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Abstract—Training neural networks with back-propagation
(BP) requires a sequential passing of activations and gradients,
which forces the network modules to work in a synchronous
fashion. This has been recognized as the lockings (i.e., the
forward, backward and update lockings) inherited from the BP.
In this paper, we propose a fully decoupled training scheme
using delayed gradients (FDG) to break all these lockings.
The FDG splits a neural network into multiple modules and
trains them independently and asynchronously using different
workers (e.g., GPUs). We also introduce a gradient shrinking
process to reduce the stale gradient effect caused by the delayed
gradients. In addition, we prove that the proposed FDG algorithm
guarantees a statistical convergence during training. Experiments
are conducted by training deep convolutional neural networks
to perform classification tasks on benchmark datasets, showing
comparable or better results against the state-of-the-art methods
as well as the BP in terms of both generalization and acceleration
abilities. In particular, we show that the FDG is also able to
train very wide networks (e.g., WRN-28-10) and extremely deep
networks (e.g., ResNet-1202).

I. INTRODUCTION

In recent years, deep neural networks, e.g., convolutional
neural network (CNN) [19] and recurrent neural network [5]],
[10], have demonstrated great success in numerous highly
complex tasks. Such success is built, to a great extent, on the
ability to train extremely deep networks enabled by ResNet
[9] or other techniques with skip-connection-like structures
[8]], [11f], [27], [28]. Training networks with back-propagation
(BP) [26] is a standard practice but it requires a complete
forward and backward pass before the parameter update can
be finished. This easily leads to inefficiency [1]] especially for
training deeper networks, which is recognized as the lockings
[16] (i.e., forward, backward and update lockings) inherited
from the standard BP. The existence of these lockings keeps
the majority of the network on hold during the training,
thereby compromising the efficiency.

In order to improve the efficiency, there have been a number
of contributions on decoupling the training by splitting the net-
work into multiple modules to facilitate model parallelization.
With a common target for acceleration, the decoupled learning
has several benefits over methods based on the data-parallel
or mixed-parallel paradigm [12], [17]], [25]]. For instance, it
avoids the performance loss for modules sensitive to batch
size change, e.g., Batch Normalization [15]], and is able to
parallelize the Recurrent neural networks (see [16]). The
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decoupling techniques might be categorized into two groups:
the backward-unlocking (BU) based methods and the local
error learning (LEL) based methods.

The BU-based methods have access to the global infor-
mation from the top layer and could break the backward
locking. An additional benefit is that they often introduce no
extra trainable parameters while enabling decoupling behav-
iors. Nonetheless, a full forward pass is still required before
any parameter update. One important motivation for these
techniques is to promote biological plausibility, which focuses
on removing the weight symmetry and the gradient propa-
gation from the BP. Feedback alignment (FA) [21]] removes
the weight symmetry by replacing symmetrical weights with
random ones. Direct feedback alignment [23|] following the
FA replaces the BP with a random projection and enables a
simultaneous update for all layers. However, these biologically
inspired approaches suffer from performance losses and are
shown to scale poorly on more complex datasets [2]. On
the other hand, delayed gradients provide another solution
of breaking the backward locking. The decoupled parallel
BP using delayed gradients (DDG) [14] is able to train very
deep (up to 110 layers) CNNs and shows no performance
loss while reducing the training time. Since the DDG is
still constrained by the forward locking, the acceleration is
relatively limited even with multiple GPUs. The feature replay
(FR) following the DDG also breaks the backward locking
through recomputation, and it has been shown to perform even
better than BP for several deep architectures with less memory
consumption. However, the FR introduces more computational
burden and thus is slower than the DDG.

The LEL-based methods use the local information and
are more promising in terms of decoupling ability. This is
because potentially they are able to fully decouple the neural
network training. The full decoupling can be achieved by
building auxiliary local loss functions to generate local error
gradients, severing the gradient flow between the adjacent
modules thereby training them asynchronously in parallel. The
decoupled neural interface (DNI) proposed in [[16] is one of
the pioneers exhibiting parallel training potential for neural
networks. This technique utilizes a local neural network to
generate synthetic gradients for the hidden layers so that the
update could happen before completing either the forward
or the backward pass. However, the DNI has been shown
to learn poorly and even exhibit convergence problems in



TABLE I: Comparison with state-of-the-art methods in terms
of lockings and auxiliary networks.

