
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 1

Quantum-Inspired Support Vector Machine
Chen Ding, Tian-Yi Bao, and He-Liang Huang∗

Abstract—Support vector machine (SVM) is a particularly
powerful and flexible supervised learning model that analyzes
data for both classification and regression, whose usual algorithm
complexity scales polynomially with the dimension of data space
and the number of data points. To tackle the big data challenge,
a quantum SVM algorithm was proposed, which is claimed
to achieve exponential speedup for least squares SVM (LS-
SVM). Here, inspired by the quantum SVM algorithm, we
present a quantum-inspired classical algorithm for LS-SVM. In
our approach, an improved fast sampling technique, namely
indirect sampling, is proposed for sampling the kernel matrix and
classifying. We first consider the LS-SVM with a linear kernel,
and then discuss the generalization of our method to non-linear
kernels. Theoretical analysis shows our algorithm can make
classification with arbitrary success probability in logarithmic
runtime of both the dimension of data space and the number
of data points for low rank, low condition number and high
dimensional data matrix, matching the runtime of the quantum
SVM.

Index Terms—Quantum-inspired algorithm, machine learning,
support vector machine, exponential speedup, matrix sampling.

I. INTRODUCTION

S INCE the 1980s, quantum computing has attracted wide
attention due to its enormous advantages in solving hard

computational problems [1], such as integer factorization [2]–
[4], database searching [5], [6], machine learning [7]–[11] and
so on [12], [13]. In 1997, Daniel R. Simon offered compelling
evidence that the quantum model may have significantly
more complexity theoretic power than the probabilistic Turing
machine [14]. However, it remains an interesting question
where is the border between classical computing and quantum
computing. Although many proposed quantum algorithms have
exponential speedups over the existing classical algorithms, is
there any way we can accelerate such classical algorithms to
the same complexity of the quantum ones?

In 2018, inspired by the quantum recommendation sys-
tem algorithm proposed by Iordanis Kerenidis and Anupam
Prakash [15], Ewin Tang designed a classical algorithm to
produce a recommendation algorithm that can achieve an

This work was supported by the Open Research Fund from State Key
Laboratory of High Performance Computing of China (Grant No. 201901-01),
National Natural Science Foundation of China under Grants No. 11905294,
and China Postdoctoral Science Foundation. (Corresponding author: He-
Liang Huang. Email: quanhhl@ustc.edu.cn)

Chen Ding is with CAS Centre for Excellence and Synergetic Innovation
Centre in Quantum Information and Quantum Physics, University of Science
and Technology of China, Hefei, Anhui 230026, China.

Tian-Yi Bao is with Department of Computer Science, University of Oxford,
Wolfson Building, Parks Road, OXFORD, OX1 3QD, UK.

He-Liang Huang is with Hefei National Laboratory for Physical Sciences
at Microscale and Department of Modern Physics, University of Science and
Technology of China, Hefei, Anhui 230026, China, and also with CAS Centre
for Excellence and Synergetic Innovation Centre in Quantum Information and
Quantum Physics, University of Science and Technology of China, Hefei,
Anhui 230026, China.

exponential improvement on previous algorithms [16], which
is a breakthrough that shows how to apply the subsampling
strategy based on Alan Frieze, Ravi Kannan, and Santosh
Vempala’s 2004 algorithm [17] to find a low-rank approxi-
mation of a matrix. Subsequently, Tang continued to use same
techniques to dequantize two quantum machine learning algo-
rithms, quantum principal component analysis [18] and quan-
tum supervised clustering [19], and shows classical algorithms
could also match the bounds and runtime of the corresponding
quantum algorithms, with only polynomial slowdown [20].

Later, András Gilyén et al. [21] and Nai-Hui Chia et al.
[22] independently and simultaneously proposed a quantum-
inspired matrix inverse algorithm with logarithmic complexity
of matrix size, which eliminates the speedup advantage of
the famous Harrow-Hassidim-Lloyd (HHL) algorithm [23]
on certain conditions. Recently, Juan Miguel Arrazola et al.
studied the actual performance of quantum-inspired algorithms
and found that quantum-inspired algorithms can perform well
in practice under given conditions. However, the conditions
should be further reduced if we want to apply the algorithms
to practical datasets [24]. All of these works give a very
promising future for designing the quantum-inspired algorithm
in the machine learning area, where matrix inverse algorithms
are universally used.

Support vector machine (SVM) is a data classification algo-
rithm which is commonly used in machine learning area [25],
[26]. Extensive studies have been conducted on SVMs to boost
and optimize their performance, such as the sequential minimal
optimization algorithm [27], the cascade SVM algorithm [28],
and the SVM algorithms based on Markov sampling [29],
[30]. These algorithms offer promising speedup either by
changing the way of training a classifier, or by reducing
the size of training sets. However, the time complexity of
current SVM algorithms are all polynomial of data sizes. In
2014, Patrick Rebentrost, Masoud Mohseni and Seth Lloyd
proposed the quantum SVM algorithm [31], which can achieve
an exponential speedup compared to the classical SVMs. The
time complexity of quantum SVM algorithm is polynomial of
the logarithm of data sizes. Inspired by the quantum SVM al-
gorithm, Tang’s methods [16] and András Gilyén et al.’s work
[21], we propose a quantum-inspired classical SVM algorithm,
which also shows exponential speedup compared to previous
classical SVM for low rank, low condition number and high
dimensional data matrix. Both quantum SVM algorithm [31]
and our quantum-inspired SVM algorithm are least squares
SVM (LS-SVM), which reduce the optimization problem to
finding the solution of a set of linear equations.

Our algorithm is a dequantization of the quantum SVM
algorithm [31]. In quantum SVM algorithm, the labeled data
vectors (𝑥 𝑗 for 𝑗 = 1, ..., 𝑚) are mapped to quantum vec-
tors |𝑥 𝑗〉 = 1/|𝑥 𝑗 |

∑(𝑥 𝑗)𝑘 |𝑘〉 via a quantum random access

ar
X

iv
:1

90
6.

08
90

2v
5

 [
cs

.L
G

]
 1

6
M

ar
 2

02
1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 2

memory (qRAM) and the kernel matrix is prepared using
quantum inner product evaluation [19]. Then the solution of
SVM is found by solving a linear equation system related
to the quadratic programming problem of SVM using the
quantum matrix inversion algorithm [23]. In our quantum-
inspired SVM, the labeled vectors are stored in an arborescent
data structure which provides the ability to random sampling
within logarithmic time of the vector lengths. By performing
sampling on these labeled vectors both by their numbers
and lengths to get a much smaller dataset, we then find
the approximate singular value decomposition of the kernel
matrix. And finally, we solve the optimization problem and
perform classification based on the solved parameters.

Our methods, particularly the sampling technique, is based
on [16], [21]. However, the previous sampling techniques
cannot be simply copied to solve the SVM tasks, since we
don’t have an efficient direct sampling access to the kernel
matrix we want to perform matrix inversion on (see Section II-
B for a more detailed explanation). Hence we have developed
an indirect sampling technique to solve such problem. In the
whole process, we need to avoid the direct multiplication on
the vectors or matrices with the same size as the kernel, in
case losing the exponential speedup. We first consider the
LS-SVM with linear kernels, no regularization terms and no
bias of the classification hyperplane, which could be regarded
as the prototype for quantum-inspired techniques applied in
various SVMs. Then we show that the regularization terms
can be easily included in the algorithm in Section III. Finally,
we discuss the generalization of our method to non-linear
kernels in Section VII-C and the general case without the
constraint on biases of classification hyperplanes in Section
VII-D. Theoretical analysis shows that our quantum-inspired
SVM can achieve exponential speedup over existing classical
algorithms under several conditions. Experiments are carried
out to demonstrate the feasibility of our algorithm. The indirect
sampling developed in our work opens up the possibility of
a wider application of the sampling methods into the field of
machine learning.

II. PRELIMINARY

A. Notations

We list some matrix-related notations used in this paper.

B. Least squares SVM

Suppose we have 𝑚 data points {(𝑥 𝑗 , 𝑦 𝑗) : 𝑥 𝑗 ∈ R𝑛, 𝑦 𝑗 =

±1} 𝑗=1,...,𝑚, where 𝑦 𝑗 = ±1 depending on the class which 𝑥 𝑗
belongs to. Denote (𝑥1, ..., 𝑥𝑚) by 𝑋 and (𝑦1, . . . , 𝑦𝑚)𝑇 by
𝑦. A SVM finds a pair of parallel hyperplanes 𝑥 · 𝑤 + 𝑏 = ±1
that divides the points into two classes depending on the given
data. Then for any new input points, it can make classification
by its relative position with the hyperplanes.

We make the following assumption on the dataset so as to
simplify the problem: Assume these data points are equally
distributed on both sides of a hyperplane that passes through
the origin and their labels are divided by such hyperplane.
Thus we assume 𝑏 = 0. An generalized method for 𝑏 ≠ 0 is
discussed in Section VII-D.

TABLE I
THE NOTATIONS

Symbol Meaning

𝐴 matrix 𝐴

𝑦 vector 𝑦 or matrix 𝑦 with only one column
𝐴+ pseudo inverse of 𝐴

𝐴𝑇 transpose of 𝐴

𝐴+𝑇 transpose of pseudo inverse of 𝐴

𝐴𝑖,∗ 𝑖-th row of 𝐴

𝐴∗, 𝑗 𝑗-th column of 𝐴

‖𝐴‖ 2-operator norm of 𝐴

‖𝐴‖𝐹 Frobenius norm of 𝐴

𝑄 (·) time complexity for querying an element of ·
𝐿 (·) time complexity for sampling an element of ·

According to [26], the optimization problem of LS-SVM
with linear kernel is

min
𝑤,𝑏,𝑒

L1 (𝑤, 𝑏, 𝑒) =
1
2
𝑤𝑇 𝑤 + 𝛾

2

𝑚∑︁
𝑘=1

𝑒2
𝑘 ,

subject to 𝑦𝑘 (𝑤𝑇 𝑥𝑘 + 𝑏) = 1 − 𝑒𝑘 , 𝑘 = 1, . . . , 𝑚.

Take 𝑏 = 0, we get

min
𝑤,𝑒

L2 (𝑤, 𝑒) =
1
2
𝑤𝑇 𝑤 + 𝛾

2

𝑚∑︁
𝑘=1

𝑒2
𝑘 ,

subject to 𝑦𝑘𝑤
𝑇 𝑥𝑘 = 1 − 𝑒𝑘 , 𝑘 = 1, . . . , 𝑚.

One defines the Lagrangian

ℒ(𝑤, 𝑒, 𝜇) = L2 (𝑤, 𝑒) −
𝑚∑︁
𝑘=1

𝜇𝑘 (𝑦𝑘𝑤𝑇 𝑥𝑘 − 1 + 𝑒𝑘).

The condition for optimality

𝜕ℒ

𝜕𝑤
= 0 →𝑤 =

𝑚∑︁
𝑘=1

𝜇𝑘 𝑦𝑘𝑥𝑘 ,

𝜕ℒ

𝜕𝑒𝑘
= 0 →𝜇𝑘 = 𝛾𝑒𝑘 , 𝑘 = 1, . . . , 𝑚,

𝜕ℒ

𝜕𝜇𝑘
= 0 →𝑦𝑘𝑤

𝑇 𝑥𝑘 − 1 + 𝑒𝑘 = 0, 𝑘 = 1, . . . , 𝑚

can be written as the solution to the following set of linear
equations 𝑍𝑇 𝑍𝜇 + 𝛾−1𝜇 = 1, where 𝑍 = (𝑥1𝑦1, . . . , 𝑥𝑚𝑦𝑚).
Let 𝛼𝑘 = 𝜇𝑘 𝑦𝑘 , we have

(𝑋𝑇 𝑋 + 𝛾−1𝐼)𝛼 = 𝑦. (1)

Once 𝛼 is solved, the classification hyperplane will be 𝑥𝑇 𝑋𝛼 =

0. Given query point 𝑥, we evaluate sgn(𝑥𝑇 𝑋𝛼) to make
classification.

We use our sampling techniques in solving Equation (1) and
evaluating sgn(𝑥𝑇 𝑋𝛼) to avoid time complexity overhead of
poly(𝑚) or poly(𝑛), which will kill the wanted exponential
speedup. Note that the quantum-inspired algorithm for linear
equations [21], [22] may inverse a low-rank matrix in loga-
rithmic runtime. However, such algorithm cannot be invoked
directly to solve Equation (1) here, since the complexity of
direct computing the matrix 𝑋𝑇 𝑋 +𝛾−1𝐼 is polynomial, which
would once again kill the exponential speedup. Thus we

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 3

need to develop the indirect sampling technique to efficiently
perform matrix inversion on 𝑋𝑇 𝑋 + 𝛾−1𝐼 with only sampling
access of 𝑋 .

