the

‘Desired outcomes’ column denotes an outcome where a blue

and a green blocks are placed at the bottom closely, and a

red block longer than the others is placed on top of them

(shown by Fig. 3b). This would require seven steps to finish:

1) grasping block G, 2) placing G on the front side of the

tray, 3) grasping block B, 4) placing B on the back side of the

tray close to G, 5) grasping block R, 6) placing R on top of

B and G, and 7) moving the grip away. With the other order,

8

Task Blocks No. of steps Desired outcomes Training epochs Training timesteps Testing timesteps

1 R, B 3 B→R 150 25 50
2 R, B, G 6 B→R; G→R 800 25 50
3 R, B, G 15 B→R; B→G; R→B; R→G; G→R; G→B 1000 25 50
4 R, B, G 10 B→G→R; G→B→R 1500 40 60

Table II: Basic Block-stacking Tasks.

Task Blocks Control No. of steps Desired outcomes Training epochs Training timesteps Testing timesteps

Pyramid R, B, G Position, finger 14 BG→R; R→BG 2000 60 80
Rotation R, B Position, finger, Z-rotation 3 B→R 300 25 50
RBS 1 R, B Position, finger 3 B→R Test only - 50
RBS 2 R, B, G Position, finger 6 B→R; G→R Test only - 50

RBS: random block size.

Table III: Additional Block-stacking Task.

‘BG→R’, the total step count is 14.

The rotation task is more difficult as the extra degree of

freedom enlarges both the state and action spaces of the agent.

In particular, we add the Euler angles of the end-effector and

blocks into the agent’s state representation, which, for task

1, adds 9 more dimensions into the state space. As such, we

train the agent for 300 epochs, which is twice longer than the

original basic task 1. Except for the state and action spaces and

the training time, all other definitions of the rotation task and

algorithm remain the same, as presented in subsection IV-D

and Appendix A.

The RBS tasks are modified from tasks 1 and 2 presented

in the basic tasks (Table II). They aim to test the zero-shot

generalisation ability of the trained policies. Specifically, they

are the same with the basic tasks except that, at the beginning

of a test episode, the block sizes are sampled uniformly from

an interval of [15cm, 35cm]. Since the agent is only trained

with a fixed block size of 25cm, its performance on the

RBS tasks without fine-tuning will showcase its zero-shot

generalisation ability (see results and discussion in section

VII-G).

B. Training Details

The training process is summarised in Algorithm 1 in

supplementary material, with detailed parameter settings given

in Appendix A.

Training: Both levels are trained in parallel, The training

process consists of Epochs, Cycles and Episodes. An epoch

includes 50 cycles, and each cycle is composed of 16 episodes.

States and goals are normalised using a running average of

the mean and variance. At the end of each cycle, we apply

the HER method using the episode strategy with k = 4 [4] to

relabel the low-level trajectories. Then, along with the original

trajectories, they are merged into the low-level replay buffer.

For the networks at both levels, samples are uniformly drawn

from the buffers to perform 40 optimiser steps after each cycle.

Testing: For performance evaluation, we test both levels

at the end of each epoch with only greedy actions for 30

episodes, and record the average returns, success rates and

time steps towards the completion.

It is worth mentioning that the performance of the low-level

policy is related to the abstract demonstrations. This is because

of the step inter-dependency, as some steps require others to be

reached in advance. In a testing episode, the low-level goals

are passed to the low-level policy according to the abstract

demonstrations.

For the high-level policy, its performance is evaluated

regardless of how well the low-level policy performs at the

time of testing. This is different from testing its stand-alone

planning performance using an optimal low-level policy, since

we aim to improve the parallel training process instead of

separate training.

The numbers of training epochs, training and testing

timesteps of each task differ (see Table II). All basic tasks and

the rotation task were run with 3 random seeds to calculate the

means and deviations of the results, while the Pyramid task

was run with one seed. The experiment is computationally

expensive and takes a long time to run, ranging from 2 days

to a week in our work. We use a workstation with an Intel

i7-8700 CPU and a Nvidia RTX-2080 GPU.

