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Unsupervised Feature Selection via Orthogonal
Basis Clustering and Local Structure Preserving

Xiaochang Lin, Jiewen Guan, Bilian Chen, and Yifeng Zeng

Abstract—Due to the “curse of dimensionality” issue, how
to discard redundant features and select informative features
in high-dimensional data has become a critical problem, and
there are many researches dedicated to solving this problem.
Unsupervised feature selection technique, which doesn’t require
any prior category information to conduct with, has gained a
prominent place in pre-processing high-dimensional data among
all feature selection techniques, and it has been applied to many
neural networks and learning systems related applications, e.g.,
pattern classification. In this paper, we propose an efficient
method for unsupervised feature selection via Orthogonal basis
Clustering and reliable Local Structure Preserving, which is
referred to OCLSP briefly. Our OCLSP method consists of
an orthogonal basis clustering together with an adaptive graph
regularization, which realize the functionality of simultaneously
achieving excellent cluster separation and preserving the local
information of data. Besides, we exploit an efficient alternative
optimization algorithm to solve the challenging optimization
problem of our proposed OCLSP method, and we perform a
theoretical analysis of its computational complexity and conver-
gence. Eventually, we conduct comprehensive experiments on
nine real-world datasets to test the validity of our proposed
OCLSP method, and the experimental results demonstrate that
our proposed OCLSP method outperforms many state-of-the-art
unsupervised feature selection methods in terms of clustering
accuracy and normalized mutual information, which indicates
that our proposed OCLSP method has a strong ability in
identifying more important features.

Index Terms—Unsupervised feature selection, orthogonal basis
clustering, locality preserving.

I. INTRODUCTION

W ITH the rapid development of information technology,
data are often represented by high-dimensional feature

vectors in many fields, such as computer vision [1], computa-
tional biology [2] and pattern classification [3], etc. However,
the high-dimensional data not only increase computational
complexities and memory requirements of learning algorithms,
but also deteriorate the performance of learning algorithms
due to the irrelevant, redundant, and noisy features [4], [5].
To this end, dimensionality reduction algorithms are proposed
to solve this problem by reducing the dimensionality of data,
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which could make the learned model more compact and
generalized [6].

Generally, dimensionality reduction can be roughly divided
into two categories: feature extraction [7]–[9] and feature
selection [10]–[12]. Feature extraction aims to map the high-
dimensional features into a new low-dimensional space. The
new low-dimensional feature space is usually a linear or non-
linear combination of the original features. Correspondingly,
feature selection seeks to select the optimal feature subset from
the original feature set using some certain criteria. Although
feature extraction methods have been demonstrated to have
promising performance, they transform and compress the
original features, which not only distorts the original data but
also impairs the efficiency of processing [5]. On the contrast,
feature selection methods have better interpretability because
they retain the semantic meanings of original features. More-
over, the cost of collecting features for learning algorithms can
be reduced through feature selection, because we only need to
collect those features that are selected according to the feature
selection methods rather than to utilize all the original features
for projection as what feature extraction methods do [13].

Based on the availability of label information, feature se-
lection methods can be further divided into three categories
of supervised methods, semi-supervised methods and unsu-
pervised methods [14]. When there are adequate labeled data,
supervised approaches, which leverage label information to
guide the feature selection process, are the first choice due
to their high classification accuracy and reliability. However,
labeled data are uncommon since it would cost a great deal of
human resources to label data manually. Besides, labeled data
may be polluted intentionally since the owners are not willing
to share them. Hence, on the other hand, when there are not
sufficient labeled data for us, semi-supervised approaches and
unsupervised approaches are necessary [15].

Since discrimination information is often encoded in class
labels, it is relatively easier for the supervised feature selec-
tion methods to find the discriminative features using label
information. However, as illustrated above, the large scale data
obtained in real life are usually unlabeled. Hence, researches
in unsupervised feature selection have significant practical
meanings. In this paper, we focus on the unsupervised fea-
ture selection problem which is a more challenging problem
due to the lack of label information that could help select
discriminative features. There are several strategies proposed
to solve the unsupervised feature selection problem. Since
the label information is absent in the unsupervised feature
selection problem, the most typical strategy is to assign pseudo
labels to data samples so as to transform an unsupervised
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feature selection problem to a supervised counterpart, and
then to solve the transformed supervised feature selection
problem accordingly. One of the methods that unsupervised
feature selection methods have adopted to generate pseudo
labels is to utilize the intrinsic structure of data. Lately, feature
selection methods in recent work are mainly based on matrix
factorization technique which generates data pseudo labels
together with a cluster center indicator matrix by learning a set
of bases, and those matrix factorization based methods could
obtain excellent performance in estimating the latent subspace
of data.

In this paper, we propose a novel unsupervised feature
selection method, namely unsupervised feature selection via
Orthogonal basis Clustering and Local Structure Preserv-
ing (OCLSP), which achieves the functionality of simul-
taneously selecting discriminative features and performing
orthogonal basis clustering while preserving the local structure
of data points. Specifically, we decompose the target matrix
into two matrices, which are regarded as the latent cluster
center indicator and the sparse representations of different
classes, respectively. In addition, an orthogonal constraint is
imposed on the latent cluster center indicator matrix in order to
ensure that the estimated centers are close to the ground-truths
and to keep the sparse representations of different classes as
far as possible. Besides, the orthogonal constraint would also
make the feature selection matrix a better projection matrix,
which is favorable for selecting more discriminative features.
Meanwhile, in the process of iterative optimization, the local
structure of data points, which is proven to be effective and
discriminative [16]–[18], could be adaptively learned from the
results of feature selection, and then the learned local structure
could be used to reselect informative features to preserve such
a structure. Fig. 1 illustrates the framework of our proposed
OCLSP method.
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Fig. 1. Framework of proposed OCLSP method.

In summary, the contributions of this paper are highlighted
as follows:

1) We combine orthogonal basis clustering with adap-
tive structure learning in the low-dimensional manifold,
so that the learned manifold projection matrix whose
quality is enhanced by orthogonal basis clustering can
guide the process of local geometrical structure learning
in the subspace, while the learned local geometrical

structure in the subspace can further guide the process
of manifold learning (feature selection) and orthogonal
basis clustering.