Methods DDG FR DNI DGL FDG (ours)
Lockings Yes Yes No No No
Auxiliary networks No No Yes Yes No

deeper networks [[14]]. In [22f], local classifiers with cross-
entropy loss are adopted showing potentials to train the
hidden layers simultaneously. It has been shown that the local
classifier alone fails to match the performance of a standard
BP. In [24], a similarity measure combined with the local
classifier is introduced to provide local error gradients. The
mixed loss functions can produce classification performances
comparable with or even better than the BP baselines but are
currently tested only in VGG-like networks (< 13 layers).
Very recently, the depth problem of the LEL-based methods
is alleviated by decoupled greedy learning (DGL) [3], which
is able to train very deep networks (> 100 layers) while
maintaining comparable performance against a standard BP.
The common sacrifice that any LEL technique has to make is
the introduction of extra trainable parameters imposed by the
auxiliary networks. For instance, to match the standard BP,
the local learning in [24]] needs to train several times more
parameters.

In summary, both BU-based and LEL-based methods can
decouple the training of neural networks while showing poten-
tial in obtaining comparable performances against the standard
BP. In comparison, the LEL-based methods lead in fully
decoupling the network learning but introduce extra trainable
parameters. The BU-based methods behave in the opposite
way. In this paper, we propose a fully decoupled training
scheme using delayed gradients (FDG) sharing both merits
of the BU-based and the LEL-based techniques (see Table [I).
The main contributions of this work are as follows:

e We propose the FDG, a novel training technique that
breaks the forward, backward and update lockings without
introducing extra trainable parameters. We also develop a
gradient shrinking (GS) process that can reduce the stale
gradient effect caused by utilizing the delayed gradients.

e We show that, in the ideal case, the FDG achieves a linear
speedup w.r.t. to the number of workers.

e Theoretical analysis is provided showing that the proposed
technique guarantees a statistical convergence.

e We conduct experiments by training deep CNNs and
show that the proposed FDG produces comparable or better
results compared with other state-of-the-art methods as well
as the standard BP on benchmark datasets in terms of both
generalization ability and computation time reduction.

Although we adopt delayed gradients like the DDG [14]]
and other asynchronous stochastic gradient descent (ASGD)
methods [6], [20], [29]], the FDG is different from these
techniques. The DDG only breaks the backward locking, but
the FDG is able to break all the lockings, leading to a more
efficient training. Different from the ASGD-based methods,
the FDG trains the network by splitting it into modules handled
by different workers while the ASGD-based methods let each
worker handle the entire network.

II. BACKGROUND

In this section, we provide some background knowledge for
training a feedforward neural network. The forward, backward
and update lockings [16] are also revisited.

Assume we need to train an L-layer network. The (<L)
layer produces an activation z; = A;(z;—1;6;) by taking z;_;
as its input, where A; is an activation function and 8; € R™
is a column vector representing the weights in layer [. The
sequential generation of the activations constructs the forward
locking since z; will not be available before all the dependent
activations are obtained. Let @ = [07, 607, ..., 07| € R%i=1mi
denote the parameter vector for the whole network. Assume
f is a loss function that maps a high-dimensional vector to a
scalar. The learning of the feedforward network can then be
summarized as the following optimization problem:

f2(0) (1

minimize
6=[07,07,...,0T]T
where @ represents the input-label information (or training
samples). We will drop the subscript @ in (I) in the rest of
this paper for convenience: fz(0) — f(0).
The gradient descent algorithm is often used to solve (I)) by
updating the parameter @ iteratively. At step ¢, we have

0" =0" — g, 2)
or equivalently,
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and ~y; is the learning rate. If the training sample size is large,
we apply stochastic gradient descent (SGD) as a replacement
such that
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where x; is a mini-batch of x. Note the “~” has been removed
to indicate the difference from (@). Thus the parameter can be
updated through

0 = 0} —vigh, 1=1,..., L. (©6)
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Such a replacement is based on the realistic assumption of
unbiased gradient as follows

Elgs,] = g, (7
To obtain the gradient vectors, the BP (also known as the
chain rule) can be employed. One could calculate the gradient

in layer [ using the gradients back-propagated from layer j
and ¢ (I < j <)
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Note that we introduce gij, i.e., the gradient vector w.r.t. acti-
vation z;, because it travels between modules as an important
part of our proposed FDG. Equations and (@) indicate a
dependency of gg, on g; and g, . In other words, the gradient
in layer [ remains unavailable until the gradient computations
of all dependent layers are completed. This is also known
as the backward locking. In addition, the parameter update
is not permitted before all modules complete executing the
forward pass. This is recognized as the update locking. In the
following, we show that a full decoupling (i.e., the forward,
backward and update unlockings) can be achieved.

III. FULLY DECOUPLED NEURAL NETWORK LEARNING

In this section, we give the details of the proposed FDG.
This technique provides a fully decoupled asynchronous learn-
ing algorithm with a gradient shrinking (GS) process which
reduces the accuracy loss caused by the delayed gradients.

