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Abstract—Semantic segmentation and depth completion are
two challenging tasks in scene understanding, and they are
widely used in robotics and autonomous driving. Although several
studies have been proposed to jointly train these two tasks
using some small modifications, like changing the last layer, the
result of one task is not utilized to improve the performance of
the other one despite that there are some similarities between
these two tasks. In this paper, we propose multi-task generative
adversarial networks (Multi-task GANs), which are not only
competent in semantic segmentation and depth completion, but
also improve the accuracy of depth completion through generated
semantic images. In addition, we improve the details of generated
semantic images based on CycleGAN by introducing multi-scale
spatial pooling blocks and the structural similarity reconstruction
loss. Furthermore, considering the inner consistency between
semantic and geometric structures, we develop a semantic-guided
smoothness loss to improve depth completion results. Extensive
experiments on Cityscapes dataset and KITTI depth completion
benchmark show that the Multi-task GANs are capable of achiev-
ing competitive performance for both semantic segmentation and
depth completion tasks.

Index Terms—Generative adversarial networks, semantic seg-
mentation, depth completion, image-to-image translation.

I. INTRODUCTION

In the past decades, the computer vision community has
implemented a large number of applications in autonomous
systems [1]. As a core task of autonomous robots, scene
perception involves several tasks, including semantic segmen-
tation, depth completion, and depth estimation, etc [2]. Due to
the great performance of deep learning (DL) in image process-
ing, several methods based on convolutional neural networks
(CNNs) have achieved competitive results in perception tasks
of autonomous systems, like semantic segmentation [3], object
detection [4], image classification [5] and depth completion
[6], [7]. DL-based visual perception methods are usually
divided into supervised, semi-supervised and unsupervised
ones according to the supervised manner. Since the ground
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Fig. 1: The proposed multi-task generative adversarial net-
works. Our multi-task framework includes semantic preception
task and depth completion task, and each task corresponds
to its own generator (G) and discriminator (D). We use the
results of semantic segmentation to improve the accuracy of
depth completion.

truth is difficult to acquire, perceptual tasks by semi-supervised
and unsupervised methods have attracted increasing attention
in recent years. Each pixel in one image usually contains rich
semantic and depth information, which makes it possible to
implement semantic or depth visual perception tasks based
on the same framework [2]. Since most unsupervised depth
estimation methods predict depth information from stereo
image pairs or image sequences, which only focus on RGB
image information, and they may suffer from a similar over-
fitting outcome [6]. In contrast, depth completion tasks sparse
depth as references, which is capable of achieving better
performance than depth estimation from RGB [8]. Therefore,
we consider depth completion instead of depth estimation
in this paper. We propose a multi-task framework, including
semantic segmentation and depth completion.

As an important way for autonomous systems to understand
the scene, semantic segmentation is a pixel-level prediction
task, which classifies each pixel into a corresponding la-
bel [9]. The accuracy of supervised semantic segmentation
methods is satisfactory, while ground truth labels are usually
difficult to obtain. Therefore, several semantic segmentation
algorithms have focused on unsupervised methods in recent
years, like FCAN [10], CyCADA [11] and CrDoCo [12].
Unsupervised semantic segmentation methods use semantic
labels of simulated datasets without manual annotation, and
they eliminate the domain shift between real-world data and
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simulated data through domain adaptation. In other words, al-
though unsupervised methods do not require manual labeling,
they still constrain pixel classification in a supervised manner
by automatically generating labels paired with RGB images
[11], [13]. In this paper, we treat semantic segmentation tasks
that do not require paired semantic labels, i.e., we regard
semantic segmentation as a semi-supervised image-to-image
translation task [14]. Actually, this is a challenging task since
we utilize unpaired RGB images and semantic labels in the
training process may permute the labels for vegetation and
building [14]. Our generated semantic images may not be
strictly aligned with the category labels, but we align generated
semantic images with category labels by minimizing the pixel
value distance [14].

Image-to-image translation is to transfer images from the
source domain to the target domain. In this process, we should
ensure that the content of translated images is consistent with
the source domain, and the style is consistent with the target
domain [2]. In image-to-image translation, supervised methods
are able to produce good transfer results. However, it is very
difficult to obtain paired data of different styles [14]. There-
fore, image translation using unpaired data has attracted much
attention in recent years. Since generative adversarial networks
(GANs) have shown powerful effects in image generation
tasks, Zhu et al., [14] present a cycle-consistent adversarial
network (CycleGAN), which introduces the adversarial idea
for image-to-image translation. CycleGAN is also used for
semantic segmentation, while it has a poor effect on image
details, like buildings and vegetation are often turned over
due to the use of unpaired data [14]. Li et al. [15] improve
the details of the generated images by adding an encoder
and a discriminator into the architecture to learn an auxiliary
variable, which effectively tackles the permutation problem
of vegetation and buildings. Although the method in [15] is
competitive, the introduction of the additional encoder and
discriminator greatly increases the complexity of the model.
In order to improve the details of the generated images and
deal with the permutation problem of vegetation and buildings,
we introduce here multi-scale spatial pooling blocks [16] and
the structural similarity reconstruction loss [17], which can
achieve competitive results by adding minor complexity of
the model only.