C. The sampling technique

We show the definition and idea of our sampling method
to get indices, elements or submatrices, which is the key
technique used in our algorithm, as well as in [16], [17], [21].

Definition 1 (Sampling on vectors). Suppose 𝑣 ∈ C𝑛, define
𝑞 (𝑣) as a probability distribution that:

𝑥 ∼ 𝑞 (𝑣) : P[𝑥 = 𝑖] = |𝑣𝑖 |2
‖𝑣‖2 .

Picking an index according to the probability distribution 𝑞 (𝑣)

is called a sampling on 𝑣.

Definition 2 (Sampling the indices from matrices). Suppose
𝐴 ∈ C𝑛×𝑚, define 𝑞 (𝐴) as a 2-dimensional probability distri-
bution that:

(𝑥, 𝑦) ∼ 𝑞 (𝑣) : P[𝑥 = 𝑖, 𝑦 = 𝑗] =
|𝐴𝑖 𝑗 |2

‖𝐴‖2
𝐹

.

Picking a pair of indices (𝑖, 𝑗) according to the probability
distribution 𝑞 (𝐴) is called a sampling on 𝐴.

Definition 3 (Sampling the submatrices from matrices). Sup-
pose the target is to sample a submatrix 𝑋 ′′ ∈ C𝑐×𝑟 from 𝑋 ∈
C𝑛×𝑚. First we sample 𝑟 times on the vector (‖𝑋∗, 𝑗 ‖) 𝑗=1,...,𝑚
and get column indices 𝑗1, ..., 𝑗𝑟 . The columns 𝑋∗, 𝑗1 , ..., 𝑋∗, 𝑗𝑟
form submatrix 𝑋 ′. Then we sample 𝑐 times on the 𝑗-th column
of 𝑋 and get row indices 𝑖1, ..., 𝑖𝑐 . In each time the 𝑗 is sampled
uniformly at random from 𝑗1, ..., 𝑗𝑟 . The rows 𝑋 ′

𝑖1 ,∗, ..., 𝑋
′
𝑖𝑐

form submatrix 𝑋 ′′. The matrices 𝑋 ′ and 𝑋 ′′ are normalized
so that E[𝑋 ′𝑋 ′𝑇] = 𝑋𝑋𝑇 and E[𝑋 ′′𝑇 𝑋 ′′] = 𝑋 ′𝑇 𝑋 ′.

The process of sampling the submatrices from matrices (as
described in Def. 3) is shown in Fig. 1. To put it simple, it is
taking several rows and columns out of the matrix by a random
choice decided by the “importance” of the elements. Then
normalize them so that they are unbiased from the original
rows and columns.

To achieve fast sampling, we usually store vectors in an
arborescent data structure (such as binary search tree) as
suggested in [16] and store matrices by a list of their row trees
or column trees. Actually, the sampling is an analog of quan-
tum states measurements. It only reveals a low-dimensional
projection of vectors and matrices in each calculation. Rather
than computing with the whole vector or matrix, we choose
the most representative elements of them for calculation with
a high probability (we choose the elements according to
the probability of their squares, which is also similar to
the quantum measurement of quantum states.). The sampling
technique we use has the advantage of unbiasedly representing
the original vector while consuming less computing resources.

We note that there are other kinds of sampling methods
for SVM such as the Markov sampling [29], [30]. Different
sampling methods may work well on different scenarios. Our

algorithm is designed for low-rank datasets, while the algo-
rithms based on Markov sampling [29], [30] may work well on
the datasets that the columns form a uniformly ergodic Markov
chain. In our algorithm, to achieve exponential speedup, the
sampling technique is different from Markov sampling: (i) We
sample both the rows and columns of matrix, rather than only
sampling columns. (ii) We sample each elements according to
norm-squared probability distribution. (iii) In each dot product
calculation (Alg. 1), we use sampling technique to avoid
operations with high complexity.

D. The preliminary algorithms

We invoke two algorithms employing sampling techniques
for saving complexity from [21]. They are treated as oracles
that outputs certain outcomes with controlled errors in the
main algorithm. Lemma 1 and Lemma 2 shows their correct-
ness and efficiency. For the sake of convenience, some minor
changes on the algorithms and lemmas are made.

1) Trace inner product estimation: Alg. 1 achieves calcula-
tion of trace inner products with logarithmic time on the sizes
of the matrices.

Algorithm 1 Trace Inner Product Estimation.
Input: 𝐴 ∈ C𝑚×𝑛 that we have sampling access in complexity

𝐿 (𝐴) and 𝐵 ∈ C𝑛×𝑚 that we have query access in
complexity 𝑄(𝐵). Relative error bound 𝜉 and success
probability bound 1 − 𝜂.

Goal: Estimate Tr[𝐴𝐵].
1: Repeat step 2 d6 log2 (2

𝜂
)e times and take the median of

𝑌 , noted as 𝑍 .
2: Repeat step 3 d 9

𝜉 2 e times and calculate the mean of 𝑋 ,
noted as 𝑌 .

3: Sample 𝑖 from row norms of 𝐴. Sample 𝑗 from 𝐴𝑖 . Let
𝑋 =

‖𝐴‖2
𝐹

𝐴𝑖 𝑗
𝐵 𝑗𝑖 .

Output: 𝑍 .

Lemma 1 [21]. Suppose that we have length-square sampling
access to 𝐴 ∈ C𝑚×𝑛 and query access to the matrix 𝐵 ∈ C𝑛×𝑚
in complexity 𝑄(𝐵). Then we can estimate Tr[𝐴𝐵] to precision
𝜉‖𝐴‖𝐹 ‖𝐵‖𝐹 with probability at least 1 − 𝜂 in time

𝑂

(
log(1/𝜂)
𝜉2 (𝐿 (𝐴) +𝑄(𝐵))

)
.

Algorithm 2 Rejection sampling.
Input: 𝐴 ∈ C𝑚×𝑛 that we have length-square sampling access

and 𝑏 ∈ C𝑛 that we have norm access and 𝑦 = 𝐴𝑏 that
we have query access.

Goal: Sample from length-square distribution of 𝑦 = 𝐴𝑏.
1: Take 𝐷 ≥ ‖𝑏‖2.
2: Sample a row index 𝑖 by row norm squares of 𝐴.
3: Query |𝑦𝑖 |2 = |𝐴𝑖,∗𝑏 |2 and calculate |𝐴𝑖,∗𝑏 |2

𝐷 ‖𝐴𝑖,∗ ‖2 .
4: Sample a real number 𝑥 uniformly distributed in [0, 1]. If
𝑥 <

|𝐴𝑖,∗𝑏 |2
𝐷 ‖𝐴𝑖,∗ ‖2 , output 𝑖, else, go to step 2.

Output: The row index 𝑖.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 4

X=

-0.25 +0.21 -0.21 +0.30 +0.26 +0.24 +0.06 -0.15
+0.08 -0.06 +0.07 -0.09 -0.09 -0.07 -0.03 +0.04
+0.00 -0.00 -0.01 +0.01 -0.00 +0.00 -0.00 +0.00
-0.05 +0.04 -0.05 +0.05 +0.04 +0.04 +0.01 -0.04
+0.15 -0.13 +0.12 -0.18 -0.17 -0.16 -0.04 +0.08
-0.22 +0.18 -0.19 +0.27 +0.23 +0.22 +0.06 -0.14
-0.08 +0.05 -0.07 +0.08 +0.08 +0.07 +0.02 -0.04
+0.10 -0.09 +0.08 -0.12 -0.10 -0.09 -0.02 +0.05

i1
i2 i4i3

j3

j2

j1

sample columns

+0.21 -0.25 -0.21 -0.21
-0.06 +0.08 +0.07 +0.07
-0.00 +0.00 -0.01 -0.01
+0.04 -0.05 -0.05 -0.05
-0.13 +0.15 +0.12 +0.12
+0.18 -0.22 -0.19 -0.19
+0.05 -0.08 -0.07 -0.07
-0.09 +0.10 +0.08 +0.08

i1 i2 i3 i4

renormalization

+0.31 -0.31 -0.31 -0.31
-0.10 +0.10 +0.11 +0.11
-0.00 +0.01 -0.01 -0.01
+0.06 -0.06 -0.07 -0.07
-0.19 +0.19 +0.18 +0.18
+0.28 -0.28 -0.29 -0.29
+0.08 -0.10 -0.10 -0.10
-0.14 +0.13 +0.12 +0.12

X�=

=

+0.31 -0.31 -0.31 -0.31
-0.10 +0.10 +0.11 +0.11
-0.00 +0.01 -0.01 -0.01
+0.06 -0.06 -0.07 -0.07
-0.19 +0.19 +0.18 +0.18
+0.28 -0.28 -0.29 -0.29
+0.08 -0.10 -0.10 -0.10
-0.14 +0.13 +0.12 +0.12

sample rows+0.28 -0.28 -0.29 -0.29
+0.31 -0.31 -0.31 -0.31
-0.10 +0.10 +0.11 +0.11

j1

j3

j2
renormalization

+0.29 -0.28 -0.29 -0.29
+0.29 -0.29 -0.29 -0.29
-0.27 +0.28 +0.30 +0.30

X��=

Fig. 1. A demonstration of sampling submatrices from matrices (The process described in Def. 3, which is also Step 2 and Step 3 in Alg. 3.). We sample
columns from 𝑋 to get 𝑋 ′ and sample rows from 𝑋 ′ to get 𝑋 ′′. Note that 𝑋 ′ and 𝑋 ′′ are normalized such that E[𝑋 ′𝑋 ′𝑇] = 𝑋𝑋𝑇 and E[𝑋 ′′𝑇 𝑋 ′′] = 𝑋 ′𝑇 𝑋 ′.

2) Rejection sampling: Alg. 2 achieves sampling of a vector
that we do not have full query access in time logarithmic of
its length.

Lemma 2 [21]. Suppose that we have length-square sampling
access to 𝐴 ∈ C𝑚×𝑛 having normalized rows, and we are
given 𝑏 ∈ C𝑛. Then we can implement queries to the vector
𝑦 := 𝐴𝑏 ∈ C𝑛 with complexity 𝑄(𝑦) = 𝑂 (𝑛𝑄(𝐴)) and we can
length-square sample from 𝑞 (𝑦) with complexity 𝐿 (𝑦) such that
E[𝐿 (𝑦)] = 𝑂

(
𝑛‖𝑏 ‖2

‖𝑦 ‖2 (𝐿 (𝐴) + 𝑛𝑄(𝐴))
)
.

III. QUANTUM-INSPIRED SVM ALGORITHM

We show the main algorithm (Alg. 3) that makes classifica-
tion as the classical SVMs do. Note that actual calculation
only happens when we use the expression "calculate" in
this algorithm. Otherwise it will lose the exponential-speedup
advantage for operations on large vectors or matrices. 𝛾 is
temporarily taken as ∞. Fig. 2 shows the algorithm process.

Algorithm 3 Quantum-inspired SVM Algorithm.
Input: 𝑚 training data points and their labels {(𝑥 𝑗 , 𝑦 𝑗) : 𝑥 𝑗 ∈
R𝑛, 𝑦 𝑗 = ±1} 𝑗=1,...,𝑚, where 𝑦 𝑗 = ±1 depending on the
class to which 𝑥 𝑗 belongs. Error bound 𝜖 and success
probability bound 1 − 𝜂. 𝛾 set as ∞.

Goal 1: Find 𝛼̃ that ‖𝛼̃−𝛼‖ ≤ 𝜖 ‖𝛼‖ with success probability
at least 1 − 𝜂, in which 𝛼 = (𝑋𝑇 𝑋)+𝑦.

