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What and Where: Learn to Plug Adapters via NAS
for Multi-Domain Learning

Hanbin Zhao, Hao Zeng, Xin Qin, Yongjian Fu, Hui Wang, Bourahla Omar, Xi Li*

Abstract—As an important and challenging problem, multi-
domain learning (MDL) typically seeks for a set of effective
lightweight domain-specific adapter modules plugged into a
common domain-agnostic network. Usually, existing ways of
adapter plugging and structure design are handcrafted and fixed
for all domains before model learning, resulting in the learning
inflexibility and computational intensiveness. With this motiva-
tion, we propose to learn a data-driven adapter plugging strategy
with Neural Architecture Search (NAS), which automatically de-
termines where to plug for those adapter modules. Furthermore,
we propose a NAS-adapter module for adapter structure design
in a NAS-driven learning scheme, which automatically discovers
effective adapter module structures for different domains. Exper-
imental results demonstrate the effectiveness of our MDL model
against existing approaches under the conditions of comparable
performance.

Index Terms—Multi-Domain Learning, Adapter, Image Clas-
sification, Neural Architecture Search

I. INTRODUCTION

Ecent years have witnessed a great development of
Convolutional Neural Networks (CNNs) together with
a wide variety of their vision applications. For the sake
of high performance, these networks devote great efforts to
carefully designing complicated structures for different tasks
in a domain-specific manner, leading to the inflexibility of
model learning across multiple domains. As a result, in
the case of several tasks based on different domains, one
needs to deploy an equal number of domain-specific models
respectively, which is unrealizable in practice, especially when
concerning the limitation of computational resources. To tackle
the problem, Multi-domain learning [1]-[5] emerges as an
important approach for better efficiency and generalization
of model learning across multiple different yet correlated
domains.
In principle, multi-domain learning (MDL) [1]] aims to learn
a compact model that works well for many different domains
(e.g., internet images, scene text, medical images, satellite
images, driving images, etc.). Typically, it is cast as a two-stage
learning problem (illustrated in Figure [I)), including domain-
agnostic model learning and domain-specific model adapta-
tion. Specifically, domain-agnostic model learning is to seek
a common trunk neural network model (with structures and
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Fig. 1. Tllustration of multi-domain learning. The first stage is to seek a

domain-agnostic model (e.g. VGG) as our common trunk model, and the
second is to plug a set of domain-specific adapter modules into the former,
leading to the final adaptation model. After learning the adapter parameters
with the parameters of the trunk model fixed, each domain can be adapted by
changing a set of adapter modules.

parameters shared across domains). In comparison, domain-
specific model adaptation aims at plugging a set of extremely
lightweight adapter modules into the common trunk model
structure for dynamically adapting to different domains. After
learning the adapter parameters with the common model fixed,
we have domain-specific models that are pretty flexible in
terms of changing the adapter modules. In sum, the core
content of MDL is to design a plugging strategy (i.e., where to
plug) as well as a set of adapter module structures (i.e. what
to plug), which directly determines the effectiveness and the
compactness of the whole adaptation model.

In the research context, the adapter plugging strategy [1[]—
[3[1, [6], [7] is usually fixed, dense, and handcrafted. Conse-
quently, it is less flexible and discriminative with a higher
computational cost in many complicated situations. Moreover,
the adapter module structure is also predefined and fixed for
different domains, leading to the weakness in cross-domain
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adaptation. Therefore, how to automatically set up the adapter
plugging strategy and adaptively fulfill the adapter structure
design are crucial to effective multi-domain learning. Moti-
vated by this observation, we propose a novel NAS-driven
scheme for multi-domain learning based on Neural Architec-
ture Search (NAS). Specifically, we accomplish the task of
automatically finding the effective adapter plugging strategy
by NAS, and meanwhile make full use of NAS to search
the adapter structures adaptively. In this way, our scheme
has the following advantages: 1) more flexible and sparse
adapter plugging with better efficiency and generalization by
NAS; and 2) more discriminative adapter modules with better
adaptation to different domains. As a result, the multi-domain
model we obtain is often more compact, discriminative, and
domain adaptive with a relatively low computational cost when
compared to previous MDL methods.

In summary, the main contributions of this work are sum-
marized as follows:

e We propose a NAS-driven scheme for multi-domain
learning, which effectively makes model learning seam-
lessly adapt to different domains by automatically deter-
mining where to plug with NAS.

e« We propose a NAS-adapter module which adaptively
discovers the adapter module structures by NAS for well
balancing between the model effectiveness and compact-
ness for different domains.

« Extensive experiments over benchmark datasets demon-
strate the effectiveness of this work in accuracy and
flexibility against the existing approaches.

The rest of the paper is organized as follows. We first
describe the background in Section [l and then explain the
details of our proposed scheme in Section In Section [IV]
we conduct the experiments and discuss their corresponding
results. Finally, we conclude this work in Section

II. RELATED WORK
A. Multi-Domain Learning

MDL [1]-[5], [8]-[12]] aims to learn a model that works
well for several different visual domains, requiring both ef-
fectiveness and efficiency. Various adapter modules are pro-
posed to gain an acceptable performance, overcoming the
“catastrophic forgetting” [13[]-[[15] problem. BN [16] used
the batch-normalization layer as the domain-specific adapter
and therefore only a few parameters are finetuned for each
domain. To tackle the complex visual domains, more powerful
adapter modules are proposed, such as the 1 x 1 convolutional
adapter [17] and the residual adapter (RA) [1f], which gain
significant performance while increasing the computational
resource cost in exchange. Those methods all have one thing
in common, that the adapters are all hand-crafted, and the
same adapter structure is used for all different domains. In this
paper, we claim that the structure of adapters should also be
adapted, along with the change of domains. Our method learns
the structure of adapters while taking the domain diversity and
possible plugging locations into consideration.

