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Abstract—In unsupervised domain adaptation (UDA), a clas-
sifier for the target domain is trained with massive true-
label data from the source domain and unlabeled data from
the target domain. However, collecting true-label data in the
source domain can be expensive and sometimes impractical.
Compared to the true label, a complementary label specifies a
class that a pattern does not belong to, and hence collecting
complementary labels would be less laborious than collecting
true labels. In this paper, we propose a novel setting where the
source domain is composed of complementary-label data, and
a theoretical bound of this setting is provided. We consider
two cases of this setting: one is that the source domain only
contains complementary-label data (completely complementary
unsupervised domain adaptation, CC-UDA), and the other is that
the source domain has plenty of complementary-label data and a
small amount of true-label data (partly complementary unsuper-
vised domain adaptation, PC-UDA). To this end, a complementary
label adversarial network (CLARINET) is proposed to solve CC-
UDA and PC-UDA problems. CLARINET maintains two deep
networks simultaneously, with one focusing on classifying the
complementary-label source data and the other taking care
of the source-to-target distributional adaptation. Experiments
show that CLARINET significantly outperforms a series of
competent baselines on handwritten digits recognition and objects
recognition tasks.

Index Terms—Transfer Learning; Domain Adaptation; Deep
Learning; Complementary Labels

I. INTRODUCTION

DOMAIN Adaptation (DA) aims to train a target-domain
classifier with data in source and target domains [1],

[2], [3], [4]. Based on the availability of data in the target
domain (e.g., fully-labeled, partially-labeled and unlabeled),
DA is divided into three categories: supervised DA [5], [6],
[7], semi-supervised DA [8], [9], [10] and unsupervised DA
(UDA) [11], [12], [13]. In practical applications, UDA is more
challenging and promising than the other two as the labeled
target domain data are not needed [14], [15], [16].

UDA methods train a target-domain classifier with massive
true-label data from the source domain (true-label source
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Fig. 1: Complementary-label based UDA. The red line denotes that UDA
methods transfer knowledge from Ds (true-label source data) to Dt (unla-
beled target data). However, acquiring true-label source data is costly and
unaffordable (black dash line, xs → Ds, xs means unlabeled source data).
This brings complementary-label based UDA, namely transferring knowledge
from Ds (complementary-label source data) to Dt. It is much less costly to
collect complementary-label source data (black line, required by our setting)
than collecting the true-label one (black dash line, required by UDA). To
handle complementary-label based UDA, a weak solution is a two-step
approach (green dash line), which sequentially combines complementary-label
learning methods (Ds → D̂s, label correction) and existing UDA methods
(D̂s → Dt). This paper proposes a one-step approach called complementary
label adversarial network (CLARINET, green line, Ds → Dt directly).

data) and unlabeled data from the target domain (unla-
beled target data). Existing works in the literature can be
roughly categorised into the following three groups: integral-
probability-metrics based UDA [17], [18]; adversarial-training
based UDA [19], [20]; and causality-based UDA [21], [22].
Since adversarial-training based UDA methods extract better
domain-invariant representations via deep networks, they usu-
ally have good target-domain accuracy [23].

However, the success of UDA still highly relies on the scale
of true-label source data (black dash line in Figure 1). Namely,
the target-domain accuracy of a UDA method, e.g., conditional
domain adversarial network (CDAN) [20], decays when the
scale of true-label source data decreases and we prove this
phenomenon in the experiment section. Hence, massive true-
label source data are inevitably required by UDA methods,
which is very expensive and even prohibitive.

While determining the correct label from many candidates
is laborious, choosing one of the incorrect labels (i.e., com-
plementary labels), e.g., labeling a cat as “Not Monkey”
(as shown in Figure 2), would be much easier and quicker,
thus less costly, especially when we have many candidates
[24]. Comparing with picking out the true label from many
candidates, judging the correctness of a label randomly given
by the system is much easier. Besides, it is impossible to find
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crowd-workers who have the knowledge of all classes in some
areas (e.g., translation), and it is hard to collect true labels in
traditional way in this case. However, we can choose a class
randomly, and then assign the unlabeled sample to the expert
of that randomly chosen class. It would be feasible to judge
the correctness of the chosen label.

In addition to reducing costs, complementary labels also
could help ensure data privacy. Even when we can collect true
labels, it is sometimes better to convert them to complementary
labels on purpose. This way, when companies suffer from
data leakage, they won’t reveal the true label of customers. In
addition, such business strategy might make customers who do
not want their data to be saved in databases more comfortable.

This brings us a novel setting, complementary-label based
UDA, which aims to transfer knowledge from complementary-
label source data to unlabeled target data (Figure 1). Compared
to ordinary UDA, we can greatly save the labeling cost by
annotating complementary labels in the source domain rather
than annotating true labels [24], [25]. Please note, existing
UDA methods cannot handle the complementary-label based
UDA, as they require source data with complete true labels
[12], [13] or at least 20% true-label source data [26], [27]. 1

In the previous work [28], we consider using completely
complementary-label data in the source domain, while actually
we could also get a small amount of true labels when collecting
complementary labels [24]. Therefore, the previous work was
flawed as it did not make good use of the existing true-
label data. Furthermore, experiments were conducted only on
some digit datasets and a thorough learning bound was not
provided. Aiming at these defects, in this work, we consider a
generalized and completed version of the complementary-label
based UDA problem setting.

