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Abstract—The need for medical image encryption is increas-
ingly pronounced, for example to safeguard the privacy of the pa-
tients’ medical imaging data. In this paper, a novel deep learning-
based key generation network (DeepKeyGen) is proposed as a
stream cipher generator to generate the private key, which can
then be used for encrypting and decrypting of medical images.
In DeepKeyGen, the generative adversarial network (GAN) is
adopted as the learning network to generate the private key.
Furthermore, the transformation domain (that represents the
“style” of the private key to be generated) is designed to guide the
learning network to realize the private key generation process.
The goal of DeepKeyGen is to learn the mapping relationship of
how to transfer the initial image to the private key. We evaluate
DeepKeyGen using three datasets, namely: the Montgomery
County chest X-ray dataset, the Ultrasonic Brachial Plexus
dataset, and the BraTS18 dataset. The evaluation findings and
security analysis show that the proposed key generation network
can achieve a high-level security in generating the private key.

Index Terms—Key generator, deep learning, generative adver-
sarial network, image-to-image translation

I. INTRODUCTION

AS medical imaging becomes increasingly commonplace,
so does the use of medical images to inform diagnosing

and treatment plans, etc. For example, images from brain
magnetic resonance imaging (MRI) and computed tomography
(CT) of chest can be used to facilitate brain tumor detection
for lung diagnosis. However, these medical images contain
sensitive and private information about the patients, and their
leakage can have potential privacy implications for the pa-
tients and legal ramifications for the hospitals. Hence, there
has been efforts devote to designing security solutions (e.g.
cryptographic primitives) to secure these medical images and
protect the patients’ privacy.

Stream and block ciphers are two examples of popular
cipher systems used in medical image encryption algorithm.
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Fig. 1. An example application scenario of proposed DeepKeyGen.

Compared to block ciphers (e.g., Data Encryption Standard
(DES), International Data Encryption Algorithm (IDEA), and
Advanced Encryption Standard (AES)), stream ciphers gener-
ally have a high-level security, are faster in terms of encryption
and decryption speed, have small error expansion, achieve
better synchronization, and incur lower implementation cost
[1]–[3]. One challenge, however, is how to design a security
stream cipher generator to facilitate the process of generating
the randomized and unpredictable sequence. Common stream
cipher generators include linear feedback shift register [4],
nonlinear feedback shift register [5], finite automation [6],
linear congruence generators [7] and chaotic systems [8]. In
most existing approaches involving the use of private key
generators, the generators are manually designed (e.g., using
mathematical formulas) to generate the private key in a specific
“style” in order to achieve a certain security level. Then, the
generators are independently realized by repeated attempts
until the generated private key achieves or approaches the ex-
pected “style”. However, for each attempt, the implementation
process usually requires one to adjust the calculation model
manually and it is challenging for the generator to achieve the
best expected performance as designed. Moreover, the design-
ing and implementing processes are time-consuming work and
costly (e.g., human experts involvement). Therefore, instead
of manually designing and implementing the key generator,
this paper mainly focuses on how to realize the private key
generator in a learning manner. To be more specific, if we
know the desired “style” of the private key, a deep learning
network can be trained to learn how to generate the expected
private key from the “seed”. In other words, we posit the
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potential of using deep learning to automatically and securely
generate the private key.

Deep learning has been successfully utilized to a wide
variety of computer vision tasks [9]–[14], and generative
adversarial network (GAN) [29] is one of the most popular
deep learning algorithms. GAN consists of the generator
and the discriminator, where the generator is responsible for
generating samples and the discriminator learns to distinguish
between generated sample and sample from real data. The
generator and the discriminator compete with each other to
make the generated data as realistic as possible. GAN-based
methods are efficiently in image-to-image translation, where
images are transferred from one domain to another. This can
also be considered as a type of computer vision tasks, whose
goal is to learn the mapping relationship between two image
domains.

Therefore, we design a deep learning based key generation
network (DeepKeyGen) by fusing both stream cipher generator
and image-to-image translation. This concept is based on the
following two significant observations.

1) If we know the desired “style” of the private key, then
this particular style can be set as the transformation
domain. The image-to-image translation is able to build
the mapping relationship between two image domains
and transfer the images from the source domain to the
transformation domain (i.e., learn how to achieve the
required “style” of the private key). In this way, we
can regard the image-to-image translation as a process
of generating the private key, and the output image is
actually a private key that can be used to encrypt the
medical images.

2) Deep learning model has a large number of parameters,
complex network structure and random training process.
Hence, it can be an alternative method for stream cipher
generator.

In DeepGenKey, the GAN is employed as the learning
network. There are two domains in the generating process,
namely: source and transformation domains. The source do-
main can be any images that have the same distribution. The
initial image is from the source domain, which is adopted as
the “seed” to generate the private key. The transformation do-
main represents the “style” of the private key to be generated,
such as chaotic private key with a certain level of security.
During training, the generator transfers the images from the
source domain to the transformation domain, and the output of
generator is regarded as the private key. The discriminator is
used to distinguish between the key generated by the generator
and the data from the transformation domain. Due to the
randomness of the training process for deep learning, the
generated private keys differ even under the same training
conditions. In other words, the proposed DeepKeyGen can be
considered as a one-time pad. Moreover, DeepGenKey utilizes
unlabeled and unpaired images to train the learning network;
thus, overcoming data availability issue in training the GAN.

Fig.1 is an example of how DeepKeyGen can be applied
to encrypt/decrypt medical images in a healthcare setting. For
example, upon receiving the medical image from patients, the
private key is generated by the key generation server. Then, we

can use the encryption algorithm to encrypt the unencrypted
image (medical image) with the generated private key, and
thus obtain the corresponding ciphertext (encrypted medical
image). Subsequently, the ciphertext and the generated private
key are transferred via a secure channel and stored in the
Picture Archiving and Communication Systems (PACS) server.
When a medical doctor (or another authorized healthcare
worker) wishes to view the medical image, the encrypted
image and the corresponding private key are first retrieved
from the PACS server. The decryption algorithm is then used
to decrypt the encrypted image with the corresponding private
key, in order to obtain the unencrypted (original) image. The
unencrypted image is subsequently sent via a secure channel
to the medical doctor’s workstation and the medical doctor can
view the original medical image. We assume that the systems
run in an intranet environment and thus, the transmissions are
carried out via the secure channel.

We will now summarize the key contributions of this work
as follows:

1) Design a novel deep learning based private key genera-
tor, DeepKeyGen, to realize the key generation process
using deep learning in image-to-image transformation.
The private key generated by the proposed method has
a large key space and high randomness, and is also
sensitive to changes. To the best of our knowledge, the
proposed method is one of the earliest works to utilize
deep learning to realize private key generator in a learn-
ing approach. Moreover, instead of manually designing
and implementing the key generator, this work presents
a new research direction, and more specifically using
learning to automatically realize private key generator
with high security level.

2) Carry out extensive experiments using Montgomery
County’s chest X-ray dataset [15], the Ultrasonic
Brachial Plexus dataset [16], and the BraTS18 dataset
[17], [18] to evaluate the utility of DeepKeyGen. These
three datasets represent the most commonly used modal-
ities (X-Ray, Ultrasound and MRI) in clinical practice.
Findings from our evaluations demonstrate that the gen-
erated private key has the high-level security and ran-
domness. Moreover, the plaintext medical images with
multi-modality can be encrypted efficiently using the
generated private key, and the generality of the proposed
DeepKeyGen is also been demonstrated. In addition, we
show that DeepKeyGen is resilient to various known
attacks, even if the attacker knows the entire private key
generation process.

In the next section, we will introduce the related literature,
prior to presenting our proposed DeepKeyGen in the third
section. We then describe our security and performance eval-
uations in the next two sections, before concluding this paper
in the last section.