On the other hand, some of the MDL methods pay more
attention to compress the parameters further thereby improving

efficiency. RA-SVD [2] proposed to compress the adapter
with the singular matrix decomposition (SVD). CovNorm [3|]
utilized principal component analysis (PCA) aligned by the
covariance from data to compress the adapter modules. While
these methods concentrate on the compression within the
adapter modules, we proposed to further compact the whole
adaptation model in a domain-specific fashion. Adapters are
plugged only into several selected locations, and the plugging
strategy varies from different domains. Computational re-
sources therefore can be obviously saved without performance
decreasing.

B. Neural Architecture Search

NAS [18]-[20] aims at designing effective neural network
architectures automatically. There is a rich body of works in
NAS, which are mainly based on three strategies: reinforce-
ment learning method [21]-[24], evolutionary algorithm [25],
and gradient-based optimization [26]]-[30]]. Because of its re-
markable performance, a lot of NAS-based methods have been
proposed to solve some specific problems. Auto-DeepLab [31]
proposed a hierarchical search space for semantic segmenta-
tion task [32]-[36]]. FP [37] proposed a searching strategy
for designing efficient multi-task architecture. In life-long
learning [38]-[42], LTG [43|] proposed to expand the network
architecture by NAS while retaining the previously learned
knowledge. BP-NAS [44], PolSAR-DNAS [45]] and BI [46]
all focus on the architecture designing. BP-NAS proposes a
new two-stage NAS method for classic image classification,
while PoISAR-DNAS tailors NAS for PolSAR classification
task. BI reviews many architecture designing methods about
bidirectional intelligence. In contrast, the main focus of our
work is to introduce NAS into the multi-domain learning task
(i.e. adaptively learn what and where to plug adapters). In
addition to the current Darts [26] option, our work is quite
flexible in using any other NAS alternatives.

To implement a typical NAS algorithm, firstly we need to
construct an appropriate operation set, denoted as O containing
all possible operations. A graph of architecture containing M
nodes are then needed to be defined, where each node is a
latent representation (e.g. a feature map in convolutional net-
works), and each directed edge (7, j) is associated with some
operation 0(J) belonging to O. To make the search space
continuous, the categorical choice of a particular operation can
be relaxed to the softmax over all possible operations [26]:

o) () = Z _j))
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where the weights for a pair of nodes are parameterized by a
vector a(»7) of dimension |O|, and therefore the architecture
searching reduces to learning the variables v = {a(*7)}. The
variables can be learned with a specific objective function, and
the final structure can then be obtained by simply selecting the
most likely operation, i.e., 0"7) = arg max,co o) Then
the structure of a model can be denoted by a set of architecture
weights.
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Fig. 2. Illustration of our scheme for multi-domain learning. In the first stage, we search a set of appropriate adapters according to the given domain and the
plugging location. In the second stage, we select an adapter plugging strategy (i.e. where to plug the adapter) to further compact the adaptation model.

TABLE 1

MAIN NOTATIONS AND SYMBOLS USED THROUGHOUT THE PAPER.

The selected adapter structures (i.e. what to plug) of ¥(-;.A, B, ©)
the selected adapter plugging strategies (i.e. where to plug) of ¥(-; A, B, ©)

The pretrained network as common trunk model for ¥(-; A, B, ©)

Notation Definition
D The number of domains
Dy The d-th domain

(4, yd) A sample set of class

V(A B,0O) The MDL model for all the D domains
A
B
C) The parameters of W(-; A, B, ©)
Uo(+; Ao, Bo, ©0)

©o The parameters of Wq(+;.Ag, Bo, Oo)
N

n

‘de(-; Ad7 Bd7 @07 @g)
n

The number of domain-agnostic layers for ¥(-; A, B, ©)
The n-th domain-agnostic layer of W(-; A, B, ©)
The adaptation model for Dy

ay The adapter to be plugged into the n-th location for Dy
o4 The parameters of adapters for ¥(.; A4, Bq, ©0,0%)
Ag The adapter structure used for ¥4(.; Ag, Bq, ©0,0%)
Ba The adapter plugging strategy used for Wq(.; Agq, B4, ©0, OF)
ay The structure of a7y
III. METHOD

A. Overview

To better understand our representations, we provide de-
tailed explanations of the main notations and symbols used
throughout this paper as shown in Table [I]

In MDL, data is sampled from D domains {D;}?_, with
corresponding labels for different tasks, and a sample belong-
ing to the d-th domain can then be denoted as (x4, y4). The
goal is to learn a single compact model ¥(-;A, B,©) that
works well for all the D domains, which can be addressed

in a two-stage fashion shown in Figure Here, A denotes
the selected adapter structures (i.e. what to plug), B denotes
the selected adapter plugging strategies (i.e. where to plug)
for all the domains and O represents the parameters. Both A
and B affect the structure of the learned MDL model. In the
first stage, we choose a pretrained network ¥ (-;.Ag, By, ©o)
which consists of IV layers as our trunk model:

Wo(+40,B0,00) = fN o fN71 o0 f1(500), (2)

where © represents the pretrained parameters and f" (n €
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{1,2,..., N}) denotes the n-th domain-agnostic layer. .4, and
By are not utilized because the pretrained network has no
adapters.

In the second stage, for each domain D,;, we need to
construct an adaptation model W4(.;Aqg, Bq, ©p, ©%) which
is composed of the trunk model and a set of additional
adapters. We use © to represent the parameters of adapters.
The adapter to be plugged into the n-th location for domain
Dy is represented as ay;. For ease of notation, we will apply
a domain-agnostic layer followed by its adapter module as
f chL = (13 © f n.

After selecting an appropriate adapter structure and obtain-
ing an appropriate plugging strategy for the adaptation model,
the goal is then to find an optimal ©3* of the adapters while

fixing Ay and By:

4 (za,Y4)€Da

©F" = arg min [ a(2a; Ad, Ba, ©0,05) — vall3,

3)
where the domain-agnostic parameters Oy is fixed in training
and the only term to optimize is ©F, i.e. domain-specific
parameters adapted to the domain D,;. At the end, the
MDL model ¥(-; A, B,0) is obtained with the fixed domain-
agnostic parameters ©g and the optimal domain-specific pa-
rameters {©%*}1_ .