2) We develop a simple but effective iterative updating
algorithm to solve the optimization problem of our
proposed OCLSP method.

3) Experimental results on nine real-world datasets demon-
strate that our proposed OCLSP method could outper-
form the state-of-the-art unsupervised feature selection
methods in most cases.

The remainder of this paper is arranged as follows. In
Section II, the related work on the topic of unsupervised
feature selection is reviewed. In Section III, we propose our
OCLSP method. In Section V, we provide an effective but
simple algorithm for solving the optimization problem of our
proposed OCLSP method. In Section VI, we show and analyze
results of comparative experiments on nine real-world datasets.
In Section VII, overall conclusion is stated, and we provide
possible future work.

II. RELATED WORK

For the purpose of handling high-dimensional data, many
unsupervised feature selection methods are proposed. Due
to the absence of label information, unsupervised feature
selection methods have to resort to select features that could
preserve the intrinsic structure of data well without leveraging
any label information. The earliest methods usually define a
evaluation score and then rank features based on that. The most
representative methods involving such a procedure are maxi-
mum variance method [19] and Laplacian score method [20].
However, the biggest deficiency of those methods is that the
potential interaction between features is neglected. For the
sake of addressing this issue, many methods proposed re-
cently select features by simultaneously exploiting the intrinsic
structure information of data and considering the correlation
between features. The graph is the most popular data structure
to represent such intrinsic structure information of data, and
the graph based feature selection methods can be roughly
categorized into two classes: one is to use a pre-defined graph,
while the other is to learn an adaptive graph.

The pre-defined graph based unsupervised feature selection
methods usually use some certain criteria to construct a pre-
defined graph and then select features that could preserve
such a graph structure well. For example, Unsupervised Dis-
criminative Feature Selection (UDFS) [21] selects the most
informative features by capturing the manifold structure, Non-
negative Discriminative Feature Selection (NDFS) [22] aims to
select features and analyze non-negative spectrum at the same
time, and Robust Unsupervised Feature Selection (RUFS) [23]
performs robust clustering and robust feature selection simulta-
neously. However, the main drawback of these methods is that
the graph is constructed in the original feature space, where
large quantities of noises and redundant features exist, and this
makes the pre-defined graph unreliable and eventually impairs
the effectiveness of the selected features.

Distinct from the first class where the local geometrical
structure remains unchanged throughout the learning process,
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the methods from the second class learn an adaptive graph
in the procedure of feature selection, i.e., the structure of
graph changes with the selected features during the iterative
optimization process. For example, Du et al. [24] learned an
adaptive graph for feature selection by preserving the global
and local structures of data, Nie et al. [25] determined the
similarity matrix from the results of feature selection adap-
tively, and Li et al. [26] proposed the uncorrelated regression
model which performs feature selection and manifold learning
simultaneously. Luo et al. [27] learned the optimal recon-
struction graph and selective matrix simultaneously, instead
of using a predetermined graph, which is very close to our
work. However, different from [27], in our OCLSP method,
the projected data points are further decomposed by orthogonal
basis clustering, which improves the quality of the projection
matrix (which is also the feature selection matrix). Besides, we
generate a prior similarity graph to avoid unreasonable local
geometrical structures.

One key issue in unsupervised feature selection is how to
generate accurate class labels for data samples, i.e., how to
cluster samples. Clustering methods applied in unsupervised
feature selection are mainly variants of two prototypes: k-
means clustering [28] and spectral clustering [29]. For k-
means based methods, the most widely used techniques are
the Non-negative Matrix Factorization (NMF) and its variants
[30]–[33]. For example, Zhang et al. [33] adopts NMF and
symmetric NMF to deal with constrained clustering problems.
For spectral clustering based methods, they preserve the local
geometrical structure by different ways [34]–[36]. For exam-
ple, Wang et al. [36] proposed to use structured low-rank
representations to capture local manifold structure of multi-
view data. However, there are two main differences of our
method from these work, because (1) we force clustering
center matrix and clustering membership matrix to be both
orthogonal, so as to get more precise pseudo clustering labels,
and (2) we factorize the projected data samples WX, i.e.,
cluster the data samples in the subspace, to get rid of not only
redundancy but noises which lie in the original feature space.

Recently, matrix factorization technique has attracted more
and more attention from machine learning and pattern recog-
nition researches, and some matrix factorization based fea-
ture selection approaches are henceforth proposed and they
could obtain excellent performance. Wang et al. [37] treated
the process of feature selection as matrix factorization by
introducing a subspace distance, and proposed an iterative
updating algorithm which is based on non-negative matrix fac-
torization [38] and concept factorization [39]. Han et al. [40]
introduced Simultaneous Orthogonal basis Clustering Feature
Selection (SOCFS) by decomposing the target matrix into two
orthogonal matrices. However, these methods neglect the in-
trinsic structure of data, which is unfavorable in unsupervised
feature selection.

Different from the previous work, our proposed OCLSP
selects informative features by aggregating feature selection,
matrix factorization and adaptive graph learning into a unified
framework.

III. PRELIMINARY

A. Notations

Throughout this paper, boldface capital letters represent
matrices, whereas boldface lower case letters represent vectors,
and italic lower case letters represent scalar values. For an
arbitrary matrix M 2 Rm⇥n, mij denotes its (i, j)th entry,
while m

i and mj represent the ith row and jth column of M,
respectively. Besides, the `2,1 norm of matrix M is defined
as kMk2,1 =

Pm
i=1

qPn
j=1 m

2
ij , and the Frobenius norm

of matrix M is defined as kMkF =
qPm

i=1

Pn
j=1 m

2
ij =

p
Tr (MMT ). Tr(M) denotes the trace of matrix M if M is

square, and M
T denotes the transpose of M.