Goal 2: For any given 𝑥 ∈ R𝑛, find its class.
1: Init: Set 𝑟, 𝑐 as described in (6) and (7).
2: Sample columns: Sample 𝑟 column indices 𝑖1, 𝑖2, ..., 𝑖𝑟

according to the column norm squares ‖𝑋∗,𝑖 ‖2

‖𝑋 ‖2
𝐹

. Define 𝑋 ′

to be the matrix whose 𝑠-th column is ‖𝑋 ‖𝐹√
𝑟

𝑋∗,𝑖𝑠
‖𝑋∗,𝑖𝑠 ‖

. Define
𝐴′ = 𝑋 ′𝑇 𝑋 ′.

Algorithm 3 Quantum-inspired SVM Algorithm.
3: Sample rows: Sample 𝑠 ∈ [𝑟] uniformly, then sample a

row index 𝑗 distributed as
|𝑋 ′

𝑗𝑠
|2

‖𝑋 ′
∗,𝑠 ‖2 . Sample a total number

of 𝑐 row indices 𝑗1, 𝑗2, ..., 𝑗𝑐 this way. Define 𝑋 ′′ whose
𝑡-th row is ‖𝑋 ‖𝐹√

𝑐

𝑋 ′
𝑗𝑡 ,∗

‖𝑋 ′
𝑗𝑡 ,∗ ‖

. Define 𝐴′′ = 𝑋 ′′𝑇 𝑋 ′′.
4: Spectral decomposition: Calculate the spectral decompo-

sition of 𝐴′′. Denote here by 𝐴′′ = 𝑉 ′′Σ2𝑉 ′′𝑇 . Denote the
calculated eigenvalues by 𝜎2

𝑙
, 𝑙 = 1, . . . , 𝑘 .

5: Approximate eigenvectors: Let 𝑅 = 𝑋 ′𝑇 𝑋 . Define 𝑉̃𝑙 =
𝑅𝑇𝑉 ′′

𝑙

𝜎2
𝑙

for 𝑙 = 1, ..., 𝑘 , 𝑉̃ = (𝑉̃𝑙)𝑙=1,...,𝑘 .

6: Estimate matrix elements: Calculate 𝜆𝑙 = 𝑉̃𝑇
𝑙
𝑦 to pre-

cision
3𝜖 𝜎2

𝑙

16
√
𝑘
‖𝑦‖ by Alg. 1, each with success probability

1 − 𝜂

4𝑘 . Let 𝑢 =
∑𝑘

𝑙=1
𝜆𝑙

𝜎4
𝑙

𝑉 ′′
𝑙

.

7: Find query access: Find query access of 𝛼̃ = 𝑅̃𝑇 𝑢

by 𝛼̃𝑝 = 𝑢𝑇 𝑅̃∗, 𝑝 , in which 𝑅̃𝑖 𝑗 is calculated to pre-
cision 𝜖 𝜅2

4‖𝑋 ‖𝐹 by Alg. 1, each with success probability
1 − 𝜂

4 d864/𝜖 2 log(8/𝜂) e .
8: Find sign: Calculate 𝑥𝑇 𝑋𝛼̃ to precision 𝜖

4 ‖𝛼‖‖𝑥‖ with
success probability 1 − 𝜂

4 by Alg. 1. Tell its sign.
Output: The answer class depends on the sign. Positive

corresponds to 1 while negative to −1.

The following theorem states the accuracy and time com-
plexity of quantum-inspired support vector machine algorithm,
from which we conclude the time complexity 𝑇 depends
polylogarithmically on 𝑚, 𝑛 and polynomially on 𝑘, 𝜅, 𝜖 , 𝜂. It
is to be proved in section IV and section V.

Theorem 1. Given parameters 𝜖 > 0, 0 < 𝜂 < 1, and given the
data matrix 𝑋 with size 𝑚 × 𝑛, rank 𝑘 , norm 1, and condition
number 𝜅, the quantum-inspired SVM algorithm will find the
classification expression 𝑥𝑇 𝑋𝛼 for any vector 𝑥 ∈ C𝑛 with
error less than 𝜖𝜅2√𝑚‖𝑥‖, success probability higher than

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 5

X X ′ X ′′

A = XTX A′ = X ′TX ′ A′′ = X ′′TX ′′

R = X ′TX σ2
l , V

′′
l

Ṽl =
1
σ2
l

RTV ′′lu =
∑k
l=1

λl

σ4
l

V ′′lα̃ = RTu ≈ A−1y

sgn(xTXα̃)

n×m n× r c× r

m×m r × r r × r

Sample Columns Sample Rows

Step 2 Step 3

r ×m
Step 4

Step 5

Step 6

Step 8

reduce columns reduce rows

E[A′′] = A′E[X ′X ′T] = XXT

Step 7

Fig. 2. The quantum-inspired SVM algorithm. In the algorithm, the subsampling of 𝐴 is implemented by subsampling the matrix 𝑋 (Step 1-3), which is
called the indirect sampling technique. After the indirect sampling, we perform the spectral decomposition (Step 4). Then we estimate the approximation of
the eigenvectors (𝑉̃𝑙) of 𝐴 (Step 5). Finally, we estimate the classification expression (Step 6-8).

1 − 𝜂 and time complexity 𝑇 (𝑚, 𝑛, 𝑘, 𝜅, 𝜖 , 𝜂).

𝑇 = 𝑂 (𝑟 log2 𝑚 + 𝑐𝑟 log2 𝑛 + 𝑟3

+
‖𝑋 ‖2

𝐹
𝑘2

𝜖2 log2 (
8𝑘
𝜂
) (log2 (𝑚𝑛) + 𝑘)

+ 1
𝜖2 log2

1
𝜂
(log2 (𝑚𝑛) + 𝑟𝑘 log2 (

2
𝜂1

)
‖𝑋 ‖4

𝐹

𝜖2
1𝑟

log2 (𝑚𝑛))),

in which

𝜖1 =
𝜖 ‖𝑥‖

2
√
𝑟 d 36

𝜖 2 e d6 log2 (16
𝜂
)e
,

𝜂1 =
𝜂

8𝑟 d 36
𝜖 2 e d6 log2 (16

𝜂
)e
.

In Alg. 3, 𝛾 is set as ∞, which makes the coefficient matrix
𝐴 = 𝑋𝑇 𝑋 . Notice that the eigenvectors of 𝑋𝑇 𝑋 + 𝛾−1𝐼 and
𝑋𝑇 𝑋 are the same, and the difference of their eigenvalues are
𝛾−1. Thus the algorithm can be easily extended to be applied
to the coefficient matrix 𝑋𝑇 𝑋 + 𝛾−1𝐼 with arbitrary 𝛾, by just
simply adding 𝛾−1 to the calculated eigenvalues in Step 4.

IV. ACCURACY

We prove that the error of computing the classification
expression 𝑥𝑇 𝑋𝛼̃ in the quantum-inspired SVM algorithm will
not exceed 𝜖𝜅2√𝑚‖𝑥‖. We take 𝛾 = ∞ in the analysis because
adding 𝛾−1 to the eigenvalues won’t cause error and thus the
analysis is the same in the case of 𝛾 ≠ ∞. We first show how
to break the total error into multiple parts, and then analyze
each part in the subsections.

Let 𝛼 = (𝑋𝑇 𝑋)+𝑦, 𝛼′ =
∑𝑘

𝑙=1
𝜆𝑙

𝜎2
𝑙

𝑉̃𝑙 = 𝑉̃Σ
−2𝑉̃𝑇 𝑦, in which

𝜆𝑙 = 𝑉̃𝑇
𝑙
𝑦 and 𝛼′′ =

∑𝑘
𝑙=1

𝜆̃𝑙

𝜎2
𝑙

𝑉̃𝑙 . Then the total error of the

classification expression is 1

𝐸 = Δ(𝑥𝑇 𝑋𝛼)
≤ |𝑥𝑇 𝑋 (𝛼 − 𝛼̃) | + Δ(𝑥𝑇 𝑋𝛼̃)
≤ ‖𝑥‖(‖𝛼 − 𝛼′‖ + ‖𝛼′ − 𝛼′′‖ + ‖𝛼′′ − 𝛼̃‖) + Δ(𝑥𝑇 𝑋𝛼̃)

Denote 𝐸1 = ‖𝑥‖‖𝛼′−𝛼‖, 𝐸2 = ‖𝑥‖‖𝛼′′−𝛼′‖, 𝐸3 = ‖𝑥‖‖𝛼̃−
𝛼′′‖, 𝐸4 = Δ(𝑥𝑇 𝑋𝛼̃). Our target is to show each of them is
no more than 𝜖

4 ‖𝛼‖‖𝑥‖ with probability no less than 1 − 𝜂

4 .
So that

𝐸 ≤ 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4

≤ 𝜖𝜅2√𝑚‖𝑥‖,

with success probability no less than 1 − 𝜂.
𝐸1 represents the error introduced by subsampling and

eigenvector approximation (i.e., Step 1-5 in Alg. 3). The fact
that it is less than 𝜖

4 ‖𝛼‖‖𝑥‖ with probability no less than 1− 𝜂

4
is shown in subsection IV-B.
𝐸2 represents the error introduced by approximation on 𝜆𝑙

(i.e., Step 6 in Alg. 3). The fact that it is less than 𝜖
4 ‖𝛼‖‖𝑥‖

with probability no less than 1 − 𝜂

4 is shown in subsection
IV-A.
𝐸3 represents the error introduced in query of 𝑅 and 𝛼. The

fact that it is less than 𝜖
4 ‖𝛼‖‖𝑥‖ with probability no less than

1 − 𝜂

4 is guaranteed by Step 7 of Alg. 3.

1For any expression 𝑓 , Δ(𝑓) represents the difference of the exact value
of 𝑓 and the value calculated by the estimation algorithms Alg. 1 and Alg. 3
(These two algorithms cannot get the exact values because randomness is
introduced.).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 6

A

A′

A′′

Ṽ

Ṽl

V ′′
l

Thm 2

Thm 2

Thm 6

Thm 4

Thm 3
Ṽl =

1
σ2
l

RTV ′′
l

Eigenvectors

Ṽ = (Ṽl)l=1,...,k

Fig. 3. The whole procedure of proving ‖𝑉̃ Σ−2𝑉̃𝑇 𝐴 − 𝐼𝑚 ‖ ≤ 𝜖
2 . Thm 2

shows the difference among 𝐴 and the subsampling outcomes 𝐴′ and 𝐴′′.
Thm 3 shows the relation between 𝐴′ and 𝑉 ′′

𝑙
. Thm 4 shows the relation

between 𝐴 and 𝑉̃𝑙 . Thm 6 shows the final relation between 𝐴 and 𝑉̃ .

𝐸4 represents the error caused by Alg. 1 in estimating 𝑥𝑇 𝑋𝛼̃
as the footnote1 suggests. The fact that it is less than 𝜖

4 ‖𝛼‖‖𝑥‖
with probability no less than 1− 𝜂

4 is guaranteed by Step 8 of
Alg. 3.

For achieving accurate classification, we only need a relative
error 𝐸

𝑥𝑇 𝑋𝛼
less than 1. Thus by lessening 𝜖 , we can achieve

this goal in any given probability range.

A. Proof of 𝐸2 ≤ 𝜖
4 ‖𝛼‖‖𝑥‖

Notice that

𝐸3 = ‖𝑥‖‖𝛼 − 𝛼′‖
= ‖𝑥‖‖𝛼 − 𝑉̃Σ−2𝑉̃𝑇 𝐴𝛼‖
≤ ‖𝛼‖‖𝑥‖‖𝑉̃Σ−2𝑉̃𝑇 𝐴 − 𝐼𝑚‖.

Here we put 5 theorems (from 2 to 6) to prove ‖𝑉̃Σ−2𝑉̃𝑇 𝐴−
𝐼𝑚‖ ≤ 𝜖

4 , in which theorem 2 and 5 are invoked from [21]. We
offer proofs for Theorem 3,4 and 6 in appendix A. The purpose
of these theorems is to show that 𝑉̃Σ−2𝑉̃𝑇 is functionally close
to the inverse of matrix A, as ‖𝑉̃Σ−2𝑉̃𝑇 𝐴− 𝐼𝑚‖ ≤ 𝜖

4 suggests.
Theorem 2 states the norm distance between 𝐴, 𝐴′ and 𝐴′′.