II. RELATED WORK

A. Existing Key Generation Algorithms

A number of key generation techniques have been pro-
posed in the literature. For example, Moosavi et al. [19]
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proposed a secure low-latency key generation method based
on ECG features. This method uses Fibonacci linear feedback
shift registers and AES algorithms as pseudo-random number
generators to achieve a high security level. Liu et al. [20]
proposed an authentication and dynamic encryption method
based on state estimation, which selects the metrics of the
power system to generate the key. As the value of power
measurement used to generate the key is constantly changing
and unpredictable, the key is challenging to guess. Kalsi et al.
[21] demonstrated the possibility of hiding data based on the
combination of DNA sequences and deep learning, where their
proposed key generation approach uses the natural selection
theory, Needleman-Wunsch algorithm, and genetic algorithm.

There have also been interest in exploring the utility of non-
linear systems, such as chaotic system (known to have prop-
erties such as sensitivity, unpredictability, pseudo-randomness,
ergodicity and certainty [22]–[24]), in key generation. For
example, Garcia-Bosque et al. [25] adopted a novel sensor-
based “seed” generator to generate a stream cipher key, by
combining a hybrid tilt tent graph and a linear feedback shift
register algorithm. The proposed method reportedly achieves
good security and efficiency. Zahmoul et al. [26] proposed a
new chaotic graph based on Beta functions to generate chaotic
sequences, which are different from commonly used ones. The
generated chaotic sequences are mainly used to shuffle the
image’s pixel positions and to conceal the relationship between
the encrypted original images. Arab et al. [27] introduced a
novel image encryption algorithm, by fusing chaotic sequence
and an improved AES algorithm. The private key is generated
from an Arnold chaotic sequence, and the plaintext image is
then encrypted using the improved AES algorithm and the
round keys generated by the chaotic system. It was shown
that the key space is sufficiently large to mitigate brute
force attacks. Lambić et al. [28] explained how one can
generate pseudo-random numbers using discrete-space chaotic
mapping, and showed that the generated private key achieves
key randomness and has an infinite key space. The proposed
approach can also reportedly generate the same number of
different pseudo-random sequences as other secure discrete
space chaos methods, while incurring minimal memory space.

These existing key generation algorithms require the gen-
erators to be manually designed, and the generator realizing
process is then repeated several times and the underlying math-
ematical formulas constantly refined to achieve or approach the
desired style. This is clearly time- and resource-expensive.

B. Deep Learning-based Image-to-Image Transformation

Deep learning is a recent research trend in a broad range
of applications (including image processing tasks, such as
image classification [9], [10], object detection [11], [12] and
image segmentation [13], [14]), since its multi-layer network
structure can be used to effectively express complex functions.
Generative adversarial network (GAN) [29] is a branch of
deep learning, and a GAN algorithm generally consists of the
generator and the discriminator. The generator is responsible
for capturing the distribution of the sample data, and the
discriminator is responsible for determining whether the input

is real data or a generated sample. Since the seminal work
of Goodfellow et al. [29] in 2004, many GAN-based methods
have been designed for different applications [30]–[32]. Lsola
et al. [33], for example, proposed a supervised image-to-image
translation structure Pix2Pix based on CGAN. The Pix2Pix
employs the real image as an additional input information to
the generator. Moreover, it adds the L1 loss as the penalty
term for the generator, in order to improve the generator to
generate more realistic results.

Inspired by the concept of cycle consistency, Zhu et al. [34]
proposed the CycleGAN model to solve the problem of special
training dataset for style transfer tasks. It can be trained by
adopting the unpaired and unlabeled data, so as to facilitate the
application of GAN in image-to-image transformation. Kim et
al. [35] proposed DiscoGAN to ensure that certain features
of the image are preserved when the image is transferred
to another domain. Inspired by the original dual learning
method of natural language processing, Yi et al. [36] proposed
the DualGAN model, which can be used to translate images
between two domains with different characteristics by using
unlabeled and unpaired data.

Although deep learning methods have been widely adopted
in the area of image-to-image transformation and other ap-
plication domain, only a few researchers have attempted to
employ deep learning algorithms in private key generation.
As discussed earlier, we will demonstrate that deep learning
can be used to automatically realize private key generation that
results in a private key with a high security level.

III. OUR PROPOSAL

A. Encryption and Decryption Architecture

Fig.2 presents an overview of the encryption and decryption
system based on DeepKeyGen. This encryption and decryption
system combines the stream cipher generated by DeepKeyGen
with a XOR algorithm. During encryption, the unencrypted
image (hereafter referred to as plaintext,andor denoted as pi)
is encrypted using the generated private key and the XOR
algorithm. As a result, we obtain the encrypted image (here-
after referred to as ciphertext, and denoted as ci). Decryption
is the reverse of encryption. The variable y represents the
transformation domain, which is used as the “ground truth”
in the discriminator network.

Fig. 2. DeepKeyGen-based encryption and decryption system.

B. DeepKeyGen

As shown in Fig.3, DeepKeyGen comprises a generator
G and a discriminator D. The generator network G is used



4

to generate private key from the initial image, which is
in the form of an image. The discriminator network D is
responsible to distinguish between the private key generated by
the generator and the real data from transformation domain. In
DeepKeyGen, both source and transformation domains facil-
itate key generation. Specifically, the source domain contains
the initial images, which are adopted as the “seed” to generate
the private key. The transformation domain contains the target
image, where the initial image wants to transfer. Furthermore,
the transformation domain represents the “style” of the private
key to be generated, such as a chaotic private key with high
security level. In addition, the loss function is usually adopted
to train the deep learning network and the total loss function
L used to train DeepKeyGen is described as follows:

L = LG + LD (1)

In the above equation, LG and LD respectively denote the loss
functions of generator network G and discriminator network
D.

1) Generator Network G: The generator network G is used
to transfer the initial image from source domain onto the
transformation domain. The output of the generator network G
is the private key which holds the same security characteristics
as the encrypted performance in the transformation domain.
The generator network G is composed of three downsample
layers, six residual blocks, two transposed convolutional layers
and an ordinary convolutional layer. The initial image is
firstly processed with three downsample layers. These layers
are aimed at extracting the features from the initial image.
Then there are six residual blocks with the same structure
[37] to construct the content and diverse features. Next, the
feature vectors pass through two transposed convolutional
layers where the goal is to revert them to the low-level
dimension. Finally, the low-level features are converted into
an image by a normal convolution. And the output image is
regarded as the generated private key for the DeepKeyGen.
For each convolutional layer, the instance normalization is
employed to implement the normalization operation on a
single image so as to improve the quality of the generated
image, while accelerating model convergence and preventing
gradient explosion. The loss function of the generator network
G is:

LG = min
G

(Ex∼pdata(x) log(1−D(G(x))) (2)

In the above equation, G denotes the generator network, D
represents the discriminator network, and x represents the
initial image (also known as the “seed”). The loss function LG

can be understood as the key generated by the generator “mis-
leading” the discriminator to the maximum extent. It means
that the generated key is getting close to the transformation
domain, and the discriminator believes that the generated key
comes from the transformation domain.

2) Discriminator Network D: The discriminator network
D is used to determine whether the generated image belongs
to the transformation domain. The discriminator network D
is composed of five convolutional layers. The input image

is sequentially handled by four convolutional layers to ex-
tract useful features. Then, the features are processed by the
last layer, and output a one-dimensional result. The latter
represents either real or fake, and facilitate discrimination.
Besides the first and last layers, instance normalization is also
used to implement normalization. The loss function of the
discriminator is as follows:

LD = max
D

(Ey∼pdata(y) log(D(y))+

Ex∼pdata(x) log(1−D(G(x))))
(3)

In the above equation, G represents the generator network, D
represents the discriminator network, x represents the initial
image (“seed”) from the source domain, and y represents the
data from the transformation domain. The loss function LD

can be understood as the maximization of the classification
accuracy of the discriminator.

