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Abstract—Anomaly detection on attributed networks attracts
considerable research interests due to wide applications of
attributed networks in modeling a wide range of complex
systems. Recently, the deep learning-based anomaly detection
methods have shown promising results over shallow approaches,
especially on networks with high-dimensional attributes and
complex structures. However, existing approaches, which employ
graph autoencoder as their backbone, do not fully exploit
the rich information of the network, resulting in suboptimal
performance. Furthermore, these methods do not directly target
anomaly detection in their learning objective and fail to scale
to large networks due to the full graph training mechanism. To
overcome these limitations, in this paper, we present a novel
Contrastive self-supervised Learning framework for Anomaly
detection on attributed networks (CoLA for abbreviation). Our
framework fully exploits the local information from network
data by sampling a novel type of contrastive instance pair,
which can capture the relationship between each node and its
neighboring substructure in an unsupervised way. Meanwhile, a
well-designed graph neural network-based contrastive learning
model is proposed to learn informative embedding from high-
dimensional attributes and local structure and measure the
agreement of each instance pairs with its outputted scores. The
multi-round predicted scores by the contrastive learning model
are further used to evaluate the abnormality of each node with
statistical estimation. In this way, the learning model is trained by
a specific anomaly detection-aware target. Furthermore, since the
input of the graph neural network module is batches of instance
pairs instead of the full network, our framework can adapt
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to large networks flexibly. Experimental results show that our
proposed framework outperforms the state-of-the-art baseline
methods on all seven benchmark datasets.

Index Terms—Unsupervised learning, Graph neural networks,
Contrastive self-supervised learning, Anomaly detection, At-
tributed networks.

I. INTRODUCTION

ATTRIBUTED networks (a.k.a. attributed graphs), where
nodes with attributes indicate real-world entities and

links indicate the relationship between entities, are ubiquitous
in various scenarios, including finance (trading networks) [1],
social media (social networks) [2], [3], and e-commerce (item-
user networks) [4], [5]. To utilize attributed network data to
solve practical problems, a wide variety of graph analysis tasks
have attracted significant research interests in recent years,
such as node classification [6], [7], graph classification [8],
[9], and link prediction [10], [11]. Among these tasks, anomaly
detection task on attributed networks is a vital research prob-
lem. Aiming to detect the instances that significantly deviate
from the majority of instances [12] (in attributed networks,
the data instances are nodes generally), anomaly detection has
significant implications in many security-related applications,
e.g., fraud detection and social spam detection [13].

However, detecting anomalies effectively on attributed net-
works is not trivial due to the diversity of anomalies and the
lack of supervision. Since attributed networks have both at-
tribute information as well as structural information, they usu-
ally contain different types of anomalies. Figure 1 provides an
example to illustrate two basic types of anomalies: structural
anomaly and contextual anomaly. The attribute information
of the structural anomalies is often normal, while they have
several abnormal links to other nodes. The contextual anoma-
lies, differently, have natural neighboring structures but their
attributes are corrupted (noisy or entirely different from all
neighbors). Such diversity makes it difficult to apply anomaly
detection methods for attribute-only data (e.g., OC-SVM [14])
or plain networks (e.g., LOF [15]) to attributed networks
directly. Therefore, an efficient anomaly detection approach
should consider multiple patterns of anomalies. Moreover,
resulting from the prohibitive cost for accessing ground-truth
labels of anomalies, anomaly detection on attributed networks
is predominately carried out in an unsupervised manner [13],
[16]. That is to say, the algorithm has to conclude the normal
pattern of data from the corrupted networks without supervi-
sion. Hence, a key is to fully and reasonably exploit existing
information from attributed network data.
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Recently, various methods have been proposed to deal 
with the anomaly detection task for attributed networks. The 
shallow methods, including AMEN [16], Radar [17] and 
ANOMALOUS [18], leverage shallow learning mechanisms 
(e.g. ego-network analysis, residual analysis or CUR decom-
position) to detect anomalies. Unfortunately, these models 
cannot fully address the computational challenge on attributed 
networks and fail to capture the complex interactions between 
different information modalities due to limitations of shallow 
mechanisms, especially when the feature is high-dimensional 
[13]. With the rocketing growth of deep learning for anomaly 
detection [12], [19], [20], [21], researchers also present deep 
neural networks-based methods to solve the anomaly detection 
problem on attributed networks. DOMINANT [13] is one of 
the representative methods. It constructs a graph autoencoder 
to reconstruct the attribute and structure information simul-
taneously, and the abnormality is evaluated by reconstruction 
error. SpecAE [22] also leverages graph autoencoder to extract 
low-dimensional embedding, and carries out detection via 
density estimation.

Although existing deep learning-based methods [13], [22] 
have achieved considerable performance for anomaly detec-
tion on graphs, they still have several shortcomings, largely 
attributed to the autoencoder backbone in their architectures. 
First, autoencoders aim to learn the latent representation 
by reconstructing the original data instead of detecting the 
anomaly itself. Although the anomaly scores can be com-
puted according to reconstruction errors [13], this kind of 
methods can only achieve suboptimal performance due to the 
fact that they do not target directly the anomaly detection 
objective. Second, autoencoder-based methods may not able 
to fully exploit the rich information of the attributed graph for 
effective graph representation learning. Specifically, autoen-
coders simply rebuild the original data and they do not have 
any refinement for data. However, recent works [23], [24],
[25] have shown that more useful information can be mined 
in an unsupervised way if we design certain pretext tasks 
carefully based on augmented data. Third, graph autoencoder 
is the bottleneck to carry out anomaly detection on large-
scale networks. Generally, the graph convolution operation 
in graph autoencoder needs to input and reconstruct the full 
networked data, which is unfeasible due to the explosive 
memory requirements when the network is large.

As an alternative unsupervised learning technique, self-
supervised contrastive learning is a promising solution to 
address the aforementioned limitations. By learning to contrast 
the elaborate instance pairs, the model can acquire informative 
knowledge without manual labels. Contrastive self-supervised 
learning has nice properties for anomaly detection task. First, 
contrastive learning mainly studies the matching of pairs of 
instances, which offers helpful information for anomaly de-
tection. For the normal instance in graphs, there is a potential 
matching pattern between each node and its neighbors, e.g., 
the homophily hypothesis. The anomalies, on the opposite, 
often present when there is an inconsistency/mismatch be-
tween attributes and structure, which violates the original 
matching pattern of networks. Moreover, different types of 
anomalies have different manners of mismatching: in Figure
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Fig. 1. Toy examples to illustrate different types of anomalies in attributed
networks. A structural anomaly often has wrong links with other nodes but has
normal attributes. For example, in Subfigure (a), an American engineer has a
very low probability of being associated with a German designer as well as
a British manager, so the links between them are abnormal. A contextual
anomaly usually has a natural neighboring structure but its attributes are
corrupted. For instance, in Subfigure (b), the attribute vector of the anomaly
node is disturbed by noisy information, e.g., mismatched location, employer
and occupation.

1, the structural anomaly has individual abnormal links with
uncorrelated nodes, which is partial inconsistency; the con-
textual anomaly, differently, has mismatched attributes with
all neighbors. Contrastive learning, naturally, is capable to
learn the matching patterns and capture various mismatching
patterns via its intrinsic discriminative mechanism. Second,
contrastive learning models provide a specific predicted score
to measure the agreement between the elements in each
instance pair, and the scale is highly related to the abnormality
of instance. Since anomaly detection methods usually output
a list of scores or a ranking to represent the abnormality of
each node, the predicted scores of contrastive learning model
can be utilized for anomaly detection directly. In this way, we
can train the model via an objective that is highly relevant to
anomaly detection.