A straightforward but weak solution to complementary-
label based UDA is a two-step approach, which sequentially
combines complementary-label learning methods and existing
UDA methods (green dash line in Figure 1)2. Complementary-
label learning methods are used to assign pseudo labels for
complementary-label source data. Then, we can train a target-
domain classifier with pseudo-label source data and unlabeled
target data using existing UDA methods. Nevertheless, pseudo-
label source data contain noise, which may cause poor domain-
adaptation performance of this two-step approach [26].

Therefore, we propose a powerful one-step solution,
complementary label adversarial network (CLARINET). It
maintains two deep networks trained by adversarial way simul-
taneously, where one can accurately classify complementary-
label source data, and the other can discriminate source and
target domains. Since Long et al. [20] and Song et al. [29] have
shown that the multimodal structures of distributions can only
be captured sufficiently by the cross-covariance dependency
between the features and classes (i.e., true labels), we set the
input of domain discriminator D as the outer product of feature

1In [26], [27], they consider the case where the sample in the source domain
is noisy. With only 20% true labels, some of the baseline models achieve very
low target domain accuracy. Therefore, Liu et al. believe that at least 20%
true-label source data are needed to realize domain adaptation.

2We implement this two-step approach and take it as a baseline.

representation (e.g., gs in Figure 3) and scattered classifier
prediction (e.g., T (fs) in Figure 3).

Due to the nature of complementary-label classification, the
predicted probability of each class (i.e., each element of fs,
Figure 3) is relatively close. According to [29], this kind of
predicted probabilities could not provide sufficient information
to capture the multimodal structure of distributions. To fix it,
we add a sharpening function T to make the predicted prob-
abilities more scattered (i.e., T (fs), Figure 3) than previous
ones (i.e., fs, Figure 3). By doing so, the scattered classifier
predictions can better indicate their choice. In this way, we
can take full advantage of classifier predictions and effectively
align distributions of two domains. Our ablation study (see
Table III) verifies that the sharpening function T indeed helps
improve the target-domain accuracy.

We conduct experiments on 7 complementary-label based
UDA tasks and compare CLARINET with a series of com-
petent baselines. Empirical results demonstrated that CLAR-
INET effectively transfers knowledge from complementary-
label source data to unlabeled target data and is superior to
all baselines. We also show that the target-domain accuracy
of CLARINET will increase if a small amount of true-label
source data are available. To make up for the defects of
previous conference paper [28], the main contributions of this
paper are summarized as follows.

1) We present a generalized version of the complementary-
label based UDA. This paper considers two cases of
complementary-label based UDA: one is that the source
domain only contains complementary-label data (com-
pletely complementary unsupervised domain adaptation,
CC-UDA), and the other is that the source domain also
contains a small amount of true-label data (partly com-
plementary unsupervised domain adaptation, PC-UDA).

2) We provide a thorough theoretical analysis of the ex-
pected target-domain risk of our approach, presenting a
learning bound of complementary-label based UDA.

3) Apart from the handwritten digit datasets, we also con-
duct experiments on more complex image datasets, prov-
ing the applicability of complementary-label based UDA.

This paper is organized as follows. Section II reviews
the works related to domain adaptation, complementary-label
learning, and low-cost unsupervised domain adaptation. Sec-
tion III introduces the problem setting and proves a learning
bound of this setting. Section IV introduces a straightforward
but weak two-step approach to complementary-label based
UDA. The proposed powerful one-step solution is shown in
Section V. Experimental results and analyses are provided in
Section VI. Finally, Section VII concludes this paper.

II. RELATED WORKS

In this section, we discuss previous works that are most
related to our work, and highlight our differences from them.
We mainly review some related works about domain adapta-
tion, complementary-label learning and low-cost unsupervised
domain adaptation.
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True Label “Monkey”            “Cat” “Dog”

Complementary Label “Not Dog”           “Not Monkey” “Not Cat”

Fig. 2: True label (top) versus complementary label (bottom).

A. Domain Adaptation

Domain adaptation generalizes a learner across different
domains by matching the distributions of source and target do-
mains. It has wide applications in computer vision [30], [31],
[32] and natural language processing [33], [34], etc. Previous
domain adaptation methods in the shallow regime either try
to bridge the source and target domains by learning invariant
feature representations or estimating instance importance using
labeled source data and unlabeled target data [35], [36].
Later, it is confirmed that deep learning methods formed by
the composition of multiple non-linear transformations yield
abstract and ultimately useful representations [37]. Besides,
the learned deep representations to some extent are general
and are transferable to similar tasks [38]. Hence, deep neural
networks have been explored for domain adaptation.