In GAN, both LG and LD form the adversarial system.
When the two networks reach a balance, the accuracy of
the discriminator network D should be close to 50%. In
other words, the generated key is similar to that from the
transformation domain, and consequently the discriminator
network D is not able to distinguish between the two.

C. Image Private Key

The private key generated by DeepKeyGen is a type of
stream ciphers, and is also an image. For each image, it
consists of a sequence of pixels. These pixels not only contain
the information of pixel value, but also hold the spatial
information. Therefore, the private key can be defined as a
composite of image pixels, which is described as follows:

KEYdefinition = [V1, V2, ...Vi, ...Vn] (4)

In the above equation, Vi represents one pixel in the image.
It also represents one value in the key sequence. Each Vi is
composed of a quadruples and is defined as follows:

Vi = [pi, x, y, c] (5)

In the above equation, pi represents the pixel value, x is the
horizontal coordinate value, y is the vertical coordinate value,
and c is the the RGB color channel information. The value
ranges of pi, x and y are from 0 to 255, and the value range
of c is from 0 to 2. The private key differs from that of existing
stream ciphers, which is actually a four-dimensional key. The
key values (which contain the pixel value information and
the three-dimensional space position information) ensure the
private key is complex and the key space is sufficiently large;
thus, significantly enhancing the key’s security level.

D. Key Generation Process

The key generation process is actually a network training
process for learning the mapping relationship from the source
domain to the transformation domain. Before the training, the
parameters of each convolutional layer in DeepKeyGen are
randomly initialized as follows:
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Fig. 3. Proposed DeepKeyGen architecture. The proposed DeepKeyGen is a deep learning network, which consists of a generator and a discriminator to
generate the private key. The input of the generator network is the “seed” images obtained from the source domain. The y represents the target image obtained
from the transformation domain, which indicates the “style” of private key to be generated. The discriminator network is used to determine whether the
generated key belongs to the transformation domain.

Wn = random [wn,1, wn,2, ..., wn,i] (6)

In the above equation, wn,i represents the ith parameter of
the nth convolution layer of the DeepKeyGen. All parameters
of DeepKeyGen W are composed of the parameters from all
convolutional layers, which are defined as follows:

W = consist [W1,W2, ...,Wn] (7)

The proposed DeepKeyGen comprises a generator and a
discriminator, where the generator is used to generate the
private key and can be expressed as follows:

KEY = G(W ;x) (8)

In the above equation, G() represents the convolutional neural
network of the generator, W indicates all parameters in the
network, and x denotes the initial image.

At the beginning of training, the input image is converted
into feature vectors through the convolutional network, which
is a forward propagation process. The forward propagation
process generates the original private key, and the generated
key is used to calculate the total loss L to measure the
difference between the currently generated private key and the
target one in the transformation domain. In addition, the back
propagation algorithm is used to transfer the total loss back
to the convolutional layers. The gradient descent method is
adopted to implement the back propagation to further update
the parameters in each layer to attain better performance,
which can be described as:

W j
n,i =W j−1

n,i − α·∇J(W
j
n) (9)

In the above equation, W j
n,i represents the values of the

parameters wn,i in the J th training round, α represents the
learning rate, and ∇J(W j

n) represents the gradient of the loss
which is passed back to the nth convolutional layer in the jth
training round. The Gradient descent method has the capability

to further update the parameters of the network to better
learn the mapping relationship. The generator network G and
discriminator network D are trained in an alternative manner.
When reaching the setting number of the training epoch or
the loss becomes stabilized, the key is generated as same as
the target one in transformation domain. The proposed key
generation process is visually shown in Fig.4 and described in
Alg. 1.

Algorithm 1 Key Generation Process.
Initialization: Randomly initialize the parameters W of the Deep-

KeyGen, Wn = random [wn,1, wn,2, ..., wn,i]. Define the di-
mension of KEY as 256× 256× 3.

1: while Epoch<Epochtarget do
2: x = Convert(IMAGEsourcedomain); y = Convert

(IMAGEtransformationdomain) // Convert training images
into 256× 256× 3 matrices.

3: KEY = G(x) // Forward propagation of generator net-
work G. At the last layer of G, the KEY is generated.

4: Result = D(y) // Forward propagation of discriminator
network D. Output the judgment result whether the input is from
transformation domain.

5: L = LG + LD // Calculate the total loss L.
6: Backward(L) // Backward propagation.
7: W j

n,i =W j−1
n,i −α·∇J(W

j
n) // Calculate the gradient that

pass back to each layer, and then update the network parameters.
8: end while

Output: KEY is generated, which is close to the transformation
domain.

E. Imitation Learning Attack Models

In the proposed DeepKeyGen, the structure of the network
and the transformation domain are the most important factors
in implementing the private key generation. If the structure
of the network and the transformation domain are leaked,
the attacker may design a similar deep learning network to
crack the ciphertext image encrypted by the key generated by
the DeepKeyGen. Such an attack is referred to as the “imi-
tation learning attack”, and the models learned by imitation
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Fig. 4. Proposed DeepKeyGen’s four-step key generation process. Step 1:
Constructs the DeepKeyGen network with a generator network (top) and
a discriminator network (bottom left). In addition, it randomly initializes
the network’s parameters. Step 2: Trains the generator with the forward
propagation, and generates the original private key based on the “seed” image.
Step 3: Trains the discriminator to determine whether the generated key
belongs to the transformation domain. We remark that both steps 2 and 3
are simultaneously processed. Step 4: The backward propagation is carried
out to update the parameters of both generator and discriminator networks,
until it achieves the best generation performance.

are known as the “attack models”. There are three possible
scenarios for imitation learning attack, namely: transformation
domain leakage, network structure leakage, and transformation
domain and network structure leakage (see Sections III-E1 to
III-E3.

1) Transformation Domain Leakage: This type of leakage
assumes that the attacker only knows the transformation do-
main and adopts the known domain to train the attacking net-
work with different network structures (because the network
structure is still in privacy mode) so as to generate attack-
ing private keys to crack ciphertext image. In this scenario,
there are two key generator networks with different network
structures, key generation network A and key generation

network B. The generation network B is regarded as the attack
model. Both networks are trained with the same transformation
domain. If the private key generated by the network B can
be used to decrypt the ciphertext image encrypted with the
private key from network A, it means that the attacker cracks
the private key through imitation learning.

2) Network Structure Leakage: This attacking scenario
assumes that only the network structure of the DeepKeyGen is
exposed, and the transformation domain is still in privacy. The
attacker adopts different transformation domains to train the
network with the same network structure. If the key generated
by the attack model can decrypt the ciphertext image, it can
be said that the attacker successfully cracks the key.

3) Transformation Domain and Network Structure Leakage:
This is the worst scenario, where both the transformation
domain and the network structure are leaked. The attacker
adopts the same transformation domain and network structure
to train the key generation network. If you want to resist this
attack, the key generated by the network should be different
for each time. It means that the proposed method is asked to
perform like a one-time pad method.

IV. SECURITY ANALYSIS

In this paper, the bit-wise XOR algorithm is adopted as
an encryption and decryption algorithm for evaluating the
proposed DeepKeyGen. We will show that the proposed key
generation method can achieve high security level in medical
images, even with a simple encryption algorithm (e.g., XOR
algorithm). In our evaluations, the source domain uses the
images from Montgomery County’s chest X-ray dataset, and
the transformation domain will be the images encrypted using
the traditional chaotic system. The chest image from Mont-
gomery County’s chest X-ray dataset is adopted as the “seed”
to generate the private key. There are 138 images in the source
domain and the transformation domain. One can observe that
the proposed method only requires a small number of images
during the training process.