According to the norm distance, and the fact that 𝑉 ′′
𝑙

are the
eigenvectors of 𝐴′′, Theorem 3 finds the relation between 𝐴′

and 𝑉 ′′
𝑙

. We define 𝑉̃𝑙 = 1
𝜎2
𝑙

𝑅𝑇𝑉 ′′
𝑙

, and Theorem 6 finally

gives the relation between 𝐴 and 𝑉̃ . The procedure is shown
in Fig. 3.
Theorem 2 [21]. Let 𝑋 ′ ∈ C𝑛×𝑟 , 𝑋 ′′ ∈ C𝑐×𝑟 is the sampling
outcome of 𝑋 ′. Suppose 𝑋 ′′ is normalized that E[𝑋 ′′𝑇 𝑋 ′′] =
𝑋 ′𝑇 𝑋 ′, then ∀𝜖 ∈ [0, ‖𝑋 ′ ‖

‖𝑋 ′ ‖𝐹], we have

P
[
‖𝑋 ′𝑇 𝑋 ′ − 𝑋 ′′𝑇 𝑋 ′′‖ ≥ 𝜖 ‖𝑋 ′‖‖𝑋 ′‖𝐹

]
≤ 2𝑟𝑒−

𝜖 2𝑐
4 .

Hence, for 𝑐 ≥
4 log2 (2𝑟

𝜂
)

𝜖 2 , with probability at least 1 − 𝜂 we
have

‖𝑋 ′𝑇 𝑋 ′ − 𝑋 ′′𝑇 𝑋 ′′‖ ≤ 𝜖 ‖𝑋 ′‖‖𝑋 ′‖𝐹 .

When a submatrix 𝑋 ′′ is randomly subsampled from 𝑋 ′, it
is a matrix of multiple random variables. Theorem 2 is the
Chebyshev’s Inequality for 𝑋 ′′. It points out that the operator
norm distance between 𝑋 ′𝑇 𝑋 ′ and 𝑋 ′′𝑇 𝑋 ′′ is short with a high
probability.

Theorem 3. Suppose the columns of matrix 𝑉 ′′, denoted as
𝑉 ′′
𝑙
, 𝑙 = 1, . . . , 𝑘 , are orthogonal normalized vectors while

𝐴′′ =
𝑘∑︁
𝑙=1

𝜎2
𝑙 𝑉

′′
𝑙 𝑉

′′𝑇
𝑙 .

Suppose ‖𝐴′ − 𝐴′′‖ ≤ 𝛽. Then ∀𝑖, 𝑗 ∈ {1, ..., 𝑟},

|𝑉 ′′𝑇
𝑖 𝐴′𝑉 ′′

𝑗 − 𝛿𝑖 𝑗𝜎2
𝑖 | ≤ 𝛽.

Theorem 3 points out that if matrix 𝐴′ and 𝐴′′ are close
in operator norm sense, 𝐴′′’s eigenvectors will approximately
work as eigenvectors for 𝐴′ too.

Theorem 4. Suppose the columns of matrix 𝑉 ′′, denoted as
𝑉 ′′
𝑙
, 𝑙 = 1, . . . , 𝑘 , are orthogonal normalized vectors while

|𝑉 ′′𝑇
𝑖 𝐴′𝑉 ′′

𝑗 − 𝛿𝑖 𝑗𝜎2
𝑖 | ≤ 𝛽, ∀𝑖, 𝑗 ∈ {1, ..., 𝑟}.

Suppose ‖𝑋𝑋𝑇 − 𝑋 ′𝑋 ′𝑇 ‖ ≤ 𝜖 ′, ‖𝑋 ‖ ≤ 1, 1
𝜅
≤ 𝜎2

𝑖
≤ 1 and the

condition of Thm 3 suffices. Let 𝑉̃𝑙 =
𝑅𝑇𝑉 ′′

𝑙

𝜎2
𝑙

, then

|𝑉̃𝑇
𝑖 𝑉̃ 𝑗 − 𝛿𝑖 𝑗 | ≤ 𝜅2𝛽2 + 2𝜅𝛽 + 𝜅2𝜖 ′‖𝑋 ‖2

𝐹 ,

and

|𝑉̃𝑇
𝑖 𝐴𝑉̃ 𝑗 − 𝛿𝑖 𝑗𝜎2

𝑖 | ≤ (2𝜖 ′ + 𝛽‖𝑋 ‖2
𝐹)‖𝑋 ‖2

𝐹 𝜅
2.

in which 𝐴′ = 𝑋 ′𝑇 𝑋 ′, 𝐴 = 𝑋𝑇 𝑋 .

Theorem 4 points out that if 𝐴′′’s eigenvectors approxi-
mately work as eigenvectors for 𝐴′ and ‖𝑋𝑋𝑇 −𝑋 ′𝑋 ′𝑇 ‖ ≤ 𝜖 ′,
𝑉̃𝑇
𝑙

approximately work as eigenvectors for 𝐴.

Theorem 5 [21]. If rank(𝐵) ≤ 𝑘 , 𝑉̃ has 𝑘 columns that spans
the row and column space of 𝐵, then

‖𝐵‖ ≤ ‖(𝑉̃𝑇 𝑉̃)+‖‖𝑉̃𝑇 𝐵𝑉̃ ‖.

Under the condition that 𝑉̃𝑇
𝑙

approximately work as eigen-
vectors for 𝐴, the following Theorem 6 points out that 𝑉̃Σ−2𝑉̃𝑇

is functionally close to the inverse of matrix A.

Theorem 6. If ∀𝑖, 𝑗 ∈ {1, . . . , 𝑘},

|𝑉̃𝑇
𝑖 𝑉̃ 𝑗 − 𝛿𝑖 𝑗 | ≤

1
4𝑘
, (2)

|𝑉̃𝑇
𝑖 𝐴𝑉̃ 𝑗 − 𝛿𝑖 𝑗𝜎2

𝑖 | ≤ 𝜁,

and the condition of Thm 4 suffices. Then

‖𝑉̃Σ−2𝑉̃𝑇 𝐴 − 𝐼𝑚‖ ≤ 5
3
𝜅𝑘𝜁 .

To conclude, for P[‖𝛼′−𝛼‖ > 𝜖
4 ‖𝛼‖] ≤

𝜂

4 , we need to pick
𝜖 ′ and 𝛽 such that

𝜅2𝛽2 + 2𝜅𝛽 + 𝜅2𝜖 ′‖𝑋 ‖2
𝐹 ≤ 1

4𝑘
, (3)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 7

(2𝜖 ′ + 𝛽‖𝑋 ‖2
𝐹)‖𝑋 ‖2

𝐹 𝜅
2 ≤ 𝜁, (4)

5
3
𝜅𝑘𝜁 ≤ 𝜖

4
, (5)

and decide the sampling parameter as

𝑟 = d
4 log2 (8𝑛

𝜂
)

𝜖 ′2
e, (6)

𝑐 = d
4𝜅2 log2 (8𝑟

𝜂
)

𝛽2 e . (7)

B. Proof of 𝐸1 ≤ 𝜖
4 ‖𝛼‖‖𝑥‖

Notice that

𝐸4 = ‖𝑥‖‖𝛼 − 𝛼̃‖.

For 𝑦 = 𝑋𝑇 𝑋𝛼 and 𝛼 = 𝑋+𝑋+𝑇 𝑦, we have ‖𝑦‖ ≤ ‖𝛼‖ ≤
𝜅2‖𝑦‖.

For ‖𝛼̃ − 𝛼′‖, let 𝑧 be the vector that 𝑧𝑙 =
𝜆𝑙−𝜆𝑙
𝜎2
𝑙

, we have

‖𝛼̃ − 𝛼′‖ =‖
𝑘∑︁
𝑙=1

𝜆𝑙 − 𝜆𝑙
𝜎2
𝑙

𝑉̃𝑙 ‖

=‖𝑉̃ 𝑧‖

≤
√︃
‖𝑉̃𝑇 𝑉̃ ‖‖𝑧‖

≤ 4
3

3𝜖𝜎2
𝑙

8
√
𝑘
‖𝑦‖ 1

𝜎2
𝑙

√
𝑘

≤ 1
4
𝜖 ‖𝛼‖.

in which ‖𝑉̃𝑇 𝑉̃ ‖ ≤ 4
3 as shown in proof of theorem 6.

V. COMPLEXITY

In this section, we will analyze the time complexity of
each step in the main algorithm.We divide these steps into
four parts and analyze each part in each subsection: Step 1-
3 are considered in Subsection V-A. Step 4 is considered in
Subsection V-B. Step 5-6 are considered in Subsection V-C.
Step 7-8 are considered in Subsection V-D. Note that in the
main algorithm the variables 𝑅, 𝑉̃𝑙 , 𝛼̃ are queried instead of
calculated. We include the corresponding query complexity in
analysis of the steps where we queried these variables.

A. Sampling of columns and rows

In Step 1, the value of 𝑟 and 𝑐 are determined according to
Inequalities (3,4,5,6,7). The time of solving these inequalities
is a constant. In Step 2 we sample 𝑟 indices, each sampling
takes no more than log2 𝑚 time according to the arborescent
vector data structure shown in II-C. In Step 3 we sample
𝑐 indices, each sampling takes no more than 𝑟 log2 𝑛 time
according to the arborescent matrix data structure shown
in II-C. Thus the overall time complexity of Step 1-3 is
𝑂 (𝑟 log2 𝑚 + 𝑐𝑟 log2 𝑛).

B. The spectral decomposition

Step 4 is the spectral decomposition. For 𝑟 × 𝑟 symmet-
ric matrix 𝐴, the fastest classical spectral decomposition is
through classical spectral symmetric QR method, of which
the complexity is 𝑂 (𝑟3).

C. Calculation of 𝜆𝑙
In Step 5-6 we calculate 𝜆𝑙 . By Alg. 1, we have

𝜆𝑙 =
1
𝜎2
𝑙

𝑉 ′′𝑇
𝑙 𝑅𝑦 =

1
𝜎2
𝑙

Tr[𝑉 ′′𝑇
𝑙 𝑋 ′𝑇 𝑋𝑦] = 1

𝜎2
𝑙

Tr[𝑋𝑦𝑉 ′′𝑇
𝑙 𝑋 ′𝑇] .

Observe that ‖𝑦𝑉 ′′𝑇
𝑙
𝑋 ′𝑇 ‖𝐹 = ‖𝑦‖‖𝑉 ′′𝑇

𝑙
𝑋 ′𝑇 ‖ ≤ ‖𝑦‖, and we

can query the (𝑖, 𝑗) matrix element of 𝑦𝑉 ′′𝑇
𝑙
𝑋 ′𝑇 in cost 𝑂 (𝑟).

According to Lemma 1, the complexity in step 6 is

𝑇6 = 𝑂 (
‖𝑋 ‖2

𝐹
𝑘2

𝜖2 log2 (
8𝑘
𝜂
) (log2 (𝑚𝑛) + 𝑘)).

D. Calculation of 𝑥𝑇 𝑋𝛼̃

In Step 7-8 we calculate 𝑥𝑇 𝑋𝛼̃. Calculation of 𝑥𝑇 𝑋𝛼̃ is
the last step of the algorithm, and also the most important step
for saving time complexity. In Step 8 of Alg. 3, we need to
calculate 𝑥𝑇 𝑋𝛼̃, which is equal to Tr[𝑋𝛼̃𝑥𝑇], with precision
𝜖 ‖𝛼‖‖𝑥‖ and success probability 1 − 𝜂

4 using Alg. 1. Let the
𝐴 and 𝐵 in Alg. 1 be 𝑋 and 𝛼̃𝑥𝑇 , respectively. To calculate
Tr[𝑋𝛼̃𝑥𝑇], we first establish the query access for 𝛼̃𝑥𝑇 (we
already have the sampling access of 𝑋), and then using the
Alg. 1 as an oracle. We first analyze the time complexity of
querying 𝑅 and 𝛼̃, and then provide the time complexity of
calculating 𝑥𝑇 𝑋𝛼̃:

1) Query of 𝑅: First we find query access of 𝑅 = 𝑋 ′𝑇 𝑋 .
For any 𝑠 = 1, ..., 𝑟, 𝑗 = 1, ..., 𝑚, 𝑅𝑠 𝑗 = 𝑒𝑇𝑠 𝑋

′𝑇 𝑋𝑒 𝑗 =

Tr[𝑋𝑒 𝑗𝑒𝑇𝑠 𝑋 ′𝑇], we calculate such trace by Alg. 1 to precision
𝜖1 with success probability 1 − 𝜂1. The time complexity for
one query will be

𝑄(𝑅) = 𝑂 (log2 (
2
𝜂1

)
‖𝑋 ‖4

𝐹

𝜖2
1𝑟

log2 (𝑚𝑛)).