A. The Proposed FDG

We first split the network into K modules with each module
containing a stack of layers. Accordingly, we split {1,..., L}
into {q(1),4q(2),...,q(K)} where (k) = {mg,mp +
1,...,mg41 — 1} denotes the layer indices in module k.

As illustrated in Figure [I(a), during the decoupled learning,
module & is able to perform a forward and a backward
pass using the delayed activation previously passed from
module k£ — 1 and the delayed gradient previously sent by
module £ + 1. Note that all the modules undergo the same
execution simultaneously, hence achieving the parallel training
of different modules. After executing both passes, the gradient
of the module input is passed to module k£ — 1, while the
module output is sent to module k+1 as its new input. This can
be detailed by the following steps for module £ (1 < k£ < K):
o forward: at iteration ¢, we feed the input zfnkk *1 (previously
sent by module k£ — 1) into module k£ which produces a module
output (activation) z,"*',. We adopt ¢ — k + 1 instead of
t because at iteration ¢ we are using the delayed activation
generated by batch ¢ — k + 1 (see Figure [I[a)).

e backward: at iteration ¢, we utilize the delayed gradient
gimiK;[k *1 previously received from module k + 1 to resume
the BP procedure. The superscript ¢t — 2K + k + 1 is adopted
because there is a delay of 2(K — k) of gradients (see Figure
[[fa)) w.r.t. the forward pass that uses batch ¢ — k + 1. Thus,
for each layer (mj <1 < mygy1 — 1), we obtain the gradient:

t—2K+k+1
Mpq1—1 t—2K+k+1

st—ktl _
= ggl 2K TR 9z

b, (10)
Note that must utilize the delayed activation of batch
t — 2K + k + 1. It is only reasonable to calculate the gradients
based on the activations generated by the same training batch.
Subsequently, the module can be updated through

t—k+2 _ pt—k+1 At—k+1
0, =0,

— Tt—k+19g,

Y

After that, we save g;;ilfjkﬂ, the gradient of the module
input, for communication.

e communication: at iteration ¢, send gt~ 25 F**1 to module

Zmy,
t—k+1
mk_*_lfl

k —1 and pass z to module k£ + 1 as 1ts new input.

The aforementioned forward, backward and communication
steps break all the lockings described in [[16]]. Firstly, the global
BP is broken into module-wise BP running in parallel, which
achieves the backward unlocking. Secondly, each of the split
modules processes the training data from different batches,
leading to an asynchronous module parallelization, hence the
forward unlocking. Finally, all the modules can be updated
without waiting for other module to complete the forward pass,
so the update unlocking is also achieved.

Note that we utilize ¢ — k + 1 instead of ¢ in the update
formula (II)) in correspondence to the activation index (e.g.,
z!=F+1 1y at iteration ¢. One could easily see that, for module

mk+1—1
k at iteration ¢ + k — 1, can be equivalently shifted to
0/t = 0! (12)

- %Qél-
Adopting (12) over would benefit the subsequent conver-

gence analysis in the next section. Let d; =t — 2(K — k),
we can further unpack g such that

d .
e k,t afmdk . (edk,t) afmdk . (Bdk,t)

At mp 1 —1 o dk,t,
9o, = aeldk,t 920kt B - aoldk,t = Y, (13)
ME 41
and rewrite (12)) as
t+1 di.t
0,7 = 61 — "NY9e, (14)

which is observed to take in delayed gradients with a delay
of 2(K — k) compared with (6).

Analysis of Speedup: Assume a network is evenly split into
K modules. In the ideal case where other time consumptions
such as communications are excluded, Table [lI] shows that a
linear (K -time) speedup can be achieved with the FDG, which
is the highest among all the decoupling methods.

TABLE II: Ideal speedup of different decoupling methods for
a network evenly split into K modules. T, T, and 74, denote
the computation time executing the forward, the backward
pass, and the auxiliary network, respectively.

Methods BP DDG FR

Tf +Tb

DNI & DGL
Ti+Te
K

FDG (ours)
Tr+Ty
K

Time Ty +Ty, T+ 2 Tp+ + Taus

B. The Gradient Shrinking Process

Using the delayed gradients enables model parallelization
but could also lead to certain performance loss. This is a
common phenomenon observed in algorithms with stale gra-
dients [4]]. To compensate the performance loss, we introduce
a gradient shrinking (GS) process before back-propagating the
delayed gradients through each module.