The network structures are shown in Tables I and II. During
training, the resolution of the input image is 256×256. All the
weight parameters of the network are randomly initialized, and
the batch size is set to 1. The Adam optimizer is adopted to
optimize the loss function. The initial value of the learning rate
is 0.0002. The exponential decay rate of the first-order moment
estimation is 0.5, and the second-order moment estimation is
0.999. The training epoch is set to 20000 to achieve a better
performance.

We use three datasets in the evaluation (i.e., Montgomery
County’s chest X-ray dataset [15], the Ultrasonic Brachial
Plexus dataset [16], and the BraTS18 dataset [17], [18]), as
they represent three different anatomical parts. The images
from these three datasets are also collected from three different
medical imaging devices, which are the most commonly used
in clinical practice. All experiments run on Nvidia GTX
2080Ti.

A. Key Security Analysis
1) Key Space: The key space size dictates the resiliency to

exhaustive attacks. In the proposed DeepKeyGen, the gener-
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TABLE I
THE DETAILS OF GENERATOR NETWORK G.

Convolution Layer Number Size Input Channels Output Channels Parameters Total Parameters
Down Convolution1 1 7*7 3 16 2352 2352
Down Convolution2 1 3*3 16 32 4608 6960
Down Convolution3 1 3*3 32 64 18432 25392

Residual block 6 3*3 64 64 221184 246576
Up Convolution1 1 3*3 64 32 18432 265008
Up Convolution2 1 3*3 32 16 4608 269616
Up Convolution3 1 7*7 16 3 2352 198240

TABLE II
THE DETAILS OF DISCRIMINATOR NETWORK D.

Convolution Layer Number Size Input Channels Output Channels Parameters Total Parameters
State1 1 4*4 3 16 768 768
State2 1 4*4 16 32 8192 8960
State3 1 4*4 32 64 32768 41728
State4 1 4*4 64 128 131072 172800
State5 1 4*4+1 128 128 278528 451328

ated private key is in the form of an image. The dimension
of the image is 256 × 256 × 3, and the value of each pixel
is from 0 to 255. Therefore, the key space of the generated
key is (28)196608. Consequently, this significantly raises the
challenge of attackers to correctly guess the private key and
the key space is sufficiently large to resist exhaustive attacks.

2) One-Time Pad: As the training process of the deep
learning network is extremely random, the generated private
key will differ for every training and has high randomness. In
other words, even if the network structure, the source domain,
the transformation domain and all settings remain constant /
unchanged, DeepKeyGen will not be able to generate the same
private key after being trained at different times.

In our evaluation, the DeepKeyGen is trained four times
respectively with the same training settings, and four Deep-
KeyGens with different weights of network are obtained. Then,
the same image (“seed”) is used as the input for these four
DeepKeyGens to generate four private keys. As observed from
the content, color and contour of the images in Fig.5, these
four private keys differ visually. In other words, the proposed
DeepKeyGen can be considered as a type of one-time pad.

Fig. 5. Visualization of the generated private keys, where the proposed
DeepKeyGen is trained four times respectively under the same experimental
conditions to generate these four private keys.

3) Information Entropy: Information entropy is used to
indicate the degree of uncertainty for a system, and to evaluate
the randomness of the private key. The information entropy is
defined as:

H(m) =

2n−1∑
i=0

p(mi)log2
1

p(mi)
(10)

In the above equation, p(mi) represents the probability of
symbol m. The maximum value of entropy is 8 for the
grayscale images. Table III shows the entropy of eight private
keys. It can be seen that the entropy of the private key is
mostly around 7.98, which indicates that the generated private
key has high randomness (i.e., this implies the security of the
private keys).

TABLE III
INFORMATION ENTROPY OF KEYS.

KEY ID 1 2 3 4 5 6 7 8
Entropy 7.9807 7.9801 7.9808 7.9806 7.9790 7.9782 7.9791 7.9803

4) Histogram Analysis: Histogram shows the distribution
of the pixel gray values of an image. As the key generated
by DeepKeyGen is in the form of the image, the histogram is
used to evaluate the distribution of pi for the private key. The
horizontal axis of the histogram represents the value of pi and
the range is from 0 to 255. The vertical axis of the histogram
represents the frequency of each pixel value. The sum of the
frequency for all pixel values is equal to one.

The histogram of one key is shown in Fig.6. It can be seen
that the histogram of the private key is relatively uniform.
It means that the distribution of the pi is uniform and the
frequency of the pi is close. This implies that the generated
private key has high randomness and can resist statistical
attacks.

5) Sensitivity Analysis: A stream cipher generator with high
security is sensitive to the “seed”. For DeepKeyGen, the initial
image is the “seed” adopted to generate the private key. In the
evaluation, one-pixel value of the initial image is randomly
changed. Next, the two images before and after changing
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Fig. 6. Histograms of the keys generated by DeepKeyGen.

one-pixel value are used as inputs into the DeepKeyGen to
generate two private keys. Then, the differences between two
private keys are calculated using these two metrics, in order
to evaluate the sensitivity to the “seed”.

Two metrics, the Number of Pixel Change Rate (NPCR) and
the Unified Average Changing Intensity (UACI) are adopted
to evaluate the differences between the private keys. NPCR
denotes the pixel change rate, which is used to indicate the
ratio of different pixel values at the same location of two
images. The definition of NPCR is as follows:

NPCR =

∑W
i=0

∑H
j=0D(i, j)

W ×H
× 100% (11)

UACI denotes the intensity of normalized average change,
which is used to indicate the average changed density of two
images. The definition of UACI is as follows:

UACI =

W∑
i=1

H∑
j=1

|T1(i, j)− T2(i, j)|

255×W ×H
× 100% (12)

In the above equation, W and H are the width and the height
of the image respectively. T(i, j) represents the pixel value in
the position (i, j) of the image. If T1(i, j) = T2(i, j), then
D(i, j) = 1. Otherwise (i.e., T1(i, j) 6= T2(i, j)), D(i, j) = 0.

As shown in Table IV, the results indicate that a small
change to the initial image (only change one-pixel value)
can result in over 99.5% differences between two generated
private keys and the average changes in intensity is more
than 20%. This shows that the private key generated by the
proposed DeepKeyGen is sensitive to the “seed”; thus, the
generated private key achieves both pseudo-randomness and
uncertainty.

B. Ciphertext Security Analysis

1) Information Entropy Analysis: If the encrypted image
has sufficient randomness, then its information entropy should
be very close to 8. Tables V, VI and VII present the before
and after encryption information entropy of eight medical
plaintext images for the X-ray dataset, ultrasonic brachial
plexus dataset and BraTS18 dataset, respectively. It can be
found that the average information entropy of the original chest
images, brachial plexus image and the brain image is 7.7360,
7.3878 and 5.8041 respectively. While the average information
entropy of the corresponding ciphertext images is respectively
7.9986, 7.9969 and 7.9939, the information entropy of the
ciphertext images has significantly improved in comparison
to the plaintext images. Furthermore, the information entropy
of these encrypted image is very close to the theoretical
optimal value of 8. This implies that the ciphertext image

has high randomness, where the private key generated using
DeepKeyGen is used to encrypt the medical image, and the
statistical information of the original image is successfully
protected from statistical attacks.

TABLE IV
NPCR AND UACI CALCULATED BY TWO PRIVATE KEYS.

KEYS ID 1 2 3 4 5 6 7 8
NPCR(%) 99.56 99.58 99.58 99.56 99.57 99.59 99.63 99.59
UACI(%) 20.87 21.45 20.31 23.20 21.84 20.36 20.97 22.67

TABLE V
INFORMATION ENTROPY ANALYSIS ON MONTGOMERY COUNTY CHEST

X-RAY DATASET.