Concurrently, multiple methods of matching the feature
distributions in the source and the target domains have been
proposed for unsupervised domain adaptation. The first cate-
gory learns domain invariant features by minimizing a distance
between distributions, such as maximum mean discrepancy
(MMD) [39]. In deep adaptation network (DAN) [17], Long
et al. minimize the marginal distributions of two domains by
multi-kernel MMD (MK-MMD) metric. An alternative way
of learning domain invariant features in UDA is inspired by
the generative adversarial networks (GANs). By confusing a
domain classifier (or discriminator), the deep networks can
explore non-discriminative representations. The adversarial-
training based UDA methods always try to play a two-player
minimax game. Domain-adversarial neural network (DANN)
[40] employs a gradient reversal layer to realize the minimax
optimation. In [20], they propose CDAN, which conditions the
models on discriminative information conveyed in the classi-
fier predictions. Some works study the UDA problem from a
causal point of view where they consider the label Y is the
cause for feature representation X . In [21], Gong et al. aim to
extract conditional transferable components whose conditional
distribution is invariant after proper transformations.

However, the aforementioned methods all based on the true-
label source data, which require high labeling costs. In our
work, we propose a new setting by using complementary-
label source data instead of true-label source data, which
significantly saves the labeling cost.

B. Complementary-label Learning

Complementary-label learning (shown in Figure 2) is one
type of weak supervision learning approaches, which is first
proposed by Ishida et al. [24]. They give theoretical analysis

with a statistical consistency guarantee to show classification
risk can be recovered only from complementary-label data.
Nevertheless, they require the complementary label must be
chosen in an unbiased way and allow only one-versus-all and
pairwise comparison multi-class loss functions with certain
non-convex binary losses. Namely softmax cross-entropy loss,
which is the most popular loss used in deep learning, could
not be used to solve the problem.

Later, Yu et al. [25] extend the problem setting to where
complementary label could be chosen in the biased way with
the assumption that a small set of easily distinguishable true-
label data are available in practice. In their point of view,
due to humans are biased towards their own experience, it
is unrealistic to guarantee the complementary label is chosen
in an unbiased way. For example, if an annotator is more
familiar with one class than with another, she is more likely to
employ the more familiar one as a complementary label. They
solve the problem by employing the forward loss correction
technique to adjust the learning objective, but limiting the
loss function to softmax cross-entropy loss. They theoretically
ensure that the classifier learned with complementary labels
converges to the optimal one learned with true labels.

Recently, Ishida et al. propose a new unbiased risk estimator
[41] under the unbiased label chosen assumption. They make
any loss functions available for use and have no implicit
assumptions on the classifier, namely the estimator could be
used for arbitrary models and losses, including softmax cross-
entropy loss. They further investigate correction schemes to
make complementary label learning practical and demonstrate
the performance. Thus in our paper, we take advantage of this
estimator for the source domain classification and generalize
it to the unsupervised domain adaptation field.

C. Low-cost UDA

The UDA with low cost source data has recently attracted
much attention. For instance, in [26], they consider the situa-
tion where the labeled data in the source domain come from
amateur annotators or the Internet [42], [43]. As in the wild,
acquiring a large amount of perfectly clean labeled data in the
source domain is high-cost and sometimes impossible. They
name the problem as wildly unsupervised domain adaptation
(WUDA), which aims to transfer knowledge from noisy la-
beled data in the source domain to unlabeled target data. They
show that WUDA ruins all UDA methods if taking no care
of label noise in the source domain and propose a Butterfly
framework, a powerful and efficient solution to WUDA.

Long et al. consider the weakly-supervised domain adapta-
tion, where the source domain with noises in labels, features,
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or both could be tolerated [27]. Label noise refers to incorrect
labels of images due to errors in manual annotation, and
feature noise refers to low-quality pixels of images, which may
come from blur, overlap, occlusion, or corruption etc. They
present a transferable curriculum learning (TCL) approach,
extending from curriculum learning and adversarial learning.
The TCL model aims to be robust to both sample noises and
distribution shift by employing a curriculum which could tell
whether a sample is easy and transferable.

In [28], we consider another way to save the labeling
cost by using completely complementary-label data in the
source domain and prove that distributional adaptation can be
effectively realized from complementary-label source data to
unlabeled target data. In this paper, we consider two cases
of using complementary-label data in the source domain and
prove that we could use a small amount of true-label data
to improve the transfer result. Besides, as shown in [24],
we can obtain true-label data and complementary-label data
simultaneously, so that getting a small amount of true-label
data is guaranteed to be low-cost. Furthermore, we provide an
analysis of the expected target-domain risk of our approach. In
the following sections, we will introduce the complementary-
label based UDA and explain how to address such tasks.

III. COMPLEMENTARY-LABEL BASED UDA

This section presents a novel problem setting,
complementary-label based UDA, and prove a learning
bound for it. Then, we show its benefits for DA field

A. Problem Setting

In complementary-label based UDA, we aim to realize dis-
tributional adaptation from complementary-label source data
to unlabeled target data. We first consider the situation where
there are only complementary-label data in the source domain,
namely completely complementary UDA (CC-UDA). Let X ⊂
Rd be a feature (input) space and Y := {y1, ...,yc, ...,yK}
be a label (output) space, where yc is the one-hot vector for
label c. A domain is defined as follows.