The GS process works in a straightforward manner. At itera-
tion ¢, before executing BP in module k, we shrink the gradient
by multiplying it with a shrinking factor 8 (0 < 8 < 1). This
can be shown by modifying (10) as

zt—2K+k+1

Zrmpsr—1 At—2K +k+1

At—k+1 __ — B
aalt 2K+k+1 Zmp -1

G, (15)

The module is then updated through (II). If 8 = 1, the GS
process is not used.
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Fig. 1: Illustration of the proposed FDG: a K = 3 example. (a) By delaying the activations and gradients, the FDG allows
the modules (in different colors) to be trained asynchronously in parallel. The communications among modules happen right
before the iteration ends. We can easily see that there is a delay of 2(K — k) of gradients in module & with a split of K. For
instance, for K = 3, module k = 1 (gray) generates an activation at iteration 1 but the gradient of this batch arrives at iteration
5. (b) In the FDG, the backward pass (step B) is executed in the previously saved computation graph while the forward pass
(step A) happens in the current one. This is how the FDG overcomes the sequential nature of the standard BP.

Note that in (@) unlike (T0), the received delayed gradient
is denoted by g% if +E+1 because the gradient in module & is
affected by multiple GS processes starting from the top module
where the gradient is not shrunk. This can be illustrated by
unpacking (T3):
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which shrinks the gradient by a factor of 4%~ in module k.

Equivalently, we have
g6, = B~
The GS process works similarly by scaling the learning
rate in the corresponding module, determining how much we
should move towards the direction of the negative gradients.
We can interpret this process in an intuitive way shown in
Figure 2] The delayed gradients, especially with longer delays,
would lead to deteriorated performance [4]]. Figure 2a) shows

a scenario where the delayed gradients cause the learning to
miss the local minimum to a large margin. By using the shrunk

d
Fgor. (17)

Negative gradients

‘Updatedloss ~ Negative gradients
; .
from earlier iterations i

from earlier iterations .

Current loss Current loss
X The shrunk Updated loss
The delayed gradient delayed gradient

(a) (b

Fig. 2: An intuitive interpretation for the GS process.

Algorithm I: FDG (SGD)

Required: learning rate ¢, number of split modules K, gradient
shrinking factor 3.
e Split the network into K modules and initialize them.
fort=1,2,...,T:

Parallel for k =1,..., K:

e compute the shrunk delayed gradient in each layer
St—2K k41
~t—2K+k+1
EFmp -1
of the module input g~ QKTk'H
e update the module through (TT).
e execute the forward pass to generate the module

output 2tk

Tnk+1 1

~t—k+1 _
9o, ﬁaef SRIRTI

and gradient

® pass zmk ; to module k + 1 as its input.

e send g;mff“““

End for
End for

to module £ — 1.

delayed gradients, there is a better chance of reducing the stale
gradient effect (see Figure 2|b) for an illustration). It is difficult
to analyze how [ affects the network’s ability to generalize.
Instead, we will determine the value of S empirically.

On the other hand, the FDG illustrated in Figure [[(b) also
carries a message that the forward (step A) and the backward
(step B) pass can be implemented separately. This means
each module can execute the backward pass in advance. We
discover that executing the backward pass first gives slightly
better results (see Appendix A). Thus, for the experiments in
this paper, the backward pass is implemented in higher priority.
The proposed FDG with the GS process is summarized in
Algorithm I with SGD optimizer.

Comparison to DDG [14] and FR [13]: The DDG, the
FR and the FDG all adopt delayed gradients. The DDG and
FR address the backward locking only but the FDG breaks
all the lockings. The fact that the DDG and FR require a
full forward pass keeps the modules waiting before model
parallelization, leading to possible poor resource utilizations



(see GPU utilizations in the experiment section). Apart from
the advanced unlocking properties, the introduced GS process
is able to reduce the delayed gradient effect and even help the
FDG surpass the standard BP (see the experiment section).

IV. CONVERGENCE ANALYSIS

In this section, we prove that the proposed FDG guarantees
a statistical convergence. For convenience, 6%, gf) and g}, are
rewritten in terms of modules as

0" =[(011)) T s (0L 1)) 1T, 0Ly = 18, )T s (B, -1)TIT
96 :[(géq(l))Tv (géqu())T]T

g5 =1, )" (@b, )"+ 5,0, = (35,

196, = (96, )" (g5, )T
T _
) ), (T6 )T

mpg1—1

Assumption 1. The gradients of the loss functions f(0) and
fx,(0) are Lipschitz continuous. This means there exists a
constant L > 0 such that

g5 — g51l> <LI6" — 0%,

t t t t
nglq(k) h g9i(k> 12 SLHBql(k) - aq%k)H}

(18)
(19)
Assumption 2. The second moment of the stochastic gradient

is bounded. This means Vt, there exists a constant M > 0
such that:

lgbll3 < M. (20)

Under Assumptions [I] and 2] we can obtain the FDG’s
convergence property in the following theorem.