B. Simultaneous Orthogonal Basis Clustering Feature Selec-

tion (SOCFS)

Assume that X 2 Rm⇥n represents the data matrix, where
m and n represent the number of features and the number of
samples, respectively. Each row of X represents one feature
dimension and each column of X represents a sample. Given a
target matrix T 2 Rd⇥n, according to the methods proposed in
[22] and [23], the unsupervised feature selection problem can
be formulated as a multi-output regression problem

min
W

L(WT
X�T) + ⌘R(W),

where W 2 Rm⇥d is the feature weight matrix, L(WT
X�T)

is the loss term, R(W) is the regularization term imposed on
feature weight matrix W, and ⌘ is a positive regularization
parameter to control the sparsity of feature selection matrix
W. In this framework, the matrix factorization part has a role
to cluster samples, while the regularization part is responsible
for selecting features, and these two objectives are conducted
simultaneously. It is crucial for the target matrix T to have the
capability to discriminate projected clusters, hence we allow T

to have extra degrees of freedom [40], by decomposing it into
two other matrices B 2 Rd⇥c and E 2 Rn⇥c as T = BE

T

with additional constraints in the following

min
W,B,E

���WT
X�BE

T
���
2

F
+ ⌘kWk2,1

s.t. B
T
B = I,E

T
E = I,E � 0.

The orthogonal constraint exerted on matrix B guarantees
that each column of B is independent. That is, B is composed
by the orthogonal bases of the projected sample space W

T
X.

Besides, the columns of B can be regarded as the directions of
the corresponding cluster centers. On the other hand, E is the
cluster indicator matrix, which shows the membership degrees
of different samples belonging to different clusters. In addition,
the non-negative and the orthogonal constraints exerted on E

make each row of E has only one non-zero element [41].
Therefore, T = BE

T can be utilized to find latent cluster
centers so as to achieve an excellent cluster separation [40].
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C. Graph Regularization

Another key point in unsupervised feature selection prob-
lems is how to preserve the local geometrical structure of
data reliably. Graph Laplacian is a typical technique that is
widely employed to preserve the structure [42], [43]. A natural
assumption could be that, if two data points xi and xj are
close in the intrinsic graph of data, then the projected data
points W

T
xi and W

T
xj should also be close enough in the

projection subspace. This assumption could be obtained by
defining the following embedding function

min
W

1

2

��WT
xi �W

T
xj

��2
2
sij , (1)

where the similarity sij between two samples i and j is usually
calculated by a Gaussian kernel function defined as follows

sij =

(
exp

⇣
kxi�xjk2

�2�2

⌘
, xi 2 Nk (xj) or xj 2 Nk (xi) ;

0, otherwise,
(2)

where Nk (xi) denotes the set of k nearest neighbors of xi

and � is the Gaussian kernel width.
After simple mathematical transformation, (1)

becomes

min
W

Tr(WT
XLX

T
W),

where L = P � (ST + S)/2 2 Rn⇥n is the graph Laplacian
which is based on the similarity matrix S = [sij ] 2 Rn⇥n,
and the degree matrix P 2 Rn⇥n is a diagonal matrix defined
as below

P = diag

0

@
nX

j=1

s1j + sj1

2
,

nX

j=1

s2j + sj2

2
, . . . ,

nX

j=1

snj + sjn

2

1

A .

IV. ORTHOGONAL BASIS CLUSTERING AND RELIABLE
LOCAL STRUCTURE PRESERVING METHOD

Although the aforementioned schemes could attain good
performance in many scenarios, there are still flaws. For
example, as for the SOCFS model, it neglects the local
structure information of data, which is proven to be important
in many literature [42], [43]. Besides, a variety of models,
like [21]–[23], leverage such local structure information of
data by constructing a pre-defined similarity graph, where
similarities are computed using samples in the original sample
space. However, samples in the original sample space contain
a big deal of redundancy and noises, which leads to inaccurate
similarity values, and eventually impairs the efficiency of fea-
ture selection. For the sake of mitigating the above problems,
in this paper, we propose an adaptive similarity graph model
which learns similarity information between samples in a
cleaner subspace adaptively so as to capture the local structure
information of data more precisely. Besides, we propose an
unified framework which performs local structure information
learning and orthogonal basis clustering simultaneously, where
local structure information is learned adaptively from the
results of feature selection, which are obtained by the results of
orthogonal basis clustering, and the most informative features
are then reselected to preserve the learned structure. Our

OCLSP method not only inherits merits of the SOCFS model,
but it learns local structure information of data adaptively,
which leads to better results of selected features.

It is noted that in the existing graph regularization based
methods, the stage of constructing graph and the stage of
learning feature weight matrix are independent, i.e., the simi-
larity based graph is first constructed by leveraging Gaussian
kernel function, and then the graph is used for preserving
local geometrical structure of data by optimization problem
(1). Obviously, the quality of the constructed graph would be
affected by the Gaussian kernel width � and the noisy features
in X, and the unreliable constructed graph would further
lead to a suboptimal result, which is unfavorable. Therefore,
we present an unsupervised feature selection method via
orthogonal basis clustering and local structure preserving. In
our method, the similarity based graph and feature selection
matrix can be mutually restricted and they could be jointly
optimized. In this way, the quality of selected features and the
reliability of learned local structure information can both be
improved. The optimization problem of our OCLSP method
is formulated as follows

min
S,B,E,W

���WT
X�BE

T
���
2

F
+ ⌘ kWk2,1

+ �

⇣
Tr

⇣
W

T
XLX

T
W

⌘
+ �kS�Ak

2
F

⌘

s.t.
X

j

sij = 1, 0  sij  1, for all i,

E
T
E = I,E � 0,BT

B = I,

where � is a positive coefficient to adjust the weight of
structure learning, A 2 Rn⇥n is the initial similarity matrix
computed by (2), and � is a positive parameter used to
control the degree that similarity matrix S changes from
A. In our scheme, kWk2,1 forces the rows of the feature
selection matrix W to be sparse, thus, we can filter out features
corresponding to small values in W. There are two main
differences of our method from previous adaptive structure
learning schemes [16]–[18]. First, we generate a pre-defined
graph A and constrain the learned local structure S to be close
to A so as to avoid unreasonable local geometrical structures.
Second, we perform adaptive structure learning and orthogonal
basis clustering simultaneously based on a common projection
matrix W, so that the learned local geometrical structure
contains the information from latent clusters produced by
orthogonal basis clustering.
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V. OPTIMIZATION AND THEORETICAL ANALYSIS