2) Query of 𝛼̃: For any 𝑖 = 1, ..., 𝑚, we have 𝛼̃ 𝑗 =∑𝑟
𝑠=1 𝑅𝑠 𝑗𝑢𝑠 . One query of 𝛼̃ will cost time 𝑟𝑘𝑄(𝑅), with error

𝜖1
∑𝑟

𝑠=1 |𝑢𝑠 | and success probability more than 1 − 𝑟𝜂1.
3) Calculation of 𝑥𝑇 𝑋𝛼̃: We use Alg. 1 to calculate

𝑥𝑇 𝑋𝛼̃ = Tr[𝑋𝛼̃𝑥𝑇] to precision 𝜖
2 ‖𝛼‖‖𝑥‖ with success

probability 1 − 𝜂

8 . Notice the query of 𝛼̃ is with error and
success probability. We only need

𝜖1

𝑟∑︁
𝑠=1

|𝑢𝑠 | d
36
𝜖2 e d6 log2 (

16
𝜂
)e ≤ 𝜖

2
‖𝛼‖‖𝑥‖,

𝑟𝜂1d
36
𝜖2 e d6 log2 (

16
𝜂
)e ≤ 𝜂

8

to fulfill the overall computing task. Notice
∑𝑟

𝑠=1 |𝑢𝑠 | ≤
√
𝑟 ‖𝑢‖

and 𝛼 = 𝑅𝑇 𝑢 We set

𝜖1 =
𝜖 ‖𝑥‖

2
√
𝑟 d 36

𝜖 2 e d6 log2 (16
𝜂
)e
,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 8

𝜂1 =
𝜂

8𝑟 d 36
𝜖 2 e d6 log2 (16

𝜂
)e
.

And the overall time complexity for computing 𝑥𝑇 𝑋𝛼̃ is

𝑇7 = 𝑂 (1
𝜖2 log2

1
𝜂
(log2 (𝑚𝑛) + 𝑟𝑘𝑄(𝑅)))

= 𝑂 (1
𝜖2 log2

1
𝜂
(log2 (𝑚𝑛) + 𝑟𝑘 log2 (

2
𝜂1

)
‖𝑋 ‖4

𝐹

𝜖2
1𝑟

log2 (𝑚𝑛))).

VI. EXPERIMENTS

In this section, we demonstrate the proposed quantum-
inspired SVM algorithm in practice by testing the algorithm on
artificial datasets. The feasibility and efficiency of some other
quantum-inspired algorithms (quantum-inspired algorithms for
recommendation systems and linear systems of equations) on
large datasets has been benchmarked, and the results indicate
that quantum-inspired algorithms can perform well in practice
under its specific condition: low rank, low condition number,
and very large dimension of the input matrix [24]. Here we
show the feasibility of the quantum-inspired SVM. Firstly, we
test the quantum-inspired SVM algorithm on low-rank and
low-rank approximated datasets and compare it to an exist-
ing classical SVM implementation. Secondly, we discuss the
characteristics of the algorithm by analyzing its dependence
on the parameters and datasets. In our experiment, we use
the arborescent data structure instead of arrays for storage
and sampling [24], making the experiment conducted in a
more real scenario compared to the previous work [24]. All
algorithms are implemented in Julia [32]. The source code and
data are available at https://github.com/helloinrm/qisvm.

A. Experiment I: Comparison with LIBSVM

In this experiment, we test quantum-inspired SVM algo-
rithm on large datasets and compare its performance to the
well-known classical SVM implementation LIBSVM [33].

We generate datasets of size 10000×11000, which represent
11000 vectors (6000 vectors for training and 5000 vectors for
testing) with length 10000. All the data vectors in training
and testing sets are chosen uniformly at random from the
generated data matrix, so that they are statistically independent
and identically distributed. We test quantum-inspired SVM
and LIBSVM on two kinds of datasets: low-rank datasets
(rank= 1) and high-rank but low-rank approximated datasets
(rank= 10000). Each scenario is repeated for 5 times. The con-
struction method for data matrices is described in Appendix B.
And the parameters for quantum-inspired SVM are choosen as
𝜖 = 5, 𝜂 = 0.1 and 𝑏 = 1 (We explain the parameters and their
setting in Experiment II.).

The average classification rates are shown in Table II, from
which we observe the advantage of quantum-inspired SVM on
such low-rank approximated datasets (on average about 5%
higher). We also find that both quantum-inspired SVM and
LIBSVM performs better on low-rank datasets than low-rank
approximated datasets.

B. Experiment II: Discussion on algorithm parameters

As analyzed in Section IV and Section V, there are two
main parameters for the quantum-inspired algorithm: relative
error 𝜖 and success probability 1 − 𝜂. Based on them we set
subsampling size 𝑟, 𝑐 and run the algorithm. However, for
datasets that are not large enough, setting 𝑟, 𝑐 by Equation (6)
and Equation (7) is rather time costly. For instance, when the
condition number of data matrix is 1.0, taking 𝜂 = 0.1 and 𝜖 =
5.0, theoretically, the 𝑟, 𝑐 for 10000×10000 dataset should be
set as 1656 and 259973 to assure that the algorithm calculates
the classification expression with relative error less than 𝜖 and
success probability higher than 1−𝜂. For practical applications
of not too large datasets, we set 𝑟, 𝑐 as 𝑟 = 𝑏d4 log2 (2𝑛/𝜂)/𝜖2e
and 𝑐 = 𝑏d4 log2 (2𝑟/𝜂)/𝜖2e, in which 𝑏 is the subsampling
size control parameter. When 𝑏 = 1, our practical choice of
𝑟, 𝑐 assures the relative error of subsampling (Step 2 and Step 3
in Alg. 3) won’t exceed 𝜖 (guaranteed by Theorem 2).

In Experiment I, we took the practical setting of 𝑟, 𝑐,
where we already found advantage compared to LIBSVM.
Our choice of 𝜖, 𝜂 and 𝑏 is 𝜖 = 5, 𝜂 = 0.1 and 𝑏 = 1.
Here, we test the algorithm on other choices of 𝜖, 𝜂 and 𝑏

and check the classification rate of the algorithm. We test
each parameter choice for 50 times. The variation intervals
of each parameter are 𝜖 from 1 to 10, 𝜂 from 0.1 to 1, and
𝑏 from 1 to 10. The results are shown in Fig. 4. We find the
average classification rates of the algorithm in each experiment
are close. We notice when using the practical 𝑟, 𝑐, which
are much smaller than the theoretical ones, the algorithm
maintains its performance (classification rate around 0.90).
This phenomenon indicates a gap between our theoretical
analysis and the actual performance, as [24] reports “the
performance of these algorithms is better than the theoretical
complexity bounds would suggest”.

VII. DISCUSSION

In this section, we will present some discussions on the
proposed algorithm. And we will also discuss the potential
applications of our techniques to other types of SVMs, such
as non-linear SVM and least square SVM, but more works on
the complexity and errors are required in future work if we
want to realize these extensions.

A. The cause of exponential speedup

An interesting fact is that we can achieve exponential
speedup without using any quantum resources, such as super-
position or entanglement. This is a somewhat confusing but
reasonable result that can be understood as follows: Firstly, the
advantage of quantum algorithms, such as HHL algorithm, is
that high-dimensional vectors can be represented using only
a few qubits. By replacing qRAM to the arborescent data
structure for sampling, we can also represent the low-rank
matrices by its normalized submatrix in a short time. By
using the technique of sampling, large-size calculations are
avoided, and we only need to deal with the problem that has
the logarithmic size of the original data. Secondly, the relative
error of matrix subsampling algorithm is minus-exponential
on the matrix size, which ensures the effectiveness of such

https://github.com/helloinrm/qisvm

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 9

TABLE II
THE AVERAGE VALUES AND STANDARD DEVIATIONS OF CLASSIFICATION RATES (%) OF QISVM AND LIBSVM IN FIVE EXPERIMENTS.

Testing Set Training Set
qiSVM LIBSVM qiSVM LIBSVM

Low-rank 91.45±3.17 86.46±2.00 91.35±3.64 86.45±2.15

Low-rank approximated 89.82±4.38 84.90±3.20 89.92±4.23 84.69±2.87

1 2 3 4 5 6 7 8 9 1 00 . 6

0 . 8

1 . 0

av
era

ge
 cla

ssi
fica

tio
n r

ate

ε
(a)

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00 . 6

0 . 8

1 . 0

av
era

ge
 cla

ssi
fica

tio
n r

ate

η
(b)

1 2 3 4 5 6 7 8 9 1 00 . 6

0 . 8

1 . 0

av
era

ge
 cla

ssi
fica

tio
n r

ate

s u b s a m p l i n g s i z e
(c)

Fig. 4. The average classification rate of quantum-inspired SVM algorithm with different parameters on the dataset with rank 1. Each point represents an
average classification rate for 50 trials, and the error bar shows the standard deviation of the 50 trials. (a) Algorithm performance when the parameter 𝜖 is
taken from 1 to 10. (b) Algorithm performance when the parameter 𝜂 is taken from 0.1 to 1. (c) Algorithm performance when the parameter 𝑏 is taken from
1 to 10.

logarithmic-complexity algorithm (e.g. Theorem 2 shows the
error of matrix row subsampling).

B. Improving sampling for dot product

Remember in Alg. 1 we can estimate dot products for two
vectors. However, it does not work well for all the conditions,
like when ‖𝑥‖ and ‖𝑦‖ are donminated by one element. For
randomness, [34] implies that we can apply a spherically
random rotation 𝑅 to all 𝑥, which does not change the kernel
matrix 𝐾 , but will make all the elements in the dataset matrix
be in a same distribution.

C. LS-SVM with non-linear kernels

In Section II, we have considered the LS-SVM with the
linear kernel 𝐾 = 𝑋𝑇 𝑋 . When data sets are not linear
separable, non-linear kernels are usually needed. To deal with
non-linear kernels with Alg. 3, we only have to show how to
establish sampling access for the non-linear kernel matrix 𝐾

from the sampling access of 𝑋 .
We first show how the sampling access of polynomial kernel

𝐾𝑝 (𝑥𝑖 , 𝑥 𝑗) = (𝑥𝑇
𝑗
𝑥𝑖) 𝑝 can be established. The corresponding

kernel matrix is 𝐾𝑝 = ((𝑥𝑇
𝑗
𝑥𝑖) 𝑝)𝑖=1,...,𝑚, 𝑗=1,...,𝑚.

We take

𝑍 = (𝑥⊗𝑝

1 , 𝑥
⊗𝑝

2 , ..., 𝑥
⊗𝑝
𝑚),

in which the 𝑗-column 𝑍 𝑗 is the 𝑝-th tensor power of 𝑥 𝑗 .
Notice that 𝑍𝑇 𝑍 = 𝐾𝑝 . Once we have sampling access of

𝑍 , we can sample 𝐾𝑝 as Step 2 and Step 3 in Alg. 3 do. The
sampling access of 𝑍 can be established by (The effectiveness
of Alg. 4 is shown in Appendix C.):

Algorithm 4 Polynomial kernel matrices sampling.
Input: The sampling access of 𝑋 in logarithmic time of 𝑚

and 𝑛.
Goal: Sample a column index 𝑗 from the column norm vector

(‖𝑥1‖ 𝑝 , ‖𝑥2‖ 𝑝 , . . . , ‖𝑥𝑚‖ 𝑝) of 𝑍 , and them sample a row
index 𝑖 from column 𝑥⊗𝑝

𝑗
of 𝑍 .

1: Sample on column norm vector (‖𝑥1‖, ‖𝑥2‖, . . . , ‖𝑥𝑚‖) of
𝑋 to get index 𝑗 .

2: Query ‖𝑥 𝑗 ‖ from (‖𝑥1‖, ‖𝑥2‖, . . . , ‖𝑥𝑚‖). Calculate
‖𝑥 𝑗 ‖ 𝑝 .

3: Sample a real number 𝑎 uniformly distributed in [0, 1].
If 𝑎 ≥ ‖𝑥 𝑗 ‖ 𝑝 , go to Step 1. If not, output index 𝑗 as the
column index and continue.