VII. RESULTS

We evaluate the performance of the following aspects,

namely, representations of goals, AAES, abstract demonstra-

tions, and parallel training. We also give a comparison with

a state-of-the-art algorithm, HAC, and experiments on the

additional tasks. The main performance metric used in this

section is the success rate, while we also provide the curves

of test returns in the supplementary material.

A. Representations of Goals

1) Low-level goals: To evaluate the performance differ-

ence introduced by the proposed low-level goal representa-

tion, named block-gripper-informed goals (defined in section

IV-D3), we perform a comparative study with the block-

informed goals used in previous works [1], [2], [4]. Since this

experiment is to evaluate the low-level control performance,

only low-level policies were trained, without using AAES.

In block-gripper-informed cases, desired low-level goals are

provided in the correct order; while in the block-informed

cases, desired goals (blue block position) were uniformly

9

sampled on the table, in the air or on top of the red block, as

this is the only way to succeed without using kinematic-level

demonstrations, suggested by [4].

(a) (b)

Figure 4: (a) Average success rates of low-level kinematic

control of the final step of task 1 with different goal rep-

resentations; (b) Visualisation of the step.

In Fig. 4a, the red line depicts the success rate of block-

gripper-informed goals of the final step (‘Moving Gripper

Away While Keeping The Blocks Stacked’, as shown in

Fig. 4b), and the grey line depicts the success rate of block-

informed goals for stacking the blue block on top of the red

block.

The grey line shows a higher variance and grows much more

slowly compared to the red line. This means that using block-

gripper-informed goals converges significantly faster with a

lower variance. This result indicates that learning from only

block-informed goals is inefficient. It is clear that introducing

the extra gripper information in describing the goals effectively

increases the performance.
2) High-level goals: This subsection analyses the perfor-

mance of the high-level policy with the high-level goals in

the block-gripper-informed representation and in the binary

representation (see Section IV-D).

(a) Task 1 (b) Task 2

Figure 5: Average success rates with block-gripper-informed

and binary high-level goals.

Fig. 5 displays the average testing success rates of the

high-level policy using the two high-level goal representations.

Comparative experiments were performed on basic task 1 and

2 (see Table II). The binary representation outperforms the

block-gripper-informed representation. Though Fig. 5a shows

no performance difference, Fig. 5b shows a clear advantage of

deploying the binary representation (red line) over the block-

gripper-informed representation (grey line) with task 2.

Based on the results above, in the rest of the paper, we use

the binary representation to describe high-level goals.

B. Auto-adjusting Exploration Strategy (AAES)

This subsection evaluates the AAES for parallel training.

The evaluations are focused on the high-level planning policy,

as the AAES is introduced to stabilise the high-level MDP

(a)

(b)

(c)

(d)

Figure 6: (a): Average success rate of high-level planning

in task 2; (b)-(d): Three consecutive steps (left column) of

task 2 (grasping blue block, placing on the red block, and

leaving) and the average timesteps required for completion

(right column). The red lines represent the performance with

AAES and the grey lines depict the baseline without AAES.

10

transitions. The baseline performance is obtained with a non-

adaptive version of the AAES, where α and σ are kept equal

to the constant bounds (cα = 0.2, cσ = 0.05, section IV in

supplementary material), as an exploration strategy equivalent

to that in [4].

Fig. 6a displays the average success rates of task 2 (see

Table II). It shows that using AAES (red line) improves the

learning efficiency over the baseline (grey line) and reaches a

success rate of 0.941 ± 0.003. Moreover, it starts to diverge

from the grey line at about epoch 120, as expected, showing

that AAES is considerably more effective for later steps.

Figs. 6b–6d display the average timesteps required to com-

plete 3 consecutive steps: “Grasping Green Block”, “Placing

Green Block On Red Block”, and “Moving Gripper Away”.

From the start to the later steps, (correspondingly from Figs.

