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Abstract. As deep neural networks (DNNs) become deeper, the training time increases. In this perspective,
multi-GPU parallel computing has become a key tool in accelerating the training of DNNs. In this
paper, we introduce a novel methodology to construct a parallel neural network that can utilize
multiple GPUs simultaneously from a given DNN. We observe that layers of DNN can be interpreted
as the time steps of a time-dependent problem and can be parallelized by emulating a parallel-in-time
algorithm called parareal. The parareal algorithm consists of fine structures which can be implemented
in parallel and a coarse structure which gives suitable approximations to the fine structures. By
emulating it, the layers of DNN are torn to form a parallel structure, which is connected using
a suitable coarse network. We report accelerated and accuracy-preserved results of the proposed
methodology applied to VGG-16 and ResNet-1001 on several datasets.
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1. Introduction. Deep neural networks (DNNs) have demonstrated success for many
classification and regression tasks such as image recognition [15, 22] and natural language
processing [5, 19]. A principal reason for why DNN performs well is the depth of DNN, i.e., the
number of sequential layers of DNN. Each layer of DNN is composed of a combination of an
affine transformation and a nonlinear activation function, e.g., a rectified linear unit (ReLU).
A broad range of functions can be generated by stacking a number of layers with nonlinear
activation functions so that DNN can be a model that fits the given data well [6, 17]. However,
there are undesirable side effects of using many layers for DNN. Due to the large number of
layers in DNNs, DNN training is time-consuming and there are demands to reduce training
time these days. Recently, multi-GPU parallel computing has become an important topic for
accelerating DNN training [2, 3, 13].

Data parallelism [2] is a commonly used parallelization technique. In data parallelism,
the training dataset is distributed across multiple GPUs and then processed separately. For
instance, suppose that we have 2 GPUs and want to apply data parallelism to the mini-batch
gradient descent with the batch size 128. In this case, each GPU computes 64-batch and
the computed gradients are averaged. In data parallelism, each GPU must possess a whole
copy of the DNN model so that inter-GPU communication is required at every step of the
training process in order to update all parameters of the model. Therefore, the training time is
seriously deteriorated when the number of layers in the model is large. In order to resolve such
a drawback, several asynchronous methodologies of data parallelism were proposed [4, 25, 38].
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In asynchronous data parallelism, a parameter server in charge of parameter update is used;
it collects computed gradients from other GPUs in order to update parameters, and then
distributes the updated parameters to other GPUs.

On the other hand, model parallelism [18, 30] is usually utilized when the capacity of a
DNN exceeds the available memory of a single GPU. In model parallelism, layers of DNN and
their corresponding parameters are partitioned into multiple GPUs. Since each GPU owns
part of the model’s parameters, the cost of inter-GPU communication in model parallelism is
much less than the cost of data parallelism. However, only one GPU is active at a time in the
naive application of model parallelism. To resolve the inefficiency, a pipelining technique called
PipeDream [30] which uses multiple mini-batches concurrently was proposed. PipeDream has a
consistency issue in parameter update that a mini-batch may start the training process before
its prior mini-batch updates parameters. To avoid this issue, another pipelining technique
called Gpipe [18] was proposed; it divides each mini-bath into micro-batches and utilizes
micro-batches for the simultaneous update of parameters. However, experiments [3] have shown
that the possible efficiency of Gpipe can not exceed 29% of that of Pipedream. Recently, further
improvements of PipeDream and Gpipe were considered; see SpecTrain [3] and PipeMare [35].

There are several notable approaches of parallelism based on layerwise decomposition of the
model [9, 13]. Unlike the aforementioned ones, these approaches modify data propagation in
the training process of the model. Günther et al. [13] replaced the sequential data propagation
of layers in DNN by a nonlinear in-time multigrid method [8]. It showed strong scalability in a
simple ResNet [15] when it was implemented on a computer cluster with multiple CPUs. Fok
et al. [9] introduced WarpNet which was based on ResNet. They replaced residual units (RUs)
in ResNet by the first-order Taylor approximations, which enabled parallel implementation. In
WarpNet, (N − 1) RUs are replaced by a single warp operator which can be treated in parallel
using N GPUs. However, this approach requires data exchange at every warp operation so
that it may suffer from a communication bottleneck as the DNN becomes deeper.

In this paper, we propose a novel paradigm of multi-GPU parallel computing for DNNs,
called parareal neural network. In general, DNN has a feed-forward architecture. That is, the
output of DNN is obtained from the input by sequential compositions of functions representing
layers. We observe that sequential computations can be interpreted as time steps of a time-
dependent problem. In the field of numerical analysis, after a pioneering work of Lions et
al. [26], there have been numerous researches on parallel-in-time algorithms to solve time-
dependent problems in parallel; see, e.g., [12, 27, 29]. Motivated by these works, we present
a methodology to transform a given feed-forward neural network to another neural network
called parareal neural network which naturally adopts parallel computing. The parareal neural
network consists of fine structures which can be processed in parallel and a coarse structure
which approximates the fine structures by emulating one of the parallel-in-time algorithms
called parareal [26]. Unlike the existing methods mentioned above, the parareal neural network
can significantly reduce the time for inter-GPU communication because the fine structures do
not communicate with each other but communicate only with the coarse structure. Therefore,
the proposed methodology is effective in reducing the elapsed time for dealing with very deep
neural networks. Numerical results confirm that the parareal neural network provides similar
or better performance to the original network even with less training time.

The rest of this paper is organized as follows. In Section 2, we briefly summarize the parareal
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algorithm for time-dependent differential equations. An abstract framework for the construction
of the parareal neural network is introduced in Section 3. In Section 4, we present how to apply
the proposed methodology to two popular neural networks VGG-16 [32] and ResNet-1001 [16]
with details. Also, accelerated and accuracy-preserved results of parareal neural networks for
VGG-16 and ResNet-1001 with datasets CIFAR-10, CIFAR-100 [20], MNIST [23], SVHN [31],
and ImageNet [7] are given. We conclude this paper with remarks in Section 5.

