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Abstract—This paper develops an adaptive observation-based
efficient reinforcement learning (RL) approach for systems with
uncertain drift dynamics. A novel concurrent learning adaptive
extended observer (CL-AEO) is first designed to jointly estimate
the system state and parameter. This observer has a two-time-
scale structure and doesn’t require any additional numerical
techniques to calculate the state derivative information. The idea
of concurrent learning (CL) is leveraged to use the recorded
data, which leads to a relaxed verifiable excitation condition for
the convergence of parameter estimation. Based on the estimated
state and parameter provided by the CL-AEO, a simulation of
experience based RL scheme is developed to online approximate
the optimal control policy. Rigorous theoretical analysis is given
to show that the practical convergence of the system state to
the origin and the developed policy to the ideal optimal policy
can be achieved without the persistence of excitation (PE) con-
dition. Finally, the effectiveness and superiority of the developed
methodology are demonstrated via comparative simulations.

Index Terms—Uncertain systems, reinforcement learning (RL),
adaptive observer, concurrent learning (CL), optimal control.

I. INTRODUCTION

Reinforcement learning (RL), inspired by learning mecha-
nisms observed in naturally occurring systems (e.g., animals
and social groups [1]), is concerned with how agents or
actors ought to take optimal actions in an environment to
maximize the notion of cumulative reward [2]. In the last
several decades, RL has been adopted in control theory and has
had an increasing success in finding adaptive optimal policies
for dynamic control systems [3, 4].

Early efforts for the implementation of RL algorithms in
control society can be dated back to 1980s [5, 6], in which
RL was employed to solve the optimal regulation problem
for discrete-time systems. Extending RL to continuous-time
systems was first visited in [7]. After that, considerable RL so-
lutions were developed for both discrete-time and continuous-
time systems. In [8], an RL algorithm which solves the alge-
braic Riccati equation corresponding to the LQR problem was
proposed without requiring the knowledge of the system state
matrix. In [9], the approach in [8] was extended to continuous-
time linear systems with completely unknown system dynam-
ics. In [10], an RL algorithm was developed to solve the
infinite horizon optimal control problem for nonlinear systems
with known dynamics. The RL algorithm provides an online
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approximated solution to the Hamilton–Jacobi–Bellman (HJB)
equation. The infinite horizon optimal control problem was
further investigated for affine and nonaffine unknown nonlinear
systems in [11] and [12], respectively. In recent years, RL
algorithms were developed for more complex systems such as
polynomial systems [13] and nonstrict-feedback systems [14],
and more complex tasks such as multi-agent formation [15]
and fault-tolerant control [16].

In RL-based control, a neural network (NN) based actor-
critic structure is generally employed to online approximate
the ideal optimal control policy [17]. Therefore, unlike tradi-
tional adaptive controllers, the ideal weights of the NN must
be exactly learned. This puts a significant challenge for the
implementation of RL algorithms [18]. A common way to
handle this challenge is to assume a persistence of excitation
(PE) condition. The PE condition guarantees that the system
state explores sufficient points in the state space to generate
an “ideal” approximation over the entire domain of operation.
However, this condition is difficult to be theoretically guaran-
teed and cannot be monitored online. In many aforementioned
RL works [9, 10, 12, 13, 16], to fulfill the PE condition,
carefully selected probing signals are injected into the system,
which will inevitably cause undesirable oscillations. Due to
this issue, data-driven techniques such as experience replay
[19–21] were leveraged to improve data efficiency in online
approximate optimal control by reusing the recorded data, and
consequently to relax the requirement of the PE condition.
However, as pointed out in [22], since the data can only be
recorded along the system trajectory, the system under the
designed experience replay-based RL controller still needs to
provide sufficient excitation for learning. For example, probing
signals were used in the numerical examples in [19].

Note that in RL, the NN weights are updated using Bellman
error (BE) as a performance metric. If the system dynamics
is known, the BE can be evaluated at any desired point in the
state space, rather than only along the system trajectory. In this
case, sufficient exploration can be guaranteed by appropriately
selecting the points to cover the domain of operation. This
idea to improve data efficiency is interpreted as simulation
of experience and falls into the so-called model-based RL
[22–25]. The model-based RL is capable of relaxing the PE
condition and removing the requirement of the probing signal.
In model-based RL, one of the main tasks is to obtain the
model information before or along with the learning process.
In [22–24], the system drift dynamics was online learned
with the knowledge of full state and state derivative. If exact
state derivative information is not available, additional numer-
ical smoothing techniques are needed, which will introduce
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smoothing errors and increase processing and storage burden.
In [25], an integral concurrent learning (ICL) estimator with
full state feedback was proposed to learn the system drift
dynamics without the requirement of the state derivative in-
formation. However, the ICL requires numerical techniques to
evaluate the integrals, which will inevitably cause accumulated
errors.

Based on the above discussions and considerations, in this
paper, we propose an adaptive observation-based approach to
enable efficient model-based RL without the state derivative
information or integral calculation. Our approach is inspired
from the communities of adaptive observers [26–28], concur-
rent learning [29], and model-based RL [22–25]. The main
contributions of this paper are twofold:

1) A concurrent learning adaptive extended observer (CL-
AEO) is proposed for joint state and parameter estimation.
This observer falls into a two-time-scale structure and
also provides an estimate of the state derivative. The
concurrent learning (CL) technique is employed to use
the recorded and current data simultaneously for parameter
adaptation. We show that a verifiable condition on the linear
independence of the recorded data, which implies a relaxed
PE condition, is sufficient to guarantee the convergence of
the parameter estimation. As far as the authors’ knowledge
goes, the proposed CL-AEO is the first observer which is
capable of jointly estimating system state and parameter
with a relaxed PE condition.

2) An adaptive observation-based RL scheme is established
for approximate optimal control of uncertain systems. The
proposed CL-AEO provides the system state and model
information to implement a model-based RL algorithm.
Specifically, the estimated model is leveraged to evaluate
the BE not only along the system trajectory, but also at
any unexplored interested data points. Convergence of the
developed policy to a neighborhood of the optimal policy
is proved via Lyapunov-based stability analysis. Compared
with the state-of-the-art model-based RL designs [22–25],
our established scheme is output-feedback and does not
require the state derivative information or integral calcula-
tion.