Dense and accurate depth information is essential for au-
tonomous systems, including tasks like obstacle avoidance
[18] and localization [19], [20]. With its high accuracy and
perception range, LiDAR has been integrated into a large
number of autonomous systems. Existing LiDAR provides
sparse measurement results, and hence depth completion,
which estimates the dense depth from sparse depth measure-
ments, is very important for both academia and industry [20],
[21]. Since the sparse depth measured by LiDAR is irregular in
space [20], the depth completion is a challenging task. Existing
multiple-input methods predict a dense depth image from the
sparse depth and corresponding RGB image, while the RGB
image is very sensitive to optical changes, which may affect
the results of depth completion [22]. In this paper, we are
making full use of semantic information to implement depth
completion tasks, which substantially reduces the sensitivity

to optical changes [22].
In this paper, considering the fact that most studies require

corresponding semantic labels as pixel-level constraints for
semantic segmentation tasks [10], [11], [12], we develop im-
age translation methods to implement semantic segmentation
with unpaired datasets. As well, we tackle the problem that
vegetation and buildings are permuted in generated semantic
images, which is widely observed in previous works [14],
[23], by introducing multi-scale spatial pooling blocks [16] and
the structural similarity reconstruction loss [17]. In addition,
although semantic cues are important for depth completion
[24], existing methods do not consider input semantic labels.
We further introduce semantic information to improve the
accuracy of depth completion and aim to achieve competitive
results. Finally, we unify the two tasks in one framework. Our
architecture diagram is shown in Figure 1.

In summary, our main contributions are:
• For semantic segmentation, we introduce multi-scale spa-

tial pool blocks to extract image features from different
scales to improve the details of generated images. As
well, we develop the structural similarity reconstruction
loss, which improves the quality of reconstructed images
from the perspectives of luminance, contrast and struc-
ture.

• We consider the information at the semantic-level to
effectively improve the accuracy of depth completion,
by extracting the features of generated semantic images
as well as by regarding the semantic-guided smoothness
loss, which reduces the sensitivity to optical changes due
to the consistency of object semantic information under
different lighting conditions.

• We propose Multi-task GANs, which unify semantic
segmentation and depth completion tasks into one frame-
work, and experiments show that, compared with the
state-of-the-art methods, Multi-task GANs achieve com-
petitive results for both tasks, including CycleGAN [14]
and GcGAN [23] for semantic segmentation, Sparse-to-
Dense(gd) [20] and NConv-CNN [25] for depth comple-
tion.

The organization of this paper is arranged as follows.
Section II discusses previous works on semantic segmentation,
depth completion, and image-to-image translation. The method
of this paper is introduced in Section III. Section IV shows
the experimental results of our proposed method on the
Cityscapes dataset and KITTI depth completion benchmark.
Finally, Section V concludes this study.

II. RELATED WORK

Image-to-image translation. The image-to-image transla-
tion task is to transform an image from the source domain to
the target domain. It ensures that the content of the translated
image is consistent with the source domain and the style is
consistent with the target domain [26]. GANs use adversarial
ideas for generating tasks, which can output realistic images
[27]. Zhu et al. [14] propose CycleGAN for the image-to-
image translation task with unpaired images, which combines
GANs and cycle consistency loss. In this paper, we consider



MULTI-TASK GANS FOR SEMANTIC SEGMENTATION AND DEPTH COMPLETION WITH CYCLE CONSISTENCY 3

the problem of semantic segmentation by using image-to-
image translation. CycleGAN looks poor in the details of
generating semantic labels from RGB images, e.g., buildings
and vegetation are sometimes turned over [14]. Fu et al. [23]
develop a geometry-consistent generative adversarial network
(GcGAN), which takes the original image and geometrically
transformed image as input to generate two images with
the corresponding geometry-consistent constraint. Although
GcGAN improves the accuracy of generated semantic images,
it does not tackle the permutation problem of buildings and
vegetation efficiently. In order to deal with the problem of
label confusion and further improve accuracy, Li et al. [15]
present an asymmetric GAN (AsymGAN), which improves the
details of the generated semantic images. Li et al. introduce
an additional encoder and discriminator to learn an auxiliary
variable, which greatly increases the complexity of the model.
In order to improve the details of generated images and handle
the problem that labels of vegetation and trees are sometimes
turned over, we introduce multi-scale spatial pooling blocks
and a structural similarity reconstruction loss without adding
additional discriminators or encoders. Because multi-scale spa-
tial pooling blocks extract features of different scales, and the
structural similarity reconstruction loss improves the quality of
generated images from the perspectives of luminance, contrast
and structure.