IMAGE ID 1 2 3 4 5 6 7 8
Plain Image 7.7756 7.5715 7.7604 7.7585 7.7841 7.8343 7.7558 7.6479

Cipher Image 7.9985 7.9987 7.9987 7.9986 7.9986 7.9986 7.9986 7.9988

TABLE VI
INFORMATION ENTROPY ANALYSIS ON ULTRASONIC BRACHIAL PLEXUS

DATASET.

IMAGE ID 1 2 3 4 5 6 7 8
Plain Image 7.5874 7.3432 7.3946 7.3469 7.4049 7.4207 7.1624 7.4423

Cipher Image 7.9974 7.9973 7.9970 7.9969 7.9965 7.9970 7.9963 7.9970

TABLE VII
INFORMATION ENTROPY ANALYSIS ON BRATS18 DATASET.

IMAGE ID 1 2 3 4 5 6 7 8
Plain Image 5.9737 6.0054 5.8111 5.2625 6.3590 5.8324 5.9459 5.2428

Cipher Image 7.9942 7.9948 7.9929 7.9934 7.9957 7.9935 7.9934 7.9931

2) Histogram Analysis: The histogram of the plaintext
image is usually relatively concentrated. If these statistics pat-
terns can’t be eliminated through the encryption process, the
attacker has the ability to crack the original image information
by using the statistical attacks.

If the encrypted image is with a uniform histogram distribu-
tion, it means that the statistics of the plaintext are eliminated,
which is conducive to mitigate the statistical analysis. On the
contrary, if the histogram of the encrypted image still keeps
patterns to follow, the security of the encrypted image is not
enough to effectively resist statistical attacks.

In Fig.7 (a), (b) and (c), the original medical images, the
histogram of plaintext images, the corresponding ciphertext
images and the histograms of ciphertext image are presented
from the left to right on Montgomery County chest X-
ray dataset, Ultrasonic Brachial Plexus dataset and BraTS18
dataset respectively. It can be seen that the pixel value distri-
butions of the ciphertext images are relatively uniform, which
are totally different from the histogram of plaintext images.
These distributions are very close to the histogram distribu-
tion of white noise, which means the encrypted image can
successfully protect the statistical information of the plaintext
images. Moreover, it can be proved that the generated private
key can facilitate the encryption process for medical image
and encrypt the medical image in a random way. Accordingly,
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it becomes very difficult for the attackers to acquire useful
information from these encrypted images by employing the
statistical attacks.

(a)

(b)

(c)

Fig. 7. Histogram analysis of plaintext images and corresponding ciphertext
images on (a) Montgomery County chest X-ray dataset, (b) Ultrasonic
Brachial Plexus dataset and (c) BraTS18 dataset respectively. On each line,
from left to right are the plaintext image, the histogram of plaintext image,
the corresponding ciphertext image and the histogram of ciphertext image
respectively.

3) Similarity Analysis: If the encryption method is with
high security, the similarity between the images before and
after encryption is quite low. Two metrics mean square error
(MSE) and structural similarity (SSIM) are adopted to evaluate
the similarity between plaintext and ciphertext images in this
experiment. The MSE is defined as:

MSE=
1

H ×W × C

M∑
i=1

N∑
j=1

C∑
k=1

(a(i, j, k)− b(i, j, k))2

(13)
where H × W is the size of the image, C is the RGB
channel of the image, a is the plaintext image and b is the
ciphertext image. The larger value of the MSE represents the
low similarity between two images. While the SSIM is defined
as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(14)

where x and y are two images, µx is the mean value of
x, µy is the mean value of y, σ2

x is the variance of x, σ2
y

is the variance of y, σxy is the covariance of x and y, and
c1 and c2 are the constant used to maintain stability. The
larger value of SSIM indicates a great similarity between two
images, where the value range is from 0 to 1. The experimental
results are shown in Table VIII, IX and X on three different
datasets respectively. The average MSE between the plaintext
and ciphertext images on the x-ray dataset, ultrasonic brachial
plexus dataset and BraTS18 dataset is 10577.68, 11946.85 and

9741.57 respectively. While the SSIM is 0.0020, 0.0047 and
0.0021 respectively. It can be found that the value of MSE
between the plaintext and ciphertext images are very large,
while the values of SSIM are close to 0. It indicates that
there is a lower similarity between the plaintext and ciphertext
images and the proposed method achieves a better encryption
performance.

TABLE VIII
EVALUATION OF MSE AND SSIM ON MONTGOMERY COUNTY CHEST

X-RAY DATASET.

IMAGE ID 1 2 3 4 5 6 7 8
MSE 11017.56 10032.44 10224.44 10295.42 10432.93 10770.87 10391.61 10139.78
SSIM 0.0018 0.0017 0.0024 0.0019 0.0031 0.0023 0.0012 0.0019

TABLE IX
EVALUATION OF MSE AND SSIM ON ULTRASONIC BRACHIAL PLEXUS

DATASET.

IMAGE ID 1 2 3 4 5 6 7 8
MSE 11720.98 10744.93 11968.21 11933.00 12628.54 11491.53 11135.18 13072.60
SSIM 0.0061 0.0072 0.0040 0.0056 0.0047 0.0049 0.0026 0.0049

TABLE X
EVALUATION OF MSE AND SSIM ON BRATS18 DATASET.

IMAGE ID 1 2 3 4 5 6 7 8
MSE 10176.00 10694.46 10300.70 9455.74 10715.22 9287.06 9052.20 8701.21
SSIM 0.0017 0.0027 0.0024 0.0004 0.0005 0.0019 0.0022 0.0014

4) Correlation Analysis: In general, there is a strong cor-
relation between adjacent pixels in a plaintext image, so that
the pixel values of the image hold certain regular patterns in
the horizontal, vertical and diagonal directions. If the attacker
observes these patterns and makes use of the correlation to
attack, the security of the image becomes vulnerable. It’s
necessary to reduce the correlation between adjacent pixels
in the ciphertext image as much as possible to protect the
original medical image. Furthermore, in order to prove the
effectiveness of the proposed key generation method, the
correlation between adjacent pixels in the ciphertext image
should be kept in a low level.

Assuming that xi and yi are the grayscale values of two
adjacent pixels, the correlation value between the two adjacent
pixels is:

rxy =
cov(x, y)√
D(x)

√
D(y)

(15)

where

cov(x, y) =
1

N

N∑
i=1

((xi − E(x))(yi − E(y))) (16)

E(x) =
1

N

N∑
i=1

xi, D(x) =
1

N

N∑
i=1

(xi − E(x))2 (17)

For calculating the correlation of the plaintext images and
ciphertext images respectively, 256 adjacent pixel points in the
horizontal, vertical and diagonal directions of the image are
chosen. As shown in Table XI, XII and XIII, the symbol ∗
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in the table indicates the correlation in the encrypted images.
It can be concluded that, for the plaintext images, there is
a certain correlation between adjacent pixels. For the images
encrypted by the proposed private key, the correlation values
between adjacent pixels are almost to zero. It means that
the image encrypted by the proposed DeepKeyGen greatly
decreases the correlation of pixels in the adjacent pixels of
the same position in the corresponding plaintext image. It
can effectively resist the attacks by making use of strong
correlation. Accordingly, the private key generated by the
DeepKeyGen can be regarded as an effective stream cipher
to encrypt the medical images.

TABLE XI
CORRELATION OF PLAINTEXT IMAGES AND CORRESPONDING CIPHERTEXT

IMAGES RESPECTIVELY IN HORIZONTAL, VERTICAL AND DIAGONAL
DIRECTIONS ON MONTGOMERY COUNTY CHEST X-RAY DATASET.