A. Solution Method

Alternatively, we propose an equivalent formulation of the
optimization problem aforementioned as follows

min
S,B,E,W,Z

���WT
X�BE

T
���
2

F
+ ⌘kWk2,1

+ �

⇣
Tr

⇣
W

T
XLX

T
W

⌘
+ �kS�Ak

2
F

⌘

s.t.
X

j

sij = 1, 0  sij  1, for all i,

E
T
E = I,Z = E,Z � 0,BT

B = I,

(3)
where Z 2 Rn⇥c is an auxiliary matrix with an additional
constraint of Z = E. This reformulation has the ability to
detach the non-negative constraint from E and assign that
constraint to a new matrix Z. Through the additional constraint
Z = E, Z has a role to bring non-negativity to E while E

is responsible for keeping Z orthogonal. By rewriting (3), we
present our final optimization problem as follows

min
S,B,E,W,Z

���WT
X�BE

T
���
2

F
+ ⌘kWk2,1 + ↵kZ�Ek

2
F

+ �

⇣
Tr

⇣
W

T
XLX

T
W

⌘
+ �kS�Ak

2
F

⌘

s.t.
X

j

sij = 1, 0  sij  1, for all i,

E
T
E = I,Z � 0,BT

B = I,

(4)
where ↵ > 0 controls the degree of affinity between Z and E.

In this manner, the hybridity between Z and E is removed,
and we could henceforth optimize our objective by Alternating
Direction Method of Multipliers (ADMM) as follows.

• Update B

When B is minimized, we fix S, E, W, Z. The subproblem
that only relates to B becomes

min
B

T
B = I

kBE
T
�W

T
Xk

2
F , (5)

and according to [44], the solution of (5) is obtained as

B = VBId⇥cU
T
B, (6)

where UB and VB are composed of the left and right
eigenvectors of E

T
X

T
W, computed by singular value de-

composition, respectively.
• Update W

When updating W, we fix S, E, B, Z, and the subproblem
that is only related to W becomes

min
W

���WT
X�BE

T
���
2

F
+ ⌘kWk2,1

+ � Tr
⇣
W

T
XLX

T
W

⌘
,

(7)

and similar to [45], we set the derivative of (7) with respect
to W as zero, and we henceforth have

XX
T
W �XEB

T + �XLX
T
W + ⌘DW = 0, (8)

where D is an m⇥m diagonal matrix with diagonal elements
dii =

1
2kwik2

. It is noted that the derivative of kWk2,1 with
respect to W is computed to be 2DW. Solving (8), we could
obtain

W = (XX
T + �XLX

T + ⌘D)�1
XEB

T
. (9)

• Update S

Let Y = W
T
X 2 Rd⇥n, then the subproblem that is

merely related to S can be converted to

min
S

Tr
⇣
YLY

T
⌘
+ �kS�Ak

2
F

s.t.
X

j

sij = 1, 0  sij  1, for all i.

This problem is independent for different values of i. Hence,
we can solve the following problem separately for each value
of i

minP
j
sij = 1, sij � 0

X

j

�
sij � aij

�2
+

1

2�

X

j

kyi � yjk
2
2 sij .

Denoting hi 2 Rn as a vector whose j-th element is equal
to kyi � yjk

2
2 (and similarly for si 2 Rn and ai 2 Rn), the

problem above can be reformulated in vector form as

min
s
T
i 1 = 1, si � 0

����si �
✓
ai �

1

4�
hi

◆����
2

2

, (10)

and this problem can be solved by an efficient iterative
algorithm [46]. To be specific, let r =

⇣
ai �

1
4�hi

⌘
, then

(10) is equivalent to

min
s
T
i 1 = 1, si � 0

ksi � rk
2
2 . (11)

We now write the Lagrangian function of (11) as

L =
1

2
ksi � rk

2
2 � �(sTi 1� 1)� ⇣T

si,

where � is a scalar and ⇣ is a Lagrangian coefficient vector.
Suppose the optimal solution of (11) is s

⇤
i , and the associated

Lagrangian coefficients are �
⇤ and ⇣⇤, then according to the

KKT condition [47], we have the following equations
8
>><

>>:

8j, s
⇤
ij � rj � �

⇤
� ⇣

⇤
j = 0,

8j, s
⇤
ij � 0,

8j, ⇣
⇤
j � 0,

8j, s
⇤
ij⇣

⇤
j = 0,

where s
⇤
ij is the j-th element of vector s⇤i . Since s

T
i 1 = 1 and

s
⇤
ij � rj � �

⇤
� ⇣

⇤
j = 0, we could obtain

�
⇤ =

1� 1
T
r� 1

T ⇣⇤

n
.

Plugging the above equation back into the KKT equations, we
could get

s
⇤
i =

✓
r�

11
T

n
r+

1

n
1�

1
T ⇣⇤

n
1

◆
+ ⇣⇤

.

Denoting ⇣̄
⇤ = 1T ⇣⇤

n and u = r�
11T

n r+ 1
n1, for any j, we

have s
⇤
ij = uj + ⇣

⇤
j � ⇣̄

⇤. According to the KKT conditions,
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s
⇤
ij = uj+⇣

⇤
j � ⇣̄

⇤ =
�
uj � ⇣̄

⇤�
+

, so we could obtain s
⇤
ij once

we’ve got ⇣̄⇤. Applying the KKT conditions, we could rewrite
⇣
⇤
j = (⇣̄⇤ � uj)+, and since r is an n dimensional vector, we

have ⇣
⇤ = 1

n�1

Pn�1
j=1 (⇣̄

⇤
� uj). We define a function as

f(⇣̄) =
1

n� 1

n�1X

j=1

�
⇣̄ � uj

�
+
� ⇣̄,

and it is easy to verify that ⇣̄
⇤ is a root of f(⇣̄) = 0. We

now could henceforth adopt optimization methods like Newton
method to find the root of f(⇣) = 0 efficiently so as to obtain
⇣̄
⇤.
• Update E

The subproblem that is only relevant to E is

min
E

���WT
X�BE

T
���
2

F
+ ↵kZ�Ek

2
F

s.t. E
T
E = I,

and the subproblem above can be rewritten as

min
E

T
E = I

��E�
�
X

T
WB+ ↵Z

���2
F
. (12)

Similar to updating B, according to [44], we could obtain
solution of this subproblem as

E = VEIn⇥cU
T
E, (13)

where UE and VE are composed of the left and right
eigenvectors of BT

W
T
X+↵Z

T , computed by singular value
decomposition, respectively.