In this paper, we propose a novel Contrastive self-supervised
Learning framework for Anomaly detection on attributed
networks (CoLA for abbreviation). By sampling the well-
designed instance pairs from the full network and using them
to train the contrastive learning model, the information of
network is exploited better. Concretely, our framework focuses
on modeling the relationship between each node and its partial
neighboring substructure, which can expose the various type of
anomalies within networks. Meanwhile, our CoLA framework
is trained with a direct target to assist the anomaly detection
task. We set the learning objective of our model to discriminate
the agreement between the elements within the instance pairs,
and the results can be further used to evaluate the abnormality
of nodes. Besides, by splitting the network into separated
lightweight instance pairs, our anomaly detection framework is
compatible with large-scale networks. Specifically, our frame-
work does not need to run graph convolution on full networks,
so it successfully avoids the memory explosion problem. To
summarize, the main contributions are as follows:

• We propose a contrastive self-supervised learning frame-
work, CoLA, for the anomaly detection problem on
attributed networks. To the best of our knowledge, this is
the first contrastive self-supervised learning-based method
for graph anomaly detection.
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• We present a novel type of contrastive instance pair,
“target node v.s. local subgraph”, for attributed networks
to adapt to the anomaly detection task, which efficiently
captures the local information of a node and its neigh-
boring substructure.

• We design a contrastive learning model to learn the rep-
resentative information from the node-subgraph instance
pairs and provide discriminative scores for abnormality
ranking. The proposed learning model is friendly to large-
scale networked data.

• We conduct extensive experiments on various datasets to
demonstrate the effectiveness of CoLA and its superiority
compared with a range of baseline methods.

The rest of this paper is organized as follows. In Section
II, we first review the related works. Then, the preliminary
definitions and notations are introduced in Section III. Section
IV illustrates the overall pipeline and the components of our
framework in detail. After that, we analyze the experimental
results in Section V and then conclude our work in section
VI.

II. RELATED WORK

In this section, we introduce the most related work: network
embedding and graph neural networks, anomaly detection on
attributed networks, and contrastive learning.

A. Network Embedding and Graph Neural Networks

Network embedding aims to embed nodes into latent vector
spaces, where the inherent properties of the graph are pre-
served. For attributed network, the learned embedding should
contain both structural and semantic information. For instance,
SNE [26] employs neural networks to model the interrelations
between structure and attribute. TriDNR [27] jointly learns
node embedding via tri-party information sources including
node’s structure, attributes and labels. NETTENTION [28]
leverages adversarial training mechanism and self-attention
module to learn informative node embeddings.

Graph Neural Networks (GNNs) are a family of deep
neural networks [29] for modeling the underlying relationships
of non-Euclidean networks/graphs data [30]. The concept
of GNN was firstly outlined in [31]. After that, a series
of spectral-based GNNs is proposed [32], [33], [34], which
employs filters from the perspective of graph signal processing
[35]. GCN [6] performs a localized first-order approximation
of spectral graph convolutions to learn node representation
efficiently. GAT [7] introduces the attention mechanism [36] to
aggregate neighbors’ information with adaptive weights. Some
recent works try to improve GNNs in different directions,
such as simplifying the computational complexity [37], [38],
training with adversarial scheme [39], applying to large-scale
graphs [40], [41], [42], and introducing novel operators [8],
[43]. Currently, GNNs have been applied to various research
fields, such as time-series prediction [44], [45], hyperspectral
image classification [46] and knowledge graph [47], [48].

In our proposed CoLA, GNN is a significant component
of the contrastive learning model. We select GCN as the
backbone of our GNN module. Flexibly, the GNN module in

our framework can be set to any type of the aforementioned
GNNs.

B. Anomaly Detection on Attributed Networks

Anomaly detection on attributed networks attracts consid-
erable research interest in recent years due to the wide ap-
plication of attributed networks in modeling complex systems
[12]. AMEN [16] detects anomalies by leveraging ego-network
information of each node on attributed networks. Radar [17]
characterizes the residuals of attribute information and its
coherence with network information for anomaly detection.
Further, ANOMALOUS [18] jointly considers CUR decompo-
sition and residual analysis for anomaly detection on attributed
networks. Zhu et al. [49] present a joint learning model
to detect mixed anomaly by core initiating and expanding.
Despite their success on low-dimensional attributed network
data, these methods cannot work well when the networks have
complex structures and high-dimensional attributes due to the
limitation of their shallow mechanisms.

With the rocketing growth of the deep learning technique
[29], several deep approaches are presented to solve the
anomaly detection problem for attributed networks. DOMI-
NANT [13] constructs an autoencoder with GCN layers to
reconstruct both the attribute matrix and adjacency matrix. It
defines the anomaly score of node as the weighted sum of its
reconstruction errors of attribute and structure. SpecAE [22]
leverages a spectral graph autoencoder to extract the latent
embedding of each node and uses Gaussian Mixture Model
(GMM) to perform the detection. For dynamic networks,
NetWalk [50] learns dynamically network representations with
random walk sampling and autoencoder model, and detects
anomalies with a clustering-based detector.

The above deep methods achieve superior performance over
the shallow methods by introducing deep neural networks, but
also have several shortcomings caused by their reconstruction
mechanism with autoencoders. Firstly, reconstruction is a
naive unsupervised learning solution that fails to make full use
of data. On contrary, CoLA better utilizes the attribute and
structure information in a self-supervised manner. Secondly,
their reconstructive optimization target is not associated with
anomaly detection. In contrast to them, our learning objective
is to discriminate the agreement between nodes and subgraphs,
which can indicate the abnormality of nodes directly. Thirdly,
these methods require full adjacency and attribute matrix as
model’s input, which makes these algorithms unable to be
run on large-sized network data due to the explosive memory
requirements. In contrast, our framework learns with sampled
instance pairs rather than the full network, which makes it
flexibly adapt to large-scale networks.

C. Contrastive Self-Supervised Learning

Contrastive self-supervised learning is a significant brunch
of self-supervised learning [51]. Through handcrafted con-
trastive pretext tasks, these approaches learn representations
by contrasting positive instance pairs against negative instance
pairs [24]. Deep InfoMax [25] learns the embedding of im-
ages by maximizing the mutual information (MI) between
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a local patch and its global context. As a follower, CPC 
[23] applies contrastive learning to speech recognition by 
maximizing the association between a segment of audio and 
its context audio. MoCo [52] constructs a momentum encoder 
with a momentum-updated encoder to generate contrastive 
embedding. SimCLR [24] leverages different combinations 
of augmentation methods to build pair-wise samples. More 
recently, BYOL [53] presents to contrast the representation of 
online network with target network, where the two networks 
are learned mutually. Simsiam [54] adopts Siamese networks 
to learn visual representation learning in a contrastive manner.

Some recent works also exploit contrastive methods to 
graph learning. DGI [55] considers a node’s representation and 
graph-level summary vector obtained by a readout function 
as a contrastive instance pair, and generates negative samples 
with graph corruption. On the basis of DGI, Hassani et al.
[56] suggest a multi-view contrastive learning framework by 
viewing the original graph structure and graph diffusion [43] 
as two different views. GCC [57] pre-trains GNN for universe 
graph data by sampling two subgraphs for each node as a 
positive instance pair and uses InfoNCE loss [23] to learn. 
GMI [58] considers maximizing the agreement between node’s 
embedding and raw features of its neighbors as well as which 
between embedding of two adjacent nodes.

However, most of these works aim to learn data represen-
tation instead of detecting anomalies. To adapt to anomaly 
detection, our proposed CoLA framework has essential dif-
ferences in both motivation and implementation compared 
with the aforementioned approaches. From the perspective of 
motivation, these approaches only take the embedding module 
of contrastive models as an encoder, and the discriminator 
module becomes useless when testing. Our proposed CoLA, 
in contrast, leverages the whole contrastive model to compute 
the anomaly scores for each node. From the perspective of 
implementation, since the existing instance pair definition 
cannot effectively capture the abnormality of nodes, we design 
a novel type of contrastive instance pair for graph contrastive 
learning, which pays close attention to the local information 
of each node rather than the global property.