As shown in Figure [T]and Equation (3), the domain-specific
adapter ©Y affects the performance primarily among domains,
which brings out the extra parameters and complexity. Previ-
ous methods usually use the same adapter structure for each
domain, while in this work, we claim that an MDL model
should be equipped with different adapters that vary from
domain to domain. A simple adapter module would fail in
complex domain-transformation, while a complicated one may
lead to the waste of computational resources. Therefore, it is a
challenge to make a balance between model effectiveness and
compactness with respect to different domains.

To obtain a discriminative MDL model, we propose to find
a set of domain-specific adapter structures for each adaptation
model Uy(-;Ag, By, ©9,0%), while taking both the domain
differences and complexity into consideration, this will be
detailed in Section [II-Bl We also observe that the whole
MDL model can be further compacted by removing several
specific adapters (i.e. setting those adapters to be an identity
mapping) without sacrificing the performance. Our scheme
thereby further introduces a selection of plugging strategy to
achieve a more compact MDL model in Section With
our adapter plugging strategy selection, the domain-specific
adapter modules are more flexible to different domains. The
illustration of our scheme for MDL is shown in Figure [2|

B. Adapter Module Selection

In this section, we introduce the process of searching the
adapter module structures, taking the domain diversity and the
complexity into consideration.

According to Equation (3) and Figure [T} finding the specific
adapter modules in essence means seeking an appropriate
structure for each adapter in {a”})_;. This problem can be
reduced to learning a set of structure weights {a}Y_; by

NAS [26] and then Ay is correspond to {a},...,ad}. A
NAS-adapter used to select the structure of the MDL adapter
ay is detailed in what follows.

To achieve a compact MDL model, the searching
space needs to be properly designed, because the ad-
ditional complexity and performance of the adaptation
model Uy(-; Ag, Ba, ©9, ©%) depend on the adapter structures
{an}N_,. The core of multi-domain learning (MDL) is to
ensure the simplicity and compactness of architecture for the
concern of practicability. To achieve that, we adopt NAS
with parameter-constrained prior which limits the searching
space of the adapter structure (i.e. what to plug). We draw
inspiration from previous popular structures of adapters [1]], [2]]
and collect the operation set O,: 1 x 1 convolution operation,
batch normalization operation, skip connection and identity
shortcut [47]. Our NAS-adapter consists of M nodes, the
example for M = 3 is illustrated in Figure

For the domain D, we search an appropriate set of adapter
structures by learning a set of structure weights Ay:

>

(zd,ya)€Da

Aj = argmin W4 (z4; Adg, Ba, ©0, O5) — yall3-

Aq
“)

We utilize a similar training strategy in [26]] and the training
data is equally divided into a validation set and a training set.
Specifically, we use the validation set to update the weights
of adapter structures, while the parameters of adapters are
optimized by the training set.

Through searching the adapter structure for different do-
mains, our multi-domain learning method aims to build an
effective multi-domain model with limited memory cost, that
is, keeping a good balance between the effectiveness and
efficiency. More specifically, our method is able to auto-
matically determine the adapter structure according to the
complexity of domain. Namely, it seeks for selecting simple
adapters for simple domains to save memory cost while
selecting complicated adapters for complex domains to pursue
the performance. Typically, a complex domain corresponds to
the dataset that comprises more content-diverse samples with
richer textures and complicated background clutters, following
a very large multi-class classification problem setting with
massive samples. In contrast, conventional MDL methods
usually adopt the same predefined handcrafted adapter struc-
ture for different domains (e.g. BN [16]], DAN [[17]]). As a
result, they can either build a complicated adapter structure
with high accuracy to deal with complex domains or only
construct a simple adapter structure but with low accuracy
for all domains. Thus, they are incapable of achieving a
good trade-off between effectiveness and efficiency. Suppose
a dataset consists of both complex domains (e.g. MITIndoor)

TABLE II
PERFORMANCE OF DIFFERENT ADAPTER STRUCTURES WITH THE TRUNK
MODEL VGG-16.

Method Flowers FGVC CIFAR100  MITIndoor  Total Param.
BN [16] 91.47%  63.04% 64.80% 57.60% ~1
DAN [17] 92.65% 86.80% 74.45% 63.02% 2.05
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Fig. 3. Illustration of our NAS-adapter. A NAS-adapter consists of M nodes
(M = 3 in this figure). The final structure is achieved by optimizing the
structure parameters and selecting an operation from a possible set. We, in this
paper, construct the set with 1 X 1 convolution operation, batch normalization
operation, skip connection, and identity shortcut.

and simple domains (e.g. Flowers). In this situation, adopting
the same predefined handcrafted adapter structure for different
domains and learning the parameters only is not enough. As
shown in Table [lI} adopting a simple adapter BN and learning
the parameters of it can achieve high performance on a
simple domain (i.e. Flowers) but low performance on complex
domains (i.e. FGVC, CIFAR100, MITIndoor). And adopting
a complicated adapter DAN and learning the parameters of it
can achieve high performance on all domains but consumes
more memory cost. In contrast, our method can adaptively
build adapter structures for different domains and is able to
keep a good trade-off between the effectiveness and efficiency
in such a situation.

C. Plugging Strategy Selection

The learning requirements vary for different domains.
Therefore, using the same plugging strategy may not be
optimal for all domains. Prior works plug the adapters into
every available slot of MDL models, leaving much room for
the improvement of compactness, achieving that is the focus
of this section. Given a set of adapters with fixed searched
structures, we further propose to determine whether or not to
plug the adapter into each possible slot for every visual domain
with NAS.