The rest of this paper is organized as follows. Section II
states the problem formulation. Section III presents the design
and analysis of the CL-AEO. Section IV gives the CL-AEO
based RL scheme. Simulation results are provided in Section
V to illustrate the effectiveness of the proposed observer and
control scheme. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Notations and Definitions

Throughout the paper, big O-notation in terms of ν is
denoted as O(ν) and it is assumed that this holds for ν positive
and sufficiently small. For any continuously differentiable
function f : Rn × Rm → Rl, fx : Rn × Rm → Rl×n
represents its gradient with respect to the first vector argument,
i.e., fx(ν1, ν2) = ∂f(ν1, ν2)/∂ν1. λmax(P ) and λmin(P )
denote the maximum and minimum eigenvalues of matrix

P , respectively. I denotes the identity matrix with appro-
priate dimension. 1A(ν) is the indictor function defined by

1A(ν) =

{
1 if ν ∈ A,
0 if ν /∈ A. In the paper, for notation simplicity,

the time variable t of a signal will be omitted except when
the dependence of the signal on t is crucial for presentation.

The definitions of excitation and persistence of excitation
of a bounded vector signal ν(t) are given as follows [29, 30]:

Definition 1: A bounded vector signal ν(t) is exciting over
an interval [t, t+T ], T > 0, t ≥ t0, if there exists α > 0 such
that ∫ t+T

t

ν(τ)νT(τ)dτ ≥ αI.

Definition 2: A bounded vector signal ν(t) is persistently
exciting (PE) if for all t ≥ t0 there exist T > 0 and α > 0
such that ∫ t+T

t

ν(τ)νT(τ)dτ ≥ αI.

B. Problem Statement

Consider an n-dimensional nonlinear time-varying dynamic
system with single-input u and single-output y,

y(n) = f(y, ẏ, . . . , y(n−1)) + g(y, ẏ, . . . , y(n−1))u, (1)

where f(·) and g(·) are continuously differentiable functions.
System (1) represents a wide class of physical plants, such as
the wing rock phenomenon in [31] and the noncircular turning
process in [32]. In this paper, we consider the case that the
drift dynamics f(·) is in a parametric form, i.e., system (1)
can be written into{

ẋ =Ax+B
[
WTΦ(x) + g(x)u

]
,

y =Cx,
(2)

where x = [x1, . . . , xn]T ∈ Rn is the state, Φ(x) : Rn → Rm
is the regressor function, W ∈ Rm is the unknown constant
ideal weight vector, and matrices A ∈ Rn×n, B ∈ Rn×1,
and C ∈ R1×n represent a chain of integrators as in [33]. To
guarantee the controllability of the system, it is assumed that
g(x) is bounded away from zero for all x ∈ Rn. The first
problem to be solved in this paper is stated as follows:

Problem 1 (Joint State-Parameter Estimation): Given the
uncertain system (2), design an adaptive observer to jointly
estimate the system state x and parameter W .

The problem of joint estimation of missing state and
parameter has motivated a lot of work, especially the so-
called adaptive observers. However, in the existing adaptive
observers such as [26–28], the restrictive PE condition is
needed. The CL technique is a promising approach to relax
the PE condition. But additional state derivative information
is generally required [29]. In this paper, we aim to solve
Problem 1 by designing a CL-based adaptive observer, with a
relaxed verifiable PE condition and without the state derivative
information.

Based on the joint state-parameter estimation, we further
consider the online infinite horizon optimal control problem
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for system (2), i.e., to find the optimal control policy u∗ :
Rn → R such that the following cost functional is minimized:

J(x, u) =

∫ ∞
0

(
Q(x) + uTRu

)
, (3)

where R > 0 and Q : Rn → R+ is positive definite. It is well-
known that this optimal control problem can be transformed
into solving the following HJB equation [34]:

V ∗x (x)
[
Ax+B(WTΦ(x) + g(x)u∗(x))

]
+Q(x) + u∗T(x)Ru∗(x) = 0, (4)

where V ∗ : Rn → R≥0, V ∗(0) = 0, is the optimal value
function. The optimal control policy can be calculated from
V ∗(x) as

u∗(x) = −1

2
R−1gT(x)BTV ∗x

T(x). (5)

Generally speaking, an analytical solution to the HJB equation
(4) is not feasible, and one needs to seek an approximated
solution. The second problem to be solved in this paper is
then stated as follows:

Problem 2 (RL-Based Approximate Optimal Control): Given
the uncertain system (2) and the cost functional (3), develop
a joint state-parameter estimation-based RL scheme to online
approximate the optimal control policy.

Since the joint state-parameter estimation provides the sys-
tem model information, the RL algorithm to be developed
in this paper falls into the model-based RL community. The
main advantage of the model-based RL is that by leveraging
the system model, the BE can be evaluated at any points
in the domain of operation, which intuitively removes the
sufficient excitation assumption required by non-model-based
RL algorithms. In the following, Problems 1 and 2 will be
solved in Sections III and IV, respectively.

III. CONCURRENT LEARNING-BASED ADAPTIVE
OBSERVATION

A. Observer Design

For the joint state-parameter estimation problem, similar
to [26–28], all the signals in system (2) are assumed to be
bounded. Specifically, let x(t) ∈ X , ∀t ≥ 0, where X ⊂ Rn
is a compact set. Before stating our candidate observer, we
introduce some notations. Let Γ1 =

[
l1
ε ,

l2
ε2 , . . . ,

ln
εn

]T
and

Γ2 = ln+1

εn+1 , where ε < 1 a small positive constant and
L = [l1, l2, . . . , ln+1]T ∈ Rn+1 is selected such that the
following matrix is Hurwitz:

E =


−l1 1 0 · · · 0
−l2 0 1 · · · 0

...
...

...
. . .

...
−ln 0 0 . . . 1
−ln+1 0 0 · · · 0

 ∈ R(n+1)×(n+1).

Let % : R → R be an odd smooth saturation-like function,
which is characterized by 0 < %′(ν) ≤ 1, %(ν) = ν if |ν| ≤ 1,
and limν→∞ %(ν) = 1 + ι with 0 < ι� 1 [33].

Let us now state the proposed concurrent learning adaptive
extended observer (CL-AEO):

˙̂x =Ax̂+ Γ1(x1 − x̂1) +B [x̂n+1 + g(x̂)u] ,

˙̂xn+1 =Γ2(x1 − x̂1),

xi =Mi%(x̂i/Mi), 1 ≤ i ≤ n+ 1,

˙̂
W =Γ3Φ(x)

(
xn+1 − ŴTΦ(x)

)
+

p∑
j=1

Γ3Φ(xj)
(
xjn+1 − ŴTΦ(xj)

)
,

(6)

where x̂ = [x̂1, . . . , x̂n]T, x̂n+1, and Ŵ , are the estimates of x,
xn+1 ,WTΦ(x), and W , respectively; Mi ≥ supx∈X |xi| are
saturation bounds selected to prevent the perking phenomenon
during the initial period [33, 35, 36]; x = [x1, . . . , xn]T is the
saturated estimate of x; Γ3 is a positive definite learning rate
matrix; j ∈ {1, 2, . . . , p} with p ≥ m denotes the index of
a recorded data point, and xj and xjn+1 represent the j-th
recorded data of x and xn+1, respectively.