Theorem 1. Let Assumptions [I] and 2| hold. Assume that the
learning rate is diminishing and L~; < 1. The proposed FDG
in Algorithm I satisfies

E{f(et“)] - E{f(et)] < —%Zl +2Z; Q1)
where
K
Zyv =Y B M|gb, . |15
k=1
X —1 -
Zy =LM'——— + LM Y B*5 ) (¢ — max{0, d,+}).
k=1

As shown in Theorem [I] the behavior of the expected loss
value E[f(0'11)] is controlled by the learning rate ;. If the
right side of is equal to or less than zero, i.e.,

Yt .1 Z;
_521 +Y 22 <0 => 7y <1‘111n{L,2Z2}7
the FDG guarantees the convergence statistically. The proof
of Theorem [I|is provided in Appendix B.

V. EXPERIMENTS

In this section, we conduct experiments on CIFAR-10,
CIFAR-100 [18] (benchmarked by the DDG and the FR)
and Tiny-ImageNet datasets to compare the generalization
and acceleration abilities among different decoupling methods.
These experiments show that the proposed FDG provides
comparable or better results than the standard BP as well as
the state-of-the-art methods in terms of both generalization
and acceleration performances.

A. Comparison of Classification Performance

Implementation Details: The experiments are conducted in
the Pytorch platform with datasets pre-processed using stan-
dard data augmentation (i.e., random cropping, random hori-
zontal flip and normalizing [9]], [[11]]). We use SGD optimizer
with an initial learning rate of 0.1. The momentum and weight
decay are set as 0.9 and 5 x 10~* respectively. All the models
are trained using a batch size of 128 for 300 epochs. The
learning rate is divided by 10 at 150, 225 and 275 epochs. The
test errors of all the experiments are reported at the last epoch
by the median of 3 runs. No validation set is used. For ResNet-
110, ResNet-1202 and networks trained with K = 3,4, we
use 7; = 0.01 to warm up the training for 3 epochs to avoid
divergence.

We compare performances of five different methods, in-

cluding the BP, the DDG [14], the FR [13], the DGL [3]
and our proposed FDG. The DNI [[16] is not included as
its performance has been shown to deteriorate severely with
deeper networks [14]]. The MLP-SR-aux in [3] is adopted as
the auxiliary network for the DGL.
CIFAR-10: We begin by reporting the classification results
on the CIFAR-10 dataset, which is of 32x32 color images
and includes 50000 training and 10000 testing samples with
10 classes. In this experiment, we split the original network
at the center into two modules (K = 2) and train them
asynchronously and independently in 2 GPUs. To ensure fair
comparisons among different methods, we rerun the training
using the BP, the DDG, the FR and the DGL with our training
strategy.

The corresponding classification results are reported in
Table For ResNet-56, ResNet-110 and ResNet-18, net-
works trained by the FR give better generalization abilities
over those trained by the DDG as claimed in [13|]. The FR
also outperforms the DGL and even provides results slightly
surpassing the BP baselines. The proposed FDG is validated
by reporting the individual results with and without the GS
process. Without the GS process, the FDG overtakes the DDG
and the DGL, and achieves comparable results with the BP
baselines. However, with a GS process, networks trained by the
FDG are able to generalize better than their BP counterparts
as well as those trained by the FR.

Additionally, to show that the FDG is able to handle
networks with various widths and depths, we provide the
decoupled training for the shallower network (ResNet-20), the
wider network (WRN-28-10) and the extremely deep network
(ResNet-1202). All of these trained networks also generalize
comparably to or better than those trained by the BP.
CIFAR-100: We now study the classification performance
(K = 2) on CIFAR-100, which contains the same number of
training and testing samples as CIFAR-10 but with 100 classes.
We again rerun the experiments using BP and other methods
with our training strategy. The performances are reported by
the Top 1 error rates in Table For ResNet-56, ResNet-
110 and ResNet-18, we observe that, although overall the FR
still overtakes the DDG and the DGL, it falls behind the BP.
However, with the GS process, the FDG again beats the BP
and other state-of-the-art methods. For our FDG, we provide



TABLE III: The Top 1 errors for various CNN structures on CIFAR-10 dataset under a split number K = 2. Results with * are
rerun using our training strategy. Overall, the rerun experiments give better results than those reported in the original papers.