This problem can be considered as a typical NAS problem
where the operation set only consists of the identity operation
and the candidate adapter operation. Therefore, for the domain
Dy, searching a plugging strategy is reduced to learning a
set of continuous variables B, = {3}, 83, ..., )} for the N
possible plugging locations:

Z W a(za; Ag, Ba, ©0, %) — yal |3,

(zd,ya)EDa

B} = arg min
Ba
S)
In the training process for domain Dy, we need to optimize
the weights of the plugging strategy By = {31,...,8Y
and the parameters of added adapters ©%, which is a bilevel
optimization problem. Similarly to the optimization done in
Section we use the validation set to update the weights
of the plugging strategy, and the training set for the adapter
parameters.

After learning an appropriate adapter structure and an
appropriate adapter plugging strategy, we can further update
the parameters ©% with the training data by Equation (3).

We have provided an algorithm flow (i.e. Algorithm [T)) and
training details about our method. Our method mainly consists
of two steps: adapter module selection (line 2-7) and plugging
strategy selection (line 8-13). For the adapter module selection,
we first construct the training set, validation set, and adapter
module structure searching space (line 2-3), then learning the
adapter module structure and parameters (line 4-7). For the
plugging strategy selection, we first construct the plugging
strategy searching space (line 8), then learning the plugging
strategy and adapter parameters (line 9-12), finally we fix the
adapter structures and plugging strategy and continue to update
the parameters of adapters with the training data (line 13).

Algorithm 1: Our NAS-driven MDL method

Input: The data for D domains {D,}%._,, a pretrained
network Wq(-; Ao, By, ©g) which consists of N
domain-agnostic layers {f,,}\__; as the trunk
model and the maximum number 7,,,,, of
iterations.

1 for domains 1,2,3,...,D do

2 Divide the training data (the sample (z4,yq) is
from domain D) into a training set and validation
set equally;

// Adapter Module Selection

3 Create nodes and corresponding edges of the
NAS-adapter parametrized by o after each
domain-agnostic layer f,;

4 for iterations 1,2,3,...,Tynq: do
5 Update the structure weights Aq = {7},
with data sampled from the validation set by
Equation(4);
6 Update the parameters ©F with data sampled
from the training set by Equation (3);
7 end
// Plugging Strategy Selection
8 Create the operations parametrized by 3 after
each domain-agnostic layer f,,;
9 for iterations 1,2,3, ..., Tpna do
10 Update the weights of the plugging strategy

By = {B7}_, with data sampled from the
validation set by Equation (5);

11 Update the parameters ©F with data sampled
from the training set by Equation (3);

12 end

13 Fix the adapter structure and plugging strategy,
update the parameters ©§ with data sampled from
the domain Dy by Equation (3);

14 end
Output: Derive the MDL model ¥(-; A, B, 0) with
the fixed domain-agnostic parameters ©( and
the optimal domain-specific parameters
{©3*}D |, a set of adapter structure weights

{ A7}, and plugging strategy{B;} ;.
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IV. EXPERIMENTS
A. Datasets

We evaluated our approach with two different benchmarks.
We first use the Visual Decathlon benchmark [[1]], built with
10 different datasets from ImageNet [48] to German Traffic
Signs [49]], in which the images are resized to 72 x T72.
As for the second benchmark [3]], a set of seven popular
vision datasets are collected for evaluation and this bench-
mark is used for large CNNs. SUN 397 [50] contains 397
classes of scene images and more than a million images.
MITIndoor [51] is an indoor scene dataset with 67 classes
and 80 samples per class. FGVC-Aircraft Benchmark [16]
is a fine-grained classification dataset of 10,000 images of
100 types of airplanes. Flowers102 [52] is a fine-grained
dataset with 102 flower categories and 40 to 258 images per
class. CIFAR100 [53]] contains 60, 000 tiny images, from 100
classes. Caltech256 [|54] contains 30, 607 images of 256 object
categories, with at least 80 samples per class. SVHN [55]]
is a digit recognition dataset with 10 classes and more than
70,000 samples. In this benchmark, images are rescaled to a
common size of 224 x 224 and the training and testing sets
are defined by the corresponding dataset, if available, while
75% of samples are used for training and 25% are for testing,
otherwise.

B. Implementation Details

a) Network architectures: For the Visual Decathlon
benchmark, we follow [2] and conduct experiments using a
ResNet [47]] with 26 layers as the common trunk structure.
We employ the same data pre-processing setting and freeze
the parameters of our ResNet-26 model after the pretraining
on ImageNet. For the second benchmark, we follow [3]] and
use a VGG-16 [56] model in all experiments. This model
contains convolutional layers of dimension ranging from 64
to 4096, and the parameters are also pretrained on ImageNet.

b) Evaluation protocol: These two benchmarks are de-
signed to address classification problems. Similar to [[1]]—[3]],
we report the accuracy for each domain (denoted by “Acc.”)
and the average accuracy over all the domains (denoted by
“Ave. Acc.”) . The score function [[I]] S (denoted by “S.”) is
also adopted for the evaluation, formulated as:

N
S = Z Mg max{0, BT — E4}2, (6)
d=1
where N is the number of different domains and F,; denotes
the test error of the MDL method for the domain Dg4. E7***
is twice the testing error rate of baseline, which is the fully
finetuned network for that domain, and A4 is a coefficient
to ensure the best result for each domain is 1000. The
score favors the methods that perform well over all domains,
and methods which are outstanding only on a few domains
will be penalized. Furthermore, parameter cost is also taken
into consideration following [1]], [3]]. We report the adapter
parameter usage for each domain (denoted by “Ada. Param.”)
or report the total number of parameters relative to the initial
pretrained trunk model (excluding the classifiers) over all
domains (denoted by “Total Param.”).