Semantic segmentation. As a pixel-level classification task,
semantic segmentation generally requires ground truth labels
to constrain segmentation results through cross-entropy loss.
Long et al. [28] is the first to use fully convolutional networks
(FCNs) for semantic segmentation tasks, and they add a skip
architecture to improve the semantic and spatial accuracy of
the output. This work is regarded as a milestone for semantic
segmentation by DL [2]. Inspired by FCN, several frameworks
have been proposed to improve the performance of FCN, like
RefineNet [29], DeepLab [30], PSPNet [31], etc. Since manual
labeling is costly, several studies have focused on unsupervised
semantic segmentation recently [11], [12], [32]. Unsupervised
semantic segmentation usually requires synthetic datasets, like
Grand Thief Auto (GTA) [33], which can automatically label
semantic tags of pixels without manual labor. However, due to
the domain gap between synthetic datasets and real-world data,
unsupervised methods should adapt to different domains [11],
[32]. Zhang et al. [10] introduce a fully convolutional adap-
tive network (FCAN), which combines appearance adaptation
networks and representation adaptation networks for semantic
segmentation. Due to the powerful effect of GANs in image
generation and style transfer, Hong et al. [34] consider using
cGAN [35] for domain adaptation in semantic segmentation.
Aligning these two domains globally through adversarial learn-
ing may cause some categories to be incorrectly mapped, so
Luo et al. [36] introduce a category-level adversarial network
to enhance local semantic information. The above semantic
segmentation methods all need corresponding semantic tags as
supervision signals for accurate classification, which requires
paired RGB images and semantic image datasets. In this
paper, we consider image-to-image translation for semantic
segmentation, which does not require pairs of RGB images
and semantic labels. This is a challenging task because the use

of unpaired datasets may cause confusion in semantic labels
[14].

Depth completion. Depth completion is to predict a pixel-
level dense depth from the given sparse depth. Existing depth
completion algorithms are mainly divided into depth-only
methods and multiple-input methods [24]. Depth-only methods
may provide the corresponding dense depth image by only
inputting the sparse depth, which is a challenging problem
due to the lack of rich semantic information. Uhrig et al.
[37] consider a sparse convolution module that operates on
sparse inputs, which uses a binary mask to indicate whether
the depth value is available. However, this method has a
limited improvement of performance in deeper layers. Lu et
al. [24] show recovering some image semantic information
from sparse depth. The depth completion model presented
by Lu et al. takes sparse depth as the only input, and it
constructs a dense depth image and a reconstructed image
simultaneously. This method can overcome the shortcomings
that depth-only methods may fail to recover semantically con-
sistent boundaries. Unlike depth-only methods, multiple-input
methods generally take sparse depth images and corresponding
RGB images as input, such that the model can make appropiate
use of the rich semantic and geometric structure information
in images. Ma et al. [38] consider inputting the concatenation
of the sparse depth and the corresponding image to a deep
regression model to obtain dense depth. Eldesokey et al. [25]
improve the normalized convolutional layer for CNNs with
a highly sparse input, which treats the validity mask as a
continuous confidence field. This method implements depth
completion with a small number of parameters. In addition,
several methods use other information to enhance the depth
completion results, like surface normals [21] and semantic
information [39]. Most existing studies consider multiple-input
to extract richer image information, they do not include the
sensitivity of RGB images to optical changes [21], [22], [38].
In this paper, we consider the sensitivity of RGB images
to optical changes, in which we add semantic-level feature
extraction and smoothness loss.

Multi-task learning. Multi-task learning improves the per-
formance of individual learning by incorporating different but
related tasks and sharing features between different tasks [24],
[40]. Especially in the field of image processing, each image
contains rich geometric and semantic information. Therefore,
multi-task learning has been applied to computer vision tasks,
like semantic segmentation [41] and depth estimation [42]. Qiu
et al. [21] introduce a framework for depth completion from
sparse depth and RGB images, which uses the surface normal
as the intermediate representation. They combine estimated
surface normals and RGB images with the learned attention
maps to improve the accuracy of depth estimation. Jaritz
et al. [39] jointly train the network for depth completion
and semantic segmentation by changing only the last layer,
which is a classic multi-task method for semantic segmentation
and depth completion. However, Jaritz et al. do not further
consider improving accuracy between tasks, i.e., they do not
use semantic results to improve the accuracy of depth com-
pletion, or use depth completion results to improve semantic
segmentation accuracy. Since semantic cues are important for
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depth completion [24], we unify semantic segmentation and
depth completion into a common framework, and we use the
results of semantic segmentation to improve the accuracy of
depth completion. As mentioned in [43], multi-task learning is
challenging to set the network architecture and loss function.
The network should consider all tasks at the same time,
and cannot let simple tasks dominate the entire framework.
Moreover, the weight distribution of the loss function should
make all tasks equally important. If the above two aspects
cannot be taken into consideration at the same time, the
network may not converge or the performance may deteriorate.
Meeting the above two requirements at the same time is
challenging for multi-task. In this paper, we propose Multi-
task GANs, which do not share the network layer for semantic
segmentation and depth completion. Nevertheless, it still has
coupling relationships between tasks, hance we regard Multi-
task GANs as a multi-task framework.

Motivated by the above discussions, our method is not only
competent in semantic segmentation and depth completion,
but also effectively uses the semantic information to improve
the accuracy of depth completion. For semantic segmentation,
we regard it as an image-to-image translation task, and we
improve the poor details of generated images, like pedestrians,
vegetation and building details. For depth completion, we
use the generated semantic images to improve its accuracy
from the perspectives of feature extraction and loss function.
The experiments in this paper verify the effectiveness of the
propsoed framework both qualitatively and quantitatively.