2. The parareal algorithm. The parareal algorithm proposed by Lions et al. [26] is a
parallel-in-time algorithm to solve time-dependent differential equations. For the purpose of
description, the following system of ordinary differential equations is considered:

(2.1) u̇(t) = Au(t) in [0, T ], u(0) = u0,

where A: Rm → Rm is an operator, T > 0, and u0 ∈ Rm. The time interval [0, T ] is decomposed
into N subintervals 0 = T0 < T1 < · · · < TN = T . First, an approximated solution {U1

j}Nj=0

of (2.1) on the coarse grid {Tj}Nj=0 is obtained by the backward Euler method with the step
size ∆Tj = Tj+1 − Tj :

U1
j+1 −U1

j

∆Tj
= AU1

j+1, U1
0 = u0 for j = 0, . . . , N − 1.

Then in each time subinterval [Tj , Tj+1], we construct a local solution u1
j by solving the following

initial value problem:

(2.2) u̇1
j (t) = Au1

j (t) in [Tj , Tj+1], u1
j (Tj) = U1

j .

The computed solution u1
j does not agree with the exact solution u in general since U1

j differs
from u(Tj). For k ≥ 1, a better coarse approximation {Uk+1

j }Nj=0 than {Uk
j }Nj=0 is obtained

by the coarse grid correction: Let Uk+1
0 = Uk

0,S
k
0 = 0; for j = 0, . . . , N − 1, we repeat the

followings:
1. Compute the difference at the coarse node: Skj+1 = ukj (Tj+1)−Uk

j+1.
2. Propagate the difference to the next coarse node by the backward Euler method:

δkj+1−δkj
∆Tj

= Aδkj+1 + Skj , δ
k
0 = 0.

3. Set Uk+1
j+1 = Uk

j+1 + δkj+1.
That is, {Uk+1

j }Nj=0 is made by the correction with the propagated residual {δkj }Nj=0. Using the
updated coarse approximation {Uk+1

j }Nj=0, one obtains a new local solution uk+1
j in the same

manner as (2.2):

(2.3) u̇k+1
j (t) = Auk+1

j (t) in [Tj , Tj+1], uk+1
j (Tj) = Uk+1

j .

It is well-known that ukj converges to the exact solution u uniformly as k increases [1, 11].
Since (2.3) can be solved independently in each time subinterval, we may assign the problem

in each [Tj , Tj+1] to the processor one by one and compute uk+1
j in parallel. In this sense, the

parareal algorithm is suitable for parallel computation on distributed memory architecture. A
diagram illustrating the parareal algorithm is presented in Figure 1.
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T0 T1 T2 T3 T4

Coarse grid correction

Find local solutions in parallel

Figure 1. Fine and coarse propagations in the parareal algorithm: the red lines which propagate from Tj to
Tj+1 represent (2.2) and the blue curves which directly connect Tj and Tj+1 represent (2.3).
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Figure 2. A feed-forward neural network and its corresponding parareal neural network: (a) Feed-forward
neural network fθ, (b) Parareal neural network f̄θ̄ with N parallel subnetworks (N = 3).

3. Parareal neural networks. In this section, we propose a methodology to design a
parareal neural network by emulating the parareal algorithm introduced in Section 2 from
a given feed-forward neural network. The resulting parareal neural network has an intrinsic
parallel structure and is suitable for parallel computation using multiple GPUs with distributed
memory simultaneously.

3.1. Parallelized forward propagation. Let fθ: X → Y be a feed-forward neural network,
where X and Y are the spaces of inputs and outputs, respectively, and θ is a vector consisting
of parameters. Since many modern neural networks such as [16, 32, 36] have block-repetitive
substructures, we may assume that fθ can be written as the composition of three functions
Cδ: X →W0, gφ: W0 →W1, and hε: W1 → Y , i.e.,

fθ = hε ◦ gφ ◦ Cδ, θ = δ ⊕ φ⊕ ε,
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where W0 and W1 are vector spaces, gφ is a block-repetitive substructure of fθ with parameters
φ, Cδ is a preprocessing operator with parameters δ, and hε is a postprocessing operator
with parameters ε. Note that ⊕ represents a concatenation. Examples of VGG-16 [32] and
ResNet-1001 [16] will be given in Section 4.

For appropriate vector spaces X0, X1, . . . , XN , we further assume that gφ can be partitioned
into N subnetworks {gjφj : Xj−1 → Xj}Nj=1 which satisfy the followings:

• X0 = W0 and XN = W1,
• φ =

⊕N
j=1 φj ,

• gφ = gNφN ◦ g
N−1
φN−1

◦ · · · ◦ g1
φ1
.

See Figure 2(a) for a graphical description for the case N = 3. In the computation of gφ, the
subnetworks {gjφj}

N
j=1 are computed in the sequential manner. Regarding the subnetworks

as subintervals of a time-dependent problem and adopting the idea of the parareal algorithm
introduced in Section 2, we construct a new neural network f̄θ̄: X → Y which contains {gjφj}

N
j=1

as parallel subnetworks; the precise definition for parameters θ̄ will be given in (3.3).
Since the dimensions of the spaces {Xj}N−1

j=0 are different for each j in general, we introduce
preprocessing operators Cjδj : X → Xj−1 such that C1

δ1
= Cδ and Cjδj for j = 2, . . . , N play

similar roles to Cδ; particular examples will be given in Section 4. We write xj ∈ Xj−1 and
yj ∈ Xj as follows:

(3.1) xj = Cjδj (x) for x ∈ X, yj = gjφj (xj).