III. PROBLEM FORMULATION

In this paper, we use bold lowercase letters (e.g. x), bold 
uppercase letters (e.g. X), and calligraphic fonts (e.g. V) to 
denote vectors, matrices and sets, respectively. Accordingly, 
the definition of attributed networks is given as follows:

Definition 1. Attributed networks. An attributed network can 
be denoted as G = (V, E, X), where V = {𝑣1, . . . , 𝑣𝑛} is the 
set of nodes (|V| = 𝑛), E is the set of edges (|E | = 𝑚), and 
X ∈ R𝑛× 𝑓 is the attribute matrix. The 𝑖𝑡ℎ row vector x𝑖 ∈ R 𝑓
of the attribute matrix denotes the attribute information of the
𝑖𝑡ℎ node. An binary adjacency matrix A ∈ R𝑛×𝑛 is employed
to denote the structure information of the attributed network, 
where A𝑖, 𝑗 = 1 if there is a link between nodes 𝑣𝑖 and 𝑣 𝑗 , 
otherwise A𝑖, 𝑗 = 0. Since the information of V and E is both 
contain by A, an attributed network can also be denoted as 
G = (A, X).

TABLE I
NOTATIONS AND EXPLANATIONS RELATED TO COLA FRAMEWORK. THE

FOUR BLOCKS OF THE TABLE (FROM TOP TO BOTTOM) SHOW THE
NOTATION OF VARIABLES ABOUT ATTRIBUTED NETWORKS, CONTRASTIVE

LEARNING, GNN, AND COLA’S HYPER-PARAMETERS RESPECTIVELY.

Notation Explanation

G = (V, E,X) A weighted attributed network
V The node set of G
E The edge set of G

X ∈ R𝑛× 𝑓 The attribute matrix of G
A ∈ R𝑛×𝑛 The adjacency matrix of G
x𝑖 ∈ R 𝑓 The attribute vector of the 𝑖𝑡ℎ node in G

𝑛 The number of nodes in G
𝑓 The dimension of attributes in G
𝑘𝑖 The anomaly score of the 𝑖𝑡ℎ node in G

𝑃𝑖 = (𝑣𝑖 ,G𝑖 , 𝑦𝑖) A contrastive instance pair with index 𝑖

𝑣𝑖 The target node of instance pair 𝑃𝑖
G𝑖 The local subgraph of instance pair 𝑃𝑖

𝑦𝑖 ∈ {0, 1} The label of instance pair 𝑃𝑖
A𝑖 ∈ R𝑐×𝑐 The adjacency matrix of G𝑖

H(ℓ)
𝑖
∈ R𝑐×𝑑 (ℓ) The hidden representation matrix of G𝑖

outputted by the ℓ𝑡ℎ layer of GNN module
z(ℓ)
𝑖
∈ R𝑑 (ℓ) The hidden representation vector of 𝑣𝑖

outputted by the ℓ𝑡ℎ layer of GNN module
E𝑖 ∈ R𝑐×𝑑 The embedding matrix of the nodes in G𝑖
e𝑙𝑔
𝑖
∈ R𝑑 The embedding vector of G𝑖

e𝑡𝑛
𝑖
∈ R𝑑 The embedding vector of 𝑣𝑖
𝑠𝑖 The predicted score of 𝑃𝑖

W(ℓ) ∈
R𝑑
(ℓ−1)×𝑑 (ℓ)

The learnable parameter of the ℓ𝑡ℎ layer
of GNN module

W(𝑑) ∈ R𝑑×𝑑 The learnable parameter of discriminator
module

𝑅 The sampling rounds to calculate anomaly
scores

𝑐 The number of nodes within the local
subgraphs

𝑑 The dimension of embedding

With the aforementioned notations, the anomaly detection
problem on attributed network can be formally stated as a
ranking problem:

Definition 2. Anomaly Detection on Attributed networks.
Given an attributed network G = (V, E,X) with nodes
𝑣1, . . . , 𝑣𝑛, the goal is to learn an anomaly score function
f to calculate the anomaly score 𝑘𝑖 = f (𝑣𝑖) of each node.
The anomaly score 𝑘𝑖 can represent the degree of abnormality
of node 𝑣𝑖 . By ranking all the nodes with their anomaly
scores, the anomaly nodes can be detected according to their
positions.

In this paper, we consider the setting of unsupervised
anomaly detection, which is generally adopted by the previous
works [13], [17], [18]. In this setting, only the attributed
network G that contains anomaly nodes is given, and neither
the category label nor the abnormality label of the nodes is
given in the training phase.

For the convenience of the reader, the notations used in the
paper are summarized in Table I.
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IV. METHODOLOGY

In this section, we describe the general framework of 
our proposed CoLA, as shown in Figure 2. CoLA on the 
highest level consists of three components, namely instance 
pair sampling, GNN-based contrastive learning model, and 
anomaly score computation. At first, to generate the basic 
learning samples for contrastive self-supervised learning, we 
execute instance pair sampling to sample the well-designed 
“target node v.s. local subgraph” instance pairs with a local 
substructure-based sampling strategy. Our designed instance 
pairs can take full advantage of the original data by paying 
close attention to each node and its local neighbors. After that, 
the GNN-based contrastive learning model extracts the low-
dimensional embeddings for target node and local subgraph 
with the GNN and readout module and then calculates a dis-
criminative score for each instance pair with a discriminator. 
The predicted score that evaluates the agreement between the 
target node and subgraph can further indicate the abnormality 
of the corresponding target node. As such, the training of the 
model is guided by an objective that relates to the anomaly 
detection task. The final step, anomaly score computation, 
is to measure the abnormalities of all nodes with anomaly 
scores, so we can pick the anomalies out by ranking the 
scores. Specifically, the anomaly scores for each node are 
calculated by the predicted scores of positive/negative pairs 
which are acquired by multi-round sampling. The detection 
results can be regarded as an expectation of multiple times of 
observation for the compatibility between each node and its 
local substructure. In the rest of this section, we introduce the 
three main components of our framework in detail (Subsection 
IV-A to IV-C). Then we describe the overall pipeline and 
algorithm of CoLA in Subsection IV-D. In Subsection IV-E, 
the time complexity of our framework is analyzed.

A. Contrastive Instance Pair Definition

The success of contrastive learning frameworks largely
relies on the definition of the contrastive instance pair. Unlike
computer vision or natural language processing tasks where
an instance can be defined as an image or a sentence straight-
forwardly, the instance definition in graphs is not so clear as
well [57]. Some previous works have defined different types
of instance pair in graphs, such as “full graph v.s. node” [55],
“large subgraph v.s. node” [56] and “subgraph v.s. subgraph”
[57]. However, none of them is designed or optimized for the
anomaly detection task. Since the abnormality of a node is
usually related to the relationship between the node itself and
its neighboring structure, we should design a novel type of
contrastive instance pair to capture such local property.

To model the local distribution pattern of nodes in a
network, our definition of contrastive instance pair focuses on
the relationship between a node and its enclosing substructure.
Specifically, we design a “target node v.s. local subgraph”
instance pair for anomaly detection on attributed networks.
The first element of the instance pair is a single node, which
is named “target node” in our framework. The target node can
be set as any node in the network. The second element of the
instance pair is a local subgraph that sampled from an initial

node. For positive instance pairs, the initial node is set as the
target node, then the sampled subgraph is composed of the
neighbor nodes of the target node. For negative instance pairs,
the initial node is randomly selected from all nodes except
the target node. As a result, there is mismatching between the
target node and the local subgraph in negative pairs.

The main motivation for such design is that the anomalies
in attributed networks are usually reflected in the inconsis-
tency between node and its local neighbors, while the global
information is often independent of anomalies. As is shown in
Figure 1, both types of anomaly nodes have a mismatch with
their near neighbors. Our design purposefully focuses on pick-
ing out such mismatch by learning the “node-local subgraph”
matching pattern. Differently, the existing works (e.g. DGI
[55]) mainly consider the global property of nodes, which is
helpful for network embedding but has a minor contribution on
detecting anomalies. The comparison experiments in Section
V-C illustrates that our designed instance pair is critical to
capture anomaly.

As shown in Figure 3, a simple sketch map is used to
demonstrate the sampling process of our proposed contrastive
instance pairs. The sampling follows four steps: target node
selection, subgraph sampling, anonymization, and combining
into instance pair.
(1) Target node selection. A single target node needs to be

specified first. In practice, we traverse each node in the
graph as the target node in random order within an epoch.
Therefore, the target node selection can be viewed as a
stochastic sampling without replacement.