In the sequel, several remarks are presented that provide
intuitive explanations on the observer structure and reveal its
properties.

Remark 1 (Two-Time-Scale Structure): Since ε is a small
positive constant, the CL-AEO (6) has a two-time-scale struc-
ture in which x̂ and x̂n+1 are in the fast time scale while Ŵ
is in the slow time scale. This structure is vital to implement
the CL technique. Specifically, note that in the CL-AEO (6),
the history data of x and xn+1 are stored for the adaptation
of Ŵ . The fast convergence of x̂ and x̂n+1 guarantees the
validity of the stored data. If x̂, x̂n+1, and Ŵ perform in the
same time-scale, the noneligible history data will be stored.
This will inevitably deteriorate the observer performance and
make the convergence analysis difficult.

Remark 2 (Derivative Information): Note that the adaptive
observer (6) also provides an estimate of the term WTΦ(x),
which is regarded as an extended state of the system. In this
case, the derivative of the nth state, ẋn, can be evaluated as
x̂n+1 + g(x̂)u. In the traditional CL framework [29, 37, 38],
the state derivative information is assumed to be known or
needs to be calculated by noncausal numerical smoothing
techniques. These numerical processes are usually vulnerable
to approximation errors, and also lay a big barrier for the
rigorous theoretical analysis [39]. In this paper, benefited
from the extended design, the state derivative information is
estimated simultaneously with the state. More importantly,
this enables us to overcome the theoretical barrier within the
traditional CL framework since the state derivative estimation
error can be rigorously analyzed.

Remark 3 (Data Recording Algorithm): In the CL-AEO (6),
the recorded data include the vectors Φ(xj) and the associated
information xjn+1. Let Z = [Φ(x1), . . . ,Φ(xp)] represent the
history stack, and denote Λ = [x1

n+1, . . . , x
p
n+1]. Similar to

[29], the basic idea for data recording is to update the history
stack by adding data points to empty slots or by replacing an
existing point if no empty slot is available to maximize the
minimum singular value of Z. The data recording algorithm
for the CL-AEO (6) is given by Algorithm 1.
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Algorithm 1 Data Recording Algorithm for the CL-AEO (6)

1: Set k = 1, Z = 0m×p, Λ = 01×p
2: if k ≤ p then
3: Z(:, k) = Φ(x); Λ(:, k) = xn+1

4: k = k + 1
5: end if
6: if k > p then
7: Ztemp = Z
8: Sold = minSV D(ZT)
9: for j = 1 to p do

10: Z(:, j) = Φ(x)
11: S(j) = minSV D(ZT)
12: Z = Ztemp

13: end for
14: find Snew = max1≤j≤p S(j) and let j′ denote the

corresponding column index
15: if Snew > Sold then
16: Z(:, j′) = Φ(x); Λ(:, j′) = xn+1

17: end if
18: end if

Remark 4 (Special Cases): In some cases, the CL-AEO (6)
can be constructed in more specific forms. First, if the system
state x is available for feedback, the structure of the CL-AEO
is simplified into

ϑ̇ =
l

ε
(xn − ϑ) + g(x)u, x̂n+1 =

l

ε
(xn − ϑ),

xn+1 =Mn+1%(x̂n+1/Mn+1),

˙̂
W =Γ3Φ(x)

(
xn+1 − ŴTΦ(x)

)
+

p∑
j=1

Γ3Φ(xj)
(
xjn+1 − ŴTΦ(xj)

)
,

(7)

where l > 0, and xj are the j-th recorded state data.
Second, in the case that the drift dynamics f(x) is partially
known, the known information can be utilized in the CL-
AEO. Specifically, let f(x) = f0(x)+WTΦ(x) with a known
function f0, then the x̂-equation in (6) is modified as

˙̂x = Ax̂+ Γ1(x1 − x̂1) +B [f0(x̂) + x̂n+1 + g(x̂)u] . (8)

B. Convergence Analysis

The following theorem contains the convergence analysis
results of the CL-AEO (6).

Theorem 1: Consider the system (2) and the proposed CL-
AEO (6). Suppose all signals in system (2) are bounded and
the vector signal Φ(x(t)) is exciting over a finite time interval
[0, T ]. The history stack Z is empty at t = 0, and is updated
according to Algorithm 1 such that rank(Z) = m. Then for
any σ > 0 and T0 > 0, there exists ε∗ > 0 such that ∀ε ∈
(0, ε∗):

|xi(t)− x̂i(t)| ≤ σ, 1 ≤ i ≤ n+ 1,∀t ≥ T0, (9)

and
lim
t→∞

‖W − Ŵ (t)‖ ≤ σ. (10)

Proof: Due to the two-time-scale structure of the CL-AEO
(6), the proof of its convergence will be started from that of
x̂ and x̂n+1, and ended with the convergence of Ŵ . Consider
the scaled state estimation error η = [η1, . . . , ηn+1]T with
ηi = xi−x̂i

εn+1−i , 1 ≤ i ≤ n+ 1. By (2) and (6), the dynamics of
η can be given by

η̇ =
1

ε
Eη + FW TΦx(x)

[
Ax+B

(
W TΦ(x) + g(x)u

)]
,

(11)
where F = [0 BT]T. Due to the boundedness of x and the con-
tinuousness of the functions Φ, Φx, and g, the second term in
the right-hand side of the equation above is upper bounded by
an ε-independent positive constant N0. Let P ∈ R(n+1)×(n+1)

be the unique positive definite matrix solution to the matrix
equation PE + ETP = −I , and define a Lyapunov function
candidate V1(η) = ηTPη. It follows that

α1‖η‖2 ≤ V1(η) ≤ α2‖η‖2,
∣∣∣∣∂V1(η)

∂ηn+1

∣∣∣∣ ≤ 2α2‖η‖, (12)

where α1 and α2 are the minimal and maximal eigenvalues of
the matrix P , respectively. By some straightforward manipu-
lations, the derivative of V1(η) satisfies

dV1(η)

dt
≤− 1

ε
‖η‖2 + 2α2N0‖η‖

≤ − 1

α2ε
V1(η) +

2α2N0√
α1

√
V1(η). (13)