Then, we consider neural networks F jηj : Xj → Xj+1 with parameters ηj for j ≥ 1 such
that it approximates gj+1

φj+1
well while it has a cheaper computational cost than gj+1

φj+1
, i.e.,

F jηj ≈ gj+1
φj+1

and dim(ηj)� dim(φj+1). Emulating the coarse grid correction of the parareal

algorithm, we assemble a network called coarse network with building blocks F jηj . With inputs
xj+1, yj , and an output y ∈ Y , the coarse network is described as follows:

rN = 0, rj = yj − xj+1 for j = 1, . . . , N − 1,(3.2a)

r̃1 = r1, r̃j+1 = rj+1 + F jηj (r̃j) for j = 1, . . . , N − 1,(3.2b)

ỹ = yN + r̃N .(3.2c)

That is, in the coarse network, the residual rj at the interface between layers gjφj and gj+1
φj+1

propagates through shallow neural networks F 1
η1
, . . . , FN−1

ηN−1
. Then the propagated residual is

added to the output.
Finally, the parareal neural network f̄θ̄ corresponding to the original network fθ is defined

as

(3.3) f̄θ̄(x) = hε(ỹ), θ̄ =

 N⊕
j=1

(δj ⊕ φj)

⊕
N−1⊕

j=1

ηj

⊕ ε.
That is, f̄θ̄ is composed of the preprocessing operators {Cjδj}, parallel subnetworks {g

j
φj
}, the

coarse network {F jηj}, and the postprocessing operator hε. Figure 2(b) illustrates f̄θ̄. Since
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Algorithm 3.1 Forward propagation of the parareal neural network f̄θ̄
Broadcast x to all processors.
for j = 1, 2, . . . , N in parallel do

xj = Cjδj (x), yj = gjφj (xj)

end for
Gather xj ,yj from all processors.
for j = 1, 2, . . . , N − 1 do

rj = yj − xj+1

end for
rN = 0, r̃1 = r1.
for j = 1, 2, . . . , N − 1 do

r̃j+1 = rj+1 + F jηj (r̃j)

end for
ỹ = yN + r̃N
y = hε(ỹ)

Algorithm 3.2 Gradient computation for the parareal neural network f̄θ̄
∂f̄θ̄
∂ε

=
∂hε
∂ε

, DN =
∂hε
∂ỹ

, D0 = 0

for j = N − 1, N − 2, . . . 1 do

∂f̄θ̄
∂ηj

= Dj+1 ·
∂F jηj
∂ηj

, Dj = Dj+1 ·
∂F jηj
∂r̃j

end for
Send Dj−1 and Dj to the j-th processor.
for j = 1, 2, . . . , N in parallel do

∂f̄θ̄
∂φj

= Dj ·
∂gjφj
∂φj

,
∂f̄θ̄
∂δj

=

(
Dj ·

∂gjφj
∂xj

−Dj−1

)
∂Cjδj
∂δj

end for

each gjφj ◦ C
j
δj

lies in parallel, all computations related to gjφj ◦ C
j
δj

can be done independently;
parallel structures of forward and backward propagations for f̄θ̄ are described in Algorithm 3.1
and Algorithm 3.2, respectively; detailed derivation of Algorithm 3.2 will be provided in Sub-
section 3.2. Therefore, multiple GPUs can be utilized to process {gjφj ◦ C

j
δj
} simultaneously

for each j. In this case, one may expect significant decrease of the elapsed time for training
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f̄θ̄ compared to the original network fθ. On the other hand, the coarse network cannot be
parallelized since {F jηj} is computed in the sequential manner. One should choose F jηj whose
computational cost is as cheap as possible in order to reduce the bottleneck effect of the coarse
network.

In the following proposition, we show that the proposed parareal neural network f̄θ̄ is
constructed consistently in the sense that it recovers the original neural network fθ under a
simplified setting.

Proposition 3.1 (Consistency). Assume that the original network fθ is linear and F jηj = gj+1
φj+1

for j = 1, . . . , N − 1. Then we have f̄θ̄(x) = fθ(x) for all x ∈ X.

Proof. We define a function Pj : X → Xj+1 inductively as follows:

(3.4) P0(x) = 0, Pj(x) = F jηj

(
(gjφj ◦ C

j
δj

)(x)− Cj+1
δj+1

(x) + Pj−1(x)
)
, 1 ≤ j ≤ N − 1.

Then it follows that

(3.5) f̄θ̄(x) = hε
(
(gNφN ◦ C

N
δN

)(x) + PN−1(x)
)
.

First, we show by mathematical induction that

(3.6) Pj(x) = (gj+1
φj+1
◦ gjφj ◦ . . . g

1
φ1
◦ C1

δ1)(x)− (gj+1
φj+1
◦ Cj+1

δj+1
)(x), 1 ≤ j ≤ N − 1.

The case j = 1 is straightforward from (3.4). Suppose that (3.6) holds for j = m− 1. Since the
original network fθ is linear and F jηj = gj+1

φj+1
, we get

Pm(x) = Fmηm

(
(gmφm ◦ C

m
δm)(x)− Cm+1

δm+1
(x) + Pm−1(x)

)
= (gm+1

φm+1
◦ gmφm ◦ C

m
δm)(x)− (gm+1

φm+1
◦ Cm+1

δm+1
)(x) + (gm+1

φm+1
◦ Pm−1)(x)

= (gm+1
φm+1

◦ gmφm ◦ . . . g
1
φ1
◦ C1

δ1)(x)− (gm+1
φm+1

◦ Cm+1
δm+1

)(x),

where the last equality is due to the induction hypothesis. Hence, (3.6) also holds for j = m,
which implies that it is true for all j.