(2) Subgraph sampling. A local subgraph is defined as
the adjacent substructure near an initial node. As we
mentioned above, we sample the subgraph for positive pair
and negative pair by setting the initial node as the target
node and a randomly sampled node respectively. Inspired
by [57], we adopt random walk with restart (RWR) [59]
as local subgraph sampling strategy due to its usability
and efficiency. Other graph sampling algorithms such as
forest fire [60] are also available in our framework.

(3) Anonymization. The purpose of anonymization is to
prevent the contrastive learning model from easily iden-
tifying the existence of target nodes in local subgraphs.
Concretely, we set the attribute vectors of the initial nodes
into zero vectors. As such, the information of target nodes
is hidden.

(4) Combining into instance pair. The final step is to com-
bine the target node and relevant subgraphs into instance
pairs. After combination, the positive pair and negative
pair are saved to corresponding sample pools respectively.

B. GNN-based Contrastive Learning Model

The sampled instance pairs are used to train the GNN-based
contrastive learning model. For instance pair 𝑃𝑖 with its label,
the containing data can be denoted as:

𝑃𝑖 = (𝑣𝑖 ,G𝑖 , 𝑦𝑖), (1)

where 𝑣𝑖 is the target node whose attribute vector is x𝑣𝑖 , G𝑖
is the local subgraph which can be denoted as:
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Fig. 2. The overall framework of CoLA. The framework is composed of three components: instance pair sampling, GNN-based contrastive learning model,
and anomaly score computation. Here we assume node 𝑣3 is an anomaly since it has corrupted attributes, and the rest nodes are normal nodes. We take the
abnormality estimation for node 𝑣6 as an example. First of all, multiple positive and negative instance pairs are sampled, where 𝑣6 is the target node. After
that, the GNN-based contrastive learning model evaluates the predicted score for each instance pair. Finally, the anomaly score of 𝑣6 is estimated by the
statistical estimation of predicted scores of positive/negative pairs.
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Fig. 3. The sampling process of contrastive instance pairs. Here we select
node 𝑣6 as the example of target node. The initial nodes for subgraph sampling
are marked in green. The blue-white stripe means the embedding of the
corresponding node is masked with zero vector.

G𝑖 = (A𝑖 ,X𝑖), (2)

and 𝑦𝑖 is the label of 𝑃𝑖 which can be denoted as:

𝑦𝑖 =

{
1, 𝑃𝑖 is a positive instance pair
0, 𝑃𝑖 is a negative instance pair

. (3)

As is demonstrated in the middle part of Figure 2, our
proposed GNN-based contrastive learning model is composed
of three main components: GNN module, readout module, and
discriminator module.

1) GNN module: The target of the GNN module is to aggre-
gate the information between nodes in the local subgraph and
transfer the high-dimensional attributes into a low-dimensional
embedding space. The local subgraph G𝑖 is fed into a GNN
with multiple stacked layers, where a single layer can be
written as:

H(ℓ)
𝑖

= 𝐺𝑁𝑁 (A𝑖 ,H(ℓ−1)
𝑖

;𝑊 (𝑙−1) ), (4)

where H(ℓ−1)
𝑖

an H(ℓ)
𝑖

is the hidden representation matrices
learned by the (ℓ− 1)-th layer and ℓ-th layer respectively, and
𝑊 (ℓ−1) is the learnable parameter set of the (ℓ − 1)-th layer.
With a 𝐿-layer GNN, the input representation H(0)

𝑖
is defined

as the attribute matrix X𝑖 , and the output representation H(𝐿)
𝑖

is the embeddings of subgraph nodes which is denoted as E𝑖 .
𝐺𝑁𝑁 (·) can be set to any type of mainstream GNNs, such
as GCN [6], GAT [7] or GIN [8]. In practice, we adopt GCN
due to its high efficiency. Then Equation (4) can be specifically
written as:

H(ℓ)
𝑖

= 𝜙

(
D̃−

1
2

𝑖
Ã𝑖D̃

− 1
2

𝑖
H(ℓ−1)

𝑖
W(ℓ−1)

)
, (5)

where Ã𝑖 = A𝑖 + I is the subgraph adjacency matrix with self-
loop, D̃𝑖 is the degree matrix of local subgraph, W(ℓ−1) ∈
R𝑑

(ℓ−1)×𝑑 (ℓ) is the weight matrix of the (ℓ − 1)-th layer, 𝜙(·)
is the activation function such as ReLU.
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In order to contrast them in the same feature space, besides 
the nodes in local subgraph, the target node should also be 
mapped to the same embedding space. Since there is no 
structure information with a single node, we only employ the 
weight matrices of GCN and corresponding activation function 
to transform the attributes of the target node. Concretely, such 
transformation can be viewed as a DNN:

z(ℓ)
𝑖

= 𝜙

(
z(ℓ−1)
𝑖

W(ℓ−1)
)
, (6)

where z(ℓ−1)
𝑖

and z(ℓ)
𝑖

are the hidden representation row vectors
for target node that learned by the (ℓ − 1)-th layer and ℓ-th
layer respectively, and W(ℓ−1) is the weight matrix shared with
GCN. The input z(0)

𝑖
is defined as the attribute row vector

of target node x𝑣𝑖 , and the output is marked as target node
embedding e𝑡𝑛

𝑖
.

2) Readout module: The target of our readout module is to
transfer the embeddings of nodes in subgraph E𝑖 into a local
subgraph embedding vector e𝑙𝑔

𝑖
. For simplification, we use

the average pooling function as our readout function, which
has been widely used in previous works [56]. Specifically, the
readout function is written as follows:

e𝑙𝑔
𝑖

= 𝑅𝑒𝑎𝑑𝑜𝑢𝑡 (E𝑖) =
𝑛𝑖∑︁
𝑘=1

(E𝑖)𝑘
𝑛𝑖

, (7)

where (E𝑖)𝑘 is the 𝑘-th row of E𝑖 , and 𝑛𝑖 is the number of
nodes of the local subgraph G𝑖 .

3) Discriminator module: The discriminator module is the
core component of our contrastive learning model. It contrasts
the embeddings of the two elements in an instance pair and
outputs the final predicted score. Here, we apply a simple
bilinear scoring function, which is also employed by [23]. The
predicted score can be calculated by:

𝑠𝑖 = 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 (e𝑙𝑔
𝑖
, e𝑡𝑛𝑖 ) = 𝜎

(
e𝑙𝑔
𝑖

W(𝑑)e𝑡𝑛𝑖
>
)
, (8)

where W(𝑑) is the weight matrix of discriminator, and 𝜎(·) is
the logistic sigmoid function.

4) Objective function: By integrating the aforementioned
three components, our proposed GNN-based contrastive learn-
ing model can be considered as a binary classification model
to predict the labels of contrastive instance pairs:

𝑠𝑖 = 𝐶𝐿𝑀 (𝑣𝑖 ,G𝑖), (9)

where 𝐶𝐿𝑀 (·) is the contrastive learning model.
Here, our objective is to make the predicted 𝑠𝑖 and the

ground-truth label 𝑦𝑖 as close as possible. Therefore, we
adopt a standard binary cross-entropy (BCE) loss, which is
a common choice for binary classification problems, as our
objective function. Its utility has been validated by other
contrastive self-supervised learning works [25], [55], [56].
Concretely, for a batch of 𝑃𝑖 = (𝑣𝑖 ,G𝑖 , 𝑦𝑖) with batch size
𝑁 , the objective function is given as follows:

L = −
𝑁∑︁
𝑖=1

𝑦𝑖 log (𝑠𝑖) + (1 − 𝑦𝑖) log (1 − 𝑠𝑖)

= −
𝑁∑︁
𝑖=1

𝑦𝑖 log (𝐶𝐿𝑀 (𝑣𝑖 ,G𝑖)) +

(1 − 𝑦𝑖) log (1 − 𝐶𝐿𝑀 (𝑣𝑖 ,G𝑖)) .

(10)

It should be noted that different from the softplus version
BCE in [25] and the label-balanced version BCE in [55], [56],
a vanilla BCE is utilized here. The reason is that we execute a
balanced sampling when we sample the positive and negative
instance pairs. To adapt to more complex sampling strategies
in further research, corresponding objective functions are also
alternative in our framework.