IMAGE ID 1 2 3 4
Horizontal 0.9636 0.9054 0.9421 0.9093

Horizontal* 0.0383 0.0280 0.0511 0.0395
Vertical 0.7077 0.9927 0.7917 0.8387
Vertical* 0.2259 0.1344 0.1785 0.1637
Diagonal 0.8477 0.8105 0.6266 0.8407
Diagonal* 0.1158 0.0380 0.0453 0.1242

TABLE XII
CORRELATION OF PLAINTEXT IMAGES AND CORRESPONDING

CIPHERTEXT IMAGES RESPECTIVELY IN HORIZONTAL, VERTICAL AND
DIAGONAL DIRECTIONS ON ULTRASONIC BRACHIAL PLEXUS DATASET.

IMAGE ID 1 2 3 4
Horizontal 0.6641 0.8376 0.3959 0.2172

Horizontal* 0.0627 0.0040 0.0974 0.0396
Vertical 0.8257 0.7377 0.7285 0.6056
Vertical* 0.2557 0.2938 0.2666 0.2612
Diagonal 0.3933 0.3503 0.6661 0.5839
Diagonal* 0.0203 0.1816 0.0399 0.0005

TABLE XIII
CORRELATION OF PLAINTEXT IMAGES AND CORRESPONDING

CIPHERTEXT IMAGES RESPECTIVELY IN HORIZONTAL, VERTICAL AND
DIAGONAL DIRECTIONS ON BRATS18 DATASET.

IMAGE ID 1 2 3 4
Horizontal 0.8877 0.7038 0.9387 0.8970

Horizontal* 0.0357 0.0724 0.1600 0.0600
Vertical 0.8456 0.4053 0.2657 0.5725
Vertical* 0.2319 0.2626 0.1966 0.2510
Diagonal 0.8185 0.7037 0.7756 0.8063
Diagonal* 0.1059 0.1120 0.1130 0.0716

C. Traditional Attack Models

1) Ciphertext Only Attack: In such attacks, the attacker
only knows the ciphertext image. However, the key space of
the generated private key is (28)196608. In other words, it is
challenging for the attacker to correctly guess the generated
key and decrypt the image. In addition, the proposed key gen-
eration method achieves high randomness and has a complex
generation process. Therefore, it is challenging to correctly
guess the private key through ciphertext only attacks.

2) Known-plaintext Attack: In a known-plaintext attack,
the attacker can obtain a part of the plaintext and the cor-
responding ciphertext (e.g., intercepting the first part of the
information, and obtain the encryption method to facilitate the
process of cracking the rest of the corresponding ciphertext).
As shown in Tables VIII to X, the similarity between the
ciphertext and the plaintext is low across these three datasets.
This implies that the attacker is not able to infer the complete
plaintext due to the very low smilarity because the plaintext
and the corresponding ciphertext. In addition, the information
entropy of the ciphertext is relatively high, as shown in Tables
V to VII, which also greatly increases the difficulty of the
attack. Moreover, Tables XI to XIII show that the correlation
in the ciphertext is very low. Consequently, the attacker is
not able to infer the complete plaintext based on a contextual
analysis of the ciphertext. In other words, DeepKeyGen resists
known-plaintext attacks.

3) Chosen-plaintext Attack / Differential Attack: In a
chosen-plaintext attack, the attacker can observe the change of
the ciphertext image by making small changes on the plaintext
image, and to indicate the patterns between both plaintext and
ciphertext images. Moreover, the differential attack is regarded
as a kind of chosen plaintext attack. Recall that DeepKeyGen
is designed to generate secure private keys, and the existing
XOR algorithm is employed to encrypt/decrypt medical im-
age(s) with the generated private key. Therefore, the chosen
plaintext attack is implemented on the private key instead
of the plaintext image. To be more specific, our evaluation
uses only one-pixel value change on one seed image, and
two different private keys are generated using DeepKeyGen.
Then, based on one plaintext image, two ciphertext images
can be obtained by adopting the XOR algorithm with these
two private keys. We use both NPCR and UACI metrics to
evaluate the performance.

In the evaluation, a total of eight plaintext images (eight
cases) are used. As shown in Table XIV, the average NPCR
value between two ciphertext images is 99.59% while the
average UACI value is 23.19%. This implies that even if
only one value is changed, there is a major change for the
final ciphertext image. Consequently, it would be challenging
for an attacker to find the pattern(s) between both plaintext
and ciphertext images. In other words, DeepKeyGen resists
chosen-plaintext and differential attacks.

TABLE XIV
NPCR AND UACI VALUES FOR TWO CIPHERTEXT IMAGES.

IMAGE ID 1 2 3 4 5 6 7 8
NPCR(%) 99.63 99.61 99.59 99.60 99.59 99.56 99.58 99.61
UACI(%) 23.01 24.37 22.90 22.51 23.24 23.12 23.46 22.97

4) Chosen-ciphertext Attack: In a chosen-ciphertext attack,
the attacker can access the decryption device to construct the
plaintext corresponding to any ciphertext. Since we focus only
on the key generation rather than the encryption/decryption al-
gorithms, here we will show how the private key resist chosen-
ciphertext attacks. We assume that the attacker knows the
ciphertext image, “seed”, and the XOR decryption algorithm,
and the attacker seeks to construct the same plaintext image.
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Recall that DeepKeyGen uses two “seeds” that are only one-
pixel value different to generate two separate private keys.
Then, based on the XOR decryption algorithm, two plaintext
images can be obtained using these two private keys to decrypt
one ciphertext image. Furthermore, the NPCR and UACI
metrics are adopted to evaluate the difference(s) between two
plaintext images. Similar to Section IV-C3, a total of eight
plaintext images (eight cases) are used in the evaluation. As
shown in Table XV, the average NPCR value between two
plaintext images is 99.59% while the average UACI value is
23.66%. This implies that the proposed method resists chosen-
ciphertext attacks.

TABLE XV
NPCR AND UACI VALUES FOR TWO PLAINTEXT IMAGES.

IMAGE ID 1 2 3 4 5 6 7 8
NPCR(%) 99.71 99.57 99.49 99.55 99.64 99.50 99.68 99.61
UACI(%) 23.90 24.12 23.57 22.95 24.24 22.60 24.07 23.84

D. Security Against Imitation Learning Attackers

We will evaluate whether the attacker can use imitation
learning attacks (see Section III-E) to generate an appropriate
key that can decrypt the target ciphertext image.

1) Transformation Domain Leakage: For the transforma-
tion domain leakage, four different network structures, say
network A, network B, network C and network D, are designed
as the attacking model. The network structure of these four
networks is shown in Table XVI. With the exception of the
network structure, the transformation domain and all other
experimental settings are kept the same to train DeepKeyGen.

TABLE XVI
STRUCTURE OF FOUR NETWORKS, I.E., NETWORKS A TO D.

Convolution Layer Net.A Net.B Net.C Net.D
Down Convolution1 1 1 1 1
Down Convolution2 1 1 1 1
Down Convolution3 1 1 1 1

Residual block 3 6 9 12
Up Convolution1 1 1 1 1
Up Convolution2 1 1 1 1
Up Convolution3 1 1 1 1

The original plaintext image is encrypted by using a key
generated by the trained network A. The ciphertext image is
then decrypted by using the keys generated by network A,
network B, network C and network D (key A, key B, key C
and key D) respectively to obtain the restored original images.
As shown in Fig.8, it can be found that the original image
(Fig.8 (a)) encrypted by key A (Fig.8 (b)) can only be correctly
decrypted by key A. The images decrypted by key B, key
C and key D cannot be visually recognized, and the results
are shown in Fig.8 (d), Fig.8 (e) and Fig.8 (f) respectively.
The experiment shows that when the attacker only knows the
transformation domain, it is impossible to generate the same
private key and decrypt the ciphertext image by constructing
an attack model.

(a) (b) (c) (d) (e) (f)

Fig. 8. Attack model analysis of transformation domain leakage. (a) Plaintext
image. (b) Ciphertext image encrypted using key A. (c) Plaintext image
decrypted using key A. (d) Plaintext image decrypted using key B. (e)
Plaintext image decrypted using key C. (f) Plaintext image decrypted using
key D.