6b to 6d), one can observe that, as expected, the least re-

quired number of timesteps for finishing a task step increases

(around 5, 15 and 23 timesteps respectively) after the training

stabilises. The advantage of deploying AAES becomes clearer

gradually through the three steps. In particular, for the first step

(Fig. 6b), it shows no clear improvement, while Figs. 6c and

6d demonstrate clear reductions of about 10 and 20 timesteps

on average relative to the baseline at the end of the training

process. In addition to the reduction of required timesteps,

AAES considerably improves the speed of convergence for

learning the later steps. As shown in Figs. 6a, 6c and 6d, one

can see that the red lines converge at around the 450-th epoch,

while the grey lines do not show any obvious trend of reaching

convergence within 800 epochs.

In short, these results empirically prove that, for tasks com-

prising inter-dependent steps, the proposed AAES improves

the learning for the high-level planning in parallel training,

especially for later steps, in terms of convergence speed and

learnt performance.

C. Parallel and separate training

This subsection analyses the performance of high-level

planning, when training both levels in parallel and separately.

Fig. 7 displays the average success rates of the high-level

policy in task 2 (see Table II). The grey line depicts the success

rate of high-level planning trained in 300 epochs with a pre-

trained low-level policy; and the red line depicts the one that

was trained in parallel with the low-level policy from scratch,

aided by the AAES.

Figure 7: Average success rates of high-level planning. Sepa.:

Trained with a pre-trained low-level policy; Para.: Parallel

training with low-level policy from scratch.

In Fig. 7, the grey line starts with a higher success rate

(around 0.4), but has no obvious improvement afterwards

(stay at around 0.661 with a standard deviation of 0.152).

In comparison, the red line starts from zero because both the

policies start from scratch. However, it surpasses the grey line

at around 150-th epoch and converges at a higher average

success rate (0.896) with a lower deviation (0.017).

Training a planning policy with a pre-trained control policy,

as deployed in [8], [10], starts learning faster. However, par-

allel training achieves a higher and more stable performance.

In addition, parallel training is more time efficient without the

need to pre-train the low-level policy. For example, the low-

level policy for task 2 needs to be pre-trained for 300 epochs,

thus, parallel training is roughly twice more time-efficient than

separate training in this case.

D. Abstract demonstrations

This subsection discusses the effect of abstract demonstra-

tions. Fig. 8 shows the success rates of both low-level (Fig. 8a)

and high-level policies (Fig.8b) given different numbers of

demonstrated episodes.

The number of episodes to be provided with demonstrations

is specified by a proportion of each cycle, denoted by x. Each

cycle has 16 episodes in total. For instance, when x = 0.25, the

number of demonstrated episodes within each training cycle

will be 16 × x = 4. In that case, each cycle would contain

4 episodes of high-level actions from the provided demon-

strations. We conducted experiments with various values of x:

{0, 0.25, 0.5, 0.75, 1}. All cases are trained in parallel with the

AAES.

(a) Low-level (b) High-level

Figure 8: Average success rates with different proportions

of demonstrated episodes in the task 2. 0.0-D, 0.25-D, 0.5-

D, 0.75-D, and 1.0-D denote the respective proportions of

demonstrations added in the episodes.

Overall, Fig. 8 shows that, given half of the episodes being

demonstrated (green lines in both subfigures), both levels reach

a success rate that roughly triples those without demonstrations

(blue lines in both subfigures). This indicates that abstract

demonstrations significantly benefit both low-level and high-

level policies.

Fig. 8a shows that, for the low-level control policy, demon-

strating more than half of the training episodes does not

achieve much more further improvements on performance, as

the green, red and purple lines grow closely together. Besides,

11

demonstrating 0.75 proportion of the episodes did further

accelerate the convergence, but increasing upon 0.75 did not.

On the other hand, Fig. 8b shows a different phenomenon

that too many demonstrations result in a destructed high-level

policy (purple line). This is because an RL algorithm needs

not only rewards, but also random exploration to collect ex-

periences without rewards for distinguishing good behaviours

from the bad ones [29]. Our result also shows that exploration

and exploitation for the high-level policy was well-balanced by

selecting 0.75 proportion of the episodes to be demonstrated.