Definition 1 (Domains for CC-UDA). Given random vari-
ables Xs, Xt ∈ X , Ys, Y s, Yt ∈ Y , the source and target
domains are joint distributions P (Xs, Y s) and P (Xt, Yt),
where the joint distributions P (Xs, Ys) 6= P (Xt, Yt) and
P (Y s = yc|Ys = yc) = 0 for all yc ∈ Y .

Then, we propose CC-UDA problem as follows.

Problem 1 (CC-UDA). Given independent and identically
distributed (i.i.d.) labeled samples Ds = {(xis,yis)}

ns
i=1 drawn

from the source domain P (Xs, Y s) and i.i.d. unlabeled sam-
ples Dt = {xit}

nt
i=1 drawn from the target marginal distri-

bution P (Xt), the aim of CC-UDA is to train a classifier
Ft : X → Y with Ds and Dt such that Ft can accurately
classify target data drawn from P (Xt).

It is clear that it is impossible to design a suitable learning
procedure without any assumptions on P (Xs, Y s). In this

paper, we use the assumption for unbiased complementary-
label learning proposed by [24], [41]:

P (Y s = yk|Xs) =
1

K − 1

K∑
c=1,c 6=k

P (Ys = yc|Xs), (1)

for all k, c ∈ {1, ...,K} and c 6= k. This unbiased assump-
tion indicates that the selection of complementary labels for
samples is with equal probability.

Ishida et al. [24] propose an efficient way to collect labels
through crowdsourcing: we choose one of the classes randomly
and ask crowd-workers whether a pattern belongs to the chosen
class or not. Then the chosen class is treated as true label if
the answer is yes; otherwise, the chosen class is regarded as
complementary label. Such a yes/no question is much easier
and quicker than selecting the correct class from the list of all
candidate classes, which sometimes could even be impossible.
In addition, we could guarantee that the data gotten through
this way are under unbiased assumption in Eq. (1).

As we can obtain true-label data and complementary-label
data simultaneously, we also consider the problem that the
source domain contains a few true-label data. We name this
problem as partly complementary UDA (PC-UDA).

Problem 2 (PC-UDA). Given i.i.d labeled samples Ds =
{(xis,yis)}

ns
i=1 drawn from the domain P (Xs, Y s), Ds =

{(xis,yis)}
ns+ns

i=ns+1 drawn from the domain P (Xs, Ys), and i.i.d
unlabeled samples Dt = {xit}

nt
i=1 drawn from the target

marginal distribution P (Xt), the aim is to find a target
classifier Ft : X → Y such that Ft classifies target samples
into the correct classes.

It is actually a more common situation to have a small
amount of true-label data. If we leverage both kinds of labeled
data properly, we could obtain a more accurate classifier.
Ishida et al. [24] have demonstrated the usefulness of com-
bining true-label and complementary-label data in classifi-
cation problem. We will further show that in unsupervised
domain adaptation field, we could also use both true-label and
complementary-label source data to realize knowledge transfer
and utilize the true-label data to improve the result.

B. Learning Bound of complementary-label based UDA
A learning bound of complementary-label based UDA is

presented in this subsection. We could prove that we can limit
the risk in the target domain. Practitioner may safely skip it.

If given a feature transformation:
G : X → XG := G(X )

x→ xG := G(x),
(2)

then the induced distributions related to PXs
and PXt

are
G#PXs := P (G(Xs));

G#PXt := P (G(Xt)).
(3)

Following the notations in [44], consider a multi-class
classification task with a hypothesis spaceHG of the classifiers

F : XG → Y
x→ [C1(x), ..., CK(x)]T .

(4)

Let
` : RK × RK → R≥0

(y, ỹ)→ `(y, ỹ),
(5)
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be the loss function. For convenience, we also require `
satisfying the following conditions in theoretical part:
1. ` is symmetric and satisfies triangle inequality;
2. `(y, ỹ) = 0 iff y = ỹ;
3. `(y, ỹ) ≡ 1 if y 6= ỹ and y, ỹ are one-hot vectors.

We can check many losses satisfying the above conditions,
such as 0-1 loss 1y 6=ỹ and `2 loss 1

2‖y − ỹ‖22. The comple-
mentary risk for F ◦G with respect to ` over P (Xs, Y s) is

Ls(F ◦G) = E`(F ◦G(Xs), Y s).

The risks for the decision function F ◦ G with respect to
loss ` over implicit distribution P (Xs, Ys), P (Xt, Yt) are:

Ls(F ◦G) = E`(F ◦G(Xs), Ys),

Lt(F ◦G) = E`(F ◦G(Xt), Yt).

In this paper, we propose a tighter distance named tensor
discrepancy distance. The tensor discrepancy distance can
future math the pseudo conditional distributions.