Combining (3.5) and (3.6), we obtain

f̄θ̄(x) = hε
(
(gNφN ◦ C

N
δN

)(x) + PN−1(x)
)

= (hε ◦ gNφN ◦ g
N−1
φN−1

◦ . . . g1
φ1
◦ C1

δ1)(x)

= (hε ◦ gNφN ◦ g
N−1
φN−1

◦ . . . g1
φ1
◦ Cδ)(x)

= fθ(x),

which completes the proof.

Proposition 3.1 presents a guideline on how to design the coarse network of f̄θ̄. Under the
assumption that fθ is linear, a sufficient condition to ensure that f̄θ̄ = fθ is F jηj = gj+1

φj+1
for all

j. Therefore, we can say that it is essential to design the coarse network with F jηj ≈ g
j+1
φj+1

to
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ensure that the performance of f̄θ̄ is as good as that of fθ. Detailed examples will be given
in Section 4.

On the other hands, the propagation of the coarse network in the parareal neural network
is similar to gradient boosting [10, 28], one of the ensemble techniques. In (3.2), the coarse
network satisfies F jηj (r̃j) = r̃j+1 − rj+1. Let L(x,y) = 1

2‖x− y‖2, then we have

F jηj (r̃j) = r̃j+1 − rj+1 = −∂L(r̃j+1, rj+1)

∂rj+1
.

From the viewpoint of gradient boosting, the propagation of coarse network can be expressed
by the following gradient descent method:

r̃j+1 = rj+1 −
∂L(r̃j+1, rj+1)

∂rj+1
.

Thus, it can be understood that the coarse network constructed by emulating the coarse grid
correction of the parareal algorithm corrects the residuals at the interface by the gradient
descent method, i.e., it reduces the difference between xj+1 and yj at each interface.

Furthermore, we can think of the preprocessing Cjδj and subnetwork gjφj in parareal neural

network as a single shallow network gjφj ◦C
j
δj
. Then, the parareal neural network can be thought

of as a network in which several shallow neural networks are stacked, such as the Stacked
generalization [34] of the ensemble technique. Thanks to the coarse network, the parareal
neural network does not simply stack the shallow networks, but behaves like a deep neural
network that sequentially computes the parallel subnetworks as mentioned in Proposition 3.1.

3.2. Details of backward propagation. We present a detailed description on the backward
propagation for the parareal neural network y = f̄θ̄(x). Partial derivatives ∂f̄θ̄

∂ε and ∂y
∂ỹ regarding

to the postprocessing operator hε are computed directly from (3.3):

∂f̄θ̄
∂ε

=
∂hε
∂ε

,
∂y

∂ỹ
=
∂hε
∂ỹ

.

It is clear from (3.2) that

(3.7)
∂rj
∂yj

= 1,
∂rj
∂xj+1

= −1,
∂r̃j
∂rj

= 1,
∂ỹ

∂yN
= 1,

∂ỹ

∂r̃N
= 1.

Moreover, by (3.2b), we get

(3.8)
∂r̃j+1

∂ηj
=
∂F jηj
∂ηj

,
∂r̃j+1

∂r̃j
=
∂F jηj
∂r̃j

.

Invoking the chain rule with (3.7) and (3.8), ∂f̄θ̄∂ηj
is described as

(3.9)
∂f̄θ̄
∂ηj

=
∂y

∂ỹ

∂ỹ

∂r̃N

 N−1∏
l=j+1

∂r̃l+1

∂r̃l

 ∂r̃j+1

∂ηj
=
∂hε
∂ỹ

 N−1∏
l=j+1

∂F lηl
∂r̃l

 ∂F jηj
∂ηj

.
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On the other hand, partial derivatives ∂xj
∂δj

, ∂yj
∂φj

, and ∂yj
∂xj

can be computed in parallel
by (3.1):

(3.10)
∂xj
∂δj

=
∂Cjδj
∂δj

,
∂yj
∂φj

=
∂gjφj
∂φj

,
∂yj
∂xj

=
∂gjφj
∂xj

.

Using (3.7), (3.8), and (3.10), it follows that

∂f̄θ̄
∂φj

=


∂y

∂ỹ

∂ỹ

∂r̃N

N−1∏
l=j

∂r̃l+1

∂r̃l

 ∂r̃j
∂rj

∂rj
∂yj

∂yj
∂φj

if j < N,

∂y

∂ỹ

∂ỹ

∂yN

∂yN
∂φN

if j = N

=
∂hε
∂ỹ

N−1∏
l=j

∂F lηl
∂r̃l

 ∂gjφj
∂φj

.(3.11)

Similarly, with the convention
∂F 0

η0
∂r̃0

= 0, we have

∂f̄θ̄
∂δj

=


∂y

∂ỹ

∂ỹ

∂r̃N

N−1∏
l=j

∂r̃l+1

∂r̃l

(∂r̃j
∂rj

∂rj
∂yj

∂yj
∂xj

+
∂r̃j
∂r̃j−1

∂r̃j−1

∂rj−1

∂rj−1

∂xj

)
∂xj
∂δj

if j < N,

∂y

∂ỹ

(
∂ỹ

∂yN

∂yN
∂xN

+
∂ỹ

∂r̃N

∂r̃N
∂r̃N−1

∂r̃N−1

∂rN−1

∂rN−1

∂xN

)
∂xN
∂δN

if j = N

=
∂hε
∂ỹ

N−1∏
l=j

∂F lηl
∂r̃l

(∂gjφj
∂xj

−
∂F j−1

ηj−1

∂r̃j−1

)
∂Cjδj
∂δj

.(3.12)

For efficient computation, the value of ∂hε∂ỹ

(∏N−1
l=j

∂F lηl
∂r̃l

)
can be stored during the evaluation

of (3.9) and then used in (3.11) and (3.12). Such a technique is described in Algorithm 3.2.