It follows that

d
√
V1(η)

dt
≤ − 1

2α2ε

√
V1(η) +

α2N0√
α1

. (14)

By (12) and (14), one has

‖η‖ ≤
√
V1(η)
√
α1

≤

(√
V1(η(0))
√
α1

− 2α2
2N0ε

α1

)
e
− 2α2

2N0ε√
α1

ε
+

2α2
2N0ε

α1

≤
√
α2

α1
‖η(0)‖e−

2α2
2N0√
α1ε

t
+

2α2
2N0ε

α1
. (15)

Note that the right-hand side of the inequality above is of
the order of O(ε) for all t ≥ tε = −(n + 1)ε ln ε. Since
tε → 0 as ε → 0, this proves the practical convergence
of the state estimation specified by (9). What is more, the
saturation elements %(x̂i/Mi) work in the linear zone after
the convergence of the state estimation, i.e., xi(t) = x̂i(t),
∀t ∈ [T0,∞).

Let us now consider the convergence of the parameter
estimation. Denote W̃ = W − Ŵ , and define the Lyapunov
function candidate V2(W̃ ) = 1

2W̃
TΓ−1

3 W̃ . Since T0 can be
made arbitrarily small and the state estimate in the parameter
update law is bounded, W̃ is bounded over [0, T0]. Let t1 ≥ T0

and t1, . . . , tk, . . . be a sequence where each tk denotes a time
instant when the history stack Z is updated. Computing the
time derivative of V2(W̃ ) over each time interval [tk, tk+1]
yields

dV2(W̃ )

dt
=− W̃TΦ(x)

(
xn+1 − ŴTΦ(x)

)
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− W̃T

p∑
j=1

Φ(xj)
(
xjn+1 − ŴTΦ(xj)

)

=− W̃T

Φ(x)ΦT(x) +

p∑
j=1

Φ(xj)ΦT(xj)

 W̃
+ δ(W̃ , ε), (16)

where

δ(W̃ , ε) =W̃TΦ(x)
(
xn+1 − ŴTΦ(x)

)
− W̃TΦ(x)

(
xn+1 − ŴTΦ(x)

)
+ W̃T

p∑
j=1

Φ(xj)
(
xjn+1 − ŴTΦ(xj)

)
− W̃T

p∑
j=1

Φ(xj)
(
xjn+1 − ŴTΦ(xj)

)
.

By the convergence of the state estimate, the locally Lipschitz
property of the basis function Φ, and some straightforward
manipulations, one has δ(W̃ , ε) ≤ ι1ε‖W̃‖2 + ι2ε‖W̃‖, for
some ε-independent positive constants ι1 and ι2. This together
with the fact that Φ(x)ΦT(x) ≥ 0, ∀Φ(x), one gets

dV2(W̃ )

dt
≤ −W̃TΨW̃ + ι1ε‖W̃‖2 + ι2ε‖W̃‖, (17)

where Ψ =
∑p
j=1 Φ(xj)ΦT(xj) ≥ 0. Note that (17) guaran-

tees that W̃ is bounded over every finite time interval [tk, tk+1]
if tk+1 ≤ T . Recall that Φ(x) is exciting over the time interval
[0, T ], and Algorithm 1 makes that the history stack Z contains
at least m linearly independent elements for all t ≥ T (i.e.,
rank(Z) = m). Therefore for t ≥ T , one has

dV2(W̃ )

dt
≤ −(λmin (Ψ)− ι1ε) ‖W̃‖2 + ι2ε‖W̃‖. (18)

Let ε ∈ (0, λmin(Ψ)/ι1). Since λmin(Ψ) is monotonically
increasing, V2(W̃ ) is a common Lyapunov function, and
consequently (18) establishes the practical convergence of W̃
specified by (10). This completes the proof of Theorem 1.

Remark 5 (Relaxed PE Condition for Parameter Esti-
mation): Note that from Theorem 1, a sufficient condition
for guaranteing parameter estimation convergence is that
rank(Z) = m, i.e, the history stack contains m linearly
independent data points. This condition can be guaranteed if
the system is exciting over the finite time interval when the
data was recorded [29]. Compared with the existing adaptive
observers [26–28] which require the system to be exciting over
all finite intervals, this condition is much more relaxed. What
is more, the rank condition only concerns with the past data
and can be easily monitored online. As far as the authors’
knowledge goes, the adaptive observer (6) is the first attempt
that addresses the joint state-parameter estimation problem
with a relaxed PE condition.

IV. REINFORCEMENT LEARNING-BASED APPROXIMATE
OPTIMAL CONTROL

In this section, based on the implementation of the CL-AEO,
a simulation of experience-based RL algorithm is developed
to online approximate the optimal control policy.

A. Control Design

Since the analytical solution to the HJB equation (4) is
generally unavailable, similar to [11, 12], the actor-critic
NN approach is utilized to approximate the value function
and the optimal control policy. According to the Weierstrass
approximation theorem [41], a continuous function can be
represented by an infinite-dimensional linearly independent
basis function set. In practice, one can approximate the func-
tion in a compact set with a finite-dimensional function set.
Let x ∈ X and ψ = [ψ1(x), . . . , ψr(x)]T be the linearly
independent continuously differentiable basis function for the
value function, where ψi : X → R, 1 ≤ i ≤ r, with r the
number of the neurons. Then for any given constant ς̄ > 0,
the value function can be represented by

V ∗(x) = ΘTψ(x) + ς(x), (19)

where Θ ∈ Rr is the ideal weight vector, and ς : X → R
denotes the approximation error satisfying supx∈X |ς(x)| ≤ ς̄
and supx∈X |ςx(x)| ≤ ς̄ . Consequently, the NN representation
of the idea optimal control policy is given by

u∗(x) = −1

2
R−1gT(x)BT

(
ψT
x(x)Θ + ςTx (x)

)
. (20)

Based on the NN representations of the value function
and the optimal control policy, and using the state estimate
provided by the CL-AEO, the NN-based approximation of the
value function and optimal control policy are given by

V̂
(
x, Θ̂c

)
=Θ̂T

cψ(x), (21)

û
(
x, Θ̂a

)
=− 1

2
R−1gT(x)BTψT

x (x)Θ̂a, (22)

where Θ̂c, Θ̂a ∈ Rr are the weights for the critic and actor
NNs, respectively.