On the contrary, providing full demonstration to the low-

level policy dose not degrade its performance. This is because

the given demonstrations are the correct sequences of low-

level goals, and this does not directly influence the exploration

behaviour of the low-level policy, i.e., what gripper control

actions to be selected. Instead, adding more abstract demon-

strations will further improve the low-level performance as

shown in Fig. 8a, because it serves as a kind of curriculum

and frees the low-level policy from learning the dependencies

between low-level goals from scratch.

In short, these results prove that abstract demonstrations,

which can be easily obtained, can significantly accelerate the

learning efficiency of both low level (kinematic) control and

high level (symbolic) planning.

E. Comparison with Hierarchical Actor Critic

We compare our method with Hierarchical Actor Critic

(HAC) [7], which is considered a state-of-the-art goal-

conditioned hierarchical reinforcement learning algorithm, and

suits the multi-outcome tasks as it is goal-conditioned in all of

its hierarchies. In HAC, three modifications are applied to the

collected transitions to deal with the non-stationary transition

problem described in section IV-C. However, it can not be

directly applied to the multi-step settings discussed in our work

because the high-level policy in HAC produces a continuous

multi-dimensional vector as a low-level goal. This cannot be

changed as their transition modification approaches depend on

continuous high-level actions.

Note that, though the comparison is not perfectly fair, it

provides an intuition of how hard it is to learn in a continuous

goal space. The UOF proposed in this work starts by task de-

composition and only learns the sequences of sub-tasks at the

higher level, while HAC was designed to learn in continuous

goal spaces at every level. To ensure the comparison to be as

fair as possible, we also provide abstract demonstrations to the

HAC agent2.

Results show that, for tasks 1 and 2, the average success

rate of the low-level policy of the HAC agent can only reach

around 0.5, while the high-level policy success rates are even

lower (grey lines in Fig. 9). This means the HAC agent

can only learn the first step of the task (grasping a block),

2Abstract demonstrations are represented by the correct sequences of steps
towards some desired final outcomes. They are lists of integer indices, with
each index related to a set of sub-goals of a unique step. Thus, given the
simulator, we can obtain a sub-goal vector related to a step by selecting
an index. As for the UOF agent, the high-level policy takes the indices as
demonstrated actions, while for the HAC agent, it takes the multi-dimensional
sub-goal vectors as demonstrated actions.

while our method (red lines) can solve all tasks satisfactorily.

This is expected since HAC is not designed to handle multi-

step tasks [7]. This implies that task decomposition, which

may be done automatically in future research, is essential for

long horizon manipulation tasks as it enables reasoning in a

discrete space with vastly lower dimensionality. On the other

hand, though HAC provides techniques to alleviate the non-

stationary transition problem, it does not completely erase the

exploratory behaviours of the low-level policy as what AAES

does when a step is well-mastered.

(a) Task 1 - Low-level (b) Task 2 - Low-level

(c) Task 1 - High-level (d) Task 2 - High-level

Figure 9: Average success rates of HAC and UOF.

F. Learning Diverse Combinatorial Results

This subsection evaluates the high-level planning perfor-

mance obtained by a universal high-level policy and separated

policies. For a universal policy, we merge data into one replay

buffer; while for separated policies, we store data of different

final goals in different replay buffers, each of which is used

to train a corresponding policy. The replay buffers have a

capacity of 1e6 datapoints and discard the oldest data, when

new data comes in if it is full. Thus, they are trained with the

same amount of data, but each separate policy only learns one

task.

Fig. 10 shows that, for tasks 1-4 (Fig. 10a to 10d), the

planning performance is not sacrificed when training with only

one universal policy (red lines). Instead, it even surpasses sep-

arate policies (grey lines). Moreover, the more final planning

outcomes needed to be learned, the greater the advantage of

universal policy over separated policies (task 1 has 1 final

outcome; task 2 and task 4 have 2; and task 3 has 6).