• Update Z

The subproblem that exclusively relates to Z is

min
Z � 0

kZ�Ek
2
F , (14)

and the solution of the above subproblem is straightforward,
as

Z = max(E, 0). (15)

Based on the above analysis, we summarize the detailed
optimization procedures in Algorithm 1.

B. Computational Complexity Analysis

The computational complexity of our proposed OCLSP
method is analyzed here. Recall that n represents the total
number of data samples, m represents the number of features
in original data, c is the number of latent clusters, d is the
dimension of the projected subspace, and t is the total number
of iterations. Updating B needs to compute E

T
X

T
W and

perform singular value decomposition on it, and their compu-
tational complexities are O(cnm + cmd) and O(c2d + cd

2),
respectively. Moreover, the computation complexity of calcu-
lating VBId⇥cU

T
B is O(cd2 + c

2
d). Thus, the computational

complexity of updating B is O(cnm + cmd + c
2
d + cd

2).
Updating W involves many matrix manipulations, and its
computational complexity is O(m2

n + mn
2 + m

3 + mnc +
mcd). Updating D needs to compute all row Euclidean norms
of W, so its computational complexity is O(md). Besides, the
cost of updating S is O(n log n), the cost of calculating L is

Algorithm 1 The optimization algorithm for OCLSP.
Input: Data matrix X 2 Rm⇥n; Regularization parameters: ⌘,

�, � and a large enough ↵; Number of latent clusters
c; Number of selected features p;

Output: p features for the data set;
1: Use k-means to initialize E 2 Rn⇥c; Set t = 0 and

Dt 2 Rm⇥m as an identity matrix; Use (2) to construct
the initial similarity matrix A;

2: repeat
3: Update Bt by (6);
4: Update Wt by (9);

5: Update Dt as

2

664

1
2kw1

tk2

. . .
1

2kwm
t k2

3

775;

6: Update St by (10), then calculate Lt = Pt �
ST

t +St

2 ;
7: Update Et by (13);
8: Update Zt by (15);
9: t = t+ 1;

10: until Convergence criterion satisfied
11: Sort all m features according to

��wi
t

��
2

(i = 1, 2, . . . ,m)
in descending order and select the top-p ranked ones.

O(n2), and it takes O(cmd + cmn + c
2
n + cn

2) to update
E, O(nc) to update Z. Suppose c ⌧ n, c ⌧ m, and d ⌧ n,
d ⌧ m, which are usually established in reality, then the total
computational complexity of our proposed OCLSP method is
O
��
mn

2 + nm
2 +m

3
�
· t
�

approximately.

C. Convergence Analysis

In this section, we prove the convergence of Algorithm 1
for solving our proposed OCLSP method. For convenience, let
us denote the objective function part of (4) as

L (W,B,E,Z,S) =
���WT

X�BE
T
���
2

F
(16)

+ ⌘kWk2,1 + ↵kZ�Ek
2
F

+ �

⇣
Tr

⇣
W

T
XLX

T
W

⌘
+ �kS�Ak

2
F

⌘
.

Theorem 1: The objective function (16) monotonically
decreases in each iteration by running Algorithm 1, and the
algorithm will converge.

Proof: According to (16), the part of L (W,B,E,Z,S)
that only relates to W can be separated as

min
W

���WT
X�BE

T
���
2

F
+ ⌘kWk2,1 + � Tr

⇣
W

T
XLX

T
W

⌘
.

For the W update by (9), Wt+1 is also the solution of the
following problem with fixed Dt as

Wt+1 = argmin
W

��WT
X�BtE

T
t

��2
F

+ � Tr
�
W

T
XLtX

T
W

�
+ ⌘Tr

�
W

T
DtW

�
,
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which indicates that
��WT

t+1X�BtE
T
t

��2
F
+ � Tr

�
W

T
t+1XLtX

T
Wt+1

�

+ ⌘Tr
�
W

T
t+1DtWt+1

�


��WT

t X�BtE
T
t

��2
F
+ � Tr

�
W

T
t XLtX

T
Wt

�
(17)

+ ⌘Tr
�
W

T
t DtWt

�
.

According to the theorem proposed in the literature [45], for
any nonzero row vectors u,ut 2 Rc, we have the inequality
as

kuk2 �
kuk

2
2

2 kutk2

 kutk2 �
kutk

2
2

2 kutk2

.

Applying the above inequality with u = w
i
t+1 and ut = w

i
t,

we get

kWt+1k2,1 �

mX

i=1

��wi
t+1

��2
2

2
��wi

t

��
2

 kWtk2,1 �

mX

i=1

��wi
t

��2
2

2
��wi

t

��
2

.