Architecture ~ # params BP DDG DGL FR FDG

ResNet-20 0.27M 8.75%17.78%* - - - 7.92%(B=1)/7.23%(5=0.2)
ResNet-56 0.46M 6.97%/6.19%*  6.89%/6.63%* 6.77%* 6.07%*  6.20%(5=1)/5.90%(5=0.5)
ResNet-110 1.70M 6.43%/5.79%*  6.59%/6.26%*  6.50%/6.26%*  5.76%*  5.79%(5=1)/5.73%(3=0.2)
ResNet-18 11.2M 6.48%1/4.87%* 5.00%* 5.21%* 4.80%*  4.82%(B=1)/4.79%(/5=0.8)
ResNet-1202 19.4M 7.93%15.51%* - - - 5.50%(8=1)/5.49%(3=0.5)
WRN-28-10 36.5M 4.00%/4.01%* 4.05% 4.12% 3.87% 4.13%(B=1)/3.85%(5=0.7)

TABLE IV: The Top 1 errors for various CNN structures on CIFAR-100 dataset under K = 2. Results with * are rerun using
our training strategy. Overall, the rerun experiments give better results than those reported in the original papers.

Architecture  # params BP DDG DGL FR FDG

ResNet-56 0.46M 30.21%/27.68%*  29.83%/28.44 %*  29.51%*  28.39%* = 27.87%(B=1)/27.49%(5=0.4)
ResNet-110 1.70M 28.10%/25.82%*  28.61%/27.16%*  26.80%*  26.31%*  25.73%(8=1)/25.43%(5=0.5)
ResNet-18 11.2M 22.35%* 22.74%* 22.24%*  22.88%*  22.78%(5=1)/22.18%(3=0.5)
WRN-28-10 36.5M 19.2%119.6%* - - - 20.28%(8=1)/19.08%(3=0.6)

TABLE V: The Top 1 errors for ResNet-18 and MobileNet v2
on Tiny-ImageNet dataset under K = 2.

TABLE VI: The Top 1 errors for ResNet-56 on CIFAR-10
dataset under a split number K = 2, 3,4.

Architecture # params BP FDG ResNet-36 (K = 2) 6113‘1;’/ 6[;](?"?* 62?017* 60F7Rr 6.20%(8 1F)/[5)(;00/(5 0.5)
esNet-5 = . 19% .60% 7% .07%* .20%(8=1)/5.90%(5=0.

ResNet-18 11.2M 38.32%*  38.58%(3=1)/38.22%(=0.5) ResNet-56 (K =3)  6.19%  650%* 8.88%* 6.33%*  6.40%(B=1)/6.08%(3=0.2)

MobileNet v2 3.40M 46.35%*  46.36%(5=1)/46.44%(5=0.3) ResNet-56 (K =4)  6.19%  6.61%*  9.65%* 6.48%*  6.83%(3=1)/6.14%(5=0.3)

WRN-28-10 (K =2) 4.01% 4.05% 4.12%* 3.87%  4.13%(B=1)/3.85%(=0.7)

WRN-28-10 (K = 3)  4.01% 4.12%* 491%*  6.16%*  4.19%(8=1)/4.01%(3=0.5)

WRN-28-10 (K =4)  401% 6.61%*  5.64%*  539%*  6.50%(B=1)/4.42%(3=0.5)

the results for WRN-28-10, which also outperform the BP
baseline with the help of the GS process.
Tiny-ImageNet: We finally report the performances of
ResNet-18 and MobileNet v2 on Tiny-ImageNet, which is of
64x64 color images and has 200 classes, 100000 images for
training 10000 images for testing. Similar to the CIFAR cases,
the FDG also obtains comparable results to BP’s. The Tiny-
ImageNet experiments show that the proposed FDG can handle
various input sizes.
The Impact of the GS Process: The GS process with a
proper (3 could enhance the FDG’s generalization ability. We
now empirically evaluate the impact of the GS process by
experimenting with various values of the shrinking factor .
This evaluation is conducted by training the ResNet-20 on
CIFAR-10 dataset. The bar chart in Figure [3{(c) reports the
Top 1 error rates. We notice that the results for the proposed
FDG are able to surpass the BP baseline with a small effort
of tunning the /3. This also shows that the GS process does
enhance a network’s ability to generalize.
More Split Modules: In this experiment, we study the per-
formance of ResNet-56 and WRN-28-10 on CIFAR-10 by
splitting them into X = 3 and K = 4 modules with each
module trained in an independent GPU. The results are shown
in Table where we list the test errors with K = 2,3,4. It
becomes noticeable that more split modules have caused all
these methods to lose accuracy. However, we also observe
that the GS process allows the classification performances to
be restored to the level of the BP baseline. The improved
performances indicate that the GS process plays an essential
role in reducing the stale gradient effect, which becomes even
more significant as K increases.