4. Applications. In this section, we present applications of the proposed methodology to
two existing convolutional neural networks (CNNs): VGG-16 [32] and ResNet-1001 [16]. For
each network, we deal with details on the construction of parallel subnetworks and a coarse
network. Also, numerical results are presented showing that the proposed parareal neural
network gives comparable or better results than given feed-forward neural network and other
variants in terms of both training time and classification performance.

First, we present details on the datasets we used. The CIFAR-m (m = 10, 100) dataset
consists of 32× 32 colored natural images and includes 50,000 training and 10,000 test samples
with m classes. The SVHN dataset is composed of 32×32 colored digit images; there are 73,257
and 26,032 samples for training and test, respectively, with additional 531,131 training samples.
However, we did not use the additional ones for training. MNIST is a classic dataset which
contains handwritten digits encoded in 28× 28 grayscale images. It includes 55,000 training,
5,000 validation, and 10,000 test samples. In our experiments, the training and validation



10 C.-O. LEE, Y. LEE, AND J. PARK

Table 1
Architecture of VGG-16 for the dataset ImageNet. A layer consisting of an n×n convolution with k-channel

ouput, a max pooling with kernel size 2 and stride 2, and a k-way fully connected layer are denoted by [n× n, k],
maxpool, and k-d FC, respectively.

Layer Output size VGG-16

Preprocessing 224× 224 [3× 3, 64]

Block-repetitive
substructure

112× 112 [3× 3, 64] + maxpool
56× 56 [3× 3, 128]×2 + maxpool
28× 28 [3× 3, 256]×3 + maxpool
14× 14 [3× 3, 512]×3 + maxpool
7× 7 [3× 3, 512]×3 + maxpool

Postprocessing 1× 1 [4096-d FC]×2 + 1000-d FC

samples are used as training data and the test samples as test data. ImageNet is a dataset
which contains 1000 classes of 224× 224 colored natural images. It includes 1,280,000 training
and 50,000 test samples.

We adopted a data augmentation technique in [24] for CIFAR datasets; four pixels are
padded on each side of images, and 32×32 crops are randomly sampled from the padded images
and their horizontal flips. All neural networks in this section were trained using the stochastic
gradient descent with the batch size 128, weight decay 0.0005, Nesterov momentum 0.9, and
weights initialized as in [14]. The initial learning rate was set to 0.1, and was reduced by a
factor of 10 in the 80th and 120th epochs. For ImageNet datasets, the input image is 224× 224
randomly cropped from a resized image using the scale and aspect ratio augmentation [33].
Hyperparameter settings are the same as other cases except the followings; the weight decay
0.0001, total epoch 90, and the learning rate was reduced by a factor of 10 in the 30th and 60th
epochs. All networks were implemented in Python with PyTorch and all computations were
performed on a cluster equipped with Intel Xeon Gold 5515 (2.4GHz, 20C) CPUs, NVIDIA
Titan RTX GPUs, and the operating system Ubuntu 18.04 64bit.

4.1. VGG-16. In general, CNNs without skip connections (see, e.g., [21, 32]) can be
represented as

xl = Hl(xl−1),

where xl is an output of the lth layer of the network and Hl is a nonlinear transformation
consisting of convolutions, batch normalization and ReLU activation. Each layer of VGG-
16 [32], one of the most popular CNNs without skip connections, consists of multiple 3 × 3
convolutions. The network consists of 5 stages of convolutional blocks and 3 fully connected
layers. Each convolutional block is a composition of double or triple convolutions and a max
pooling operation.

4.1.1. Parareal transformation. First, we describe the structure of VGG-16 which was
designed for the classification problem of ImageNet [7] with the terminology introduced
in Section 3. Inputs for VGG-16 are 3-channel images with 224×224 pixels, i.e., X = R3×224×224.
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Table 2
Error rates (%) on the ImageNet dataset of VGG-16 and Parareal VGG-16-4.

Network Subnetwork
Parameters

Coarse network
Parameters

Total
Parameters Error rate (%)

VGG-16 - - 138.4M 32.30

Parareal VGG-16-4 3.7M 9.1M 147.5M 30.97

The output space Y is given by Y = R1000, where 1, 000 is the number of classes of ImageNet.
We set the preprocessing operator Cδ: X →W0 = R64×224×224 by the first 3× 3 convolution
layer in VGG-16. We refer to the remaining parts of VGG-16 as the block-repetitive structure
gφ: W0 →W1 with W1 = R512×7×7 except for the last three fully connected layers. Finally, the
postprocessing operator hε: W1 → Y is the composition of the three fully connected layers.
Table 1 shows the detailed architecture of VGG-16.

In order to construct a parareal neural network with N parallel subnetworks for VGG-16,
we have to specify its components gjφj , C

j
δj
, and F jηj . For simplicity, we assume that N = 4. We

decompose gφ into 4 parts such that the output size of each part is 56× 56, 28× 28, 14× 14,
and 7× 7, respectively. Then, the block-repetitive structure gφ can be decomposed as

gφ = g4
φ4
◦ g3

φ3
◦ g2

φ2
◦ g1

φ1
,

where each of gjφj : Xj−1 → Xj with

Xj =


R128×56×56 for j = 1

R256×28×28 for j = 2,

R512×14×14 for j = 3,

R512×7×7 for j = 4,

φ =

4⊕
j=1

φj .

Recall that the main role of the preprocessing operator Cjδj : X → Xj−1 is to transform an

input x ∈ X to fit in the space Xj−1. In this perspective, we simply set C1
δ1

= Cδ and Cjδj for
j > 1 by a 1 × 1 convolution to match the number of channels after appropriate number of
3× 3 max pooling layers with stride 2 to match the image size.