In an RL-based controller, the main task is to design the
updated laws for the NN weights by leveraging the BE as a
performance metric. Traditionally, the BE is evaluated along
the system trajectory, which naturally leads to a sufficient
exploration requirement of the system state. In this paper,
bearing in mind that the CL-AEO not only provides an
estimate of the system state x but also the drift dynamics
f(x) (i.e., ŴTΦ(x)), the idea of simulation of experience-
based RL [22–25] is employed, in which the BE is evaluated
along the system trajectory, and simultaneously extrapolated
to a predefined set of points Ξ = {xi0 ∈ Rn|i = 1, . . . , N}.
Specifically, by (21) and (22), the instantaneous BE evaluated
along the system trajectory is given by

δt(t) =V̂x(x, Θ̂c)
[
Ax+B

(
ŴTΦ(x) + g(x)û(x, Θ̂a)

)]
+Q(x) + ûT(x, Θ̂a)Rû(x, Θ̂a). (23)

The extrapolated BE at point xi0 is given by

δi =V̂x(xi0, Θ̂c)
[
Axi0 +B

(
ŴTΦ(xi0) + g(xi0)û(xi0, Θ̂a)

)]
+Q(xi0) + ûT(xi0, Θ̂a)Rû(xi0, Θ̂a). (24)
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û

û
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Fig. 1: Adaptive observation-based efficient RL scheme.

Then the actor and critic NNs update their weights using
the BEs δt and δi. A least-square update law for the critic NN
is designed as

˙̂
Θc =− kc1Γ

µ

ρ
δt − kc2

Γ

N

N∑
i=1

µi
ρi
δi, (25)

where ρ = 1 + γµTΓµ, ρi = 1 + γµT
i Γµi, kc1, kc2, γ > 0 are

constant learning gains, and

µ =φx(x)
[
Ax+B

(
Ŵ TΦ(x) + g(x)û(x, Θ̂a)

)]
,

µi =φx(xi)
[
Axi0 +B

(
Ŵ TΦ(xi0) + g(xi0)û(xi0, Θ̂a)

)]
.

In (25), Γ : R≥0 → Rr×r represents the time-varying least-
square gain matrix updated by

Γ̇ =

(
βΓ− kc1

ΓµµTΓ

ρ2

)
1{‖Γ‖≤γ}, ‖Γ(0)‖ ≤ γ, (26)

where β > 0 is a constant forgetting factor and γ > 0 is a
saturation constant. According to Corollary 4.3.2 in [40], the
updated law (26) guarantees that γI ≤ Γ(t) ≤ γI , ∀t ≥ 0,
where γ > 0. Motivated by the subsequent Lyapunov-based
stability analysis, the actor NN update law is designed as

˙̂
Θa =− ka1

(
Θ̂a − Θ̂c

)
− ka2Θ̂a +

kc1G
T
t Θ̂aµ

T

4ρ
Θ̂c

+

N∑
i=1

kc2G
T
i Θ̂aµ

T
i

4Nρi
Θ̂c, (27)

where ka1, ka2 > 0 are learning gains, and

Gt ,ψx(x)Bg(x)R−1gT(x)BTψT
x (x),

Gi ,ψx(xi0)Bg(xi)R−1gT(xi)BTψT
x (xi0).

The block diagram of the developed adaptive observation-
based efficient RL scheme is illustrated in Fig. 1.

B. Convergence Analysis

To facilitate the convergence analysis, the preselected data
set Λ needs to satisfy the following condition.

Assumption A1: There exists a constant c > 0 such that the
data points in Λ satisfy

1

N
inf
t≥0

(
λmin

{
N∑
i=1

µiµ
T
i

ρi

})
≥ c. (28)

Remark 6 (Relaxed PE Condition for RL-Based Control):
Note that unlike the standard PE condition, the excitation
condition (28) can be monitored online. What is more, by
leveraging the estimated system model, the BE can be ex-
trapolated to any selected data point. Therefore, the excitation
condition (28) can be met heuristically by selecting more
data points than the number of neurons, i.e., N � r [22].
In practice, to fulfill Assumption A1, the data points xi0,
1 ≤ i ≤ N , can be select on an a× a · · · × a︸ ︷︷ ︸

n

data grid which

covers the interested domain of operation X ⊆ Rn, where a
is an appropriately large positive integer.

For subsequent use, let us specify the compact set X =
{x ∈ Rn; ‖x‖ ≤ τx + 1} and define X0 = {x ∈
Rn; ‖x‖ ≤ τx}, where τx > 0. Define a concatenated
state Z(t) = [xT(t), W̃T(t), Θ̃T

c (t), Θ̃T
a (t)]T, and func-

tions Vc = 1
2 Θ̃T

c Γ−1Θ̃c and Va = 1
2 Θ̃T

a Θ̃a. Denote
τW = 1

2Γ−1
3 ‖W̃ (0)‖2, τc = 1

2γ
−1‖Θ̃c(0)‖2 + 1, τa =

max{Va(Θ̃a(0)), Va(Θ̃a)‖Θ̃a‖≥(ι5+ι10)/|ι9|}+ 1, where ι5, ι9,
and ι10 will be specified latter. Define several compact sets:

Ω0
W ={W̃ ∈ Rm;V2(W̃ ) ≤ τW },

Ω1
W ={W̃ ∈ Rm;V2(W̃ ) ≤ τW + 1},
Ω0
c ={Θ̃c ∈ Rr;Vc(Θ̃v) ≤ τc},

Ω1
c ={Θ̃c ∈ Rr;Vc(Θ̃v) ≤ τc + 1},

Ω0
a ={Θ̃a ∈ Rr;Va(Θ̃a) ≤ τa},

Ω1
a ={Θ̃a ∈ Rr;Va(Θ̃a) ≤ τa + 1},

Ω0 =X0 × Ω0
W × Ω0

c × Ω0
a,

Ω1 =X × Ω1
W × Ω1

c × Ω1
a.

Theorem 2: Consider the closed-loop system formed by
plant (2), CL-AEO (6), control (22), and RL update laws (25)-
(27). The history stack satisfies rank(Z) = m, and is updated
according to Algorithm 1. Suppose Assumption A1 is satisfied
and x(0) ∈ X0 − ∂X0. Then there exists ε† > 0 such that for
any ε ∈ (0, ε†):

• the CL-AEO is convergent in the sense of (9) and (10);
• the state x and the NN weight estimation errors Θ̃c ,

Θ̂c − Θ and Θ̃a , Θ̂a − Θ are uniformly ultimately
bounded.