One reason for the better performance with the universal

policy could be due to the knowledge sharing mechanism

within a single policy that allows the learnt experience to

be shared among different desired planning outcomes, while

12

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

Figure 10: Average success rates of planning over multiple

steps with universal and separated policies for the four tasks.

Univ: single universal policy; Sepa: separated policies.

separated policies will have to learn everything from scratch

for each desired planning outcome.

However, as shown in Fig 10d, although knowledge shar-

ing improves the sampling efficiency for learning multiple

outcomes, its advantage is less obvious when solving longer

horizon tasks (task 4). We consider that it is because, with

more data required by longer horizon tasks, using separate

policies for each of the final outcomes will reduce the amount

of required training data. Therefore, for universal policies, the

advantage of knowledge sharing is counter-balanced by the

increased data requirement.

On the other hand, another advantage of such a universal

policy is the reduced memory usages. A clear difference of

memory usages for training these policies tasks is shown in

Table IV. The “Step Num.” column shows the number of steps

that are required for each task.

The ‘Buffer’ column specifies the memory size of filled-

up replay buffers, each of which contains 1e6 transitions

(datapoints). This column shows an increasing buffer size as

the task becomes more complex (from rows 1 to 4), and a no-

ticeable increased memory occupancy with separated policies

than universal policies (in total, from ∼ 1.72G to ∼ 2.60G

for a universal policy, and from ∼ 5.16G to ∼ 36.30G for

separated policies).

The ‘Network’ column shows the memory consumption of

neural network parameters of these policies. For separated

policies, the increment of memory needed to store these

parameters is also noticeably greater than a universal policy.

Since we use Multi-Layer Perceptrons (MLPs), these networks

are relatively small. However, such an increment of memory

consumption would become considerably more severe when

using more complicated neural networks.

Table IV: Memory Usages for Training High-Level Policies

Task Step Num. Policy Network Buffer

1 3
Universal ∼1.08M ∼1.72G
Separate ∼3.25M ∼5.16G

2 6
Universal ∼1.12M ∼2.42G
Separate ∼6.73M ∼14.52G

3 15
Universal ∼1.12M ∼2.42G
Separate ∼16.80M ∼36.30G

4 10
Universal ∼1.31M ∼2.60G
Separate ∼11.30M ∼26.00G

Fig. 10 and Table IV altogether suggest that training a single

universal policy without sacrificing its performance has clear

advantages in terms of better knowledge sharing and lower

memory consumption.

G. Additional task

This subsection examines the performance of our framework

on the additional block-stacking tasks. Specifically, we further

test our method on four additional tasks: the pyramid task, the

rotation task and two randomised block size (RBS) tasks as

shown by Table III.

For the pyramid task, results show that the low-level policy

achieved 0.6 average success rate and the high-level achieved

0.4. This is expected because each of the two final desired

outcomes of the additional task requires 7 consecutive steps

to finish, while those of the hardest basic task (the fourth in

Table II) only require 5.

For the rotation task, results show that the low-level policy

achieved 0.95 average success rate and the high-level achieved

0.8. The rotation task is the same as task 2 in Table II except

that the gripper has one more degree of freedom (DoF). This

extra DoF enlarges the search space of solution and thus

doubles the training time required for the agent to converge.

Finally, the results of the RBS tasks show that the trained

policies can achieved an average success rate of 0.66 in both

tasks in 30 testing episodes for each step.

This successful zero-shot generalisation is potentially due

to the use of block-gripper-informed-goal representation (see

section IV-D3). After training, the agent develops a connection

between its goals, observations and actions in a non-trivial

way, such that it is able to match the selected gripper width

(action) according to the block size (goals and observations).

We have also observed some failures when the blocks are

too small or too large (near the extremes of the sampling

interval [15cm, 35cm]. However, the zero-shot generalisation

performance is considered satisfactory and a fine-tuning pro-

cess can be conducted for a different size of blocks if higher

performance is demanded.

Overall, these results demonstrate that the UOF is able to

handle different types of tasks that can be more complicated

and that our method can achieve a satisfactory level of zero-

shot generalisation performance. Improving the performance

would require more efforts such as more complicated neural

networks, more informative representation of goals and fine-

tuning on tasks with different target objects.