c) Training details: For the Visual Decathlon bench-
mark, we train the ResNet-26 model with the same training
strategy in [[1]]. To select a NAS-adapter module structure, we
follow the strategy in [26] with an NVIDIA 1080Ti GPU and
divide the training dataset into two parts of equal size. One part
is used to optimize the structure weights while the other part
is to optimize the network parameters. For structure weights
learning, we use Adam optimizer [57]] with weight decay 0.001
and momentum (0.5, 0.999) and the initial learning rate set to
0.0003. For network parameters optimization, we use SGD
optimizer with an initial learning rate 0.01 (annealed down
to zero following a cosine schedule without restart [58]]), mo-
mentum 0.9, and weight decay 0.0005. For plugging strategy
selection, the learning rate is initialized by 0.005 and divided
by 10 after 20, 40, 60 epochs. For the second benchmark, we
utilize the training approach in [3|] for the VGG-16 model. The
rest of the settings for adapter module selection and plugging
strategy selection are the same as those on the former. The
elapsed time taken for running our NAS-driven MDL method
mainly consists of three parts: the NAS training time for
adapter structure selection (denoted by “NAS-adapter Time”),
the NAS training time for plugging strategy selection (denoted
by “NAS-plugging Time”), and the training time for adapter
parameters updating (denoted by “Adapter-parameters Time”).
On the Visual Decathlon benchmark with the trunk model
ResNet-26, the total elapsed time for running our method is
about 36 hours (NAS-adapter Time 16, NAS-plugging Time
8, Adapter-parameters Time 12). On the benchmark of seven
domains with the trunk model VGG-16, the total elapsed time
for running our method is about 185 hours (NAS-adapter Time
80, NAS-plugging Time 40, Adapter-parameters Time 65) with
an NVIDIA 1080Ti GPU.

C. Ablation Study

In this section, we firstly carry out ablation experiments
to validate the effectiveness of our proposed NAS-adapter
module (ablation experiment-1) and plugging strategy se-
lection scheme (ablation experiment-2). Then we give a
detailed analysis about what to plug (i.e. the adapter structure)
and where to plug (i.e. the plugging strategy). About what
adapter structure to plug, we give a statistic for the distri-
bution of learned adapter structure across domains (ablation
experiment-5) and show the importance of adapter structure
search (ablation experiment-3). About where the adapters to
plug, we give a statistic for the frequency of each plugging
location to be selected (ablation experiment-6) and compare
our selected plugging strategy with other hand-crafted plug-
ging strategies (ablation experiment-4). Finally, we make a
discussion about the accuracy of our method with regard to
the domain diversity (ablation experiment-7) and different
paradigms for the task of multi-domain learning (ablation
experiment-8).

Previous MDL approaches construct the adaptation module
with a fixed hand-crafted structure and directly add an adap-
tation module after each layer of common trunk model. We
select three different adapter structures (Res Adapt [1], 1 x 1
Adapt [[17]], BN Adapt [[16]) and plugging the adapters at each
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TABLE III
ACCURACY OF DIFFERENT ADAPTER MODULES WITH TRUNK MODEL
VGG-16, USING “ALL” PLUGGING STRATEGY.

Adapter Structure  Plugging Strategy MITIndoor Flowers FGVC

Res Adapt 72.4010.24% 96.43+0.12%  88.92+0.28%
1 x 1 Adapt All 63.02+ 0.26%  92.65£0.16%  86.801+0.32%
BN Adapt 57.6010.15% 91.4740.11%  63.04+0.25%
NAS Adapt 73.05+ 0.26%  96.81+0.15%  89.08+0.33%

TABLE IV
ACCURACY OF DIFFERENT ADAPTER MODULES WITH TRUNK MODEL
RESNET-26, USING “ALL” PLUGGING STRATEGY.

Adapter Structure  Plugging Strategy OGlt SVHN DTD

Res Adapt 89.824+0.13%  96.17+0.09%  57.02+0.19%
1 x 1 Adapt All 89.67+0.16%  96.77+0.12%  56.54+0.22%
BN Adapt 84.831+0.11%  94.10+0.07%  51.60+0.13%
NAS Adapt 90.02+0.15%  96.98+0.11%  59.30+0.20%

possible slot (such a plugging strategy denoted by “All”) as
baselines.

1) Comparison with hand-crafted adapter structures: We
compare our NAS-adapter module with other three hand-
crafted ones in Table [[T] and Table [TV] For a fair comparison,
we also construct the adaptation model by embedding the
NAS-adapter module after each domain-agnostic layer (i.e.
NAS Adapt). While taking VGG-16 as the common trunk
model in Table [[II, we can observe that the adaptation model
with our NAS-adapter can achieve the best results among
others. Res Adapt yields the second place of those three
datasets, followed by 1 x 1 Adapt and BN Adapt. As for
experiments where ResNet-26 serves as the common trunk
model in Table our NAS-adapter module still performs
better than others.

2) Effectiveness of our plugging strategy selection scheme:
We evaluate our plugging strategy selection scheme with three
kinds of baseline adapter structures. The plugging strategy
controls whether or not to plug the adapter into a possible
slot. For VGG-16, there are 15 possible locations for plugging,
while for ResNet-26 the number becomes 25.

Our plugging strategy selection scheme is capable of any
hand-crafted adapter modules. 1 x 1 Adapt with the plugging
strategy “Ours” (Res Adapt with “Ours” or BN Adapt-Part
with “Ours”) denotes adding the 1 x 1 convolutional adapter
modules (residual adapter modules or batch-normalize adapter
modules) into the common trunk model at the locations
decided by our selected plugging strategy. For the adapter
parameter cost estimation, we use the plugging strategy “All”
as a comparison point. We consider that “All” induce a 100%
parameter cost since they add adapters at all possible locations.
It is then possible to calculate the relative cost for “Ours”.

The results of taking the VGG-16 as the common trunk
model are presented in Table [V| It can be noticed that 1 x 1
Adapt with our selected plugging strategy (Res Adapt with
“Ours” or BN Adapt with “Ours”) has higher accuracy with
1 x 1 Adapt with the plugging strategy “All” (Res Adapt with
“All” or BN Adapt-Part with “All”) but uses less additional
parameters on three target datasets. This result demonstrates
that some of the adapter modules perform a redundant role,
which can be omitted without sacrificing accuracy. As for

TABLE V
ACCURACY AND ADAPTER PARAMETER USAGE (SETTING PLUGGING ALL
15 ADAPTERS TO BE 100%) OF DIFFERENT ADAPTER STRUCTURES WITH
TRUNK OF VGG-16. THE HIGHEST ACCURACY IS IN BOLD, AND THE
LOWEST PARAMETER USAGE IS UNDERLINED.