III. METHODOLOGY

In this section, we will first introduce our multi-task frame-
work, including semantic segmentation module and depth
completion module. Then we will introduce the loss function
of each task.

A. Architecture overview

Our multi-task framework is shown in Figure 2. Our multi-
task GANs effectively unify semantic segmentation and depth
completion, and utilize semantic information to improve the
depth completion results. We introduce multi-scale pooling
blocks to extract features of different scales to improve the
details of generated images. The architecture includes two
branches: semantic segmentation and depth completion. The
semantic segmentation branch translates the RGB image into a
semantic label through the generator Gs, and then reconstructs
it back to the RGB image through Fs. The discriminators DX1

and DY1 are used to discriminate the generated semantic image
and the reconstructed RGB image, respectively. Similarly, the
depth completion branch translates the concatenation of sparse
depth, RGB image and generated semantic image into a dense
depth image through the generator Gd, and then reconstructs it
back to the sparse depth through Fd. The discriminators DX2

and DY2 are used to discriminate the generated dense depth
and the reconstructed sparse depth, respectively. It is worth
noting that our framework unifies semantic segmentation and
depth completion tasks, and we introduce semantic informa-
tion to improve the results of depth completion. Our generators

for such tasks have only a small modification, i.e., adding a
multi-scale pooling block for semantic segmentation based on
the architecture of depth completion generator. Moreover, our
discriminators for the two tasks are exactly the same.

B. Semantic segmentation

Our semantic segmentation task categorizes image pixels in
the way of image-to-image translation. Since it is not strictly
classified into the color value corresponding to the label, we
process the translation result to align it to the color value of the
label by calculating the pixel value distance from the standard
semantic labels [14].

Network. We modify the architecture for our semantic
segmentation generators from Zhu et al. [14], which shows
impressive results in image style transfer. Our semantic branch
implements the translation between the RGB image domain
X1 and the semantic label domain Y1 with unpaired training
examples x ∈ X1 and ys ∈ Y1. Our semantic segmenta-
tion module contains two generators Gs : X1 → Y1 and
Fs : Y1 → X1. We introduce multi-scale spatial pooling
blocks [16] in generators, which capture sufficient spatial
information when there is a large scene deformation between
the source domain and the target domain [16]. Instead of
cascading the last convolution layers of the generator into the
multi-scale spatial pooling block, we concatenate the output
of the residual blocks with the input RGB image, as shown in
Figure 2. The structure of Fs is the same as Gs. In addition,
the discriminators DX1

and DY1
are used to distinguish real

samples from x and ys or generated samples F (ys) and G(x).
Letting Lseg , Lseg(Gs, Fs, DX1 , DY1), the formula of the
overall objective loss function of our semantic segmentation
branch is then as follows:

Lseg =LGAN (Gs, DY1
) + LGAN (Fs, DX1

)

+ λ1Lcyc(Gs, Fs) + λ2Lrec(Gs, Fs),
(1)

where LGAN (Gs, DY1
) and LGAN (Fs, DX1

) denote adver-
sarial losses [27]. Lcyc(Gs, Fs) refers to the cycle consistency
loss proposed by Zhu et al. [14]. Lrec(Gs, Fs) is the structural
similarity reconstruction loss, which is inspired by Wang et
al. [17]. λ1 and λ2 are hyperparameters used to control the
relative importance of cycle consistency loss and structural
similarity reconstruction loss [17]. We aim to solve:

G∗s, F
∗
s = arg min

Gs,Fs

max
DX1

,DY1

Lseg(Gs, Fs, DX1
, DY1

). (2)

Adversarial loss. We employ adversarial losses [27] for
the semantic segmentation task. For the generator Gs : X1 →
Y1 and its corresponding discriminator DY1 , the objective is
formulated as follows:

LGAN (Gs, DY1) =Eys∼pdata(ys)[logDY1(ys)]

+ Ex∼pdata(x)[log(1−DY1(Gs(x))].
(3)

We apply a similar adversarial loss LGAN (Fs, DX1
) for Fs :

Y1 → X1 and its corresponding discriminator DX1
.

Cycle consistency loss. We apply the cycle consistency loss
[14] to ensure the consistency between the RGB image domain
and the semantic domain. In other words, we make that for
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Fig. 2: Architecture overview. Our multi-task framework contains two branches: semantic segmentation and depth completion.
The semantic segmentation branch contains the generators Gs, Fs and the discriminators DX1

, DY1
. The depth completion

branch contains the generators Gd, Fd and the discriminators DX2
, DY2

. We briefly show the network architectures of Fs and
Fd in this figure, which have the same architectures as Gs and Gd respectively. The symbols

⊕
and

⊗
denote element-wise

multiplication and concatenation, respectively.

each RGB image, after passing through the generators Gs and
Fs, the resulting image is as consistent as possible with the
input image, i.e., x → Gs(x) → Fs(Gs(x)) ≈ x. Similarly,
we make that ys → Fs(ys) → Gs(Fs(ys)) ≈ ys. The cycle
consistency loss is formulated as:

Lcyc(Gs, Fs) =Ex∼pdata(x)[‖Fs(Gs(x))− x‖1]
+ Eys∼pdata(ys)[‖Gs(Fs(ys))− ys‖1].