13

VIII. CONCLUSIONS

In this paper, we propose a hierarchical reinforcement

learning framework, the Universal Option Framework (UOF),

to formalise multi-step manipulation tasks learning more uni-

versally. We then extend the Intro-Option Learning algorithm

to a deep learning and experience replay version for training

the high-level policy. We also propose the Auto-Adjusting

Exploration Strategy and Abstract Demonstrations to stabilise

and accelerate parallel training. The UOF is tested on a set

of block-stacking tasks with a 7-DOF Fetch robot in the Gym

simulation environment [32].

We empirically demonstrate that our method is able to learn

multiple combinatorial outcomes from multi-step manipulation

tasks with universal low- and high-level policies. Compared

to separate and repetitive training, our parallel training con-

siderably reduces the memory consumption and computational

costs.

Concretely, the parallel training is stabilised bottom-up

by the proposed auto-adjusting exploration strategy at the

low-level and accelerated top-down by an abstract form of

demonstrations that provides the correct orders of steps at the

high level.

There are two main limitations of the proposed method.

First, as an extended version of goal-conditioned reinforce-

ment learning, UOF requires a mechanism for goal generation

[4]. Such a requirement prevents our method from handling

tasks that cannot generate goals in advance. Another limitation

is that our method requires users to manually separate the

space of sub-goals in a way that each of the subsets relates to

a high-level goal (a task step).

Future research will try to address the two aforementioned

limitations. First, to improve the generalisability of the UOF,

it is essential to develop a more generalised goal generation

mechanism. For example, for cases where goals could only

be represented by images or in other complex forms, a goal

generation mechanism may be developed based on Generative

Neural Networks (GNNs). Regarding the second limitation, it

is valuable to develop a technique that can automatically define

a set of meaningful sub-goals, such that these sub-goals cor-

respond to some critical steps for the overall task. Besides, we

will also try to improve the degree of knowledge integration

of universal policies, either for planning or kinematic control,

by, e.g., learning from different types of reward functions.

APPENDIX A

ALGORITHM AND PARAMETER SETTINGS

This section elaborates the implementation details of the

training algorithm used in this work. Experimental programs,

including environments and algorithms, are based on Python.

Simulation environments are adapted from the Open AI Gym

environments [32]. Neural network implementation is based

on the PyTorch library [33]. The parallel training procedure is

summarised in the Algorithm 1 in supplementary material.

The goal-conditioned low-level policy of a universal option

is trained using the DDPG algorithm [11], while the goal-

conditioned high-level policy is trained using the DIOL pro-

posed in Section V-A. They both use a secondary critic to

reduce value estimation error [30], with the discount factor

γ = 0.98.

These components are represented by MLPs of the same

size (3× 256), activated by ReLU. The final layer of the low-

level actor network is activated by Hyperbolic Tangent (Tanh);

final layers of the low-level critics and option-value function

do not use activation functions.

The states and goals are concatenated as the inputs for the

policy and the option-value networks. Low-level actions, states

and goals are concatenated as the inputs of the critic networks

of the low-level policies. The states and goals are normalised

using a running average of the mean and variance.

The replay buffers for both levels have the same size of

1e6. The networks are optimised using Adam with the same

learning rate of 1e − 3 and batch size of 128. All networks

take 40 optimiser steps after each cycle. Estimated target

action values for updating low-level policies are clipped within

[−25, 0]; estimated target option values for updating high-level

policies are clipped within [−t, 0] where t is the maximal

training timesteps of an episode (see Table II). After each

optimiser step, corresponding target networks are updated

softly with τ = 0.1.

The AAES for the low-level policy uses constant upper-

bounds cα = 0.2 and cσ = 0.05. The copy of the performance

S−
n,e is updated with τs = 0.05. These three values are selected

according to comparative experiments, with resultant figures

given in section IV of the supplementary materials.