We now rewrite the above inequality in matrix form as

kWt+1k2,1 � Tr
�
W

T
t+1DtWt+1

�

kWtk2,1 � Tr
�
W

T
t DtWt

�
. (18)

By combining (17) and (18), we have
��WT

t+1X�BtE
T
t

��2
F
+ � Tr

�
W

T
t+1XLtX

T
Wt+1

�

+ ⌘kWt+1k2,1


��WT

t X�BtE
T
t

��2
F
+ � Tr

�
W

T
t XLtX

T
Wt

�

+ ⌘kWtk2,1,

which implies that

L (Wt+1,Bt,Et,Zt,St)  L (Wt,Bt,Et,Zt,St) . (19)

Then, since B is updated according to (5), we have

Bt+1 = argmin
B

kBE
T
t �W

T
t+1Xk

2
F

= argmin
B

L (Wt+1,B,Et,Zt,St) ,

which indicates that

L (Wt+1,Bt+1,Et,Zt,St)  L (Wt+1,Bt,Et,Zt,St) .
(20)

In addition, since E is updated by (12), we could obtain

Et+1 = argmin
E

��E�
�
X

T
Wt+1Bt+1 + ↵Zt

���2
F

= argmin
E

L (Wt+1,Bt+1,E,Zt,St) ,

and this implies that

L (Wt+1,Bt+1,Et+1,Zt,St)  L (Wt+1,Bt+1,Et,Zt,St) .
(21)

Moreover, owing to that Z is updated based on (14), we get

Zt+1 = argmin
Z

kZ�Et+1k
2
F

= argmin
Z

L (Wt+1,Bt+1,Et+1,Z,St) ,

which means

L (Wt+1,Bt+1,Et+1,Zt+1,St)

L (Wt+1,Bt+1,Et+1,Zt,St) . (22)

Finally, on account of that we use (10) to update S, we have

St+1 = argmin
S

����S�

✓
A�

1

4�
Ht+1

◆����
2

F

= argmin
S

L (Wt+1,Bt+1,Et+1,Zt+1,S) ,

and this means

L (Wt+1,Bt+1,Et+1,Zt+1,St+1)

L (Wt+1,Bt+1,Et+1,Zt+1,St) . (23)

Based on (19), (20), (21), (22) and (23), we can now draw
a conclusion that

L (Wt+1,Bt+1,Et+1,Zt+1,St+1)  L (Wt,Bt,Et,Zt,St) ,

which indicates that the objective function (16) monotonically
decreases in each iteration. Furthermore, since function (16)
is convex in each variable, the algorithm with update rules
converges.

VI. EXPERIMENTS

In this section, we evaluate the performance of our proposed
OCLSP method on nine real-world datasets and compare
it with several state-of-the-art unsupervised feature selection
methods. The k-means clustering algorithm [28], which is
a common and basic clustering method with a wide range
of applications, is adopted to validate the effectiveness of
feature selection methods. All experiments are implemented
in MATLAB R2020b, and codes are run on an Ubuntu server
with 3.70-GHz i9-10900K CPU, 128-GB main memory.

A. Datasets

The evaluation is conducted on nine real-world datasets,
including six image datasets and three biological datasets. The
statistics of these datasets are summarized in Table I.

B. Comparison Algorithms

In order to verify the validity of our proposed OCLSP
method, we compare it with eight unsupervised feature se-
lection methods, they are:

1) ALLfea: The baseline method. ALLfea performs k-
means clustering [28] using all original features.

2) LapScore [20]: Laplacian score evaluates the features
separately according to their abilities to preserve the
local geometric information of data.

3) UDFS [21]: Unsupervised discriminant feature selection
uses `2,1 norm regularization to exploit local discrim-
inative information of data and excavate correlation
between features simultaneously.

4) NDFS [22]: Nonnegative discriminative feature selection
selects features by leveraging a joint framework of non-
negative spectral analysis and `2,1 norm regularization.
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TABLE I
THE STATISTICS OF DATASETS

Dataset # Instances # Original Features # Classes # Selected Features Type
MSRA25 1799 256 12 [5,10,,50] image

PalmData25 2000 256 100 [5,10,,50] image
ECOLI 336 343 8 [5,10,,50] biological
UMIST 575 644 20 [5,10,,50] image
JAFFE 213 676 10 [5,10,,50] image

COIL20 1440 1024 20 [5,10,,50] image
warpPIE10p 210 2420 10 [50,100,150,200,250,300] image

Lung 203 3312 5 [50,100,150,200,250,300] biological
GLIOMA 50 4434 4 [50,100,150,200,250,300] biological

5) FSASL [24]: Unsupervised feature selection with adap-
tive structure learning adaptively updates feature selec-
tion matrix based on global and local structure learning.

6) SOCFS [40]: Simultaneous orthogonal basis clustering
feature selection performs orthogonal basis clustering by
utilizing a new type of target matrix.

7) SOGFS [25]: Structured optimal graph feature selection
conducts local structure learning with ideal neighbor
assignment to select features.

8) URAFS [26]: Generalized uncorrelated regression with
adaptive graph for feature selection aims to learn un-
correlated yet discriminative features with a closed-
form solution through an improved sparse representation
model.

Similar to previous work, we evaluate the performance
of unsupervised feature selection methods by two widely
employed evaluation metrics, i.e., accuracy (ACC) and normal-
ized mutual information (NMI) [21], and the larger ACC and
NMI indicate better performance. ACC is defined as follows

ACC =

Pn
i=1 � (map (ri) , li)

n
,

where li is the true label of xi and ri is the clustering result
of xi, n is the total number of samples, �(x, y) = 1 if x = y,
otherwise �(x, y) = 0, and map(·) is the best permutation
mapping function that permutes clustering labels to match the
true labels using the KuhnMunkres algorithm [48]. Given two
variables P and Q, NMI is defined as

NMI(P,Q) =
I(P,Q)p
H(P )H(Q)

,

where P and Q are the true labels and clustering results,
respectively, I(P,Q) is the mutual information between P

and Q, and H(P ) and H(Q) are the entropy of P and Q

separately.
There are several parameters need to be tuned in our pro-

posed OCLSP method and other unsupervised feature selection
methods. First, for all unsupervised feature selection methods,
each must specify the number of neighbors k, which is used
in (2), and we set k = 5 in our experiments. Besides, for
NDFS and OCLSP methods, we fix ↵ = 104 to guarantee the
orthogonality of cluster indicator matrix. At last, in order to
make our experiments fair enough, we tune the regularization

parameters with a grid search strategy where parameters are
ranging from {10�3, 10�2, 10�1, 100, 101, 102, 103}.

In the following experiments, we perform k-means clus-
tering algorithm [28] in different subspaces, each of which
is constructed by features selected by one of unsupervised
feature selection methods aforementioned, respectively. Since
the clustering results would be affected by the choice of the
initial clustering seeds, we repeat the experiments 20 times
with random initialization of clustering seeds, and report the
average results of ACC and NMI. Besides, the parameter sen-
sitivity of our OCLSP method and convergence of Algorithm 1
are also discussed.