We consider the following tensor mapping:
⊗F : XG → XG ⊗ Yt

xG → xG ⊗ F (xG).
(6)

Then we induce two important distributions:
⊗F#PXs

:= P (⊗F (G(Xs)));

⊗F#PXt
:= P (⊗F (G(Xt))).

(7)

Using HG, we reconstruct a new hypothetical set:
∆F,G := {δF : XG ⊗ Yt → R : F ∈ HG}, (8)

where δF (xG⊗y) = |⊗F (xG)−⊗F (xG)|. Then the distance
between ⊗F#PXs and ⊗F#PXt is:

d`∆F,G
(⊗F#PXs

,⊗F#PXt
)

= sup
δ∈∆F,G

∣∣∣ E
z∼⊗F #PXs

sgn ◦ δ(z)− E
z∼⊗F #PXt

sgn ◦ δ(z)
∣∣∣,
(9)

where sgn is the sign function.
It is easy to prove that under the conditions 1-3 for loss `

and for any F ∈ HG, we have

d`∆F,G
(⊗F#PXs ,⊗F#PXt) ≤ d`HG

(G#PXs , G#PXt), (10)

where d`HG
is the distribution discrepancy defined in [45], [46].

Then, we introduce our main theorem as follows.

Theorem 1. Given a loss function ` satisfying conditions 1-3
and a hypothesis HG ⊂ {F : XG → Y}, then under unbiased
assumption, for any F ∈ HG, we have
Lt(F ◦G) ≤ Ls(F ◦G) + Λ + d`∆F,G

(⊗F#PXs
,⊗F#PXt

),

where Ls(F ◦ G) :=
∑K
k=1

∫
X `(F ◦ G(x), k)dPXs

− (K −
1)Ls(F ◦G), PXs

, PXt
are source and target marginal distri-

butions, Λ = minF∈HG
Rs(F ◦G) +Rt(F ◦G).

Proof. Firstly, we prove that Ls(F ◦ G) = Ls(F ◦ G). To
prove it, we investigate the connection between Ls(F ◦ G)
and Ls(F ◦ G) under unbiased assumption in Eq. (1). Given
K × K matrix Q whose diagonal elements are 0 and other
elements are 1/K, we represent the unbiased assumption by

η = Qη, (11)

where η = [P (Y s = y1|Xs), ..., P (Y s = yK |Xs)]
T and

η = [P (Ys = y1|Xs), ..., P (Ys = yK |Xs)]
T . Note that Q has

inverse matrix Q−1 whose diagonal elements are −(K − 2)
and other elements are 1. Thus, we have that

Q−1η = η. (12)

According to Eq. (12), we have P (Ys = yk|Xs) = 1 −
(K − 1)P (Y s = yk|Xs), which implies that

Ls(F ◦G) =

K∑
k=1

∫
X
`(F ◦G(x), k)dPXs

− (K − 1)Ls(F ◦G).

(13)

Hence, Ls(F ◦ G) = Ls(F ◦ G). The empirical form of Eq.
(13) is known as complementary-label loss (see Eq. (20)).

Next we will prove that
Lt(F ◦G)− Ls(F ◦G) ≤ Λ + d`∆F,G

(⊗F #PXs ,⊗F #PXt).

As if it is true, combined with Ls(F ◦G) = Ls(F ◦G), we
could easily prove the theorem. It is clearly that

Lt(F ◦G)− Ls(F ◦G)

=

∫
X×Yt

`(F ◦G(x),y)dPXtYt −
∫
X×Ys

`(F ◦G(x),y)dPXsYs

≤ Lt(F̃ ◦G) +

∫
X×Yt

`(F ◦G(x), F̃ ◦G(x))dPXtYt

+ Ls(F̃ ◦G)−
∫
X×Ys

`(F ◦G(x), F̃ ◦G(x))dPXsYs ,

(14)

where F̃ is any function from HG. According to conditions
1-3, we have that

E
z∼⊗F #PXs

sgn ◦ δF̃ (z) =

∫
sgn ◦ δF̃ (z)d⊗F# PXs

=

∫
X
|F ◦G(x)− F̃ ◦G(x)|dPXs

=

∫
X
`(F ◦G(x), F̃ ◦G(x))dPXs

,

(15)
similarly,

E
z∼⊗F #PXt

sgn ◦ δF̃ (z) =

∫
X
`(F ◦G(x), F̃ ◦G(x))dPXt ,

(16)
hence, according to the definition of Eq. (9), we have

d`∆F,G
(⊗F#PXs ,⊗F#PXt)

= sup
F̃ ,G∈∆F,G

∣∣∣ ∫
X
`(F ◦G(x), F̃ ◦G(x))dPXs

−
∫
X
`(F ◦G(x), F̃ ◦G(x))dPXt

∣∣∣.
(17)

Combining Eq. (14) and Eq. (17), we have
Lt(F ◦G)− Ls(F ◦G)

≤ min(Lt(F̃ ◦G) + Ls(F̃ ◦G)) + d`∆F,G
(⊗F #PXs ,⊗F #PXt)

= Λ + d`∆F,G
(⊗F #PXs ,⊗F #PXt).