Adapter Structure  Plugging Strategy  Evaluation MITIndoor Flowers FGVC
Al Acc. 72.40£0.24% 96.4340.12% 88.92:£0.30%
Res Adant Ada. Param.  3542M (100%)  35.42M (100)%  35.42M (100%)
es Adap o Acc. 72.6150.26% 96.66£0.13% 88.93£0.30%
urs Ada. Param.  17.32M (48.91%)  16.80M (47.42%)  18.29M (51.65%)
Al Acc. 63.0240.26% 92.65+0.16% 86.80-£0.32%
L% 1 Adant Ada. Param.  3542M (100%)  35.42M (100%)  35.42M (100%)
P! o Acc. 67.9610.27% 94.8310.18% ST42E035%
urs Ada. Param.  7.61M (21.49%)  16.80M (4743%)  10.74M (30.3%)
Al Acc. 57.60+0.15% 91.4740.11% 63.04:0.25%
BN Adant Ada. Param. 60 (100%) 60 (100%) 60 (100%)
P! our Acc. 68.71£0.16% 92.7550.12% 68.2950.28%
urs Ada. Param. 24 (40.00%) 15 (25.00%) 26 (43.33%)
TABLE VI

ACCURACY AND ADAPTER PARAMETER USAGE (SETTING PLUGGING ALL

25 ADAPTERS TO BE 100%) OF DIFFERENT ADAPTER STRUCTURES WITH

TRUNK OF RESNET-26. THE HIGHEST ACCURACY IS IN BOLD, AND THE
LOWEST PARAMETER USAGE IS UNDERLINED.

Adapter Structure  Plugging Strategy Evaluation OGlt CIFAR100 DTD

All Acc. 89.82+0.13% 81.31+0.09% 57.02+0.18%

Res Adapt Ada. Param.  0.69M (100%) 0.69M (100%) 0.69M (100%)
P Ours Acc. 89.96+0.17% 81.45£0.12% 57.93£0.25%

N Ada. Param.  0.49M (70.79%)  0.30M (42.98%)  0.28M (40.59%)

All Acc. 89.67+0.16% 80.07+0.10% 56.54 + 022 %

1% 1 Adapt Ada. Param. 0.69M (100%) 0.69M (100%) 0.69M (100%)
P! Ours Acc. 89.39£0.14% 79.441£0.08% 56.98£0.20%

Ada. Param.  0.62M (89.90%  0.34M (49.93%)  0.28M (39.97%)

All Acc. 84.83+0.11% 78.6240.06% 51.60+0.13%
BN Adant Ada. Param. 100 (100%) 100 (100%) 100 (100%)
P Ours Acc. 83.90+0.12% 78.751+0.05% 51.54+0.12%
: Ada. Param. 48 (48.00%) 61 (61.00%) 63 (63.00)%

ResNet-26, reported in Table with a different experiment
setting (new trunk model and new datasets) we can observe
that our optimized plugging strategy still consumes less extra
parameters and obtains a competitive accuracy. This practice
is especially important for VGG-16 since it contains a particu-
larly large number of parameters, which has enough room for
selecting an appropriate plugging strategy to reduce parameter
cost of the adapters with accuracy improvement.

3) Comparison with hand-crafted plugging strategies: In
order to further demonstrate the effectiveness of our selected
plugging strategy, we compare “ours” with other three intu-
itively hand-crafted strategies. One of the intuitive plugging
strategies is adding the adapter modules with a top-down order,
i.e. select the first n locations to plug the adapter modules.
We denote this strategy as “Top-Down”. Another intuitive
plugging strategy is doing the opposite and adding the adapter
modules with a bottom-up order, i.e. select the last n locations
to add the adapter, which is denoted as “Bottom-Up”. A
“Random” strategy is also conducted by simply plugging the
adapter module into n random locations. For a fair comparison,
we construct all the strategies by the same number of adapter
modules.

As shown in Figure [4] and Figure [3] our strategy achieves
the best performance on all datasets. For the Res Adapt
module, the accuracies of the three hand-crafted strategies are
nearly the same when using ResNet-26 as the trunk, while
the Top-Down strategy fails with VGG-16. For the 1 x 1
Adapt, the three are also comparable with each other when
using ResNet-26, but the Bottom-Up strategy occupies an
inferior place with VGG-16. Also, with VGG-16 as the trunk,
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Fig. 4. Performance of different plugging strategies (with the same number of adapter modules) on different datasets (VGG-16). Ours: the selected plugging
strategy. Top-Down: select the first n locations to plug in. Bottom-Up: select the last n locations to plug in. Random: Randomly select n locations to plug in.
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Fig. 5. Performance of different plugging strategies (with the same number of adapter modules) on different datasets (ResNet-26). Ours: the selected plugging
strategy. Top-Down: select the first n locations to plug in. Bottom-Up: select the last n locations to plug in. Random: randomly select n locations to plug in.

TABLE VII
PERFORMANCE OF OUR METHOD WITH OR WITHOUT ADAPTER
STRUCTURE SEARCH FOR VGG-16.

Plugging Strategy ~ Adapter Structure Search ~ Adapter Structure ~ MITIndoor  Flowers FGVC Total Param.

Res Adapt 72.61% 96.66%  88.93% 179

Ours no 1 x 1 Adapt 67.96% 94.83%  87.42% 1.79
BN Adapt 68.71% 92.75%  68.29% ~1

yes NAS Adapt 73.51% 96.96%  89.34% 133

experiments on batch-normalize adapter module show that the
accuracy of the Top-Down and Random plugging strategies
are much higher than that of the Bottom-Up strategy. All these
results demonstrate that the same plugging strategy performs
differently depending on the adapter module structure and the
trunk model, which fits our assumption.