The high-level policy uses an episode-wise decaying-ǫ-

strategy modified from [31], with ǫ being decayed using the

following equation:

ǫi ← ǫ− + (ǫ+ − ǫ−) e
−i
ρ

where ǫ+ is the upper-bound, ǫ− is the lower-bound, e is the

natural exponential base, i is the total number of past episodes

and ρ is the decaying efficiency parameter. In all tasks, we

use ǫ+ = 1.0 and ǫ− = 0.02. For basic tasks 1 and 2, we set

ρ = 3e4; for basic task 3, ρ = 8e5; for basic task 4, ρ = 1e6;

for the additional task, ρ = 2e6;. Note that ǫ does not change

within an episode.

ACKNOWLEDGMENT

The authors thank the China Scholarship Council (CSC) for

financially supporting Xintong Yang in his PhD programme.

REFERENCES

[1] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J.

Schneider, I. Sutskever, P. Abbeel, and W. Zaremba,

“One-shot imitation learning”, in NIPS, 2017, pp. 1087–

1098.

[2] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba,

and P. Abbeel, “Overcoming exploration in reinforce-

ment learning with demonstrations”, in ICRA, 2018,

pp. 6292–6299.

[3] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Uni-

versal value function approximators”, in ICML, 2015,

pp. 1312–1320.

14

[4] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R.

Fong, P. Welinder, B. McGrew, J. Tobin, O. P. Abbeel,

and W. Zaremba, “Hindsight experience replay”, in

NIPS, 2017, pp. 5048–5058.

[5] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-

Maron, M. Vecerik, T. Lampe, Y. Tassa, T. Erez, and M.

Riedmiller, “Data-efficient deep reinforcement learning

for dexterous manipulation”, ArXiv:1704.03073, 2017.

[6] B. Piot, M. Geist, and O. Pietquin, “Bridging the gap

between imitation learning and inverse reinforcement

learning”, IEEE transactions on neural networks and

learning systems, vol. 28, no. 8, pp. 1814–1826, 2016.

[7] A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learn-

ing multi-level hierarchies with hindsight”, ICLR, 2019.

[8] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-

efficient hierarchical reinforcement learning”, in NIPS,

2018, pp. 3303–3313.

[9] Y. Jiang, S. Gu, K. P. Murphy, and C. Finn, “Language

as an abstraction for hierarchical deep reinforcement

learning”, in NIPS, 2019, pp. 9414–9426.

[10] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and

S. Levine, “Mcp: Learning composable hierarchical

control with multiplicative compositional policies”, in

NIPS, 2019, pp. 3681–3692.

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T.

Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous

control with deep reinforcement learning”, ICLR, 2016.

[12] R. S. Sutton, D. Precup, and S. P. Singh, “Intra-option

learning about temporally abstract actions.”, in ICML,

vol. 98, 1998, pp. 556–564.

[13] R. S. Sutton, D. Precup, and S. Singh, “Between mdps

and semi-mdps: A framework for temporal abstraction

in reinforcement learning”, Artificial intelligence, vol.

112, no. 1-2, pp. 181–211, 1999.

[14] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman,

“Meta learning shared hierarchies”, ICLR, 2018.

[15] A. C. Li, C. Florensa, I. Clavera, and P. Abbeel,

“Sub-policy adaptation for hierarchical reinforcement

learning”, ICML, 2019.

[16] N. Dilokthanakul, C. Kaplanis, N. Pawlowski, and M.

Shanahan, “Feature control as intrinsic motivation for

hierarchical reinforcement learning”, IEEE Transac-

tions on Neural Networks and Learning Systems, vol.

30, no. 11, pp. 3409–3418, 2019.

[17] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess,

M. Jaderberg, D. Silver, and K. Kavukcuoglu, “Feudal

networks for hierarchical reinforcement learning”, in

ICML, 2017, pp. 3540–3549.

[18] I. J. Sledge, M. S. Emigh, and J. C. Prı́ncipe, “Guided

policy exploration for markov decision processes using

an uncertainty-based value-of-information criterion”,

IEEE transactions on neural networks and learning

systems, vol. 29, no. 6, pp. 2080–2098, 2018.