According to Proposition 3.1, it is essential to design the coarse network such that F jηj ≈
gj+1
φj+1

in order to ensure the performance of the parareal neural network. We simply define

F jηj : Xj → Xj+1 by the composition of two 3× 3 convolutions and a max pooling with kernel
size 2 and stride 2, which has a simplified structure of gj+1

φj+1
with fewer parameters.

4.1.2. Numerical results. We present the comparison results with Parareal VGG-16-4
and VGG-16 on ImageNet dataset. Note that Parareal VGG-16-4 denotes the parareal neural
network version of VGG-16 with N = 4. Table 2 shows that the error rate of Parareal VGG-16-4
is smaller than that of VGG-16. From this result, it can be seen that the accuracy is guaranteed
even when the parareal neural network is applied to a network with small number of layers.
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Table 3
Forward/backward computation time for VGG-16 and Parareal VGG-16-4. It is a measure of the time taken

in one iteration for ImageNet dataset input x ∈ R3×224×224 with batch size 128. One interation means one step
of updating all parameters with SGD.

Virtual wall-clock time (ms)

Network Preprocessing Parallel
subnetworks

Coarse
network Postprocessing Total

VGG-16 18.73/321.22 187.21/3302.11 - 3.33/5.82 209.27/3629.15

Parareal VGG-16-4 18.78/334.10 46.59/453.25 62.84/1413.49 2.96/5.90 131.17/2206.74

Table 4
Error rates (%) and wall-clock times on the ImageNet dataset. The wall-clock time is the total time taken

to train a given network by 200 epochs. Relative speed-up is measured according to (4.1).

Network Parameters Error rate (%) Wall-clock time (h:m:s) RS (%)

VGG-16 138.4M 32.30 191:17:00 0.0
Data Parallel VGG-16-4 553.6M 27.73 142:56:18 25.3
Parareal VGG-16-4 147.5M 30.97 188:22:18 1.5

Next, we investigate the elapsed time for forward and backward propagations of parareal
neural networks, which are the most time-consuming part of network training. Table 3 shows
the virtual wall-clock time for forward and backward computation of VGG-16 and Parareal
VGG-16-4 for the input x ∈ R3×224×224. Note that the virtual wall-clock time is measured
under the assumption that all parallelizable procedures indicated in Algorithm 3.2 are executed
simultaneously. It means that, it excludes the communication time among GPUs. In Table 3,
even if the VGG-16 has the small number of layers, it can be seen that the computation time
of Parareal-VGG-16-4 is reduced in terms of virtual wall clock time.

Now, we compare the performance of the proposed methodology to data parallelism. In
data parallelism, the batch is split into subsets at each epoch. Each subset is assigned one for
each GPU and the gradient corresponding to the subset is computed in parallel. Then the
parameters of the neural network are updated by the averaged gradient over all subsets. In
what follows, Data Parallel VGG-16-4 denotes the data parallelized VGG-16 with 4 GPUs.
We compare the error rate and the wall-clock time of each parallelized network with the
ImageNet dataset. To investigate the speed-up provided by each parallelism, we use the relative
speed-up (RS) introduced in [9], which is defined by

(4.1) RS =
tr − tp
tr

,

where tp is the total elapsed time taken to complete training of the given parallelism and tr is
that of the given feed-forward network.

Table 4 shows that the wall-clock time of Data Parallel VGG-16-4 is the shortest. This is
because Data Parallel VGG-16-4 has very small number of layers, which takes a short time
for communication to average the gradients for updating parameters. On the other hand, in
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Figure 3. Bottleneck structure of an RU used in ResNet-1001. The first 1 × 1 convolution squeezes the
number of channels of an input and the last 1×1 convolution increases the number of channels of an intermediate
result. If xl and xl+1 have different numbers of channels, then a 1×1 convolution is added to the skip connection
in order to match the number of channels.

Table 5
Architecture of ResNet-1001 for the dataset CIFAR-100. Downsampling with stride 2 is performed in

the second and third stages of the block-repetitive structure. A layer consisting of an n × n convolution with
k-channel ouput, an average pooling with output size 1× 1, and a k-way fully connected layer are denoted by
[n× n, k], avgpool, and k-d FC, respectively.

Layer Output size ResNet-1001

Preprocessing 32× 32 [3× 3, 16]

Block-repetitive
substructure

32× 32

1× 1, 16
3× 3, 16
1× 1, 64

× 111

16× 16

 1× 1, 32
3× 3, 32
1× 1, 128

× 111

8× 8

 1× 1, 64
3× 3, 64
1× 1, 256

× 111

Postprocessing 1× 1 avgpool + 100-d FC

the case of Parareal VGG-16-4, as shown in Table 3, the computation time of the parallel
subnetwork is very small, and the majority of the total computation time is the computation
time of the coarse network. Therefore, Parareal VGG-16-4 has a parallel structure, but the
effect of parallelization is not significant. In fact, the parareal algorithm works more effectively
in networks with a large number of layers, but maintains accuracy and does not slow down
even in networks with a small number of layers.

4.2. ResNet-1001. Next, we will apply the proposed parareal neural network to ResNet [15,
16], which is typically one of the very deep neural networks. In ResNet, an RU is constructed
by adding a skip connection, i.e., it is written as

xl = Hl(xl−1) + xl−1.
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Figure 3 shows the structure of an RU, called bottleneck used in ResNet. In particular, we deal
with ResNet-1001 for the CIFAR dataset [20], where 1, 001 is the number of layers. ResNet-1001
consists of a single 3× 3 convolution layer, a sequence of 333 RUs with varying feature map
dimensions, and a global average pooling followed by a fully connected layer. Table 5 shows
the details of the architecture of ResNet-1001 for the CIFAR-100 dataset.