(4)

Structural similarity reconstruction loss. To further im-
prove the accuracy of image-to-image translation, we regard
x̂ = Fs(Gs(x)) as the reconstructed image of x generated
by Gs and Fs, and we use SSIM [17] to constrain the
luminance, contrast and structure of x̂. Similarly, we regard
ŷs = Gs(Fs(ys)) as the reconstructed image of the input ys
generated by the Fs and Gs, and we also use the reconstruction
loss to constrain it. The reconstruction loss is formulated as:

Lrec(Gs, Fs) = (1− SSIM(x, x̂)) + (1− SSIM(ys, ŷs)).
(5)

C. Depth completion

Generally, depth completion algorithms are mainly clas-
sified into depth-only methods and multiple-input methods,
where multiple-input methods often take RGB images and
sparse depth as inputs. Different from the previous works, like
[20] and [21], we take the generated semantic image ỹs from
the semantic branch into the depth completion module together
with RGB image and sparse depth image.

Network. We concatenate the sparse depth xd, color image
xi, and generated semantic image ỹs as the input to the
depth completion module. The generator Gd maps {xd, xi, ỹs}
to the fake dense depth image ỹd, and the generator Fd

remaps {ỹd, xi, ỹs} to the reconstructed sparse depth x̂d.
Similarly, Fd maps {yd, xi, ỹs} to fake the sparse depth x̃d,

and then Gd maps {x̃d, xi, ỹs} to the reconstructed dense
depth image ŷd. Similar to the semantic segmentation module,
the discriminators DX2

and DY2
in the depth completion

module are used to distinguish real samples from xd and yd
or generated samples x̃d and ỹd. We apply the adversarial
loss, cycle consistency loss, and reconstruction loss to improve
the results of depth completion. We will not go into details
here because they are similar to the corresponding losses
in semantic segmentation. We will introduce several loss
functions specifically for the depth completion task, which are
different from the transfer branch of semantic labels. Letting
Ldep , Ldep(Gd, Fd, DX2

, DY2
), the overall loss function of

the depth completion branch is as follows:

Ldep =LGAN (Gd, DY2) + LGAN (Fd, DX2)

+ λ3Lcyc(Gd, Fd) + λ4Lrec(Gd, Fd)

+ λ5Ld(ỹd, xd) + λ6Lsmooth(ỹd, ỹs),

(6)

where λ3, λ4, λ5, λ6 are hyperparameter that control the
weight of each loss. LGAN (Gd, DY2

) and LGAN (Fd, DX2
)

are adversarial losses [27]. Lcyc(Gd, Fd) and Lrec(Gd, Fd)
are the cycle consistency loss [14] and the structural similarity
reconstruction loss [17] respectively, which are similar to the
semantic segmentation branch. Ld(ỹd, xd) stands for the depth
loss [20]. Lsmooth(ỹd, ỹs) refers to the developed semantic-
guided smoothness loss.

Depth loss. We take the sparse depth xd as the constraint
of the generated dense depth image ỹd. We set the depth loss
[20] to penalize the difference between xd and ỹd, which will
make the depth completion result more accurate. Leading to
the depth loss:

Ld(ỹd, xd) =
∥∥1{xd>0} · (ỹd − xd)

∥∥2
2
, (7)

where 1{xd>0} limits the effective point of the depth loss to
the pixels with depth values in the sparse depth image.
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Semantic-Guided Smoothness loss. In order to improve
depth completion results, we develop the semantic-guided
smoothness loss to constrain the smoothness of the generated
dense depth images, which is inspired by [22] and [44].
[44] only considers the RGB image information to improve
depth estimation results, while [22] uses semantic information
to improve the depth estimation result only through simple
operations such as pixel shifting and maximizing pixel value.
We develop the second-order differential [44] for improving
the smoothness at the semantic level, which reduce the impact
of optical changes. The semantic-guided smoothness loss is:

Lsmooth(ỹd, ỹs) =
∑
pt

|∇(∇ỹd(pt))|(e−|∇ỹs(pt)|)T , (8)

where ỹd(pt) and ỹs(pt) represent all pixels in ỹd and ỹs,
respectively. As well, ∇ is a vector differential operator, and
T is the transpose operation.

IV. EXPERIMENTS

To evaluate our multi-task architecture, we carry out two
experiments: semantic segmentation and depth completion. For
both tasks, we use different inputs and similar generators. In
this section, we will detail the experimental implementation,
parameter settings, evaluation methods and evaluation results.

A. Datasets

Cityscapes. For the semantic segmentation task, we conduct
a series of experiments on the Cityscapes dataset [45]. This
dataset contains 2975 training images and 500 validation
images, which have pixel-level annotations. Considering the
training time and running cost, we adjust the data size from
2048×1024 to 128×128, which makes our experiment fair
compared with CycleGAN. When generating a semantic label
for depth completion, we adjust the image size to 512×256
in order to match the resolution of the input image for
depth completion. It is worth noting that although the images
in the Cityscapes dataset are paired, we ignore the pairing
information during training, i.e., our method is regarded as
semi-supervised.