C. Anomaly Score Computation

After the contrastive learning model is well trained, we
acquire a classifier to discriminate the agreement between
substructures and nodes. An ideal GNN model with an appro-
priate number of parameters would tend to learn the matching
pattern of normal samples since they occupy the vast majority
of the training data. For the anomalies, it is much harder to
fit their pattern due to its irregularity and diversity. Under
ideal conditions, for a normal node, the predicted score of
its positive pair 𝑠 (+) should be close to 1, while the negative
one 𝑠 (−) should be close to 0. For an anomalous node, the
predicted scores of its positive and negative pairs would be less
discriminative (close to 0.5) because the model cannot well
distinguish its matching pattern. Based on the above property,
for each node 𝑣𝑖 , we can simply define the anomaly score as
the difference value between its negative and positive score:

𝑓 (𝑣𝑖) = 𝑠
(−)
𝑖
− 𝑠
(+)
𝑖

. (11)

However, a sampled local subgraph can only be viewed as a
partial observation of the target node’s neighboring structure,
which cannot represent the whole neighbor distribution of the
target node. Incomplete observation will lead to an incomplete
perception of abnormality, which will affect the performance
of anomaly detection. For example, some structural anomaly
nodes have several abnormal links to uncorrelated nodes, while
most of their neighbors are normal. Then, if we only estimate
the abnormality with one-shot sampling, once the normal
neighbors are sampled as the local subgraph, such abnormality
will be ignored.

To solve this problem, we propose to use the predicted
scores of multi-round and positive-negative sampling to gen-
erate anomaly scores. Specifically, for each node 𝑣𝑖 in the
attributed network, we sample 𝑅 positive instance pairs as well
as 𝑅 negative instance pairs via the sampling strategy intro-
duced in Subsection IV-A, and 𝑅 is the number of sampling
round. These instance pairs are denoted as (𝑃 (+)

𝑖,1 , · · · , 𝑃
(+)
𝑖,𝑅
)

and (𝑃 (−)
𝑖,1 , · · · , 𝑃

(−)
𝑖,𝑅
) respectively. Then, these instance pairs

are fed into the contrastive learning model 𝐶𝐿𝑀 (·) to calcu-
late the predicted scores (𝑠 (+)

𝑖,1 , · · · , 𝑠
(+)
𝑖,𝑅

, 𝑠
(−)
𝑖,1 , · · · , 𝑠

(−)
𝑖,𝑅
), which

is computed via Equation (9). Finally, the anomaly score of
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Algorithm 1 The Overall Procedure of CoLA
Input: Attributed network: G = (V, E,X), Number of train-

ing epochs: 𝑇 , Batch size: 𝐵, Number of sampling rounds:
𝑅.

Output: Anomaly score mapping function: 𝑓 (·).
1: Randomly initialize the parameters of contrastive learning

model (W(0) , · · · ,W(𝐿) ,W(𝑑) )
2: // Training phase.
3: for 𝑡 ∈ 1, 2, · · · , 𝑇 do
4: B ← (Randomly split V into batches of size 𝐵)
5: for batch 𝑏 = (𝑣′1, · · · , 𝑣

′
𝐵
) ∈ B do

6: Sample positive instance pairs (𝑃 (+)1 , · · · , 𝑃 (+)
𝐵
)

where (𝑣′1, · · · , 𝑣
′
𝐵
) are the target node respectively.

7: Sample negative instance pairs (𝑃 (−)1 , · · · , 𝑃 (−)
𝐵
)

where (𝑣′1, · · · , 𝑣
′
𝐵
) are the target node respectively.

8: Calculate the predicted scores
(𝑠 (+)1 , · · · , 𝑠 (+)

𝐵
, 𝑠
(−)
1 , · · · , 𝑠

(−)
𝐵
) of instance pairs

(𝑃 (+)1 , · · · , 𝑃 (+)
𝐵

, 𝑃
(−)
1 , · · · , 𝑃 (−)

𝐵
) via Equation (9).

9: Calculate L via Equation (10).
10: Back propagation and update the parameters of con-

trastive learning model (W(0) , · · · ,W(𝐿) ,W(𝑑) ).
11: end for
12: end for
13: // Inference phase.
14: for 𝑣𝑖 ∈ V do
15: Sample 𝑅 positive instance pairs (𝑃 (+)

𝑖,1 , · · · , 𝑃
(+)
𝑖,𝑅
)

where 𝑣𝑖 is the target node.
16: Sample 𝑅 negative instance pairs (𝑃 (−)

𝑖,1 , · · · , 𝑃
(−)
𝑖,𝑅
)

where 𝑣𝑖 is the target node.
17: Calculate the predicted scores

(𝑠 (+)
𝑖,1 , · · · , 𝑠

(+)
𝑖,𝑅

, 𝑠
(−)
𝑖,1 , · · · , 𝑠

(−)
𝑖,𝑅
) of instance pairs

(𝑃 (+)
𝑖,1 , · · · , 𝑃

(+)
𝑖,𝑅

, 𝑃
(−)
𝑖,1 , · · · , 𝑃

(−)
𝑖,𝑅
) via Equation (9)

18: Calculate the anomaly score 𝑓 (𝑣𝑖) via Equation (12).
19: end for

𝑣𝑖 is obtained by computing the average value of multi-round
differences between the scores of negative and positive pairs:

𝑓 (𝑣𝑖) =
∑𝑅

𝑟=1 (𝑠
(−)
𝑖,𝑟
− 𝑠
(+)
𝑖,𝑟
)

𝑅
, (12)

where 𝑓 (·) is the anomaly score mapping function which is
the ultimate goal of our anomaly detection framework.

From a statistical perspective, executing the 𝑅 rounds sam-
pling is to estimate the difference of normality between a
node’s neighboring substructure and remote substructure. In
principle, the larger 𝑅 is, the more accurate the estimation is.
In practice, we set 𝑅 as a hyper-parameter of our framework,
and we discuss the selection of 𝑅 in Section V-D.

Furthermore, computing the mean value is the simplest
way to process multi-round results. Theoretically, there are
more statistical properties that can be mined, such as variance,
minimum/maximum value, and distribution property. However,
in practice, we found that calculating the average value is the
most effective solution compared with introducing the above
factors. In spite of this situation, we still think that the further
mining of statistical properties of the multi-round predicted

scores is one of the potential directions in the future since
different types of anomalies will show different characteristics
of the score distribution.

D. CoLA: An Anomaly Detection Framework

In this subsection, we introduce the overall pipeline of our
proposed CoLA framework. The pipeline is divided into two
phases: training phase and inference phase. In the training
phase, the contrastive learning model is trained with sampled
instance pairs in an unsupervised fashion. After that, the
anomaly score for each node is obtained in the inference phase.

The overall procedure of our CoLA framework is depicted
in Algorithm 1. In an epoch of the training phase, we first
split the set of nodes V into several mini-batches. Then,
in each iteration, a positive pair and a negative pair are
sampled for each node in the current mini-batch. After that,
the corresponding predicted scores are calculated with the
instance pairs, then the BCE loss is computed. To optimize the
parameters of contrastive learning model, a backpropagation is
executed with a gradient descent algorithm. After the training
phase, a multi-round positive-negative sampling procedure
is carried out to generate anomaly scores. As described in
Subsection IV-C, for each node 𝑣𝑖 , 𝑅 positive pairs and 𝑅

negative pairs are sampled, then they are fed into the well-
trained model to calculate the predicted scores. Finally, the
anomaly score is obtained via Equation (12).

Discussion on anomaly detection for large-scale net-
works. As we introduced above, the contrastive learning model
is trained by a mini-batch of instance pairs independently in
an iteration. Meanwhile, the computation of anomaly scores
is also completely independent. That is to say, the space
complexity of CoLA is uncorrelated with the number of nodes
𝑛 at all. Such a nice property makes it possible to apply our
proposed CoLA framework to large-scale networks. When the
size of network is large (𝑛 is large), we do not need to feed the
full network into the GCN model, which is unfeasible due to
the explosive need for space complexity [41], [42]. Instead, in
our framework, the full network is decomposed into instance
pairs and all we need is to adjust the batch size and subgraph
size to meet the memory constraint.