As an example, the learning curves of the WRN28-10 with
various K are also plotted in Fig. [3[a)-(b), where we can see

that the fully decoupled methods (DGL and FDG) are much
faster than the BU-based methods. The speedup comparisons
are detailed in the following subsection.

B. Comparison of Acceleration Performance

We conduct experiments WRN-28-10 on CIFAR-10 and
ResNet-101 on ImageNet with K = 2,3,4 to compare
the acceleration abilities among the decoupling techniques.
To ensure fair comparisons, we reimplement the DDG, the
FR and the DGL in our framework adopting the identical
communication protocols. In particular, we adopt a pipeline
parallelization for DGL, a pipeline version of the sequential
DGL [3|] with each worker handling one specific module.
This is to encourage a fair comparison of speedup among all
the methods by allowing each worker to handle one module
alone. The comparisons are done by reporting the number of
images processed per second averaged in 10 seconds when
the training is stabilized. The training speed as well as the
GPU utilization are reported in Table These experiments
are conducted using a server with Intel Xeon E5-1680v4
CPU and RTX 1080Ti GPUs. Note that the experiments are
evaluated without high-speed interconnect among GPUs, so
the speedup potentials could not be fully revealed under our
current hardware settings.

Comparisons among Decoupling Methods: In Table [VII}
for the WRN-28-10 (CIFAR-10) case, in general the proposed
FDG obtains impressive acceleration results compared with
other decoupling methods. For K = 2, our FDG slightly
outperforms the DGL and achieves a 1.88 x speedup compared
with the BP! For K = 3, an impressive 2.72x speedup is
also achieved! These accelerations, which are much faster
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Fig. 3: (a)-(b) Learning curves of the BP, the DDG, the FR, the DGL and the FDG for WRN-28-10 with K = 2,3,4. (c) The
error rates of ResNet-20 trained by the FDG with various 3 values.

TABLE VII: Comparisons of speed (images/s) among different training methods on CIFAR-10 and ImageNet with GPU
utilizations inside the brackets. For instance, 601.60 (71%,94%,80%,61%), 3.20x means 601.60 images per second with 4
GPUs whose utilizations are 71%, 94%, 80% and 61% respectively and a 3.2x speedup over BP. The DGL performs better
for acceleration due to less communication cost but with obvious accuracy loss.

K=2 K=3 K=4
WRN-28-10 (CIFAR-10) ResNet-101 (ImageNet) WRN-28-10 (CIFAR-10) ResNet-101 (ImageNet) WRN-28-10 (CIFAR-10) ResNet-101 (ImageNet)
BP 188.16 (99%) 104.3 (98%) 188.16 (99%) 104.3 (98%) 188.16 (99%) 104.3 (98%)
DDG 28032 (81%,69%), 1.49%x  155.5 (15%,84%), 1.49%x | 31228 (57%,64%,51%), 1.66x  176.8 (61%,58%,45%), 1.70x | 373.76 (90%,60%,69%,35%), 1.99x 189.0 (49%,52%,40%,49%), 1.81x

FR 215.04 (80%.60%), 1.14x
349.44 (99%.85%)., 1.86x
FDG  354.56 (98%,87%), 1.88x

125.0 (70%,67%), 1.20x
194.6 (97 %87 %), 1.89 x
175.0 (84%.80%), 1.88x

232.96 (51%.,68%.,70%), 1.24x
514.56 (97 %,94% 83 %), 2.73x
512.00 (85%,93%.75%), 2.72x

136.2 (76%,70%.39%), 1.31x
273.0 (96%,92%78%), 2.62x
217.0 (74%.63%.,62%). 2.10x

281.60 (59%.62%,35%,31%), 1.50x
611.84 (82%,95%,82%,67 %), 3.25x
601.60 (71%.94%,80%.61%), 3.20x

152.3 (51%.,61%,37%.48%), 1.46x
332.5 (93%,87%,87 %,711%), 3.19x
234.3 (60%.68%.,59%.54%), 2.30x

Note: the experiments are evaluated without high-speed interconnect among GPUs.

than the DDG and FR, are very close to the linear speedup
indicated in Table and are comparable to a decent data
parallelization benchmark [25]] with optimized communication
protocols. This is not surprising since the proposed FDG
does not introduce any extra computation. For K = 4, a
3.20x speedup is obtained with the averaged GPU utilizations
below 90%. Note that the FDG is implemented with vanilla
communication protocols, so the speedup is expected to be
further improved with better hardware setting or more efficient
communication protocols. Since the DGL does not need to
transfer the gradients back to other modules, it becomes
slightly faster due to less communication cost, but it comes
with a loss of accuracy. Our vanilla communication implemen-
tation for FDG will become costly if a larger amount of data
is transferred. This can be shown in the following ImageNet
speedup experiments.