KITTI. For the depth completion task, we use the KITTI
benchmark of depth completion for training and testing [37].
This benchmark of depth completion contains sparse depth
images collected by LiDAR. It contains 85,898 training sam-
ples, 1,000 verification samples, and 1,000 testing samples.
Each sparse depth has a corresponding RGB image. In order
to reduce the training cost and time, we change the image
size from 1216×352 to 512×256 during training, and we only
use 5,815 samples as the training set. Since discriminators
of GANs are used to distinguish ground-truth and generated
images, we need to input several dense depth images into the
discriminator. In this paper, the dense depth images come from
the KITTI raw dataset [46]. During the evaluation, we use the
scale consistency factor to align the scale of the completion
result to the ground truth [44].

B. Semantic segmentation

Implementation. For the semantic preception task, our
generators Gs and Fs are adjusted based on CycleGAN [14].
The generators Gs and Fs contain two stride-2 convolutions,
six residual blocks, two 1

2 -strided convolutions [14] and a
multi-scale spatial pooling block [16]. Among them, the multi-
scale spatial pooling block takes the concatenation of the
RGB image and the convolution-residual-convolution output
as input, and it contains a set of different kernel sizes for
pooling to capture multi-scale features with different receptive
fields. In this paper, the sizes of the different kernel we adopt
are (1, 1), (4, 4) and (9, 9) [16]. For the discriminators DX1

and DY1
, we use 70 × 70 PatchGAN [14], which is the

same as CycleGAN. For the semantic preception network,
we set λ1 = 10, λ2 = 2. The hyperparameters of the
semantic segmentation module are set according to experience
and appropriately drawn on CycleGAN’s parameter settings.
During the training process, we set the learning rate to keep
it at 0.0002 for the first 100 epochs, and linearly decay to 0
in the next 100 epochs.

Qualitative evaluation. The qualitative results are shown
in Figure 3. We compare the results with DualGAN [49],
CycleGAN [14] and AsymGAN [15]. DualGAN suffers from
mode collapse, which produces an identical output regardless
of the input image. CycleGAN may confuse vegetation and
building labels and has a poor understanding of object details.
AsymGAN performs well in details, but it sometimes gener-
ates objects that do not exist in the ground truth, as shown
in Figure 3. It is worth noting that AsymGAN introduces an
auxiliary variable by adding an encoder and a discriminator to
learn the details, which greatly increases the complexity of the
framework. For our method, we achieve comparable results
to AsymGAN only by adding multi-scale spatial pooling
blocks and the reconstruction loss on the basis of CycleGAN
[14], which is less complex than AsymGAN because there
is no need to adjust the parameters of the additional encoder
and discriminator. Specifically, since the multi-scale spatial
pooling block captures image features of different scales, and
the structural similarity reconstruction loss restricts generated
results by making the reconstructed image as similar to the
original image as possible. Hence, we handle the problem that
vegetation and buildings are sometimes turned over. Moreover,
it is also competitive for the generated details, like pedestrians.

Quantitative evaluation. It is worth noting that since
our semantic segmentation task is not strictly a semantic
segmentation, the results need to be processed during the
quantitative evaluation process, which is the same as [14],
[23]. Specifically, for semantic label→image, we believe that
input a high-quality generated image into a scene parser will
produce good semantic segmentation results. Thus, we use the
pretrained FCN-8s [28] provided by pix2pix [52] to predict the
semantic labels for generated RGB images. In the quantitative
evaluation process, the predicted labels are resized to be the
same as the ground truth labels. Finally, the standard metrics
of the predicted labels and ground truth labels are calculated,
including pixel accuracy, class accuracy, and mean IoU [28].
For image→semantic label, since generated semantic images
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TABLE I: Semantic segmentation scores on Cityscapes

Year Method Image→Label Label→Image
Per-pixel acc. Per-class acc. Class IoU Per-pixel acc. Per-class acc. Class IoU

2016, NIPS CoGAN [47] 0.45 0.11 0.08 0.40 0.10 0.06
2017, CVPR SimGAN [48] 0.47 0.11 0.07 0.20 0.10 0.04
2017, ICCV DualGAN [49] 0.49 0.11 0.08 0.46 0.11 0.07
2017, ICCV CycleGAN [14] 0.58 0.22 0.16 0.52 0.17 0.11
2019, CVPR GcGAN-rot [23] 0.574 0.234 0.170 0.551 0.197 0.129
2019, CVPR GcGAN-vf [23] 0.576 0.232 0.171 0.548 0.196 0.127

Our 0.623 0.258 0.176 0.608 0.243 0.159

Ablation Study

2017, ICCV CycleGAN [14] 0.58 0.22 0.16 0.52 0.17 0.11
+MSSP 0.542 0.242 0.158 0.496 0.203 0.138
+Lrec 0.494 0.193 0.149 0.469 0.176 0.120
Total 0.623 0.258 0.176 0.608 0.243 0.159

Fig. 3: Qualitative comparison of generation quality on Cityscapes (Semantic label 
 RGB image) between DualGAN [49],
CycleGAN [14], AsymGAN [15] and our method.