We have also included a training time comparison for
the entire pipeline in contrast to these hand-crafted plugging
strategies (e.g. “Random”: randomly plugging adapter mod-
ules. Compared to randomly plugging adapter modules, our
method utilizes 40 hours for plugging strategy selection and
improves the average accuracy by 2.27% on the benchmark
of seven domains.

4) The importance of adapter structure search: We eval-
uate our method with or without adapter structure search on
three datasets. As shown in Table [VII the performance of
our method with adapter structure search outperforms that

x1

—
skip-connect

Fig. 6. (a): BN Adapt [16], (b): NAS-1, (c): 1 x 1 Adapt [17], (d): Res
Adapt [T]}, (e): NAS-2, (f): NAS-3.

without adapter structure search, which shows the importance
of structure search to model performance.

5) The distribution of learned adapter structure across
domains: We have conducted experiments to show the dis-
tribution of learned adapter structure across domains on three
target datasets (i.e. MITIndoor, FGVC, Flowers) with the trunk
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Fig. 8. The distribution of learned adapter structure on different datasets with
the trunk model VGG-16.

model VGG-16 (For the domain complexity, MITIndoor >
FGVC > Flowers) and the results are shown in Figure [g]
We search the adapter structure 10 times on each domain and
calculate the frequency of each adapter structure. Six kinds of
adapter structures are obtained in this experiment: BN Adapt,
1 x 1 Adapt, Res Adapt, NAS-1, NAS-2, and NAS-3. These
adapter structures are listed in increasing order of complexity
and shown in Figure |6} As shown in Figure [§] the distribution
of learned adapter structure for different domains varies. For
the simple domain Flowers, NAS-1 and BN Adapt are more
frequently selected. For the complex domain MITIndoor, our
method tends to select Res Adapt and NAS-3. Simple adapter
structures are usually selected on simple domains, and vice
versa. All of these experiments demonstrate the diversity of
our searching results on different domains, which shows that
our method is effective.

6) Frequency of each plugging location to be selected: We
show the frequency of each plugging location to be selected.
For plugging strategy selection, we employ our method several
times (10 in this experiment) and calculate the frequency of

plugging an adapter at each plugging location. For VGG-16,
there are 15 possible plugging locations, while for ResNet-26
the number becomes 25. The results of taking the VGG-16
as the common trunk model are presented in Figure [/} On
each dataset, the plugging locations with the highest frequency
shows that these locations are often selected to plug an adapter,
which implies they are important for learning this domain.
For different datasets, the frequency of the same plugging
location is different. All of these results demonstrate that a
domain-specific plugging strategy is needed for each domain,
which fits our motivation. Also, with ResNet-26 as the trunk
in Figure 0] we can obtain similar observations.

7) The accuracy of our method with regard to domain
diversity: We give a detailed analysis about the accuracy of
our method with regard to domain diversity. On the benchmark
of seven domains, we construct two kinds of datasets: 1)
the one contains the domains (i.e. FGVC+Flowers+SVHN
covering particular fine-grained classes) which are more dif-
ferent from ImageNet (with general coarse-grained object
classes); 2) the other one contains the domains (i.e. Cal-
tech256+SUN197+CIFAR100) which are more similar to Im-
ageNet. On these two datasets, we compare our method with
the baseline RA [I]. As shown in Table [X] our method
outperforms RA by a large margin on domains of the first
dataset. The performance of the RA and our method are close
to each other on the domains of the other dataset. From the
results, we see that the performance gap increases on the
dataset with more diverse domains.

8) Comparison of different paradigms: We compare two
different paradigms on the benchmark of seven domains: one
is training a smaller network from scratch for each domain
(denoted by “mobilenet-FNFT”) and the other is employing
our NAS-driven multi-domain learning method to plug a set of
adapters to a trunk model MobileNet (denoted by “mobilenet-
Ours™). As shown in Table[VIII] compared to mobilenet-FNFT,
mobilenet-Ours achieves comparable performance and only
utilizes about 65% parameters.



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, 2021

[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ I_OG|t
[ TSR
10 DTD -
oL |
3 8 -
C
S 7F .
35
o 6 —
o L _
T 5
. _
3_ p—
2_ p—
b _
0

kK o o A k)

N
7o T SRR
o N (O O (O O Ot Lo
0@@6‘@@@@@@@\0,@0&\

D O Y Al A2 ,\‘b<
\O @.\\0 ’b,S'\O 0,'\\0

L P> B P P
®) () () o) 0
SO O KO KO K

RN IR NN TR
2O R 0 A R

¥}
NOENCN N SN N N SN N O SR N SN SN N N SN S O S N N S AN N

Fig. 9. Frequency of each plugging location to be selected on different datasets with the trunk model ResNet-26.

TABLE VIII
COMPARISON OF DIFFERENT PARADIGMS ON THE BENCHMARK OF SEVEN DOMAINS WITH THE TRUNK MODEL MOBILENET. THE BEST VALUE IS IN
BOLD.
Method FGVC MITIndoor Flowers Caltech256 SVHN SUN397 CIFAR100 Ave. Acc.  Total Param.
mobilenet-FNFT ~ 79.63+0.14%  68.94+£0.08%  95.69+0.11%  82.71+0.17%  95.56+0.13%  53.08+0.12%  78.90+0.08 % 79.22% 7
mobilenet-Ours 79.554£0.05%  68.43+0.11%  94.514+0.05%  84.09+0.03%  95.42+0.02%  53.31£0.09%  78.84+0.11% 79.16% 4.55
TABLE IX

ACCURACY, AVERAGE ACCURACY, SCORE AND TOTAL PARAMETER COST FOR SEVEN POPULAR VISION DATASETS WITH THE TRUNK MODEL VGG-16.
THE BEST VALUE IS IN BOLD.