[19] Z. Yang, K. Merrick, L. Jin, and H. A. Abbass, “Hi-

erarchical deep reinforcement learning for continuous

action control”, IEEE transactions on neural networks

and learning systems, vol. 29, no. 11, pp. 5174–5184,

2018.

[20] D. Foster and P. Dayan, “Structure in the space of value

functions”, Machine Learning, vol. 49, no. 2-3, pp. 325–

346, 2002.

[21] R. S. Sutton, J. Modayil, M. D. T. Degris, P. M. Pilarski,

and A. White, “Horde: A scalable real-time architecture

for learning knowledge from unsupervised sensorimotor

interaction”, in AAMAS, 2011.

[22] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J.

Degrave, T. Van de Wiele, V. Mnih, N. Heess, and J.

T. Springenberg, “Learning by playing-solving sparse

reward tasks from scratch”, ICML, 2018.

[23] A. Nair, S. Bahl, A. Khazatsky, V. Pong, G. Berseth,

and S. Levine, “Contextual imagined goals for self-

supervised robotic learning”, CoRL, 2019.

[24] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor,

W. Burgard, L. E. Kavraki, S. Thrun, and R. C. Arkin,

Principles of robot motion: Theory, algorithms, and

implementation. MIT press, 2005.

[25] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L.

E. Kavraki, “Incremental task and motion planning: A

constraint-based approach.”, in Robotics: Science and

systems, Ann Arbor, MI, USA, vol. 12, 2016, p. 00 052.

[26] S. J. Levine, “Monitoring the execution of temporal

plans for robotic systems”, PhD thesis, Massachusetts

Institute of Technology, 2012.

[27] M. Fox and D. Long, “Pddl2. 1: An extension to pddl

for expressing temporal planning domains”, Journal

of artificial intelligence research, vol. 20, pp. 61–124,

2003.

[28] M. P. Deisenroth, C. E. Rasmussen, and D. Fox,

“Learning to control a low-cost manipulator using data-

efficient reinforcement learning”, Robotics: Science and

Systems VII, pp. 57–64, 2011.

[29] R. S. Sutton and A. G. Barto, Reinforcement learning:

An introduction. MIT press, 2018.

[30] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing

function approximation error in actor-critic methods”,

ICML, 2018.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.

Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A.

K. Fidjeland, and G. Ostrovski, “Human-level control

through deep reinforcement learning”, Nature, vol. 518,

no. 7540, p. 529, 2015.

[32] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew,

B. Baker, G. Powell, J. Schneider, J. Tobin, M. Chociej,

and P. Welinder, “Multi-goal reinforcement learning:

Challenging robotics environments and request for re-

search”, ArXiv:1802.09464, 2018.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

et al., “Pytorch: An imperative style, high-performance

deep learning library”, in NIPS, 2019, pp. 8024–8035.

15

	Introduction
	Related work
	Preliminaries
	Standard Reinforcement Learning (RL)
	The Option Framework (OF)
	Goal-conditioned Reinforcement Learning (GRL)

	The Universal Option Framework
	Universal Option and High-level Policy
	Links between Low-level Control and High-level Planning
	Parallel Training Instability
	Task-specific Definitions for UOF
	States & initial state distribution
	Actions
	Low-level goals & reward function
	High-level goals & reward function

	Training Approach
	Deep Intra-Option Learning (DIOL)
	Auto-Adjusting Exploration Strategy (AAES)
	Abstract Demonstrations
	Hindsight Experience Replay (HER)

	Experiments Setup
	Task configurations
	Basic tasks
	Additional tasks

	Training Details

	Results
	Representations of Goals
	Low-level goals
	High-level goals

	Auto-adjusting Exploration Strategy (AAES)
	Parallel and separate training
	Abstract demonstrations
	Comparison with Hierarchical Actor Critic
	Learning Diverse Combinatorial Results
	Additional task

	Conclusions
	Appendix A: Algorithm and Parameter Settings