(18)
Hence, we prove this theorem.

C. Benefits for DA Field
Collecting true-label data is always expensive in the real

world. Thus, learning from less expensive data [47], [48], [49],
[50] has been extensively studied in machine learning field,
including label-noise leaning [51], [52], [53], pairwise/triple-
wise constraints learning [54], [55], [56], positive-unlabeled
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learning [57], [58], [59], complementary-label learning [24],
[41], [25] and so on. Among all these research directions,
obtaining complementary labels is a cost-effective option. As
described in the previous works mentioned above, compared
with choosing the true class out of many candidate classes
precisely, collecting complementary labels is obviously much
easier and less costly. In addition, a classifier trained with
complementary-label data is equivalent to a classifier trained
with true-label data as shown in [41].

Actually in the field of domain adaptation, the high cost of
true-label data is also an important issue. At present, the suc-
cess of DA still highly relies on the scale of true-label source
data, which is a critical bottleneck. Under low cost limitation,
it is unrealistic to obtain enough true-label source data and
thus cannot achieve a good distribution adaptation result. For
the same cost, we can get multiple times more complementary-
label data than the true-label data. In addition, the adaptation
scenario is limited to some commonly used datasets, e.g.,
handwritten digit datasets, as they have sufficient true labels
to support distributional adaptation. This fact makes it difficult
to generalize domain adaptation to more real-world scenarios
where it is needed. Thus if we can reduce the labeling cost in
the source domain, for example, by using complementary-label
data to replace true-label data (complementary-label based
UDA), we can promote domain adaptation to more fields.

Due to existing UDA methods require at least 20% true-
label source data [26], they cannot handle complementary-
label based UDA problem. To address the problem, we intro-
duce a two-step approach, straightforward but weak solution,
and then propose a powerful one-step solution, CLARINET.

IV. TWO-STEP APPROACH

To solve the problem that existing UDA methods cannot
be applied to complementary-label based UDA problems di-
rectly, a straightforward way is to apply a two-step strategy.
Namely, we could sequentially combine complementary-label
learning methods and existing UDA methods. Algorithm 1
presents how we realize the two-step approach for CC-UDA
tasks specifically. In the two-step approach, we first use the
complementary-label learning algorithm to train a classifier
on the complementary-label source data (line 1). Then, we
take advantage of the classifier to assign pseudo labels for
source domain data (line 2). Finally, we train the target-domain
classifier with pseudo-label source data and unlabeled target
data using existing UDA methods (line 3). In this way, we
can transfer knowledge from the newly formed pseudo-label
source data to unlabeled target data. As for PC-UDA tasks, we
could combine the pseudo-label source data gotten following
the first two steps and existing true-label source data together
to train the target-domain classifier.

Nevertheless, the pseudo-label source data contain noise,
as complementary-label learning algorithms cannot be trained
to produce a completely accurate classifier. As the noise will
bring poor domain-adaptation performance [26], the two-step
approach is a suboptimal choice. To solve this problem, we
consider implementing both complementary-label learning and
unsupervised domain adaptation in a network. In this way, the

Algorithm 1 Two-step Approach for CC-UDA Tasks
Input: Ds = {(xi

s,y
i
s)}ns

i=1, Dt = {xi
t}nt

i=1.
Output: the target-domain classifier.

1: Train a classifier C using Ds = {(xi
s,y

i
s)}ns

i=1 based on the
complementary-label learning algorithm.

2: Use C to pseudo-label Ds = {xi
s}ns

i=1, namely generate pseudo-
label source data D̂s = {(xi

s, ŷ
i
s)}n̂s

i=1.
3: Apply normal UDA methods on D̂s = {(xi

s, ŷ
i
s)}n̂s

i=1 and Dt =
{xi

t}nt
i=1 to train a target-domain classifier.

network will always try to classify source domain data accu-
rately during the adaptation procedure. Besides, we consider
using entropy conditioning to make the transfer process mainly
based on the classification results with high confidence, which
can greatly eliminates the noise effect compared with the two-
step approach. Therefore, we propose a powerful one-step
solution to complementary-label based UDA, CLARINET.

V. CLARINET: POWERFUL ONE-STEP APPROACH

The proposed CLARINET (as shown in Figure 3) realizes
distributional adaptation in an adversarial way, which mainly
consists of feature extractor G, label predictor F and do-
main discriminator D. By working adversarially to domain
discriminator D, feature extractor G encourages domain-
invariant features to emerge. Label predictor F are trained
to discriminate different classes based on such features.

In this section, we first introduce two losses used to train
CLARINET, complementary-label loss and scattered condi-
tional adversarial loss. Then the whole training procedure of
CLARINET is presented. Finally, we show how to adjust
CLARINET for PC-UDA tasks if a small amount of true-label
source data are available.

A. Loss Function in CLARINET
In this subsection, we introduce how to compute the two

losses mentioned above in CLARINET after obtaining mini-
batch ds from Ds and dt from Dt.