Method FGVC MITIndoor  Flowers  Caltech256 SVHN  SUN397 CIFARIO0  Ave. Acc. S. Total Param.  FLOP
FNFT 85.73% 71.77% 95.67% 83.73% 96.41%  57.29% 80.45% 81.58% 1750 7 1
BN 63.04% 57.60% 91.47% 73.66% 91.10%  47.04% 64.80% 69.82% 253 ~1 ~ 1
DAN 86.80% 63.02% 92.65% 68.63% 96.55%  45.98% 74.45% 75.44% 957 2.84 1.15
RA 88.92% 72.40% 96.43% 84.17% 96.13%  57.38% 79.55% 82.14% 1935 2.85 1.15
PA 86.23% 71.41% 95.20% 84.02% 96.05%  57.27% 79.85% 81.43% 1656 2.84 1.15
BP-NAS 89.01% 72.53% 96.27% 83.64% 96.09%  57.14% 79.36% 82.01% 1891 2.41 1.12
PolSAR-DNAS 86.59% 70.13% 95.88% 83.48% 96.34%  57.26% 78.59% 81.18% 1715 3.02 1.16
Ours 89.34% 73.51% 96.96 % 83.80% 96.47%  57.28% 79.48% 82.41% 2082 1.84 1.09

D. Comparison to Previous Methods

In this section, we evaluate the MDL performance of our
proposed scheme on two benchmarks, against other methods
with different adapter structures and different architecture
searching methods, including RA [I], BN [16], DAN [17],
PA [2]], BP-NAS [44], PoISAR-DNAS [45].

a) Results on the benchmark of seven domains: We
evaluate methods on the benchmark consisted of seven visual
domains. The trunk structure we used is VGG-16. As shown
in Table [X] FNFT, i.e. finetuning the full network for each
domain, takes the most parameters since it uses a whole
different version of the trunk for each domain. Our method
yields 82.41% average accuracy with 1.84 times the number of
parameters. Compared to RA, this accuracy rate is on par with
their results, but the parameters cost is much lower (saving

almost 55% additional parameter cost). Although almost no
additional parameters are added by BN, its average accuracy
is 13% lower than our method. As shown in Table our
method achieves better average accuracy and lower FLOPs
than DAN. Compared to RA, PA, BP-NAS and PolSAR-
NAS, our method also achieves lower FLOPs with comparable
performance. The lower computational cost comes from the
following aspects: 1) selecting an appropriate plugging strat-
egy can reduce the computational cost because the number of
adapters plugged to the trunk model is decreased; 2) searching
a simple adapter structure on some domains can reduce the
computational cost because the computational cost of an
adapter is decreased. Our method only achieves comparable
performance compared with the baseline because our method
adaptively keeps a trade-off between the performance and
memory cost for each domain. As shown in Table [[X] the
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TABLE X
ACCURACY, AVERAGE ACCURACY, SCORE AND TOTAL PARAMETER COST FOR THE VISUAL DECATHLON CHALLENGE WITH THE TRUNK MODEL
RESNET-26. THE BEST VALUE IS IN BOLD.

Method ImNet Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF Ave. Acc. S. Total Param.
FNFT 59.87%  6034%  82.12%  92.82%  5553% 97.53% 8141%  87.69%  96.55%  5120%  76.51% 2500 10
BN [16] 59.87%  43.05%  78.62%  92.07% 51.60% 95.82%  74.14%  84.83%  94.10%  4351%  71.76% 1263 ~

DAN (17 5774%  64.11%  80.07% 9129%  56.54%  98.46%  86.05% 89.67% 96.77%  4938%  77.01% 2851 2.02
RA 1] 59.23%  63.73% 81.31% 9330% 57.02% 9747% 8343% 89.82% 96.17%  50.28%  77.17% 2643 2.03

PA [2] 60.32% 6421% 8191% 9473% 58.83% 99.38%  84.68% 89.21%  96.54% 50.94%  78.07% 3412 2.02
BP-NAS [44 6035% 64.19% 81.92% 94.67% 58.94% 98.77%  84.64%  89.99%  96.57%  S50.88%  78.09% 3247 1.86
POISAR-DNAS [45]  59.97%  64.14%  81.42%  93.54%  58.47% 9834%  83.96% 89.94% 9635%  50.72%  77.69% 2950 231
Ours 60.43% 64.32% 81.70% 9461% 59.47% 99.34% 84.77% 90.02% 96.63%  50.87%  78.22% 3446 1.54

average accuracy of our method outperforms that of the REFERENCES

baseline with a simple adapter structure BN by 12.59%.
Compared to the baseline with a complicated adapter structure
RA, our method achieves comparable performance but only
uses around 60% memory cost. These results demonstrate that
our method achieves a good balance between effectiveness
and efficiency, which shows that our method is superior. We
have also conducted experiments when enlarging the proposed
model with similar total parameter cost to RA with the trunk
model VGG-16. The average accuracy of our method with
similar parameter cost to RA is increased by 0.64% than
before.

b) Results on the Visual Decathlon benchmark: We also
analyze the performance on the Visual Decathlon benchmark,
take the ResNet-26 as the trunk model. As shown in Table
BN utilizes the fewest parameters but has a poor performance
across the tested domains. Both the average accuracy and
score of our method is better than BN. Compared with other
methods, our method achieves higher accuracy and score with
less total parameter cost. On some specific domains such as
DTD, our method owns the highest accuracy.

V. CONCLUSION

In this paper, we have proposed a novel NAS-driven multi-
domain learning scheme, which aims to automatically set up
the adapter plugging strategy and adaptively fulfill the adapter
structure design. The proposed scheme is capable of utilizing
NAS to learn where to plug as well as what adapter structure
to plug. With the plugging strategy, our scheme is flexible
in adapting to different domains. When compared to other
methods, the MDL model obtained by our scheme is more
compact and discriminative. Comprehensive experiments and
analysis demonstrate the effectiveness of our scheme.
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