Proof: Since x(0) ∈ X0 − ∂X0, W̃ (0) ∈ Ω0
W − ∂Ω0

W ,
Θ̃c(0) ∈ Ω0

c − ∂Ω0
c , and Θ̃a(0) ∈ Ω0

a − ∂Ω0
a, the initial con-

catenated state Z(0) is an interior point of Ω0. This together
with the fact that the state estimate output of the CL-AEO (6)
is bounded yields that there exists an ε-independent t0 > 0
such that Z(t) ∈ Ω0, ∀t ∈ [0, t0]. Since Ω0 ⊆ Ω1 − ∂Ω1, we
let Z(t) ∈ Ω1, ∀t ∈ [0, t1], where t1 > t0. In the following
we will show that for sufficiently small ε, t1 can be selected
as infinity.

In the time interval [0, t1], since Z(t) is bounded, one can
follow a same line as the arguments as in (11)-(15) to conclude
that for any t′0 ∈ (t0, t1), there exists ε1 > 0 such that for
any ε ∈ (0, ε1), ‖η(t)‖ = O(ε), ∀t ∈ [t′0, t1]. It follows that
xi(t) = x̂i(t), 1 ≤ i ≤ n+ 1, ∀t ∈ [t′0, t1].
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To facilitate the subsequent analysis, the NN-based approx-
imations V̂x(x, Θ̂c) and û(x, Θ̂a) are expressed as

V̂x

(
x, Θ̂c

)
=ΘTψx(x̂) +

(
Θ̂c −Θ

)T

ψx(x̂)

=V ∗x (x̂) + Θ̃T
c ψx(x̂)− ςx(x̂), (29)

û
(
x, Θ̂a

)
=− 1

2
R−1gT(x̂)BTψT

x (x̂)
(

Θ + Θ̃a

)
=u∗(x̂)− 1

2
R−1gT(x̂)BTψT

x (x̂)Θ̃a

+
1

2
R−1gT(x̂)BTςTx (x̂). (30)

By inserting (19), (20), (29), and (30) into (23), the instanta-
neous BE δt can be written as

δt =µTΘ̃c − V ∗x (x̂)B
[
W̃TΦ(x̂) + g(x̂)(u∗(x̂)− û(x̂, Θ̂a))

]
− ςx(x̂)

[
Ax̂+B

(
ŴΦ(x̂) + g(x̂)û(x̂, Θ̂a)

)]
+ u∗(x̂)

[
−gT(x̂)BTψT

x (x̂)Θ̃a + gT(x̂)BTςTx (x̂)
]

+
1

4R

[
−gT(x̂)BTψT

x (x̂)Θ̃c + gT(x̂)BTςTx (x̂)
]2

=µTΘ̃c −ΘTψx(x̂)BΦ(x̂)W̃

+
1

2
ΘTψx(x̂)Bg(x̂)R−1gT(x̂)BTςTx (x̂)

− ς(x̂)
(
Ax̂+BWTΦ(x̂)

)
+

1

4
Θ̃T
aψx(x̂)Bg(x̂)R−1gT(x̂)BTψT

x (x̂)Θ̃a

+
1

4
ςx(x̂)Bg(x̂)R−1gT(x̂)BTςTx (x̂)

,µTΘ̃c −ΘTψx(x̂)BΦ(x̂)W̃ +
1

4
Θ̃T
aGtΘ̃a + ∆t, (31)

where

∆t =
1

2
ΘTψx(x̂)Bg(x̂)R−1gT(x̂)BTςTx (x̂)

− ς(x̂)
(
Ax̂+BWTΦ(x̂)

)
+

1

4
ςx(x̂)Bg(x̂)R−1gT(x̂)BTςTx (x̂).

Similarly, the extrapolated BE evaluated at the selected point
xi0 can be expressed as

δi = µT
i Θ̃c−ΘTψx(xi0)BΦ(xi0)W̃ +

1

4
Θ̃T
aGiΘ̃a + ∆i, (32)

where

∆i =
1

2
ΘTψx(xi0)Bg(xi0)R−1gT(xi0)BTςTx (xi0)

− ς(xi0)
(
Axi0 +BWTΦ(xi0)

)
+

1

4
ςx(xi0)Bg(xi0)R−1gT(xi0)BTςTx (xi0).

Let us consider the Lyapunov function candidate given by

V(Z) = V ∗(x) + V2(W̃ ) + Vc(Θ̃c) + Va(Θ̃a). (33)

The derivative of V ∗(x) can be computed as

V̇ ∗(x) =V ∗x (x)[Ax+B(WTΦ(x) + g(x)û(x̂, Θ̂a))]

=V ∗x (x)
[
Ax+B

(
WTΦ(x) + g(x)u∗(x)

)]
+ V ∗x (x)B

[
g(x)

(
û(x̂, Θ̂a)− u∗(x̂)

)

+ g(x) (u∗(x̂)− u∗(x))
]
. (34)

By (4) and (30), the locally Lipschitz property of the functions
V ∗x , ψx, g, and u∗, and the facts that ‖x(t)− x̂(t)‖ = O(ε2)
and x(t), x̂(t) ∈ X , ∀t ∈ [t′0, t1], the derivative of V ∗(x)
satisfies

V̇ ∗(x) ≤ −ι3‖x‖2 + ι4ε‖η‖+ ι5‖Θ̃a‖+ ι6ς, (35)

where ι3 = λmin(Q), and ι4 to ι6 are ε-independent positive
constants.

By the RL update laws (25)-(27), the derivative of Vc(Θ̃c)+
Va(Θ̃a) satisfies

V̇c(Θ̃c) + V̇a(Θ̃a)

=Θ̃T
c

(
−kc1

µ

ρ
δt −

kc2
N

N∑
i=1

µi
ρi
δi

)

− 1

2
Θ̃T
c Γ−1

(
βΓ− kc1

ΓµµTΓ

ρ2

)
Γ−1Θ̃c

+ Θ̃T
a

(
−ka1(Θ̂a − Θ̂c)− ka2Θ̂a

)
+ Θ̃T

a

(
kc1G

T
t Θ̂aµ

T

4ρ
+

N∑
i=1

kc2G
T
i Θ̂aµ

T
i

4Nρi

)
Θ̂c. (36)

Inserting (31) and (32) into (36) leads to

V̇c(Θ̃c) + V̇a(Θ̃a)