Fig. 4: Ablation study. The influence of multi-scale spatial pooling blocks and the reconstruction loss on our method, based
on CycleGAN.
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Fig. 5: Qualitative comparison of depth completion quality on KITTI depth completion benchmark between IR L2 [24], CSPN
[50], NConv-CNN [25], Sparse-to-Dense(gd) [20], PwP [51], DeepLiDAR [21] and our method.

RGB + sparse 
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Fig. 6: Ablation study. The influence of semantic information, depth loss and semantic-guided smoothness loss on our method.

are in RGB format, which are not strictly equal to the RGB
values corresponding to the ground truth. We should first align
the RGB values of generated semantic images to the standard
RGB values, and then map them to the class-level labels [14].
Actually, we consider 19 category labels and 1 ignored label
provided by Cityscapes, where each label corresponds to a
standard color value. We compute the distance between each
pixel of the generated semantic image and the standard RGB
value, and we align the generated semantic image with the
smallest distance label [14]. Then we calculate the standard
metrics for the generated semantic images and ground truth

labels, which also include pixel accuracy, class accuracy, and
mean IoU for evaluation.

The quantitative evaluation results are shown in Table I. Our
method scores higher than the other methods for the quantita-
tive evaluation of the image
semantic label on the Cityscapes
dataset, including CoGAN [47], SimGAN [48], DualGAN
[49], CycleGAN [14], and GcGAN [23]. For image→semantic
label, the results of our method are respectively improved
by 4.7% ∼ 17.3%, 2.6% ∼ 14.8% and 0.5% ∼ 10.6%
compared with other methods for pixel accuracy, class accu-
racy, and mean IoU. For semantic label→image, our method
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TABLE II: Performance of depth completion on KITTI depth completion benchmark

Year Method Input RMSE [mm] ↓1 MAE [mm] ↓ iRMSE [1/km] ↓ iMAE [1/km] ↓

2020, CVPR IR L2 [24] depth-only 901.43 292.36 4.92 1.35
2018, ECCV CSPN [50] multiple-input 1019.64 279.46 2.93 1.15

2019, IEEE TPAMI NConv-CNN [25] multiple-input 829.98 233.26 2.60 1.03
2019, ICRA Sparse-to-Dense(gd) [20] multiple-input 814.73 249.95 2.80 1.21
2019, ICCV PwP [51] multiple-input 777.05 235.17 2.42 1.13
2019, CVPR DeepLiDAR [21] multiple-input 758.38 226.50 2.56 1.15

Our multiple-input 746.96 267.71 2.24 1.10

Ablation Study

Input2 Loss3 RMSE [mm] ↓ MAE [mm] ↓ iRMSE [1/km] ↓ iMAE [1/km] ↓

RGB + sparse Ld + Lsmooth (RGB) 752.94 299.82 2.77 1.24
RGB + sparse + semantic 869.01 285.58 3.00 1.39
RGB + sparse + semantic Ld 818.48 288.71 2.50 1.45
RGB + sparse + semantic Lsmooth (semantic) 784.87 284.62 2.50 1.16
RGB + sparse + semantic Ld + Lsmooth (RGB) 767.99 292.62 2.73 1.61
RGB + sparse + semantic Ld + Lsmooth (semantic) 746.96 267.71 2.24 1.10
1 ↓ means smaller is better.
2 This column shows different inputs, “RGB” represents RGB images, “sparse” represents sparse depth images, and “semantic” represents the generated

semantic images.
3 This column shows the different loss functions. “Ld” represents the depth loss, “Lsmooth (RGB)” represents the RGB-guided smoothness loss, and

“Lsmooth (semantic)” represents the semantic-guided smoothness loss.

respectively improved by 5.7% ∼ 40.8%, 4.6% ∼ 14.3% and
3% ∼ 11.9% compared with other methods for the above
metrics. Experimental results show that our proposed method
is competitive.

Ablation study. We study different ablations to analyze
the effectiveness of multi-scale spatial pooling blocks and the
reconstruction loss. Our qualitative results are shown in Figure
4, and quantitative results are given in Table I. We use the
quantitative evaluation results of CycleGAN [14] as a baseline.
In Figure 4 and Table I, “+MSSP” denotes adding a multi-
scale spatial pooling block based on CycleGAN, “+Lrec”
refers to the addition of structural similarity reconstruction
loss based on CycleGAN, and “Total” is that both are added
to the module at the same time. Figure 4 shows that the multi-
scale spatial pooling block is effective for capturing details.
In addition, when multi-scale spatial pooling blocks and the
reconstruction loss are added at the same time, the problem
of confusion between buildings and vegetation is dealt with.
Table I shows that although the results are not improved when
multi-scale pooling blocks and the reconstruction loss are
added separately, but when both are added to the framework
at the same time, the results are significantly improved.