For the ResNet-101 (ImageNet) case, the FDG achieves a
1.68 x speedup (K = 2), which is visibly slower than that in
the WRN-28-10 experiment. This slow-down is normal due to
the lack of high-speed connections among GPUs (e.g., a drop
from 1.8 % to 1x without high-speed interconnect in [12]). The
slow-down becomes more significant for K = 3,4 where only
2.1x and 2.3 speedups (still faster than the DDG and FR) are
achieved. The sole difference from the WRN-28-10 case is that
the ImageNet case needs to transfer much larger tensors across
GPUs. Without high-speed communication bridges among
GPUs (e.g., NVLink [7]), the communication cost becomes
more dominant with larger data for transmission and more
GPUs involved.

On the other hand, we also find that training the networks
using fully decoupled methods (i.e., FDG and DGL) usually

give much higher GPU utilizations than those using the BU-
based methods (i.e., DDG and FR). This is because the
modules trained by the fully decoupled methods are always
active with much less waiting overhead, unlike the BU-based
methods which require a forward pass before parallelization.
Suggestion for Further Acceleration: As shown in Table
the proposed FDG encounters slow-down in training
larger datasets. There are several methods that can be adopted
to improve the acceleration. Firstly, a high-speed physical
GPU bridge (e.g., NVLink [7]) should boost the acceleration
significantly by taking away the expensive communication
cost. Note this is not an unrealistic request as many distributed
methods [12], [25] consider the high-speed interconnect a de-
fault setting to fully show the speedup performance. Secondly,
the module splitting strategy could be improved to ensure
an equal computation load for each worker. Finally, more
efficient communication protocols can be developed to reduce
the communication burden. We will consider these attempts in
future work.

VI. CONCLUSION

In this paper, we propose a fully decoupled method using
the delayed gradients (FDG) to break the forward, backward
and update lockings for neural network learning. The breaking
of these lockings leads to a module-wise parallelization, which
enables the FDG to achieve up to a linear speedup in the ideal
case. To enhance the FDG, we introduce the gradient shrinking
process that has been shown to improve a network’s ability
to generalize. Theoretical analysis shows that the proposed
FDG guarantees a statistical convergence. Our experiments
on the CNNs indicate that the FDG outperforms the state-



of-the-art methods and even overtakes the standard BP while
achieving a significant acceleration (e.g., 1.88x with 2 GPUs
and 2.72x with 3 GPUs). Our method also succeeds in training
very wide networks as well as extremely deep networks. The
experiments reveal that the FDG could potentially benefit from
a more efficient communication process, specially for large-
scale datasets.
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APPENDIX A: SOME PRIMARY EXPERIMENTS
We discover that executing the backward pass first (FDG-backward) could obtain slightly better results than that executing
the forward pass first (FDG-forward). This can be shown in Table by conducting some primary experiments for training

ResNet-20 and ResNet-56 on CIFAR-10. The training strategy can be found in the experiment section.

TABLE VIII: Some primary results for training ResNet-20 and ResNet-56 on CIFAR-10 dataset under a split number K=2.

Architecture  # params FDG-forward FDG-backward
ResNet-20 0.27M 8.03%(B=1)/1.5T%(5=0.2)  7.92%(5=1)/7.23%(5=0.2)
ResNet-56 0.46M 6.20%(6=1)/5.94%(B=0.5)  6.20%(5=1)/5.90%(5=0.5)

APPENDIX B: PROOF TO THEOREM 1

Proof. According to Assumption 1, the following inequality holds:
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where the second inequality is due to 0 < 8 < 1. (23) establishes a module-wise relationship between the loss functions at
t+ 1 and t. To prove the statistical convergence, our goal is to show that the expectation of the summation of the second and
the third term is bounded. To this end, can be further developed such that
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Subsequently, the expectation of Q; is bounded by
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where the first inequality follows from ||z + y||3< 2|x||3+2||y||3. the second one is from the unbiased property in (7) such
that E[||e — E[€]||3] < E[|l€]|3] — |E[e]||3< E[||€||3], the third one follows from Assumption 2, and the P; can be bounded by
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with the first inequality coming from the Assumption 1. On the other hand, The expectation of Q- is bounded by
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where the second equality follows by the unbiased gradient using SGD, and the inequality comes from a7y < 1||x|3+1|yl3.



Taking the expectation of both sides in (24) and substituting Q1 and Q,, the inequality is rewritten as
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where the last inequality follows from L+, < 1 such that %ML < 1. The proof is now completed O
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