=− kc1Θ̃T
c

µµT

ρ
Θ̃c + kc1Θ̃T

c

µ

ρ
ΘTψx(x̂)BΦ(x̂)W̃

− kc1Θ̃T
c

µ

ρ
∆t −

kc2
N

Θ̃T
c

N∑
i=1

µiµ
T
i

ρi
Θ̃c − Θ̃T

c

kc2
N

N∑
i=1

µi
ρi

∆i

+
kc2
N

Θ̃T
c

N∑
i=1

µi
ρi

ΘTψx(xi0)BΦ(xi0)W̃

− 1

2
βΘ̃T

c Γ−1Θ̃c + kc1Θ̃T
c

µµT

ρ2
Θ̃c

− (ka1 + ka2)‖Θ̃a‖2 + ka1Θ̃T
a Θ̃c − ka2Θ̃T

aΘ

+
(
‖Θ‖2Θ̃T

a + ‖Θ̃a‖2ΘT + Θ̃T
aΘΘ̃c

)
×

(
kc1G

T
t µ

T

4ρ
+

N∑
i=1

kc2G
T
i µ

T
i

4Nρi

)
. (37)

Since γI ≤ Γ(t) ≤ γI , the normalized regressor µ
ρ is

bounded as ‖µρ ‖ ≤
1

2
√
γγ , and so does µi

ρi
. These together

with Assumption A1 yields

V̇c(Θ̃c) + V̇a(Θ̃a)

≤kc1
γγ
‖Θ̃c‖2 + ι7‖W̃‖2 +

k2
c1

2ι7γγ
‖Θ‖2ϑ2

1‖Θ̃c‖2

− kc2c‖Θ̃c‖2 +
k2
c2

2ι7γγ
‖Θ‖2ϑ2

2‖Θ̃c‖2

− β

2γ
‖Θ̃c‖2 +

kc1
4γγ
‖Θ̃c‖2 − (ka1 + ka2)‖Θ̃a‖2

+
ka1

2
(‖Θ̃c‖2 + ‖Θ̃a‖2) + ka2‖Θ‖‖Θ̃a‖

+ ϑ3‖Θ‖2‖Θ̃a‖+ ϑ3‖Θ‖‖Θ̃a‖2
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+
ϑ3‖Θ‖

2
(‖Θ̃c‖2 + ‖Θ̃a‖2) +

kc1
2
√
γγ
‖Θ̃c‖|∆t|

+
kc2

2
√
γγ
‖Θ̃c‖ max

1≤i≤N
|∆i|

,ι7‖W̃‖2 + ι8‖Θ̃c‖2 + ι9‖Θ̃a‖2 + ι10‖Θ̃a‖+ ι11, (38)

where

ι7 ,
1

2
λmin(Ψ),

ι8 ,
5kc1
4γγ

+
k2
c1

2ι7γγ
‖Θ‖2ϑ2

1 − kc2c+
k2
c2

2ι7γγ
‖Θ‖2ϑ2

2

− β

2γ
+
ka1

2
+
ϑ3‖Θ‖

2
,

ι9 ,− ka1

2
− ka2 +

3

2
ϑ3‖Θ‖,

ι10 ,ka2‖Θ‖+ ϑ3‖Θ‖2,

ι11 ,
kc1

2
√
γγ
‖Θ̃c‖|∆t|+

kc2
2
√
γγ
‖Θ̃c‖ max

1≤i≤N
|∆i|,

ϑ1 , sup
x̂∈X
‖ψx(x̂)BΦ(x̂)‖,

ϑ2 , max
1≤i≤N

‖ψx(xi0)BΦ(xi0)‖,

ϑ3 ,
kc1

8
√
γγ

sup
x̂∈X
‖Gt‖+

kc2
8
√
γγ

max
1≤i≤N

‖Gi‖.

By (18), (35), and (38), one gets

V̇ ≤ − ι3‖x‖2 − (ι7 − ι1ε)‖W̃‖2 + ι2ε‖W̃‖+ ι8‖Θ̃c‖2

+ ι9‖Θ̃a‖2 + (ι5 + ι10)‖Θ̃a‖+ ι12, (39)

where ι12 , ι4ε‖η‖+ ι6ς + ι11. The sufficient conditions for
the learning gains are given by

β >
γ

ι7γγ
‖Θ‖2

(
k2
c1ϑ

2
1 + k2

c2ϑ
2
2

)
+ γϑ3‖Θ‖, (40)

kc2 >
5kc1
4γγc

+
ka1

2c
, ka2 >

3

2
ϑ3‖Θ‖. (41)

Recall that 1) the system state estimate is convergent in the
sense that ‖η(t)‖ = O(ε), ∀t ∈ [t′0, t1]; 2) Ψ > 0 and
λmin(Ψ) is monotonically incerasing according to Algorithm
1; 3) the upper bound of the approximation error ς can
be made arbitrarily small by increasing the number of NN
neurons; and 4) the concatenated state Z(t) ∈ Ω1, ∀t ∈ [0, t1].
Therefore, provided the learning gains satisfying (40) and (41),
the derivative of V satisfies

V̇(Z(t)) ≤ 0, t ∈ [t′0, t1]. (42)

This indicates that t1 can be selected as infinity, and con-
sequently the uniformly ultimately boundedness of x, Θ̃c,
and Θ̃v are guaranteed. The convergence of the CL-AEO
follows a same line of the arguments as in Theorem 1, with
the boundedness of the signals in the closed-loop system.
Finally, (39) also implies that the system state x converges
to the neighbourhood of origin, and the actor NN weight Θ̂a

approximates the ideal weight Θ if (ι5+ι10)/|ι9| is sufficiently
small (i.e., ka1 is selected sufficiently large). This completes
the proof of Theorem 2.

Remark 7 (Efficient RL Scheme): In this paper, the ideas
from adaptive observers and CL are leveraged to design
efficient model-based RL algorithms. The advantages of our
proposed approach are threefold: 1) It adopts relaxed and
verifiable PE conditions. For the joint state-parameter estima-
tion process, the CL technique is employed to replace the PE
conditions required in the existing adaptive observers [26–28]
as a verifiable rank condition. For the approximated optimal
control process, the PE condition is relaxed via the simulation
of experience technique. 2) It is numerically efficient since it
does not require the state derivative information required in
[22–24, 29] and the integral calculation required in [25]. 3)
It is output feedback and does not require the probing signal.
The RL algorithms in [8–16, 19–25] require full state-feedback
and in [9, 10, 12, 13, 16, 19] require the probing signal.