Algorithm 4 Polynomial kernel matrices sampling.
4: Repeat sampling on 𝑥 𝑗 for 𝑝 times. Denote the outcome

indices as 𝑖1, 𝑖2, . . . , 𝑖𝑝 .
Output: Column index 𝑗 and row index

∑𝑝

𝜏=1 (𝑖𝜏−1)𝑛𝑝−𝜏+1.

For general non-linear kernels, we note that they can always
be approximated by linear combination of polynomial kernels
(and thus can be sampled based on sampling access of poly-
nomial kernels) the corresponding non-linear feature function
is continous. For instance, the popular radial basis function
(RBF) kernel

𝐾RBF (𝑥𝑖 , 𝑥 𝑗) = exp(−
‖𝑥𝑖 − 𝑥 𝑗 ‖2

2𝜎2)

can be approximated by

𝐾̃RBF (𝑥𝑖 , 𝑥 𝑗) =
𝑁∑︁
𝑝=0

1
𝑝!

(
−
𝑥𝑇
𝑖
𝑥𝑖 − 2𝑥𝑇

𝑗
𝑥𝑖 + 𝑥𝑇𝑗 𝑥 𝑗

2𝜎2

) 𝑝

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 10

=

𝑁∑︁
𝑝=0

(
− 1

2𝜎2

) 𝑝 𝑝∑︁
𝑞,𝑙=0

(
𝑝

𝑞

)
𝐾𝑞 (𝑥𝑖 , 𝑥𝑖)

+ (−2)𝑙
(
𝑝

𝑙

)
𝐾𝑙 (𝑥𝑖 , 𝑥 𝑗) +

(
𝑝

𝑝 − 𝑞 − 𝑙

)
𝐾𝑝−𝑞−𝑙 (𝑥 𝑗 , 𝑥 𝑗).

D. General LS-SVM

In the former sections, we began with a LS-SVM with 𝑏 =

0 and linear kernels in Section II. And we showed how the
method can be extended to nonlinear kernels in Section VII-C.
Finally, we deal with the last assumption 𝑏 = 0. We show how
a general LS-SVM can be tackled using techniques alike in
Alg. 3:

A general LS-SVM equation [26] is(
0 1𝑇
1 𝐾 + 𝛾−1𝐼

) (
𝑏

𝛼

)
=

(
0
𝑦

)
, (8)

in which 𝐾 is the kernel matrix.
Equation (8) can be solved as follows:
(i) Firstly, by methods in Section VII-C, we establish the

sampling access for kernel matrix 𝐾 . Suppose a sampling
outcome of 𝐾 is 𝐾 ′′.

(ii) Secondly, take

𝐴 =

(
0 1𝑇
1 𝐾 + 𝛾−1𝐼

)
.

and

𝐴′′ =

(
0 1𝑇
1 𝐾 ′′ + 𝛾−1𝐼

)
.

We establish the eigen relations between 𝐴 and 𝐴′′ by theo-
rems which are similar to Theorem 2 and Theorem 4.

(iii) Once 𝐴 ∈ R𝑚×𝑚 is subsampled to 𝐴′′ ∈ R𝑟×𝑟 , we can
continue Step 3-7 of Alg. 3.

(iv) Once Equation (8) is solved in Step 7 of Alg. 3, which
means we can establish the query access for 𝛼. According
to Equation 8, 𝑏 = 𝑦 𝑗 − 𝑥𝑇𝑗 𝑋𝛼 − 𝛾−1𝛼 𝑗 for any 𝑗 such that
𝛼 𝑗 ≠ 0. We can then evaluate the classification expression
𝑦 𝑗 + (𝑥−𝑥 𝑗)𝑇 𝑋𝛼−𝛾−1𝛼 𝑗 and make classification using Alg. 1.
There are two ways to find 𝑗 : One is executing the rejection
sampling on 𝛼 using Alg. 2. The other is checking if 𝛼 𝑗 = 0
after each sampling of 𝑋 in Step 3 of Alg. 1.

VIII. CONCLUSION

We have proposed a quantum-inspired SVM algorithm that
achieves exponential speedup over the previous classical al-
gorithms. The feasibility of the proposed algorithm is demon-
strated by experiments. Our algorithm works well on low-rank
datasets or datasets that can be well approximated by low-rank
matrices, which is similar with quantum SVM algorithm [31]
as "when a low-rank approximation is appropriate". Certain
investigations on the application of such an algorithm are
required to make quantum-inspired SVM operable in solving
questions like face recognition [25] and signal processing [35].

We hope that the techniques developed in our work can
lead to the emergence of more efficient classical algorithms,
such as applying our method to support vector machines with

more complex kernels [26], [36] or other machine learning
algorithms. The technique of indirect sampling can expand
the application area of fast sampling techniques. And it will
make contribution to the further competition between classical
algorithms and quantum ones.

Some improvements on our work would be made in the
future, such as reducing the conditions on the data matrix,
further reducing the complexity, and tighten the error bounds
in the theoretical analysis, which can be achieved through a
deeper investigation on the algorithm and the error propaga-
tion process. The investigation of quantum-inspired non-linear
SVMs and least squares SVM as discussed in Section VII also
requires theoretical analysis and empirical evaluations.

We note that our work, as well as the previous quantum-
inspired algorithms, are not intended to demonstrate that
quantum computing is uncompetitive. We want to find out
where the boundaries of classical and quantum computing are,
and we expect new quantum algorithms to be developed to beat
our algorithm.

APPENDIX A
PROOF OF THEOREMS IN IV

A. Proof of Theorem 3

Proof: We break the expression |𝑉 ′′𝑇
𝑖
𝐴′𝑉 ′′

𝑗
− 𝛿𝑖 𝑗𝜎2

𝑖
| into

two parts,

|𝑉 ′′𝑇
𝑖 𝐴′𝑉 ′′

𝑗 −𝛿𝑖 𝑗𝜎2
𝑖 | ≤ |𝑉 ′′𝑇

𝑖 (𝐴′−𝐴′′)𝑉 ′′
𝑗 |+ |𝑉 ′′𝑇

𝑖 𝐴′′𝑉 ′′
𝑗 −𝛿𝑖 𝑗𝜎2

𝑖 |.

For the first item, because of the condition ‖𝐴′− 𝐴′′‖ ≤ 𝛽 and
𝑉 ′′
𝑗

are normalized,

|𝑉 ′′𝑇
𝑖 (𝐴′ − 𝐴′′)𝑉 ′′

𝑗 | ≤ ‖𝑉 ′′𝑇
𝑖 ‖ · ‖(𝐴′ − 𝐴′′)𝑉 ′′

𝑗 ‖
≤ 𝛽.

For the second item, because of the condition 𝐴′′ =∑𝑘
𝑙=1 𝜎

2
𝑙
𝑉 ′′
𝑙
𝑉 ′′𝑇
𝑙

,

|𝑉 ′′𝑇
𝑖 𝐴′′𝑉 ′′

𝑗 − 𝛿𝑖 𝑗𝜎2
𝑖 | = 0.

In all,
|𝑉 ′′𝑇

𝑖 𝐴′𝑉 ′′
𝑗 − 𝛿𝑖 𝑗𝜎2

𝑖 | ≤ 𝛽.

The description above can be written in short as follows:

|𝑉 ′′𝑇
𝑖 𝐴′𝑉 ′′

𝑗 − 𝛿𝑖 𝑗𝜎2
𝑖 | ≤ |𝑉 ′′𝑇

𝑖 (𝐴′ − 𝐴′′)𝑉 ′′
𝑗 | + |𝑉 ′′𝑇

𝑖 𝐴′′𝑉 ′′
𝑗 − 𝛿𝑖 𝑗𝜎2

𝑖 |
≤ ‖𝑉 ′′𝑇

𝑖 ‖ · ‖(𝐴′ − 𝐴′′)𝑉 ′′
𝑗 ‖

≤ 𝛽.

B. Proof of Theorem 4

Proof: Denote |𝑉̃𝑇
𝑖
𝑉̃ 𝑗 − 𝛿𝑖 𝑗 | as Δ1, |𝑉̃𝑇

𝑖
𝐴𝑉̃ 𝑗 − 𝛿𝑖 𝑗𝜎2

𝑖
| as

Δ2. By definition, 𝑉̃𝑙 = 1
𝜎2
𝑙

𝑅𝑇𝑉 ′′
𝑙

. Thus

Δ1 = |
𝑉 ′′𝑇
𝑖
𝑅𝑅𝑇𝑉 ′′

𝑗
− 𝛿𝑖 𝑗𝜎4

𝑖

𝜎2
𝑖
𝜎2
𝑗

|.

We break it into two parts:

Δ1 ≤ 1
𝜎2
𝑖
𝜎2
𝑗

(
|𝑉 ′′𝑇

𝑖 𝐴′𝐴′𝑉 ′′
𝑗 − 𝛿𝑖 𝑗𝜎4

𝑖 | + |𝑉 ′′𝑇
𝑖 (𝑅𝑅𝑇 − 𝐴′𝐴′)𝑉 ′′

𝑗 |
)
.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 11

For the first item, we have

|𝑉 ′′𝑇
𝑖 𝐴′𝐴′𝑉 ′′

𝑗 − 𝛿𝑖 𝑗𝜎4
𝑖 |

=|𝑉 ′′𝑇
𝑖 (𝐴′ − 𝐴′′)2𝑉 ′′

𝑗 +𝑉 ′′𝑇
𝑖 (𝐴′ − 𝐴′′)𝐴′𝑉 ′′

𝑗

+𝑉 ′′𝑇
𝑖 𝐴′(𝐴′ − 𝐴′′)𝑉 ′′

𝑗 +𝑉 ′′𝑇
𝑖 𝐴′′𝐴′′𝑉 ′′

𝑗 − 𝛿𝑖 𝑗𝜎4
𝑖 |

≤|𝑉 ′′𝑇
𝑖 (𝐴′ − 𝐴′′)2𝑉 ′′

𝑗 | + |𝑉 ′′𝑇
𝑖 (𝐴′ − 𝐴′′)𝐴′𝑉 ′′

𝑗 |
+|𝑉 ′′𝑇

𝑖 𝐴′(𝐴′ − 𝐴′′)𝑉 ′′
𝑗 | + |𝑉 ′′𝑇

𝑖 𝐴′′𝐴′′𝑉 ′′
𝑗 − 𝛿𝑖 𝑗𝜎4

𝑖 |
≤𝛽2 + 𝜎2

𝑗 𝛽 + 𝜎2
𝑖 𝛽.

The last step above used the same technique as the proof of
Thm 3.

For the second item, we have

|𝑉 ′′𝑇
𝑖 (𝑅𝑅𝑇 − 𝐴′𝐴′)𝑉 ′′

𝑗 | ≤ ‖𝑅𝑅𝑇 − 𝐴′𝐴′‖
= ‖𝑋 ′𝑇 𝑋𝑋𝑇 𝑋 ′ − 𝑋 ′𝑇 𝑋 ′𝑋 ′𝑇 𝑋 ′‖
≤ ‖𝑋 ′‖2‖𝑋𝑋𝑇 − 𝑋 ′𝑋 ′𝑇 ‖.

Because

‖𝑋 ′‖ ≤ ‖𝑋 ′‖𝐹 = ‖𝑋 ‖𝐹 ,

we have

|𝑉 ′′𝑇
𝑖 (𝑅𝑅𝑇 − 𝐴′𝐴′)𝑉 ′′

𝑗 | ≤ 𝜖 ′‖𝑋 ‖2
𝐹 .

In all, due to 𝜎𝑖 ≥ 𝜅 ∀𝑖 ∈ {1, . . . , 𝑘},

Δ1 ≤ 1
𝜎2
𝑖
𝜎2
𝑗

(𝛽2 + 𝜎2
𝑗 𝛽 + 𝜎2

𝑖 𝛽 + 𝜖 ′‖𝑋 ‖2
𝐹)

≤ 𝜅2𝛽2 + 2𝜅𝛽 + 𝜅2𝜖 ′‖𝑋 ‖2
𝐹 .

By definition, 𝑉̃𝑙 = 1
𝜎2
𝑙

𝑅𝑇𝑉 ′′
𝑙

. Thus

Δ2 = |
𝑉 ′′𝑇
𝑖
𝑅𝐴𝑅𝑇𝑉 ′′

𝑗
− 𝛿𝑖 𝑗𝜎6

𝑖

𝜎2
𝑖
𝜎2
𝑗

|.