2) Network Structure Leakage: As shown in Fig.9 (a) and
Fig.9 (b), two different transformation domains, transforma-
tion domain A and transformation domain B, are adopted to
train the DeepKeyGen with the same network structure, while
other experimental settings are kept the same. And the private
key A and private key B are obtained respectively.

In Fig.9, the Fig.9 (c) is the original image and Fig.9 (d)
represents the image encrypted by key A. The Fig.9 (e) and
Fig.9 (f) are the decrypted images by using the key A and
key B respectively. Seen from the experimental results, the
key B cannot decrypt the image encrypted by the key A. It
can be proved that the generated private keys trained with
different transformation domains cannot mutually decrypt the
corresponding ciphertext images. It means even if the attacker
knows the network structure, it cannot obtain the private
key and decrypt the corresponding ciphertext image without
knowing the transformation domain.

(a) (b) (c) (d) (e) (f)

Fig. 9. Attack model analysis of network structure leakage. (a) Transformation
domain A. (b) Transformation domain B. c plaintext image. (d) Ciphertext
image encrypted using key A. (e) Plaintext image decrypted using key A. (f)
Plaintext image decrypted using key B.

3) Transformation Domain and Network Structure Leakage:
In this scenario, four DeepKeyGens with the same network
structure and the same transformation domain are trained to
obtain network A, network B, network C and network D
respectively. And they also generate the private key A, private
key B, private key C and private key D respectively. The
experiment evaluates the encryption performance and mutual
decryption performance by adopting these four keys on the
one same plaintext medical image.

As shown in Fig.10, the first line is four decrypted images
which use four keys to decrypt the images encrypted by private
key A, and the rest lines can be deduced by analogy. It can be
clearly seen that one key cannot be used to decrypt the images
encrypted with other keys. The results of the experiment
demonstrate that even if the attacker knows the network
structure and transformation domain, it’s impossible to obtain
the same key generation network, and is unable to generate
the same private key to crack the ciphertext image. This
experiment can be regarded as a supplementary experiment of
one-time pad analysis in Section IV-A2. Furthermore, it can
be proven that the proposed key generation network is one
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type of one-time pad method and can resist the attack model
even with the leakage of both the transformation domain and
network architecture.

Overall, even if one or both of the transformation domain
and network structure of the DeepKeyGen are leaked, the
attacker cannot train the same key generation network to gen-
erate the same private key. The DeepKeyGen can be regarded
as one type of one-time pad method, which guarantees the
security of the ciphertext image.

Fig. 10. The mutual decryption performance of four keys generated under
the same experimental conditions.

E. Comparison with Existing Key Generation Algorithms

In this section, some existing key generation algorithms
are adopted to compare with the proposed DeepKeyGen
algorithm. These algorithms include chaotic system, linear
congruential generator (LCG), mersenne twister, rivest cipher
4 (RC4) and RSA algorithm. In order to evaluate the secu-
rity of generated private key, the experiments are evaluated
from the key space, information entropy and the randomness,
respectively.

For the key space, we mainly compare the two widely
used encryption algorithms, RC4 and RSA are adopted as the
comparison. The key space of RC4 and RSA both are 22048,
which is much smaller than the proposed method (28)196608.
It indicates that the proposed DeepKeyGen can better resist
the brute force attack.

For the information entropy of private key, the experimental
results are shown in Table XVIII. It can be seen that the
values of information entropy for private keys generated by
these algorithms are very close, which all are around 7.9900.
It can be proven that the private key generated by DeepKeyGen
achieves a good performance in term of randomness.

Moreover, the evaluation metric non-overlapping template
matching, binary matrix rank, maurer’s “universal statisti-
cal” and random excursions variant are also employed to
evaluate the randomness of the generated private key. The
non-overlapping template matching is used to detect whether
generators produce too many occurrences of a given non-
periodic pattern. Binary matrix rank is adopted to measure
the linear dependence among fixed length substrings of the
original sequence. Maurer’s “universal statistical” is employed

to detect whether the generated sequence can be significantly
compressed without information loss. The random excursions
variant is used to detect the deviations from the expected
number of visits to various states in the random walk. These
four metrics are indicated by the P-value. If the P-value
is ≥ 0.01, it represents that the private key is with high
randomness. In order to keep the fairness of the experiment,
the same chest image from Montgomery County chest X-ray
dataset is employed as the “seed” for all private key generation
algorithms and also the length of generated key is kept with
the same.

The experimental results are shown in Table XVII. It can
be found that only the proposed method can always achieve
a good performance on all evaluation metrics, where most
algorithms just show their randomness under two metrics.
Moreover, the P-value of the proposed method achieves the
best performance than other private key generation algorithms
in the term of binary matrix rank and maurer’s “universal
statistical”. It can be concluded that the private key generated
by the proposed DeepKeyGen achieves a better performance
in the term of randomness.

Overall, the proposed DeepKeyGen has the ability to gen-
erate the private key with higher security by comparing with
existing private key generation algorithms.

On the other hand, the experiments about the generating
time for these algorithms are implemented to evaluate the
efficiency. As shown in Table XIX, it can be found that
the generating time of proposed DeepKeyGen is neither the
longest nor the shortest. It costs about 2 seconds to generate
a private key. The reason behind this is that the proposed
DeepKeyGen is with a larger key space than other generation
algorithms. The larger key space represents a higher security
but it costs more time to calculate. By both considering the
effectiveness and efficiency, the proposed DeepKeyGen can be
a better choice to generate the private key.

Furthermore, the histogram and information entropy are
adopted to evaluate the quality of ciphertext images encrypted
by different private keys. As seen in Table XX, the values
of information entropy for different ciphertext images are
almost the same and close to the 7.999. As shown in Fig.11,
it also can be found that all encrypted images are with a
uniform histogram distribution. It can eliminate the statistics of
plaintext image. Based on the quality analysis of the ciphertext
image, it can be said that private keys generated by these
algorithms can be used to encrypt the plaintext image in a
secure way. And it also can be proven that the proposed
DeepKeyGen is an effective way to generate the private key
like other private key generation algorithms.

Fig. 11. Histogram of ciphertext images encrypted by different algorithms.
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TABLE XVII
THE P-VALUE OF EACH KEY UNDER FOUR METRICS.

Method

Metrics Non-overlapping
Template Matching

Binary Matrix
Rank

Maurer’s “Universal
Statistical”

Random Excursions
Variant

Chaotic System 0 0.0504 0.2098 0.1316
LCG 0 0.9799 0.1966 0

Mersenne Twister 0 0.8106 0.1964 0
Rivest Cipher 4 0 0.6828 0.1960 0.0857

RSA 0.9998 5.22e-88 0 0
DeepKeyGen(Ours) 0.5671 0.9999 0.9931 0.0517

TABLE XVIII
INFORMATION ENTROPY OF PRIVATE KEYS GENERATED BY DIFFERENT

ALGORITHMS.

Method Chaotic System LCG Mersenne Twister RC4 RSA DeepKeyGen(Ours)
Entropy 7.9971 7.9991 7.9955 7.9990 6.0314 7.9870

TABLE XIX
THE KEY GENERATING TIME OF DIFFERENT ALGORITHMS.

Method Chaotic System LCG Mersenne Twister RC4 RSA DeepKeyGen(Ours)
TIME(s) 2.6178 0.5257 69.219 0.0649 0.4379 2.0714

V. PERFORMANCE EVALUATION

A. Hyper-parameters

In order to evaluate different hyper-parameters for training
the network, experiments with different training epochs, learn-
ing rates and batch sizes are evaluated on the Montgomery
County chest X-ray dataset. Moreover, this dataset is split
into two parts, where 90% dataset is adopted as as the training
dataset and 10% dataset is used as the validation dataset. In this
study, the average value of information entropy for generated
private keys is adopted as the evaluation metric to compare the
different network hyper-parameters. The experimental results
are shown in Table XXI.