C. Experimental Results and Analysis

To compare the performance of nine different methods
comprehensively, the ACC and NMI values of these methods
with best parameters on nine real-world datasets are shown in
Table II and Table III respectively, and the values in bold
represent the best values. Besides, the curves of the ACC
and NMI values of different methods with varying number of
features on nine real-world datasets are shown in Fig. 2 and
Fig. 3 respectively, where the horizontal axis represents the
number of selected features while the vertical axis indicates
the ACC or NMI.

It can be seen from Table II, Table III, Fig. 2 and Fig. 3
that our proposed OCLSP method can obtain the best ACC
and NMI in most cases compared with other unsupervised
feature selection methods, which fully demonstrates the su-
periority of our proposed OCLSP method. In Table II, we
could find that our OCLSP method outperforms all other
methods in terms of ACC, and in Table III, our OCLSP
performs best in terms of NMI except on PalmData25 dataset,
where the baseline algorithm, ALLfea, gets the highest NMI.
Part of the reason is that, our OCLSP method, which uses
an adaptive graph to capture the local geometrical structure
information of data points and leverages an orthogonal basis
clustering to achieve an excellent cluster separation, has made
up the drawbacks presented in previous methods. Besides,
in Fig. 2, the experimental results show that our OCLSP
method outperforms all other unsupervised feature selection
methods on these nine real-world datasets in terms of ACC
given a proper number interval of features, especially on
the ECOLI dataset, where the ACC of our OCLSP method
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exceeds other methods dramatically. And Fig. 3 shows similar
results that our OCLSP method achieves the best NMI on
these nine real-world datasets provided a favorable number
interval of features. All of these evidences have demonstrated
the excellence of our proposed OCLSP method.

D. Parameter Sensitivity Analysis

For the proposed OCLSP method, we need to tune the
regularization parameters ⌘, � and �.

We first discuss the effect of the parameter � on the results.
In this experiment, the value of � is adjusted in the range of
{10�3

, 10�2
, 10�1

, 100, 101, 102, 103} and other parameters
are fixed as ⌘ = 0.1 and � = 0.1. Fig. 4 shows the clustering
results of the OCLSP method with different � values on
nine real-world datasets, where the vertical axis indicates the
clustering accuracy, and the horizontal axis represents the
value of parameter �. As can be seen from the experimental
results, different data need different � values to achieve the
best ACC.

Next we focus on the parameters ⌘ and �. With
� fixed at 1, ⌘ and � are searched in the range of
{10�3

, 10�2
, 10�1

, 100, 101, 102, 103}, and the ACC and NMI
values are obtained under the combination of each pair of
parameters ⌘ and �. The three-dimensional histograms of ACC
and NMI values on nine real-world datasets are shown in
Fig. 5 and Fig. 6 respectively. It can be seen from Fig. 5 and
Fig. 6 that when the parameters ⌘ and � are varying, the ACC
and NMI values keep nearly unchanged in most cases, which
shows the robustness of our OCLSP method to some extent.
However, in rare cases, e.g., on ECOLI dataset, the ACC and
NMI decrease dramatically when � is diminishing. Besides, in
most cases, the ACC and NMI show a trend from ascending
to descending with respect to both � and ⌘. Part of the reason
is that, a small value of parameter is nearly equivalent to
removing that term from optimization, which leads to a simpler
method that can not work well, but a large enough value of
parameter would make other terms in the objective function
negligible, which twists the purpose of feature selection, and
finally impairs the performance.

E. Convergence Analysis

We have already proven the convergence of Algorithm 1 for
optimizing the objective function of our OCLSP method in the
previous section, and now we experimentally study the speed
of its convergence. The convergence curves of the objective
value on nine real-world datasets are shown in Fig. 7, and
the parameters for testing the convergence of Algorithm 1 are
� = 0.01, ⌘ = 1 and � = 1. We could observe from the figure
that, our Algorithm 1 converges within five iterations on all
datasets, which indicates that Algorithm 1 converges very fast.
The fast convergence of Algorithm 1 ensures the speed of the
whole proposed method.

F. Running Time Analysis

We here analyze running time of our proposed OCLSP
method. Fig. 8(a) shows the running time of different unsuper-
vised feature selection algorithms on the COIL20 dataset. As
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Fig. 2. Clustering ACC of different feature selection algorithms with different
number of selected features on nine real-world datasets.
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Fig. 3. Clustering NMI of different feature selection algorithms with different
number of selected features on nine real-world datasets.

shown, all methods take less than 35 seconds to select features.
Besides, although our proposed OCLSP method is the most
time consuming, which is mainly attributed to the inversion in-
volved in updating W, the improvement it brings to the quality
of selected features is remarkable. Fig. 8(b) shows the running
time of our proposed OCLSP method on different datasets.
We can observe that training on the GLIOMA dataset, which
contains the largest number of features among all datasets,
costs the most time. This phenomenon meets our theoretical
complexity analysis that our method scales cubically with the



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

TABLE II
CLUSTERING RESULTS (ACC%±STD) OF DIFFERENT FEATURE SELECTION ALGORITHMS ON NINE REAL-WORLD DATASETS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

Data set ALLfea LapS UDFS NDFS FSASL SOCFS SOGFS URAFS OCLSP
MSRA25 51.02 ±5.25 42.59 ±1.64 53.73 ±4.38 54.46 ±4.95 56.91 ±5.24 55.18 ±4.58 53.56 ±3.53 56.45 ±1.62 57.51 ±4.42

PalmData25 68.41 ±2.29 62.88 ±2.07 67.79 ±2.58 69.29 ±1.61 68.08 ±2.22 68.60 ±2.43 67.90 ±1.43 69.29 ±1.78 70.33 ±2.18
ECOLI 57.44 ±8.26 59.75 ±8.15 59.93 ±8.15 61.43 ±9.82 65.46 ±6.40 61.93 ±6.96 63.66 ±7.72 64.88 ±10.60 77.40 ±2.86
UMIST 40.22 ±2.20 36.11 ±1.67 45.04 ±3.24 51.49 ±3.44 54.63 ±3.81 49.98 ±3.67 43.91 ±1.99 50.12 ±3.16 56.17 ±2.35
JAFFE 65.99 ±6.07 65.35 ±5.61 66.69 ±6.75 69.01 ±6.25 73.12 ±7.94 73.57 ±7.50 68.59 ±6.48 71.27 ±2.83 80.96 ±8.48