V. SIMULATION STUDY

In this section, simulations are provided to demonstrate
the effectiveness and superiority of the proposed CL-AEO
and learning-based controller. We consider a second-order
uncertain nonlinear system given by

ẋ1 =x2,

ẋ2 =− x1 +W1x2 +W2(x1 + x2)(sin(x1) + 2)2

+ (sin(x1) + 2)u,

y =x1,

(43)

where W1 = −1.5, W2 = 0.5. The simulations consist of
two parts. In the first part, the control signal u is manually
selected to verify that the proposed CL-AEO removes the
requirement of the PE condition. In the second part, the
closed-loop performance of the adaptive observation-based RL
algorithm is illustrated.

A. Adaptive Observation

In this subsection, two control signals are considered:

u1(t) =


− 0.9(cos(2x1) + 2)(x1 + x2)

+ 10 sin(4πt), 0 ≤ t ≤ 5,

− 0.9(cos(2x1) + 2)(x1 + x2), t > 5,

(44)

u2(t) =− 0.9(cos(2x1) + 2)(x1 + x2)

+ 10 sin(4πt), t ≥ 0. (45)

Note that the control signal u1 only makes the system finitely
exciting, while the control signal u2 persistently exciting. The
system initial condition is set as x(0) = [1 1]. The CL-
AEO is designed with L = [3 3 1], ε = 0.001, M1 = 5,
M2 = 12, M3 = 30, p = 5, and Γ3 = 0.4I . The instantaneous
data for recording is selected according to Algorithm 1. For
comparison, the counterpart adaptive extended observer (AEO)
without concurrent learning is also simulated. The initial
conditions of the observers are all set as 0.

Fig. 2 shows the performance of the proposed CL-AEO un-
der the control signal u1. One can see that both the system state
x, the extended state x3 ,W1x2+W2(x1+x2)(sin(x1)+2)2,
and the parameter W are estimated satisfactorily. This figure
also illustrates the two-time-scale property of the proposed
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(a) Estimation of the system state x and extended state x3.
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(b) Estimation of the system parameter W . The true values
of W are shown as dashed lines.

Fig. 2: Response of the CL-AEO with control signal u1.

CL-AEO, i.e., the convergence speed of x̂ and x̂3 is faster than
Ŵ . Figs. 3a and 3b show the system parameter estimations of
the AEO with finite exciting control signal u1 and persistently
exciting control signal u2, respectively. It can be seen that
the observer without current learning cannot arrive at the
ideal weight W with a finite exciting control signal. With
a persistently exciting control signal, the AEO arrives at the
ideal weight W , it is however, with a lower convergence speed.
These illustrate the advantages of our proposed CL-AEO.

B. Approximate Optimal Control

To consider the optimal control problem, the cost functional
given by (3) is specified with Q = xTQx and R = 1, where

0 5 10 15

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

(a) With control signal u1.

0 5 10 15 20 25 30

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

(b) With control signal u2.

Fig. 3: System parameter estimations of the AEO with differ-
ent control signals.

Q =

[
2 1
1 1

]
is positive definite. This cost functional is

selected because the corresponding optimal control problem
has a known analytical solution. According to the procedure
in [42], the optimal value function and control policy are
V ∗(x) = 1.5x2

1 + 2x1x2 + x2
2 and u∗(x) = −(cos(2x1) +

2)(x1 + x2), respectively.
We consider the scenario that the system initial state x(0)

locates in the interior of the compact set {x ∈ R2; ‖x‖ ≤ 10}.
For the CL-AEO, the settings are the same as those in
the previous subsection except M1 = 10, M2 = 10, and
M3 = 100. What is more, the stack Z is initialized with
three history data points recorded in the previous simula-
tion. For the RL controller, the basis function is selected as
ψ(x) = [x2

1 x1x2 x
2
2]T, which implies that the ideal weight

Θ = [1.5 2 1]T; the learning gains are selected as kc1 = 1,
kc2 = 5, ka1 = 80, ka2 = 0.1, γ = 0.5, and β = 100;
the upper bound of the norm of Γ is set as γ = 1000; the
data set Λ to extrapolate the BE contains 121 data points
which located on a 11 × 11 data grid covers the domain
[−10 10]× [−10 10] (i.e., x1 and x2 are both selected every
0.5 from -10 to 10). Simulation is done with initial conditions
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Fig. 4: Responses of the system and the CL-AEO.

x(0) = [4 4]T, [x̂1(0) x̂2(0) x̂3(0)]T = [0 0 0]T, Ŵ (0) = 0,
Θ̂c(0) = Θ̂a(0) = [0 0 0]T, and Γ(0) = diag{100, 100, 100}.

Fig. 4 shows the responses of the system and the CL-AEO,
from which one can see that the learning-based controller reg-
ulates the system state to 0, and the CL-AEO provides accurate
joint estimation of the system state and parameter. Fig. 5 illus-
trates that the actor NN weight Θ̂a converges to its real value,
and this indicates that the learning-based controller performs
an approximate optimal control property. Fig. 6 depicts the
control signal. The trajectory of 1

N

(
λmin

{∑N
i=1

µiµ
T
i

ρi

})
is

plotted in Fig. 7, from which one can see that the condition
in Assumption A1 is satisfied.

Finally, we illustrate the advantage of the implementation
of the simulation of experience mechanism. Fig. 8 showes the
trajectories of the actor NN weight Θ̂a without simulation of
experience, i.e., the BE is evaluated only along the system
trajectory. From this figure, one can see that Θ̂a cannot
converge to its real value. The reason is that the system state
doesn’t explore sufficient points in the state space. In this case,
to make sure Θ̂a → Θ, a carefully selected probing signal is
required to inject into the system [9, 10, 12, 13, 16, 19], which

0 2 4 6 8

Time (s)

-2

-1

0

1
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3

Fig. 5: Trajectories of the actor NN weight Θ̂a. The true values
of Θa are shown as dashed lines.
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Fig. 6: Trajectories of the control input.

will deteriorate the closed-loop performance. In our simulation
of experience-based RL, by leveraging the estimated system
model, the BE can be extrapolated to any selected data point,
and hence the probing signal is not required anymore.

VI. CONCLUSION

An adaptive observation-based efficient RL framework is
established for uncertain systems, which consists of a CL-
AEO to provide the system state and model information, and
a simulation-of-experience-based RL mechanism to approx-
imate the optimal control policy. Both the observation and
control processes adopt relaxed and verifiable PE conditions.
The obtained results provide a novel and practical adaptive
observation-based solution for the implementation of model-
based RL, since it is output feedback and does not require the
state derivative information or integral calculation..

In practice, the system control coefficient function g(x)
maybe also uncertain. Therefore, for future works, we aim at
extending the developed approach to systems with uncertain
control coefficient functions.
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