We break it into two parts:

Δ2 ≤ 1
𝜎2
𝑖
𝜎2
𝑗

(|𝑉 ′′𝑇
𝑖 (𝑅𝐴𝑅𝑇 − 𝐴′𝐴′𝐴′)𝑉 ′′

𝑗 |

+ |𝑉 ′′𝑇
𝑖 𝐴′𝐴′𝐴′𝑉 ′′

𝑗 − 𝛿𝑖 𝑗𝜎6
𝑖 |)

For the first item, we have

|𝑉 ′′𝑇
𝑖 (𝑅𝐴𝑅𝑇 − 𝐴′𝐴′𝐴′)𝑉 ′′

𝑗 |
≤ ‖𝑅𝐴𝑅𝑇 − 𝐴′𝐴′𝐴′‖
≤ ‖𝑋 ′‖2‖𝑋𝑋𝑇 𝑋𝑋𝑇 − 𝑋 ′𝑋 ′𝑇 𝑋 ′𝑋 ′𝑇 ‖
≤ ‖𝑋 ‖2

𝐹 (‖𝑋𝑋𝑇 (𝑋𝑋𝑇 − 𝑋 ′𝑋 ′𝑇)‖ + ‖(𝑋𝑋𝑇 − 𝑋 ′𝑋 ′𝑇)𝑋 ′𝑋 ′𝑇 ‖)
≤ 2‖𝑋 ‖2

𝐹 ‖𝑋 ‖2‖𝑋𝑋𝑇 − 𝑋 ′𝑋 ′𝑇 ‖
≤ 2‖𝑋 ‖2

𝐹 𝜖
′.

For the second item, we have

|𝑉 ′′𝑇
𝑖 𝐴′𝐴′𝐴′𝑉 ′′

𝑗 − 𝛿𝑖 𝑗𝜎6
𝑖 |

=|𝑉 ′′𝑇
𝑖 (𝐴′ − 𝐴′′)𝐴′𝐴′𝑉 ′′

𝑗 +𝑉 ′′𝑇
𝑖 𝐴′′(𝐴′ − 𝐴′′)𝐴′𝑉 ′′

𝑗

+𝑉 ′′𝑇
𝑖 𝐴′′𝐴′′(𝐴′ − 𝐴′′)𝑉 ′′

𝑗 +𝑉 ′′𝑇
𝑖 𝐴′′𝐴′′𝐴′′𝑉 ′′

𝑗 − 𝛿𝑖 𝑗𝜎6
𝑖 |

≤|𝑉 ′′𝑇
𝑖 (𝐴′ − 𝐴′′)𝐴′𝐴′𝑉 ′′

𝑗 | + |𝑉 ′′𝑇
𝑖 𝐴′′(𝐴′ − 𝐴′′)𝐴′𝑉 ′′

𝑗 |
+|𝑉 ′′𝑇

𝑖 𝐴′′𝐴′′(𝐴′ − 𝐴′′)𝑉 ′′
𝑗 | + |𝑉 ′′𝑇

𝑖 𝐴′′𝐴′′𝐴′′𝑉 ′′
𝑗 − 𝛿𝑖 𝑗𝜎6

𝑖 |
≤‖(𝐴′ − 𝐴′′)𝐴′𝐴′‖ + ‖𝐴′′(𝐴′ − 𝐴′′)𝐴′‖ + ‖𝐴′′𝐴′′(𝐴′ − 𝐴′′)‖
≤‖𝑋 ′‖4‖𝐴′ − 𝐴′′‖ + ‖𝑋 ′′‖2‖𝑋 ′‖2‖𝐴′ − 𝐴′′‖
+‖𝑋 ′′‖4‖𝐴′ − 𝐴′′‖
≤𝛽‖𝑋 ‖4

𝐹 .

In all,

Δ2 ≤ 1
𝜎2
𝑖
𝜎2
𝑗

(2‖𝑋 ‖2
𝐹 𝜖

′ + 𝛽‖𝑋 ‖4
𝐹)

≤ (2𝜖 ′ + 𝛽‖𝑋 ‖2
𝐹)‖𝑋 ‖2

𝐹 𝜅
2.

C. Proof of Theorem 6

Proof: For 𝑉̃𝑇
𝑖
𝑉̃ 𝑗−𝛿𝑖 𝑗 are elements of 𝑉̃𝑇 𝑉̃−𝐼 and |𝑉̃𝑇

𝑖
𝑉̃ 𝑗−

𝛿𝑖 𝑗 | ≤ 1
4𝑘 ,

‖𝑉̃𝑇 𝑉̃ − 𝐼 ‖ ≤ 𝑘max{|𝑉̃𝑇
𝑖 𝑉̃ 𝑗 − 𝛿𝑖 𝑗 |} ≤

1
4
.

Thus ‖𝑉̃𝑇 𝑉̃ ‖ is invertible and

‖(𝑉̃𝑇 𝑉̃)−1‖ = 1/‖𝑉̃𝑇 𝑉̃ ‖ ≤ 1/(1 − ‖𝑉̃𝑇 𝑉̃ − 𝐼 ‖) = 4
3
.

Take 𝐵 = 𝑉̃Σ−2𝑉̃𝑇 𝐴 − 𝐼𝑚, we have

|𝑉̃𝑇
𝑖 𝐵𝑉̃ 𝑗 | = |

𝑘∑︁
𝑙=1

𝑉̃𝑇
𝑖
𝑉̃𝑙 · 𝑉̃𝑇

𝑙
𝐴𝑉̃ 𝑗

𝜎2
𝑙

− 𝑉̃𝑇
𝑖 𝑉̃ 𝑗 |.

We break it into two parts:

|𝑉̃𝑇
𝑖 𝐵𝑉̃ 𝑗 | ≤ |

𝑘∑︁
𝑙=1

𝑉̃𝑇
𝑖
𝑉̃𝑙

𝜎2
𝑙

(𝑉̃𝑇
𝑙 𝐴𝑉̃ 𝑗−𝛿𝑙 𝑗𝜎2

𝑙) |+|
𝑘∑︁
𝑙=1
𝑉̃𝑇
𝑖 𝑉̃𝑙𝛿𝑙 𝑗−𝑉̃𝑇

𝑖 𝑉̃ 𝑗 |.

The second item is zero because

|
𝑘∑︁
𝑙=1
𝑉̃𝑇
𝑖 𝑉̃𝑙𝛿𝑙 𝑗 − 𝑉̃𝑇

𝑖 𝑉̃ 𝑗 | = |𝑉̃𝑇
𝑖 𝑉̃ 𝑗 − 𝑉̃𝑇

𝑖 𝑉̃ 𝑗 |.

The first item

|
𝑘∑︁
𝑙=1

𝑉̃𝑇
𝑖
𝑉̃𝑙

𝜎2
𝑙

(𝑉̃𝑇
𝑙 𝐴𝑉̃ 𝑗 − 𝛿𝑙 𝑗𝜎2

𝑙) | ≤ 𝜁𝜅 |
𝑘∑︁
𝑙=1
𝑉̃𝑇
𝑖 𝑉̃𝑙 |

≤ 𝜁𝜅(
∑︁
𝑙≠𝑖

|𝑉̃𝑇
𝑖 𝑉̃𝑙 | + |𝑉̃𝑇

𝑖 𝑉̃𝑖 |)

≤ 𝜁𝜅((𝑘 − 1) 1
4𝑘

+ (1
4𝑘

+ 1))

≤ 5
4
𝜁𝜅.

Thus |𝑉̃𝑇
𝑖
𝐵𝑉̃ 𝑗 | ≤ 5

4 𝜁𝜅 and ‖𝑉̃𝑇 𝐵𝑉̃ ‖ ≤ 5
4 𝜁𝜅𝑘 . By Theorem 5,

‖𝑉̃Σ−2𝑉̃𝑇 𝐴 − 𝐼𝑚‖ = ‖𝐵‖ ≤ ‖(𝑉̃𝑇 𝑉̃)−1‖‖𝑉̃𝑇 𝐵𝑉̃ ‖ ≤ 5
3
𝜅𝑘𝜁 .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 12

APPENDIX B
THE CONSTRUCTION METHOD OF DATASETS

In our experiment, we constructed artificial datasets which
are low-rank or can be low-rank approximated. Here we put
up our construction mehtod:

1. Firstly, we multiply a random matrix 𝐴 of size 𝑛 × 𝑘

with another random matrix 𝐵 of size 𝑘 ×𝑚. The elements in
both of them are evenly distributed in [−0.5, 0.5]. Denote the
multiplication outcome as 𝑋 . Then the rank of 𝑋 is at most
𝑘 .

2. We add turbulence to the matrix 𝑋 by adding a random
number evenly distributed in [−0.1𝑥, 0.1𝑥] to all the elements
in 𝑋 , in which 𝑥 is the average of all the absolute values of
𝑋 . After adding turbulence, 𝑋 is no more low-rank but still
low-rank approximated.

3. We normalize 𝑋 such that 𝑋 has operator norm 1.
4. We divide the column vectors of 𝑋 into two classes by a

random hyperplane 𝑤𝑇 𝑥 = 0 that passes the origin (By random
hyperplane we mean the elements in 𝑤 are uniformly sampled
from [0, 1] at random.), while making sure that both classes
are not empty.

5. Since now we have 𝑚 linear-separable labeled vectors,
each with length 𝑛. We choose uniformly at random 𝑚1 of
them for training, and let the other 𝑚2 = 𝑚 − 𝑚1 for testing,
while making sure that the training set includes vectors of both
classes.

APPENDIX C
THE EFFECTIVENESS OF ALG. 4

The goal of Alg. 4 is to sample a column index and a row
index from 𝑍 . We show it achieves this goal.

Step 1-3 are for sampling out the column index. They are
essentially Alg. 2 with 𝐴 = Diag(‖𝑥1‖ 𝑝−1, . . . , ‖𝑥𝑚‖ 𝑝−1) and
𝑏 = (‖𝑥1‖, . . . , ‖𝑥𝑚‖), which sample from the column norm
vector 𝑏 = (‖𝑥1‖ 𝑝 , . . . , ‖𝑥𝑚‖ 𝑝) of 𝑍 to get the column index 𝑗 .
We note that in practical applications, Step 1-3 can be adjusted
for speedup, such as frugal rejection sampling suggested in
[37].

Step 4 is for sampling out the row index. Suppose 𝑙 =∑𝑝

𝜏=1 (𝑖𝜏−1)𝑛𝑝−𝜏+1. According the definition of tensor power,
the 𝑙-th element of 𝑥⊗𝑝

𝑗
is

(𝑥⊗𝑝

𝑗
)𝑙 = Π

𝑝

𝜏=1𝑥𝑖𝜏 𝑗 .

When Step 4 executes 𝑝 times of sampling on 𝑥 𝑗 , the probabil-
ity of getting the outcome 𝑖1, 𝑖2, . . . , 𝑖𝑝 is |Π𝑝

𝜏=1𝑥𝑖𝜏 𝑗 |
2, which

is exactly the probability of sampling out (𝑥⊗𝑝

𝑗
)𝑙 in 𝑥⊗𝑝

𝑗
. Thus

we output index 𝑙 =
∑𝑝

𝜏=1 (𝑖𝜏 − 1)𝑛𝑝−𝜏 + 1.

ACKNOWLEDGMENT

The authors would like to thank Yi-Fei Lu for helpful
discussions.

REFERENCES

[1] H.-L. Huang, D. Wu, D. Fan, and X. Zhu, “Superconducting quantum
computing: a review,” Science China Information Sciences, vol. 63, no.
180501, 2020.