E. Complexity Analysis

We analyze the time complexity of the proposed framework
by considering the three main components respectively. For
instance pair sampling, the time complexity of each RWR
subgraph sampling is O(𝑐𝛿) (𝛿 is the mean degree of network).
In the inference phase, we run 𝑅 rounds of sampling for
each node, then the total time complexity becomes O(𝑐𝑛𝛿𝑅).
For the GNN-based contrastive learning model, the time
complexity is mainly generated by the GNN module, which
is O(𝑐2) for each pair and O(𝑐2𝑛𝑅) for a total. For anomaly
score computation, the time complexity is far less than the
above two phases, so here we ignore this term. To sum up,
the overall time complexity of CoLA is O(𝑐𝑛𝑅(𝑐 + 𝛿)).
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TABLE II
THE STATISTICS OF THE DATASETS. THE UPPER TWO DATASETS ARE

SOCIAL NETWORKS, AND THE REMAINDERS ARE CITATION NETWORKS.

Dataset ♯ nodes ♯ edges ♯ attributes ♯ anomalies

BlogCatalog 5,196 171,743 8,189 300
Flickr 7,575 239,738 12,407 450
ACM 16,484 71,980 8,337 600
Cora 2,708 5,429 1,433 150

Citeseer 3,327 4,732 3,703 150
Pubmed 19,717 44,338 500 600

ogbn-arxiv 169,343 1,166,243 128 6000

V. EXPERIMENTS

In this section, we conduct experiments to show the effec-
tiveness of CoLA framework. We first introduce the datasets
used for experiments and experiments setup. Then, we demon-
strate the experimental results including the comparison of
performance, parameter study, and ablation study.

A. Datasets

We evaluate the proposed framework on seven widely
used benchmark datasets for anomaly detection on attributed
networks. The datasets include two social network datasets
(BlogCatalog and Flickr) and five citation network datasets
(Cora, Citeseer, Pubmed, ACM and ogbn-arxiv) [61], [2], [62].
The statistics of these datasets are demonstrated in Table II,
and the detailed descriptions are given as follows:
• Social Networks. BlogCatalog and Flickr1 [2] are two

typical social network datasets acquired from the blog
sharing website BlogCatalog and the image hosting and
sharing website Flickr, respectively. In these datasets,
nodes denote the users of websites, and links represent
the following relationships between users. In social net-
works, users usually generate personalized content such
as posting blogs or sharing photos with tag descriptions,
thus these text contents are regarded as node attributes.

• Citation Networks. Cora, Citeseer, Pubmed2 [61], ACM
[62], and ogbn-arxiv3 [63] are five available public
datasets, which are composed of scientific publications. In
these networks, nodes denote the published papers while
edges represent the citation relationships between papers.
For the first four datasets, the attribute vector of each node
is the bag-of-word representation whose dimension is
determined by the dictionary size. For ogbn-arxiv dataset,
each node has a 128-dimensional attribute vector obtained
by averaging the embeddings of words in the paper’s title
and abstract. Note that the ogbn-arxiv dataset is a large-
scale graph dataset from Open Graph Benchmark (OGB)
where over 169k nodes and 1.1m edges are contained.

Since there are no ground-truth anomalies in the aforemen-
tioned datasets, synthetic anomalies are needed to inject into
the clean attributed networks for our evaluation. Following
the previous researches [64], [65], [13], we inject a combined

1http://socialcomputing.asu.edu/pages/datasets
2http://linqs.cs.umd.edu/projects/projects/lbc
3https://github.com/snap-stanford/ogb

set of anomalies (i.e., structural anomalies and contextual
anomalies) for each dataset:
• Structural anomalies injection. The structural anomalies

are acquired by perturbing the topological structure of
networks [65]. Concretely, some small cliques composed
of originally unrelated nodes are generated as anomalies.
The intuition is that in a small clique, a small set of
nodes are much more closely linked to each other than
average, which can be regarded as a typical structural
anomalous situation in real-world networks [66]. To make
the cliques, we first specify the clique size 𝑝 and the
number of cliques 𝑞. When generating a clique, we
randomly choose 𝑝 nodes from the set of nodes V
and make them fully connected. As such, the selected
𝑝 nodes are all marked as structural anomaly nodes. To
generate 𝑞 cliques, we repeat the above process for 𝑞

times. Finally, a total of 𝑝 × 𝑞 structural anomalies were
injected. According to the size of datasets, we control the
number of injected anomalies. We fix 𝑝 = 15 and set 𝑞
to 10, 15, 20, 5, 5, 20, 200 for BlogCatalog, Flickr, ACM,
Cora, Citeseer, Pubmed and ogbn-arxiv, respectively.

• Contextual anomalies injection. Here, we create the
contextual anomalies by perturbing the attribute of nodes
following the schema introduced by [64]. When generate
a single contextual anomaly node, we first randomly pick
a node 𝑣𝑖 as the target, and then sample another 𝑘 nodes
V (𝑐) = (𝑣 (𝑐)1 , · · · , 𝑣 (𝑐)

𝑘
) as a candidate set. After that, for

each 𝑣 (𝑐) ∈ V (𝑐) , we calculate the Euclidean distance
between its attribute vector x(𝑐) and 𝑣𝑖’s attribute vector
x𝑖 . Then, we pick the node 𝑣

(𝑐)
𝑗
∈ V (𝑐) which has the

largest Euclidean distance to 𝑣𝑖 , and change x𝑖 to x(𝑐)
𝑖

. To
balance the equal numbers of the two types of anomalies,
we set the number of context anomalies as 𝑝 × 𝑞, which
means the above operation is repeated for 𝑝 × 𝑞 times to
generate all the contextual anomalies. Here, we set 𝑘 = 50
to ensure the disturbance amplitude is large enough.

Following the aforementioned injection methods, we finally
obtain the perturbed networks, and the total number of anoma-
lies is given in the last column of Table II. All the category
labels are removed in our experiments, and the anomalous
labels are only visible in the inference phase.

B. Experimental Settings
In this subsection, we introduce the settings of our ex-

periments, including baselines for comparison, metrics for
evaluation, and parameter setting of our framework.

1) Baselines: We compare our proposed framework CoLA
with five popular methods for anomaly detection or graph
contrastive learning:
• AMEN4 [16]. AMEN is an ego-network analysis-based

anomaly detection method. It identifies anomalies by
evaluating the attribute correlation of nodes per ego-
network.

• Radar5 [17]. Radar is a residual analysis-based method.
It characterizes the residuals of attribute information

4https://github.com/phanein/amen
5http://people.virginia.edu/%7Ejl6qk/code/Radar.zip
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and its coherence with network information for anomaly
detection on networks.

• ANOMALOUS6 [18]. ANOMALOUS is also based on
the residual analysis. It is a joint learning framework
that conducts attribute selection and anomaly detection
as a whole based on CUR decomposition and residual
analysis.

• DOMINANT7 [13]. DOMINANT is the state-of-the-
art unsupervised anomaly detection framework based on
deep learning. It utilizes a graph convolution autoencoder
to jointly reconstruct the adjacency matrix as well as the
attribute matrix. It evaluates the abnormality of each node
by computing the weighted sum of the reconstruction
error terms.

• DGI8 [55]. DGI is a representative method for contrastive
graph representation learning. It generates node embed-
ding via node-graph contrasting. A bilinear function
serves as a discriminator to predict the agreement between
node and original/corrupted graphs.

2) Evaluation metrics: To measure the performance of our
proposed framework and the baselines, we employ ROC-AUC
as the metrics. ROC-AUC is widely used in previous works
for the evaluation of anomaly detection performance [13],
[17], [18]. The ROC curve is a plot of true positive rate (an
anomaly is recognized as an anomaly) against false positive
rate (a normal node is recognized as an anomaly) according to
the ground-truth anomalous labels and the anomaly detection
results. AUC value is the area under the ROC curve, which
represents the probability that a randomly chosen abnormal
node is ranked higher than a normal node. The AUC which is
close to 1 means the method has high performance.