As presented in Section 3, ResNet-1001 can be decomposed as follows: a preprocessing
operator Cδ: X →W0 as the 3× 3 convolution layer, a block-repetitive substructure gφ: W0 →
W1 as 333 RUs, and a postprocessing operator hε: W1 → Y consisting of the global average
pooling and the fully connected layer. More specifically, we have X = R3×32×32, W0 =
R16×32×32, W1 = R256×8×8, and Y = Rm where m is the number of classes of images.

4.2.1. Parareal transformation. The design of a parareal neural network with N parallel
subnetworks for ResNet-1001, denoted as Parareal ResNet-N , can be completed by specifying
the structures gjφj , C

j
δj
, and F jηj . For convenience, the original neural network ResNet-1001 is

called Parareal ResNet-1. We assume that N = 3N0 for some positive integer N0. We observe
that gφ can be decomposed as

gφ = gNφN ◦ · · · ◦ g
2N0+1
φ2N0+1

◦ g2N0
φ2N0

◦ · · · ◦ gN0+1
φN0+1

◦ gN0
φN0
◦ · · · ◦ g1

φ1
,

where each of gjφj : Xj−1 → Xj consists of d333/Ne RUs with

Xj =


R64×32×32 for j = 1, . . . , N0,

R128×16×16 for j = N0 + 1, . . . , 2N0,

R256×8×8 for j = 2N0 + 1, . . . , N,

φ =

N⊕
j=1

φj .

Similarly to the case of VGG-16, the preprocessing operators are defined as follows: C1
δ1

= Cδ

and Cjδj for j > 1 consists of a 1 × 1 convolution to match the number of channels after
appropriate number of 3 × 3 max pooling layers with stride 2 to match the image size. For
the coarse network, we first define a coarse RU consisting of two 3 × 3 convolutions and
skip-connection. If the downsampling is needed, then the stride of first convolution in coarse
RU is set to 2. We want to define F jηj : Xj → Xj+1 having smaller number of (coarse) RUs
than gj+1

φj+1
but a similar coverage to gj+1

φj+1
. Note that the receptive field of gjφj covers the input

size 32× 32. In terms of receptive field, even if we construct F jηj with fewer coarse RUs than
d333/Ne, it can have similar coverage to the parallel subnetwork gjφj .

Let Nc be the number of coarse RUs in F jηj of the coarse network. Here, we present how
Nc affects the performance of the parareal neural network. Specifically, we experimented with
Parareal ResNet-3 with gjφj consisting of 111 RUs. Table 6 shows the error rates of Parareal
ResNet-3 with respect to various Nc. The performance of Parareal ResNet-3 with Nc = 4 is
similar to ResNet-1001. In fact, four coarse RUs consist of one 3× 3 convolution with stride 2
and seven 3× 3 convolutions so that the receptive field covers 31× 31 pixels, which is almost
all pixels of the input x ∈ X. Parareal ResNet-3 shows better performance than ResNet-1001
when Nc > 4. Since Parareal ResNet-3 with Nc = 4 shows similar performance to ResNet-1001,
we may say that 1 RUs in F jηj can approximate 111/4 ≈ 28 RUs in gjφj . Generally, if we use N
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Table 6
Error rates (%) on the CIFAR-100 dataset of Parareal ResNet-3, where Nc is the number of coarse RUs in

each component F jηj of the coarse network.

Nc Error rate (%)

1 23.47
2 22.20
4 21.14
8 20.85
16 20.83

Reference (ResNet-1001): 21.13
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Figure 4. Comparison of the training loss for Parareal ResNet-N (N = 1, 3, 6, 12, 18) on various datasets:
(a) CIFAR-10, (b) CIFAR-100, (c) MNIST, and (d) SVHN results.

parallel subnetworks (N ≥ 3), each 333/N RUs in gjφj can be approximated by the Nc RUs in

F jηj whenever we select Nc = d12/Ne.

4.2.2. Numerical results. With fixed Nc = d12/Ne, we report the classification results
of Parareal ResNet with respect to various N on datasets CIFAR-10, CIFAR-100, SVHN,
and MNIST. Decay of the training loss of Parareal ResNet-N (N = 1, 3, 6, 12, 18) for various
datasets is depicted in Figure 4. As shown in Figure 4, the training loss converges to a smaller
value for larger N . It seems that such a phenomenon is due to the increase of the number
of parameters in Parareal ResNet when N increases. In the cases of MNIST and SVHN,
oscillations of the training loss are observed. It is well-known that such oscillations are caused
by excessive weight decay and can be removed by dropout [36].

We next study how the classification performance is affected by N , the number of sub-
networks. Table 7 shows that the error rates of Parareal ResNet-N are usually smaller than
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Table 7
Error rates (%) on the CIFAR-10, CIFAR-100, MNIST, and SVHN datasets of Parareal ResNet-N

(N = 1, 3, 6, 12, 18) with Nc = d12/Ne.

N
Subnetwork
Parameters

Coarse network
Parameters

Total
Parameters CIFAR-10 CIFAR-100 MNIST SVHN

1 - - 10.3M 4.96 21.13 0.34 3.17
3 3.4M 5.6M 15.9M 4.61 21.14 0.31 3.11
6 1.7M 5.7M 16.1M 4.20 20.87 0.31 3.21
12 0.9M 5.8M 16.2M 4.37 20.42 0.28 3.25
18 0.6M 8.9M 19.4M 4.02 20.40 0.33 3.29

Table 8
Forward/backward computation time for Parareal ResNet-N (N = 1, 3, 6, 12, 18). The time is measured in

one iteration for CIFAR-100 dataset input x ∈ R3×32×32 with batch size 128.