[2] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annual Symposium Foundations Computer
Sci. Santa Fe, NM, USA: IEEE, Nov. 1994, pp. 124–134. [Online].
Available: https://ieeexplore.ieee.org/document/365700

[3] C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, “Demonstration
of a compiled version of shor’s quantum factoring algorithm using
photonic qubits,” Physical Review Letters, vol. 99, no. 25, p. 250504,
2007. [Online]. Available: https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.99.250504

[4] H.-L. Huang, Q. Zhao, X. Ma, C. Liu, Z.-E. Su, X.-L. Wang,
L. Li, N.-L. Liu, B. C. Sanders, C.-Y. Lu et al., “Experimental
blind quantum computing for a classical client,” Physical review
letters, vol. 119, no. 5, p. 050503, 2017. [Online]. Available:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.050503

[5] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 21th Annual ACM Symposium Theory Computing.
Philadelphia, Pennsylvania, USA: ACM, May 1996, pp. 212–219.
[Online]. Available: http://doi.acm.org/10.1145/237814.237866

[6] T. Li, W.-S. Bao, H.-L. Huang, F.-G. Li, X.-Q. Fu, S. Zhang,
C. Guo, Y.-T. Du, X. Wang, and J. Lin, “Complementary-
multiphase quantum search for all numbers of target items,” Physical
Review A, vol. 98, no. 6, p. 062308, 2018. [Online]. Available:
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062308

[7] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, “Quantum machine learning,” Nature, vol. 549,
no. 7671, p. 195–202, Sept. 2017. [Online]. Available: https:
//doi.org/10.1038/nature23474

[8] H.-L. Huang, X.-L. Wang, P. P. Rohde, Y.-H. Luo, Y.-W. Zhao,
C. Liu, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Demonstration
of topological data analysis on a quantum processor,” Optica,
vol. 5, no. 2, pp. 193–198, 2018. [Online]. Available: https:
//www.osapublishing.org/optica/abstract.cfm?uri=optica-5-2-193

[9] J. Liu, K. H. Lim, K. L. Wood, W. Huang, C. Guo, and H.-L. Huang,
“Hybrid quantum-classical convolutional neural networks,” arXiv
preprint, 2019. [Online]. Available: https://arxiv.org/abs/1911.02998

[10] H.-L. Huang, Y.-W. Zhao, T. Li, F.-G. Li, Y.-T. Du, X.-Q. Fu,
S. Zhang, X. Wang, and W.-S. Bao, “Homomorphic encryption
experiments on ibm’s cloud quantum computing platform,” Frontiers
of Physics, vol. 12, no. 1, p. 120305, 2017. [Online]. Available:
https://link.springer.com/article/10.1007/s11467-016-0643-9

[11] H.-L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li, F. Liang,
J. Lin, Y. Xu et al., “Experimental quantum generative adversarial
networks for image generation,” arXiv:2010.06201, 2020.

[12] H.-L. Huang, A. K. Goswami, W.-S. Bao, and P. K. Panigrahi, “Demon-
stration of essentiality of entanglement in a deutsch-like quantum
algorithm,” SCIENCE CHINA Physics, Mechanics & Astronomy, vol. 61,
no. 060311, 2018.

[13] H.-L. Huang, M. Narożniak, F. Liang, Y. Zhao, A. D. Castellano,
M. Gong, Y. Wu, S. Wang, J. Lin, Y. Xu et al., “Emulating quantum
teleportation of a majorana zero mode qubit,” Physical Review Letters,
vol. 126, no. 9, p. 090502, 2021.

[14] D. R. Simon, “On the power of quantum computation,” SIAM J.
Comput., vol. 26, no. 5, pp. 1474–1483, July 1997. [Online]. Available:
https://doi.org/10.1137/S0097539796298637

[15] I. Kerenidis and A. Prakash, “Quantum recommendation systems,”
in 8th Innovations Theoretical Computer Sci. Conf., ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 67, Berkeley,
CA, USA, Jan. 2017, pp. 49:1–49:21. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2017/8154

[16] E. Tang, “A quantum-inspired classical algorithm for recommendation
systems,” in Proc. 51st Annual ACM SIGACT Symposium Theory
Computing, vol. 25. New York, NY, USA: ACM, June 2019, pp.
217–228. [Online]. Available: https://doi.org/10.1145/3313276.3316310

[17] A. Frieze, R. Kannan, and S. Vempala, “Fast monte-carlo algorithms
for finding low-rank approximations,” J. Assoc. Comput. Mach.,
vol. 51, no. 6, pp. 1025–1041, Nov. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1039488.1039494

[18] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal
component analysis,” Nat. Phys., vol. 10, no. 9, p. 631–633, July 2014.
[Online]. Available: https://doi.org/10.1038/nphys3029

https://ieeexplore.ieee.org/document/365700
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.250504
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.250504
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.050503
http://doi.acm.org/10.1145/237814.237866
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062308
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-2-193
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-2-193
https://arxiv.org/abs/1911.02998
https://link.springer.com/article/10.1007/s11467-016-0643-9
https://doi.org/10.1137/S0097539796298637
http://drops.dagstuhl.de/opus/volltexte/2017/8154
http://drops.dagstuhl.de/opus/volltexte/2017/8154
https://doi.org/10.1145/3313276.3316310
http://doi.acm.org/10.1145/1039488.1039494
https://doi.org/10.1038/nphys3029

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 13

[19] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms for
supervised and unsupervised machine learning,” arXiv preprint, Nov.
2013. [Online]. Available: https://arxiv.org/abs/1307.0411

[20] E. Tang, “Quantum-inspired classical algorithms for principal
component analysis and supervised clustering,” arXiv preprint,
Oct. 2018. [Online]. Available: http://arxiv.org/abs/1811.00414

[21] A. Gilyén, S. Lloyd, and E. Tang, “Quantum-inspired low-rank
stochastic regression with logarithmic dependence on the dimension,”
arXiv preprint, Nov. 2018. [Online]. Available: http://arxiv.org/abs/
1811.04909

[22] N.-H. Chia, H.-H. Lin, and C. Wang, “Quantum-inspired sublinear
classical algorithms for solving low-rank linear systems,” arXiv preprint,
Nov. 2018. [Online]. Available: https://arxiv.org/abs/1811.04852

[23] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear
systems of equations,” Phys. Rev. Lett., vol. 103, no. 15, p. 150502, Oct.
2009.

[24] J. M. Arrazola, A. Delgado, B. R. Bardhan, and S. Lloyd, “Quantum-
inspired algorithms in practice,” Quantum, vol. 4, p. 307, Aug. 2020.
[Online]. Available: https://doi.org/10.22331/q-2020-08-13-307

[25] P. J. Phillips, “Support vector machines applied to face recognition,”
in Advances Neural Inform. Processing Systems, vol. 48, no. 6241,
Gaithersburg, MD, USA, Nov. 1999, pp. 803–809. [Online]. Available:
https://doi.org/10.6028/nist.ir.6241

[26] J. A. K. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural Process. Lett., vol. 9, no. 3, pp.
293–300, June 1999. [Online]. Available: https://doi.org/10.1023/A:
1018628609742

[27] J. Platt, “Sequential Minimal Optimization: A Fast Algorithm
for Training Support Vector Machines,” Apr. 1998. [Online].
Available: https://www.microsoft.com/en-us/research/publication/
sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/

[28] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and
V. Vapnik, “Parallel Support Vector Machines: The Cascade
SVM,” in Advances in Neural Information Processing Systems
17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. MIT Press,
2005, pp. 521–528. [Online]. Available: http://papers.nips.cc/paper/
2608-parallel-support-vector-machines-the-cascade-svm.pdf

[29] J. Xu, Y. Y. Tang, B. Zou, Z. Xu, L. Li, Y. Lu, and B. Zhang, “The
generalization ability of svm classification based on markov sampling,”
IEEE transactions on cybernetics, vol. 45, no. 6, pp. 1169–1179,
2014. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
6881630

[30] B. Zou, C. Xu, Y. Lu, Y. Y. Tang, J. Xu, and X. You, “𝑘-times
markov sampling for svmc,” IEEE transactions on neural networks
and learning systems, vol. 29, no. 4, pp. 1328–1341, 2017. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/7993056/

[31] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector
machine for big data classification,” Phys. Rev. Lett., vol. 113, p.
130503, Sept. 2014. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevLett.113.130503

[32] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM review, vol. 59, no. 1, pp.
65–98, 2017. [Online]. Available: https://doi.org/10.1137/141000671

[33] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

[34] D. Achlioptas, F. McSherry, and B. Schölkopf, “Sampling techniques
for kernel methods,” in Advances Neural Inform. Processing
Systems, T. G. Dietterich, S. Becker, and Z. Ghahramani,
Eds. Vancouver, British Columbia, Canada: MIT Press, Dec.
2002, pp. 335–342. [Online]. Available: https://papers.nips.cc/paper/
2072-sampling-techniques-for-kernel-methods

[35] L. Wang, Support Vector Machines for Signal Processing, 1st ed. The
Netherlands: Springer, Berlin, Heidelberg, 2005, ch. 15, pp. 321–342.
[Online]. Available: https://doi.org/10.1007/b95439

[36] L. Wang, Multiple Model Estimation for Nonlinear Classification,
1st ed. The Netherlands: Springer, Berlin, Heidelberg, 2005, ch. 2,
pp. 49–76. [Online]. Available: https://doi.org/10.1007/b95439

[37] I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo, “Quantum
Supremacy Is Both Closer and Farther than It Appears,” arXiv preprint,
Sep. 2018. [Online]. Available: http://arxiv.org/abs/1807.10749

Chen Ding received the B.S. degree from University
of Science and Technology of China, Hefei, China,
in 2019.

He is currently a graduate student in CAS Centre
for Excellence and Synergetic Innovation Centre in
Quantum Information and Quantum Physics. His
current research interests include quantum machine
learning, quantum-inspired algorithm designing and
variational quantum computing.

Tian-Yi Bao received the B.S. degree from Univer-
sity of Michigan, Ann Arbor, USA, in 2020.

She is currently a graduate student in Oxford
University. Her current research interests include the
machine learning and human-computer interaction.

He-Liang Huang received the Ph.D. degree from
the University of Science and Technology of China,
Hefei, China, in 2018.

He is currently an Assistant Professor of Henan
Key Laboratory of Quantum Information and Cryp-
tography, Zhengzhou, China, and the Postdoctoral
Fellow of University of Science and Technology of
China, Hefei, China. He has authored or co-authored
over 30 papers in refereed international journals and
co-authored 1 book. His current research interests
include secure cloud quantum computing, big data

quantum computing, and the physical implementation of quantum computing
architectures, in particular using linear optical and superconducting systems.

https://arxiv.org/abs/1307.0411
http://arxiv.org/abs/1811.00414
http://arxiv.org/abs/1811.04909
http://arxiv.org/abs/1811.04909
https://arxiv.org/abs/1811.04852
https://doi.org/10.22331/q-2020-08-13-307
https://doi.org/10.6028/nist.ir.6241
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1023/A:1018628609742
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
http://papers.nips.cc/paper/2608-parallel-support-vector-machines-the-cascade-svm.pdf
http://papers.nips.cc/paper/2608-parallel-support-vector-machines-the-cascade-svm.pdf
https://ieeexplore.ieee.org/abstract/document/6881630
https://ieeexplore.ieee.org/abstract/document/6881630
https://ieeexplore.ieee.org/abstract/document/7993056/
https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
https://doi.org/10.1137/141000671
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://papers.nips.cc/paper/2072-sampling-techniques-for-kernel-methods
https://papers.nips.cc/paper/2072-sampling-techniques-for-kernel-methods
https://doi.org/10.1007/b95439
https://doi.org/10.1007/b95439
http://arxiv.org/abs/1807.10749

	I Introduction
	II PRELIMINARY
	II-A Notations
	II-B Least squares SVM
	II-C The sampling technique
	II-D The preliminary algorithms
	II-D1 Trace inner product estimation
	II-D2 Rejection sampling

	III Quantum-inspired SVM Algorithm
	IV Accuracy
	IV-A Proof of E24 x
	IV-B Proof of E14 x

	V Complexity
	V-A Sampling of columns and rows
	V-B The spectral decomposition
	V-C Calculation of
	V-D Calculation of xTX
	V-D1 Query of R
	V-D2 Query of
	V-D3 Calculation of xTX

	VI Experiments
	VI-A Experiment I: Comparison with LIBSVM
	VI-B Experiment II: Discussion on algorithm parameters

	VII Discussion
	VII-A The cause of exponential speedup
	VII-B Improving sampling for dot product
	VII-C LS-SVM with non-linear kernels
	VII-D General LS-SVM

	VIII Conclusion
	Appendix A: Proof of Theorems in IV
	A-A Proof of Theorem 3
	A-B Proof of Theorem 4
	A-C Proof of Theorem 6

	Appendix B: The construction method of datasets
	Appendix C: The effectiveness of Alg. 4
	References
	Biographies
	Chen Ding
	Tian-Yi Bao
	He-Liang Huang