It can be found that, when the learning rate is set with
0.02, the generated private key achieves a lower value for
the information entropy. Furthermore, the private key cannot
be generated in most training epochs when the batch size is
set with 1. It means that the network training process cannot
converge and the proposed generation network is unable to
generate the private key. While the batch size is set with 6
or 10, the proposed network seems to be collapsed even if
increasing the training epochs. And the information entropy of
generated private key remains with the same value. As a whole,
when the learning rate is set as 0.02, the proposed network is
hard to achieve a good performance for generating the private
key. Moreover, it can be found that if the learning rate is set
with a smaller value, the network performance becomes better
and better. To be more specific, the information entropy of
generated private key can achieve can be improved under the

TABLE XX
INFORMATION ENTROPY OF CIPHERTEXT ENCRYPTED BY DIFFERENT

ALGORITHMS.

Method Chaotic System LCG Mersenne Twister RC4 RSA DeepKeyGen(Ours)
Entropy 7.9974 7.9991 7.9990 7.9990 7.2034 7.9986

learning rate of 0.002, but it is still hard to meet the security
expectation for the private key, where the value should be
close to 7.9. It also can be found that the network performance
continues to increase with the decrement of the learning rate.
When the learning rate becomes to 0.0002, most information
entropy of generated private key is greater than the 7.9. And
the best one (the information entropy is 9.9798) is achieved by
setting with the 20000 training epochs and 1 for the batch size.
Furthermore, under the learning rate of 0.0002, the network
performance with batch size of 1 is always better than the
result obtained from the batch size of 6 or 10. It can be said
that, a smaller batch size holds the potential to facilitate the
training process of private key generation network. Over, the
best performance can be achieved when setting the learning
rate with 0.0002, the training epoch with 20000 and the batch
size with 1.

TABLE XXI
STUDY OF NETWORK HYPER-PARAMETERS ON VALIDATION DATASET:

THE AVERAGE VALUE OF INFORMATION ENTROPY FOR GENERATED KEYS
ON DIFFERENT TRAINING EPOCHS, LEARNING RATES AND BATCH SIZES.

Epoch
LR=0.02 LR=0.002 LR=0.0002

BS=1 BS=6 BS=10 BS=1 BS=6 BS=10 BS=1 BS=6 BS=10
10000 0.5222 3.7878 3.8766 5.1698 5.9714 6.1303 7.9380 7.7889 7.9004
15000 NaN 3.7878 3.8766 4.6602 2.6587 5.7981 7.9405 7.7093 7.1990
20000 NaN 3.7878 3.8766 5.4456 2.7983 6.1169 7.9798 7.9533 7.0686
25000 NaN 3.7878 3.8766 5.1133 2.4782 5.6927 7.9490 7.1992 7.6847
30000 NaN 3.7878 3.8766 7.9003 3.1811 6.6174 7.9555 6.7871 7.4846

*LR represents the learning rate. BS represents the batch size. NaN represents not-
a-number.

B. Performance of Image Encryption and Decryption

The qualitative analysis of the encryption and decryption
performance are evaluated on Montgomery County chest X-
ray dataset, Ultrasonic Brachial Plexus dataset and BraTS18
dataset, and experimental results are presented in Fig.12 (a),
(b) and (c) respectively. In these three figures, the first row
represents the original medical images. The second row repre-
sents the private key generated by the proposed DeepKeyGen.
The third row represents the ciphertext images encrypted by
the generated keys and the fourth row represents the images
decrypted by the private keys.

It can be found that the encrypted images are totally
different from the original medical image and holds the
ability to protect the patients’ privacy in the medical image.
Furthermore, the ciphertext image can be restored to the
original image to realize the decryption process. According
to the experimental result, it can be proven that the proposed
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(a)

(b)

(c)

Fig. 12. The qualitative analysis of the encryption and decryption performance
are evaluated on (a) Montgomery County chest X-ray dataset, (b) Ultrasonic
Brachial Plexus dataset and (c) BraTS18 dataset.

DeepKeyGen is an effective key generation method to encrypt
and decrypt the medical images with high security, which
facilitate the process of protecting the private information
of medical images. It also can be found that the proposed
DeepKeyGen can be used to encrypt multi-modality medical
images from different inspection equipment. Note that there
is no correspondence between private key and the plaintext
image. The generated private key can be used to encrypt any
plaintext images by adopting different encryption/decryption
algorithms.

C. Impact on Transformation Domain

The proposed DeepKeyGen is used to generate the private
keys in an automatic way but under the guidance of the trans-
formation domain. It means that the DeepKeyGen is designed
to learn the expected “style” of the private key represented
by the transformation domain. Therefore, the security of the
generated keys mainly depends on the security performance
in the transformation domain. In order to evaluate this de-
pendency relationship, two different transformation domains
A and B are adopted as a comparison. One transformation
domain includes a set of images with the average information
entropy of 7.1306 (low security), while the transformation
domain is 7.9971 (high security). These two transformation
domains are shown in Fig.13 (a) and Fig.13 (b) respectively.

For the transformation domain A with low security, it can be
found that the average information entropy of the generated
private keys is 7.8713 and the ciphertext images is 7.9865.
While the value is 7.9798 for the private keys and 7.9986
for the ciphertext images when the transformation domain
B is used. Moreover, the counter of the chest is exposed in
the ciphertext image by employing the transformation domain
A, which results in the leakage of medical information, but
transformation domain B can protect the medical information
well, as shown in Fig.13 (c) and Fig.13 (d) respectively. It
indicates that the performance both on private keys and en-
crypted image from transformation domain A is worse than the
result from transformation domain B. It proves the dependency
relationship between the DeepKeyGen and the transformation
domain. It also proves that the proposed DeepKeyGen has
the ability to stably learn the mapping relationship from the
source domain to the transformation domain and to guide the
private key generation process to achieve the expected “style”
of the private key presented in the transformation domain. It
can be concluded that overall, the high security transformation
domain brings high security to the privates keys and also a
good encryption performance for the ciphertext image.

(a) (b) (c) (d)

Fig. 13. The encryption and decryption performance using different trans-
formation domains. (a) Low-security transformation domain A. (b) High-
security transformation domain B. (c) The encryption performance used
the transformation domain A. (d) The encryption performance used the
transformation domain B.

VI. CONCLUSION

In this paper, we proposed a novel deep learning-based
stream cipher generator, DeepKeyGen, which is designed to
automatically generate the private key by directly learning
the desirable “style”. The proposed DeepKeyGen uses the
images in the transformation domain as the desired “style” of
the private key, and adopts the learning network to translate
the initial image (“seed”) in the source domain onto the
transformation domain, in order to generate the private key.
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The generated private key is then used to encrypt/decrypt
medical image(s), by employing the XOR algorithm. Deep-
KeyGen was evaluated using the Montgomery County chest
X-ray dataset, the Ultrasonic Brachial Plexus dataset, and the
BraTS18 dataset. Extensive experimental results and security
analysis on the private key and ciphertext image show that
the stream cipher generated by the proposed DeepKeyGen has
a large key space, pseudo-randomness, one-time pad, highly
sensitive to change, and can resist different attacks. Compared
with other key generation algorithms, DeepKeyGen achieves a
high level of security. Moreover, using DeepKeyGen to encrypt
multi-modality medical images achieves good performance.

In future, our research direction will focus on how to adopt
lightweight deep learning networks, such as MobileNet or
Xception, to improve the efficiency of DeepKeyGen. We also
plan to evaluate the security and performance of DeepKeyGen
in different application domains to determine its generalizabil-
ity. Furthermore, we will also make our protoype and relevant
materials (e.g., codes) open source.
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