C. Depth completion

Implementation. For the depth completion task, we use
sparse depth images, RGB images and generated semantic
images as input, which are fed into the generator Gd to obtain
dense depth. Similarly, we use the generated dense depth,
RGB images and generated semantic images as input to the
generator Fd to generate the corresponding sparse depth. For
the depth completion branch, we only adjust the input method
of the network. Specifically, we input the concatenation of
three inputs and then pass through Gd or Fd, which contain
two stride-2 convolutions, nine residual blocks and two 1

2 -
strided convolutions. For the discriminators DX2 and DY2 , we
also use 70 × 70 PatchGAN [14]. For the depth completion

network, we set λ3 = 10, λ4 = 1, λ5 = 0.5, λ6 = 0.5. As in
the semantic segmentation module, the learning rate is 0.0002
in the first 100 epochs, and then linearly decays to 0 for the
next 100 epochs.

Qualitative evaluation. Qualitative comparisons are shown
in Figure 5. We compare the results with IR L2 [24], CSPN
[50], NConv-CNN [25], Sparse-to-Dense(gd) [20], PwP [51]
and DeepLiDAR [21]. We find that IR L2 [24], NConv-CNN
[25], and PwP [51] have poor effects on the upper sparse
point completion, which show very noisy details. CSPN [50]
and Sparse-to-Dense (gd) [20] do not completely complement
the sparse points in a few upper regions. DeepLiDAR [21]
produces more accurate depth with better details, like the
completion of small objects, but the completion of the upper
layer points will produce noisy results. In contrast, our method
has better results for the depth complementation of the distant
and upper layers, and the smoothness is better. This is due to
our full use of semantic information, which is not sensitive to
obvious changes in light in the distance.

Quantitative evaluation. In this paper, we use the official
metrics to quantitatively evaluate for the KITTI bechmark
of depth completion. The four metrics include: root mean
squared error (RMSE, mm), mean absolute error (MAE, mm),
root mean squared error of the inverse depth (iRMSE, 1/km)
and mean absolute error of the inverse depth (iMAE, 1/km).
Among them, RMSE is the most important evaluation metric
[21]. These metrics are formulated as:

• RMSE =
√

1
n

∑n
i=1(di − d∗i )2,

• MAE = 1
n

∑n
i=1 |di − d∗i |,

• iRMSE =
√

1
n

∑n
i=1(

1
di
− 1

d∗
i
)2,

• iMAE = 1
n

∑n
i=1 |

1
di
− 1

d∗
i
|,

where di and d∗i stand for the predicted depth of pixel i and
corresponding ground truth. n denotes the total number of
pixels.

The quantitative results are reported in Table II. We compare
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our method with IR L2 [24], CSPN [50], NConv-CNN [25],
Sparse-to-Dense(gd) [20], PwP [51] and DeepLiDAR [21].
For RMSE and iRMSE, our method is better than the other
methods. The iMAE of our method is better than the other
methods except NConv-CNN [25]. The MAE index is slightly
inferior, which may because the ground truth input by our
method comes from the KITTI raw dataset, which does not
match the scale of the KITTI benchmark for depth completion.

Ablation study. In order to understand the impact of
semantic information and various loss functions on the final
performance, we disable the semantic input and each loss
function and show how the result changes. The qualitative
results are shown in Figure 6, and quantitative results in
Table II. The first row shows that no semantic information
is introduced. Compared with the introduction of semantic
information, which is shown in the last row, it can be seen
that semantic information is helpful for improving the four
indicators. In order to verify the effectiveness of depth loss,
we conduct two sets of comparative experiments. The results
of the second and third rows are used to verify that only
the depth loss is added when the RGB images, sparse depth
images, and semantic labels are used as input. The results
of the fourth and sixth rows are used to verify the effect
of depth loss on the results when the above three are used
as inputs and the semantic-guided smoothness loss is added.
Both sets of comparative experiments prove that depth loss
can improve experimental results. We also conduct two sets
of controlled experiments to verify the effectiveness of the
semantic-guided smoothness loss. By comparing the results
of the third row and the sixth row, we see that the accuracy is
improved when the semantic-guided smoothness loss is added.
As well, by comparing the results of the fifth and sixth rows,
we see that adding the semantic-guided smoothness loss is
more significant for the result than adding the RGB-guided
smoothness loss. The above ablation studies confirm that our
improvements to depth complement are effective.

V. CONCLUSION

In this paper, we propose multi-task generative adversarial
networks (Multi-task GANs), including a semantic segmen-
tation module and a depth completion module. For semantic
segmentation task, we introduce multi-scale spatial pooling
blocks to extract different scale features of images, which
effectively tackle the problem of poor details generated by
image translation. In addition, we add the structural similarity
reconstruction loss to further improve semantic segmentation
results from the perspectives of luminance, contrast and struc-
ture. Moreover, we take the concatenation of the generated
semantic image, the sparse depth, and the RGB image for
the input of depth completion module, and we introduce the
semantic-guided smoothness loss to improve the result of
depth completion. Our experiments show that the introduction
of semantic information effectively improves the accuracy of
depth completion. In the future, we will share the network
layers of semantic segmentation and depth completion, and
we will use the generated images to promote each other.
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