1) Complementary-label Loss: It is designed to reduce the
source classification error based on complementary-label data
(the first part in the bound). We first divided ds into K disjoint
subsets according to the complementary labels in ds,

ds = ∪Kk=1ds,k, ds,k = {(xik,yk)}ns,k

i=1 , (19)

where ds,k ∩ ds,k′ = ∅ if k 6= k′ and ns,k = |ds,k|. Then,
following Eq. (13), the complementary-label loss on ds,k is

Ls(G,F, ds,k) = −(K − 1)
πk
ns,k

ns,k∑
i=1

`(F ◦G(xik),yk)

+

K∑
j=1

πj
ns,j

ns,j∑
l=1

`(F ◦G(xlj),yk),

(20)

where ` can be any loss and we use the cross-entropy loss,
πk is the proportion of the samples complementary-labeled k.
The total complementary-label loss on ds is as follows.

Ls(G,F, ds) =

K∑
k=1

Ls(G,F, ds,k). (21)
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Fig. 3: Overview of the proposed complementary label adversarial
network (CLARINET). It consists of feature extractor G, label
predictor F and conditional domain discriminator D. gs and gt are
outputs of G, representing extracted features of source and target
data. fs and ft represent classifier predictions. T is a sharpening
function, which we propose to scatter the classifier predictions. In
Algorithm 2, we show how to use two losses mentioned in this figure
to train CLARINET.

As shown in Section III-B, the complementary-label loss
(i.e., Eq. (21)) is an unbiased estimator of the true-label-
data risk. Namely, the minimizer of complementary-label loss
agrees with the minimizer of the true-label-data risk with no
constraints on the loss ` and model F ◦G [41].

Remark 1. Due to the negative part in Ls(G,F, ds), min-
imizing it directly will cause over-fitting [60]. To overcome
this problem, we use a correctional way [41] to minimize
Ls(G,F, ds) (lines 7-13 in Algorithm 2).

2) Scattered Conditional Adversarial Loss: It is designed to
reduce distribution discrepancy distance between two domains
(the third part in the bound). Adversarial domain adaptation
methods [19], [61] is inspired by generative adversarial
networks (GANs) [62]. Normally, a domain discriminator
is learned to distinguish the source domain and the target
domain, while the label predictor learns transferable represen-
tations that are indistinguishable by the domain discriminator.
Namely, the final classification decisions are made based on
features that are both discriminative and invariant to the change
of domains [19]. It is an efficient way to reduce distribution
discrepancy distance between the marginal distributions.

However, when data distributions have complex multimodal
structures, which is a real scenario due to the nature of multi-
class classification, adapting only the feature representation
is a challenge for adversarial networks. Namely, even the
domain discriminator is confused, we could not confirm the
two distributions are sufficiently similar [63].

According to [29], it is significant to capture multimodal
structures of distributions using cross-covariance dependency
between the features and classes (i.e., true labels). Since there
are no true-label target data in UDA, CDAN adopts outer
product of feature representations and classifier predictions
(i.e., outputs of the softmax layer) as new features of two
domains [20], which is inspired by conditional generative ad-

versarial networks (CGANs) [64], [65]. The newly constructed
features have shown great ability to discriminate source and
target domains, since classifier predictions of true-label source
data are dispersed, expressing the predicted goal clearly.

However, in the complementary-label classification mode,
we observe that the predicted probability of each class (i.e.,
each element of fs in Figure 3) is relatively close. Namely,
it is hard to find significant predictive preference from the
classifier predictions. According to [29], this kind of pre-
dictions cannot provide sufficient information to capture the
multimodal structure of distributions. To fix it, we add a
sharpening function T to scatter the predicted probability (the
output of f = [f1, ..., fK ]T after softmax function, f could
be fs or ft in Figure 3).

In [66], a common approach of adjusting the “temperature”
of this categorical distribution is defined as follows,

T (f) =

 f
1
l

1∑K
j=1 f

1
l
j

, ...,
f

1
l

k∑K
j=1 f

1
l
j

, ...,
f

1
l

K∑K
j=1 f

1
l
j

T . (22)

As l → 0, the output of T (f) will approach a Dirac (“one-
hot”) distribution [67].

Then to prioritize the discriminator on those easy-to-transfer
examples, following [20], we measure the uncertainty of the
prediction for sample x by

H(G,F,x) = −
K∑
k=1

T (fk(x))log T (fk(x)). (23)

The small result implies that T (fk(x)) is close to 0 or 1, which
could be regarded as the prediction is with high confidence due
to the existing of the final softmax layer [68].

Thus the scattered conditional adversarial loss is as follows,

Ladv(G,F,D, ds, dt) = −
∑

x∈ds[X] ωs(x) log(D(g(x)))∑
x∈ds[X] ωs(x)

−
∑

x∈dt ωt(x)log(1−D(g(x)))∑
x∈dt ωt(x)

,

(24)

where ωs(x) and ωt(x) are 1 + e−H(G,F,x), g(x) is G(x)⊗
T (F ◦G(x)) and ds[X] is the feature part of ds.