Virtual wall-clock time (ms)

N Preprocessing Parallel
subnetworks

Coarse
network Postprocessing Total

1 0.25/6.46 443.81/1387.62 - 0.06/3.18 444.12/1397.26

3 0.25/6.45 131.92/458.87 10.01/97.60 0.06/3.71 142.24/566.63
6 0.27/6.42 67.59/219.72 14.68/137.08 0.06/3.33 82.60/366.55
12 0.28/6.59 48.47/113.33 17.97/149.52 0.06/3.63 66.78/273.07
18 0.29/6.17 30.40/77.84 27.87/163.25 0.06/3.64 58.62/250.90
24 0.29/6.58 22.71/58.04 41.03/242.87 0.06/3.54 64.09/311.03

ResNet-1001. There are some exceptional cases that the error rate of Parareal ResNet-N
exceeds that of ResNet-1001: N = 6, 12 and 18 for SVHN. It is known that these cases occur
when there are oscillations in the decay of the training loss [37]; see Figure 4. As we mentioned
above, such oscillations can be handled by dropout.

Like the case of VGG-16, we investigate the elapsed time for forward and backward
propagations of parareal neural networks. Table 8 shows the virtual wall-clock time for forward
and backward computation of Parareal ResNet-N with various N for the input x ∈ R3×32×32.
As shown in Table 8, the larger N , the shorter the computing time of the parallel subnetworks
gjφj , while the longer the computing time of the coarse network. This is because as N increases,

the depth of each parallel subnetwork gjφj becomes shallower while the number of F jηj in the

coarse network increases. On the other hand, each preprocessing operator Cjδj is designed to be
the same as or similar to the preprocessing operator Cδ of the original neural network and the
postprocessing operator hε is the same as the original one. Therefore, the computation time
for the pre- and postprocessing operators does not increase even as N increases. As a trade-off
between the decrease in time in parallel subnetworks and the increase in time in the coarse
network, we observe in Table 8 that the elapsed time of forward and backward computation
decreases as N increases when N ≤ 18.
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in ResNet. (b) The
corresponding 2-warp operator in WarpNet.

Remark 4.1. In our experiments, the decomposition of the block-repetitive structure of
ResNet-1001 was done so that each parallel subnetwork of Parareal ResNet had the same
number of RUs. However, such a decomposition is not optimal because each RU has the
different computational cost. It is expected that the uniform decomposition of the Parareal
ResNet in terms of computational cost will further improve the parallel efficiency reducing
virtual wall-clock time even above N = 18.

Finally, we compare the performance of the Parareal ResNet to two existing approaches of
parallel computing for neural networks: WarpNet [9] and data parallelism. WarpNet replaces
every K RUs in ResNet by a K-warp operator, which can be evaluated using RUs arranged in
a parallel manner and their derivatives. For example, we display the parallel structure of the
2-warp operator in Figure 5; see [9] for further details. In what follows, Data Parallel ResNet-N
and WarpNet-N denote the data parallelized ResNet-1001 with N GPUs and WarpNet with
(N − 1)-warp operators using N GPUs, respectively. We compare the error rate and the
wall-clock time of each parallelized network with the CIFAR-100 dataset. Table 9 shows that
only RS of Parareal ResNet is greater than 0. This is because when the number of layers of
WarpNet and Data Parallel ResNet is very large, data communication between GPUs is required,
which can frequently cause communication bottlenecks at each layer. On the other hand, in the
forward propagation of Parareal ResNet, only a single communication process among GPUs is
needed: communication between each parallel subnetwork and the coarse network. Therefore,
Parareal ResNet is relatively free from communication bottlenecks compared to the other
methods. In conclusion, Parareal ResNet outperforms the other two methods in parallelization
of deep neural networks in terms of training time reduction.

Remark 4.2. In terms of memory efficiency, Data Parallel VGG-16 and Data Parallel ResNet
allocate all parameters to each GPU, which is a waste of memory of GPUs. WarpNet-N requires
duplicates of parameters since it computes RUs and their derivatives simultaneously at forward
propagation so that the memory efficiency is deteriorated. On the other hand, in Parareal
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Table 9
Error rates (%) and wall-clock times on the CIFAR-100 dataset. The wall-clock time is the total time taken

to train a given network by 200 epochs.

Network Parameters Error rate (%) Wall-clock time (h:m:s) RS (%)

ResNet-1001 10.3M 21.13 22:44:53 0.0

Data Parallel ResNet-3 30.9M 21.09 46:50:20 -105.9
Parareal ResNet-3 15.9M 21.14 16:28:38 27.6
WarpNet-3 15.3M 19.95 90:56:46 -299.8

Data Parallel ResNet-6 61.8M 20.42 68:10:06 -199.7
Parareal ResNet-6 16.1M 20.87 11:48:13 48.1

VGG-16 and Parareal ResNet, the entire model can be equally distributed to each GPU as a
parallel subnetwork; only a single GPU requires additional memory to store the parameters
of the coarse network which is much smaller than the entire model. Therefore, the proposed
Parareal neural network outperforms the other two methods in the terms of memory efficiency
as well.

5. Conclusion. In this paper, we proposed a novel methodology to construct a parallel
neural network called the parareal neural network, which is suitable for parallel computation
using multiple GPUs from a given feed-forward neural network. Motivated by the parareal algo-
rithm for time-dependent differential equations, the block-repetitive part of the original neural
network was partitioned into small pieces to form parallel subnetworks of the parareal neural
network. The coarse network that corrects differences at the interfaces among subnetworks was
introduced so that the performance of the resulting parareal network agrees with the original
network. As a concrete example, we presented how to design the parareal neural network
corresponding to VGG-16 and ResNet-1001. Numerical results were provided to highlight the
robustness and parallel efficiency of Parareal VGG-16 and Parareal ResNet. To the best of our
knowledge, the proposed methodology is a new kind of multi-GPU parallelism in the field of
deep learning.
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