3) Parameter Settings: For the sake of efficiency and
performance, we fixed the size 𝑆 of the sampled subgraph
(number of nodes in the subgraph) to 4. For isolated nodes
or the nodes which belong to a community with a size
smaller than the predetermined subgraph size, we sample the
available nodes repeatedly until an overlapping subgraph with
the set size is obtained. In the GNN-based contrastive learning
model, the layer number of the GNN module is set to 1
since it is enough to extract the information of subgraphs
with a small size. The embedding dimension is fixed to be
64. In the training phase, the batch size 𝐵 is set to 300 for
each dataset. Adam [67] optimization algorithm is employed
to train the contrastive learning model. We train the model
for BlogCatalog, Flickr and ACM datasets with 400 epochs,
and train on Cora, Citeseer and Pubmed datasets with 100
epochs. The learning rates for Cora, Citeseer, Pubmed and
Flickr are 0.001, while the learning rates for BlogCatalog and
ACM are set to 0.003 and 0.0005, respectively. For ogbn-
arxiv dataset, we train for 2, 000 epochs using a learning rates
of 0.0001. In the inference phase, we sample 256 rounds to
acquire accurate detection results for each dataset. We run
our proposed framework for 10 times and report the average
results to prevent extreme cases. For the consideration of

6http://people.virginia.edu/%7Ejl6qk/code/ANOMALOUS.zip
7https://github.com/kaize0409/GCN_AnomalyDetection
8https://github.com/PetarV-/DGI

detection performance and efficiency, we use PCA [68] to
reduce the dimension of attributes to 30 before we run the
shallow baselines (AMEN, Radar and ANOMALOUS). For
DGI We employ Equation (12) to compute the anomaly score.

4) Computing Infrastructures: Our proposed learning
framework is implemented using PyTorch 1.4.0 [69]. For RWR
subgraph sampling, we use the existing graph sampling func-
tion from library DGL 0.3.1 [70]. The computation of ROC
and AUC is acquired by Scikit-learn [71]. All experiments are
conducted on a personal computer with Ubuntu 16.04 OS, an
NVIDIA GeForce RTX 2070 (8GB memory) GPU, an Intel
Core i7-7700k (4.20 GHz) CPU and 15.6 GB of RAM.

C. Anomaly Detection Results

In this subsection, we evaluate the anomaly detection per-
formance of the proposed framework by comparing it with
the baseline methods. The comparison of ROC curves is
demonstrated in Figure 4. By calculating the area under the
ROC curves, the AUC scores of the seven benchmark datasets
are shown in Table III for comparison. According to the
results, we have the following observations:
• On all seven datasets, our proposed CoLA achieves the

best anomaly detection performance. In particular, com-
pared with the best results of the baselines, our framework
obtains a significant improvement of 6.44% on AUC
averagely. The main reason is that CoLA successfully
captures the relationship between each node and its local
substructure with the instance pair sampling, and extracts
discriminative scores from the contextual and structural
information with the GNN-based contrastive learning
model.

• Compared to the deep learning-based methods, the shal-
low methods, AMEN, Radar and ANOMALOUS, cannot
achieve satisfying results. Their performance is limited
by the shallow mechanisms to deal with the high-
dimensional node attributes and the sparse, complex
network structures.

• The contrastive learning method, DGI, does not show
competitive performance, even if it uses a contrastive
mechanism and anomaly score function similar to CoLA.
The reason is that it adopts “full graph v.s. node” instance
pair when performing contrastive learning, which cannot
capture the abnormality in local substructure. In the
contrast, the “target node v.s. local subgraph” leveraged
by CoLA is sensitive to the local abnormal information.

• Compared to the autoencoder-based deep method DOM-
INANT, CoLA achieves significant performance gains,
especially on the five citation network datasets. Two
main reasons are: (1). CoLA well exploits the network
data by constructing the instance pairs, instead of simply
reconstructing the original data; (2). The objective of
CoLA is related to the target of anomaly detection, which
can train the learning model to generate discriminative
scores for the final abnormality ranking.

• CoLA has better performance advantages on the five
citation network datasets (ACM, Cora, Citeseer, Pubmed
and ogbn-arxiv). The possible reason is that the mean
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Fig. 4. ROC curves comparison on seven benchmark datasets. The area under the curve is larger, the anomaly detection performance is better. The dashed
line is the “random line” which indicates the performance under randomly guessing.

TABLE III
AUC VALUES COMPARISON ON SEVEN BENCHMARK DATASETS. OOM MEANS THE ISSUE OUT-OF-MEMORY IS INCURRED. THE BEST PERFORMING

METHOD IN EACH EXPERIMENT IS IN BOLD.

Methods Blogcatalog Flickr ACM Cora Citeseer Pubmed ogbn-arxiv

AMEN 0.6392 0.6573 0.5626 0.6266 0.6154 0.7713 0.5279
Radar 0.7401 0.7399 0.7247 0.6587 0.6709 0.6233 OOM

ANOMALOUS 0.7237 0.7434 0.7038 0.5770 0.6307 0.7316 OOM
DOMINANT 0.7468 0.7442 0.7601 0.8155 0.8251 0.8081 OOM

DGI 0.5827 0.6237 0.6240 0.7511 0.8293 0.6962 OOM

CoLA 0.7854 0.7513 0.8237 0.8779 0.8968 0.9512 0.8073

degrees of citation networks (1.43 to 6.89) are much
smaller than those of social networks (31.64 to 33.05).
Therefore, on citation networks, the sampled substructure
for each node has a better consistency under multiply
rounds of sampling, which makes the model can capture
the abnormality of each node more clearly.

• CoLA is successfully run on the large-scale network
dataset ogbn-arxiv, while most of the baselines (Radar,
ANOMALOUS, DOMINANT, and DGI) fail to output
the detection results due to their large requirement of
memory. Meanwhile, our framework also outperforms the
shallow method AMEN by a wide margin. The reason
why CoLA can detect anomaly on large-scale networks is
that the space complexity of CoLA is independent of the
number of nodes 𝑛, which has been analyzed in Section
IV-D.

D. Parameter Study

In this subsection, we investigate the impacts of three
important parameters on the performance of the proposed
framework: the number of sampling rounds, the size of
subgraph, and the dimension of latent embedding. We only
perform these experiments on the six small-scale datasets
owing to the limitation of efficiency.

1) Effect of the number of sampling rounds 𝑅: In this
experiment, we modify the value of 𝑅 to study its impact
on AUC. The performance variance results are demonstrated
in Figure 5(a). As we can see, when the detection results
are only computed with one-shot sampling, the detection
performance is poor. With the sampling rounds growing, there
is a significant boost in the AUC of each dataset within
a certain range. However, when 𝑅 is larger than 256, the
performance improvement obtained by setting a larger 𝑅

becomes little. The experiment results empirically prove our
analysis in Subsection IV-C: with 𝑅 gets larger, the estimation
for abnormalities for each node becomes more accurate. On
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Fig. 5. The experimental results for parameter study. The subfigure (a), (b) and (c) shows the impact of different sampling rounds, subgraph sizes and
embedding dimension w.r.t. AUC values respectively.

the basis of this result, we set 𝑅 = 256 in other experiments
to balance performance and efficiency.

2) Effect of subgraph size 𝑐: We further analyze the signif-
icance of the subgraph size 𝑐 on different datasets. We report
the AUC scores over different choices of subgraph sizes in
Figure 5(b). As shown in the figure, when 𝑐 is extremely
small (𝑐 = 2), the AUC is relatively low. The possible reason
is that, in such a situation, only the target node itself and
one of its neighbors are concluded in the subgraph, but there
is no structural information other than the connection between
these two nodes is considered. The lack of enough neighboring
structural information results in poor performance. Within
certain value ranges, the AUC increases follow 𝑐. Then, when
𝑐 > 5, the detection performance declines with 𝑐 get larger. A
reasonable description is that: when the subgraph size is large,
the nodes with relatively long distance to the target node will
be sampled into the subgraph. However, these remote nodes
are generally independent of the abnormality, which becomes
the “noise information” for our detection task. For all datasets,
better detection performance can be obtained when the value
of 𝑆 is around 4. Consequently, we fix the value of 𝑐 to 4 for
the sake of running efficiency and robustness over all datasets.