COIL20 59.17 ±3.98 53.25 ±4.04 48.01 ±2.95 62.61 ±4.45 61.56 ±4.82 62.70 ±4.35 55.22 ±3.02 62.84 ±4.09 67.59 ±4.27
warpPIE10p 26.24 ±2.03 28.88 ±1.96 42.24 ±3.56 30.24 ±2.660 43.64 ±3.68 42.45 ±3.92 40.48 ±6.05 41.62 ±5.11 45.90 ±4.67

Lung 72.46 ±10.20 74.36 ±7.21 70.49 ±12.58 76.11 ±6.62 83.00 ±7.29 82.27 ±5.07 75.12 ±10.57 79.75 ±7.70 85.22 ±3.27
GLIOMA 58.7 ±6.63 60.60 ±4.26 58.00 ±7.48 59.00 ±7.36 59.00 ±9.50 62.00 ±9.50 62.00 ±8.94 60.80 ±9.30 65.30 ±7.55

TABLE III
CLUSTERING RESULTS (NMI%±STD) OF DIFFERENT FEATURE SELECTION ALGORITHMS ON NINE REAL-WORLD DATASETS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

Data set ALLfea LapS UDFS NDFS FSASL SOCFS SOGFS URAFS OCLSP
MSRA25 60.24 ±4.06 47.41 ±1.93 61.15 ±1.92 62.99 ±2.56 66.17 ±1.84 64.33 ±3.07 60.56 ±3.14 64.36 ±0.94 68.87 ±2.04

PalmData25 90.24 ±0.71 86.99 ±0.75 89.14 ±0.91 89.89 ±0.52 89.48 ±0.65 89.77 ±0.82 89.53 ±0.45 89.74 ±0.73 90.20 ±0.56
ECOLI 55.48 ±2.92 60.16 ±3.17 59.86 ±3.00 60.26 ±3.47 60.57 ±2.81 60.02 ±2.95 60.35 ±2.36 61.68 ±3.55 64.82 ±1.20
UMIST 58.91 ±1.58 53.06 ±1.71 58.82 ±1.61 68.36 ±1.62 71.6 ±1.47 67.61 ±2.03 60.28 ±1.80 67.27 ±2.29 72.42 ±1.87
JAFFE 74.65 ±3.34 75.79 ±2.07 73.42 ±4.31 76.51 ±3.43 80.58 ±3.83 81.17 ±2.99 78.09 ±2.87 79.98 ±2.32 86.18 ±2.80

COIL20 75.58 ±1.64 67.80 ±1.62 58.68 ±1.02 74.39 ±1.62 74.72 ±2.42 75.27 ±2.33 70.79 ±1.00 74.67 ±1.23 79.81 ±1.93
warpPIE10p 25.36 ±3.18 27.72 ±2.01 43.24 ±4.08 30.58 ±3.44 47.77 ±2.67 44.74 ±4.31 42.92 ±4.99 43.97 ±2.72 51.32 ±4.49

Lung 60.37 ±5.38 59.63 ±5.40 61.04 ±6.09 63.02 ±5.16 68.47 ±4.10 69.33 ±4.78 64.52 ±3.05 64.20 ±5.99 71.63 ±5.31
GLIOMA 50.32 ±4.30 52.30 ±3.06 38.69 ±7.32 53.88 ±4.11 54.27 ±4.24 53.79 ±3.91 50.84 ±5.96 41.50 ±10.33 55.68 ±5.43
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Fig. 4. Clustering ACC of OCLSP with different � values on nine real-world
datasets.

number of features, while training on datasets of moderate size
spends nearly the same but not much time.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel unsupervised feature selection method
OCLSP, which performs feature selection and orthogonal
basis clustering simultaneously under a joint framework, is
proposed, and the objective function for our OCLSP method
could be optimized efficiently by the advised optimization
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Fig. 5. Clustering ACC of OCLSP on nine real-world datasets with different
� and ⌘ values.

procedure. Extensive experiments on nine real-world datasets
have verified the efficacy of the proposed OCLSP method.

Future work could be done in many aspects. First and
foremost, how to decrease the computational complexity is
a critical point. Although our OCLSP model could obtain the
best effectiveness in most cases, the total computational com-
plexity of our OCLSP method is O

��
mn

2 + nm
2 +m

3
�
· t
�

approximately, which is time consuming. Finally yet impor-
tantly, how to extend unsupervised feature selection method
to handle tensorial data is also crucial. Since in reality, many
data, e.g., colored images, are represented as tensors naturally.
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Fig. 6. Clustering NMI of OCLSP on nine real-world datasets with different
� and ⌘ values.
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Fig. 7. The convergence curves of our objective function on nine real-world
datasets.

Constructing learning models and designing fast algorithms for
solving such models for tensorial data is a significant research
topic.
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Recommended Decision by Associate Editor: Recommendation #1: Minor Revision

Comments to Author(s) by Associate Editor:
Associate Editor
Comments to the Author:
The paper was significantly improved and now it requires only some final editorial effort to improve readability and remove
remaining typos

+++++++++++++++++++++

Individual Reviews:

Reviewer(s)' Comments to Author(s):

Reviewer: 1

Comments to the Author
The authors have carefully addressed all of my concerns. The paper is in good shape now. I would like to accept this paper as it
is.

Reviewer: 2

Comments to the Author
The authors have well addressed the comments by discussing the suggested related work. Overall, I am basically satisfied with
the revisions. While suggesting discuss more related work published on TNNLS, such as

- Multiview Spectral Clustering via Structured Low-Rank Matrix Factorization. IEEE TNNLS, 2018.

I recommend the minor revision for another proof reading and address the above.
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