3) Effect of embedding dimension 𝑑: We explore the sen-
sitivity of embedding dimension 𝑑 for CoLA framework. We
alter the value of 𝑑 to see how it affects the performance of
our method. The performance change of CoLA is illustrated in
Figure 5(c). For each dataset, the AUC value increases with the
embedding dimension growing. When adding the dimension of
embedding from 1-neuron to 32-neurons, the performance of
anomaly detection steadily rises; but when we further increase
𝑑, the performance gain becomes light. We observed that,
for most of the datasets, 64-dimension latent embedding can
provide sufficient information for the downstream contrastive
learning and anomaly detection tasks. As a result, we set the
hyper-parameter 𝑑 to 64 for efficiency consideration.

E. Ablation Study

In this subsection, we study the effect of changing different
readout functions, the source of anomaly score computation,

and the estimation mode of anomaly score. Here we only
discuss the performance on the six small-scale datasets.

1) Effect of readout function: In this experiment, we in-
vestigate the choice of different types of readout functions
in our framework. We carry out the experiments on three
possible readout functions: Max Pooling, Min Pooling, and
Weighted Average Pooling. Max/Min Pooling is to collect
the maximum/minimum value on each dimension to generate
the pooled vector. Weighted Average Pooling first takes the
embedding of the target node as a “query” and calculates
the similarities between query and node embeddings in the
local subgraph by inner production. Then, a Softmax function
is utilized to regularize the similarities which further serve
as “weights” to compute the readout output with a weighted
average. Note that CoLA adopts Average Pooling, which is
simpler than Weighted Average Pooling.

The experimental results are illustrated in Table IV. Com-
pared to other readout function, Min Pooling always has a
minor performance, which means that using the minimum
value would lead to lose of information. Max Pooling has
competitive performance on most of the datasets, but is not
the best. Although Weighted Average Pooling costs heavier
computation, it has a close performance to Max Pooling, which
indicates that the similarity-based weighted average may lead
to a sub-optimal solution for subgraph readout. Compared to
other readout functions, CoLA with Average Pooling achieves
the best results on 4 of 6 datasets. On ACM and Pubmed,
it also shows competitive performance, which evinces that
Average Pooling has a better capability of generalization.

2) Effect of the source of score computation: In Equation
(12), we consider the predicted scores of both positive in-
stances and negative instances as the source of anomaly score
computation. Here, we investigate the contribution of each
term. Table VI shows the AUC values of two variants of our
framework: CoLA(+) denotes that only the predicted scores of
positive instances are used to calculate the anomaly scores, and
CoLA(-) means that only the negative scores are considered.
Finally, CoLA(+/-) is the full version that considers both
sides. As we can observe, for two social network datasets, the
predicted scores of negative instances are more helpful to the
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TABLE IV
EFFECT OF DIFFERENT READOUT FUNCTION ON AUC VALUES. THE BEST PERFORMING METHOD IN EACH EXPERIMENT IS IN BOLD.

BlogCatalog Flickr ACM Cora Citeseer Pubmed

Max Pooling 0.7787 0.7507 0.8303 0.8681 0.8849 0.9508
Min Pooling 0.7567 0.7389 0.7968 0.8553 0.8743 0.9350

Weighted Average Pooling 0.7801 0.7494 0.8175 0.8764 0.8927 0.9523

CoLA(Average Pooling) 0.7854 0.7513 0.8237 0.8779 0.8968 0.9512

TABLE V
EFFECT OF DIFFERENT SOURCE OF SCORE COMPUTATION ON AUC VALUES. THE BEST PERFORMING METHOD IN EACH EXPERIMENT IS IN BOLD.

BlogCatalog Flickr ACM Cora Citeseer Pubmed

CoLA(+) 0.7551 0.7213 0.8002 0.8658 0.8571 0.9509
CoLA(-) 0.7745 0.7502 0.7718 0.6891 0.8254 0.6531

CoLA(+/-) 0.7854 0.7513 0.8237 0.8779 0.8968 0.9512

TABLE VI
EFFECT OF DIFFERENT SCORE ESTIMATION MODE ON AUC VALUES. THE BEST PERFORMING METHOD IN EACH EXPERIMENT IS IN BOLD.

BlogCatalog Flickr ACM Cora Citeseer Pubmed

CoLA(min) 0.7611 0.7219 0.5407 0.7525 0.6279 0.7987
CoLA(mean+min) 0.7729 0.7371 0.6903 0.8165 0.7599 0.8796

CoLA(max) 0.6465 0.6071 0.7093 0.8152 0.7906 0.8839
CoLA(mean+max) 0.7383 0.6989 0.7652 0.8678 0.8638 0.9359

CoLA(std) 0.3719 0.3581 0.8037 0.5453 0.7515 0.7035
CoLA(mean+std) 0.7665 0.7241 0.8372 0.8869 0.9047 0.9532

CoLA(-std) 0.6316 0.6449 0.2149 0.4256 0.2455 0.2969
CoLA(mean-std) 0.7910 0.7526 0.7562 0.8479 0.8608 0.9387

CoLA(mean) 0.7854 0.7513 0.8237 0.8779 0.8968 0.9512

final result. Nevertheless, for the remaining citation network
datasets, the positive instances have a greater contribution.
Despite the above difference, considering both positive and
negative scores is always beneficial to anomaly detection
performance.

3) Effect of estimation mode of anomaly score: In CoLA,
we compute the mean values as the anomaly scores, which
is a standard estimation mode for multiple sampling. In this
experiment, we discuss the effect of other estimation modes.
As shown in Table VI, we carry out our experiment on
six estimation modes: CoLA(max)/CoLA(min) means using
the maximum/minimum value of multi-round predictions as
anomaly scores; CoLA(std) and CoLA(-std) adopt the standard
deviation and the opposite of standard deviation as anomaly
score, respectively; the rest three situations consider the sum
of mean value and corresponding terms as an estimation.

We make the following observations:

• Using maximum/minimum value as the anomaly score is
less effective than using mean value. Considering both
the maximum/minimum and the mean value can obtain
better performance, but it is still worse than only using
the mean value.

• Introducing the standard deviation can bring extra perfor-
mance improvement. However, the correlation between
abnormality and standard deviation varies with different
datasets: for BlogCatalog and Flickr, there is a negative

correlation between abnormality and standard deviation;
on contrary, a positive correlation is shown for the citation
networks.

• Calculating the mean value is not the best but the most
robust choice. For all datasets, we can obtain a relatively
good detection performance with CoLA(mean). Further-
more, compared with only using maximum/minimum
value or standard deviation, the introduction of additional
mean values will lead to a better result.

VI. CONCLUSION

In this paper, we make the first attempt to apply contrastive
self-supervised learning to the anomaly detection problem of
attributed networks. We propose a novel anomaly detection
framework, CoLA, which is consisted of three components:
contrastive instance pair sampling, GNN-based contrastive
learning model, and multi-round sampling-based anomaly
score computation. Our model successfully captures the re-
lationship between each node and its neighboring structure
and uses an anomaly-related objective to train the contrastive
learning model. A series of experiments on seven benchmark
datasets demonstrate the effectiveness and superiority of the
proposed framework in solving the anomaly detection prob-
lems on attributed networks.

We believe that the proposed framework opens a new
opportunity to expand self-supervised learning and contrastive
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learning to increasingly graph anomaly detection applications. 
In future works, we will extend self-supervised contrastive 
learning-based anomaly detection methods to more com-
plex network/graph data, e.g., heterogeneous graph, spatial-
temporal graph, and dynamic graph.

REFERENCES

[1] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous
graph neural networks for malicious account detection,” in Proceedings
of the 27th ACM International Conference on Information and Knowl-
edge Management, 2018, pp. 2077–2085.

[2] L. Tang and H. Liu, “Relational learning via latent social dimensions,”
in Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009, pp. 817–826.

[3] Y. Zhang, Y. Fan, W. Song, S. Hou, Y. Ye, X. Li, L. Zhao, C. Shi,
J. Wang, and Q. Xiong, “Your style your identity: Leveraging writing and
photography styles for drug trafficker identification in darknet markets
over attributed heterogeneous information network,” in The World Wide
Web Conference, 2019, pp. 3448–3454.

[4] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018, pp.
974–983.

[5] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The World Wide Web
Conference, 2019, pp. 417–426.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017.
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