B. Training Procedures of CLARINET

Based on two losses proposed in Section V-A, in CLAR-
INET, we try to solve the following optimization problem,

min
G,F

Ls(G,F,Ds)− λLadv(G,F,D,Ds, Dt),

min
D

Ladv(G,F,D,Ds, Dt),
(25)

where D tries to distinguish the samples from different do-
mains by minimizing Ladv , while F ◦G wants to maximize the
Ladv to make domains indistinguishable. To solve the minimax
optimization problem in Eq. (25), we add a gradient reversal
layer [19] between the domain discriminator and the classifier,
which multiplies the gradient by a negative constant (-λ)
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Algorithm 2 CLARINET for CC-UDA Tasks
Input: Ds = {(xi

s,y
i
s)}ns

i=1, Dt = {xi
t}nt

i=1.
Parameters: learning rate γ1 and γ2, epoch Tmax, start epoch Ts,
iteration Nmax, class number K, tradeoff λ, network parameter θF◦G
and θD .
Output: the neural network F ◦G, namely the target domain classifier
for Dt.

1: Initialize θF◦G and θD;
2: for t = 1, 2. . . . . . Tmax do
3: Shuffle the training set Ds, Dt;
4: for N = 1, 2. . . . . .Nmax do
5: Fetch mini-batch ds, dt from Ds, Dt;
6: Divide ds into {ds,k}Kk=1;
7: Calculate {Ls(G,F, ds,k)}Kk=1 using Eq. (20), and

Ls(G,F, ds) using Eq. (21);
8: if mink{Ls(G,F, ds,k)}Kk=1 ≥ 0 then
9: Update θF◦G = θF◦G − γ1OLs(G,F, ds);

10: else
11: Calculate Lneg =

∑K
k=1 min{0, Ls(G,F, ds,k)};

12: Update θF◦G = θF◦G + γ1OLneg;
13: end if
14: if t > Ts then
15: Calculate Ladv(G,F,D, ds, dt) using Eq. (24);
16: Update θD = θD − γ2OLadv(G,F,D, ds, dt);
17: Update θF◦G = θF◦G + γ2λOLadv(G,F,D, ds, dt);
18: end if
19: end for
20: end for

during the back-propagation. λ is a hyper-parameter between
the two losses to tradeoff source risk and domain discrepancy.

The training procedures of CLARINET are shown in Algo-
rithm 2. First, we initialize the whole network (line 1) and
shuffle the training set (line 3). During each epoch, after
mini-batch ds and dt are fetched (line 5), we divide the
source mini-batch ds into {ds,k}Kk=1 using Eq. (19) (line 6).
Then, {ds,k}Kk=1 are used to calculate the complementary-label
loss for each class (i.e., {Ls(G,F, ds,k)}Kk=1) and the whole
complementary-label loss Ls(G,F, ds) (line 7).

If mink{Ls(G,F, ds,k)}Kk=1 ≥ 0, we calculate the gradient
OLs(G,F, ds) and update parameters of G and F using gradi-
ent descent (lines 8-9). Otherwise, we sum negative elements
in {Ls(G,F, ds,k)}Kk=1 as Lneg (line 11) and calculate the
gradient with OLneg (line 12). Then, we update parameters of
G and F using gradient ascent (line 12), which is suggested
by [41]. When the number of epochs (i.e., t) is over Ts, we
start to update parameters of D (line 14). We calculate the
scattered conditional adversarial loss Ladv (line 15). Then,
Ladv is minimized over D (line 16), but maximized over F ◦G
(line 17) for adversarial training.

In this paragraph, we analyze the time complexity of train-
ing CLARINET. Let C1 denote the cost of computing (21),
and C2 denote the cost of computing (24). The each epoch of
training in Algorithm 2 costs O (mC1 +mC2), where m is
the number of batches in each epoch.

C. CLARINET for PC-UDA Tasks

For PC-UDA tasks, we have both complementary-label data
and true-label data in the source domain. In such cases,
we want to leverage both kinds of labeled source data to

Algorithm 3 CLARINET for PC-UDA Tasks
Input: Ds = {(xi

s,y
i
s)}ns

i=1, Ds = {(xi
s,y

i
s)}ns

i=1, Dt = {xi
t}nt

i=1.
Parameters: learning rate γ1 and γ2, epoch Tmax, start epoch Ts,
iteration Nmax, class number K, tradeoff λ and α, network parameter
θF◦G and θD .
Output: the neural network F ◦G, namely the target domain classifier
for Dt.

1: Initialize θF◦G and θD;
2: for T = 1, 2. . . . . . Tmax do
3: Shuffle the training set Ds, Ds, Dt;
4: for N = 1, 2. . . . . .Nmax do
5: Fetch mini-batch ds, ds, dt from Ds, Ds, Dt;
6: Calculate Ls(G,F, ds) using Eq. (26);
7: Update θF◦G = θF◦G − γ1αOLs(G,F, ds);
8: Divide ds into {ds,k}Kk=1;
9: Calculate {Ls(G,F, ds,k)}Kk=1 using Eq. (20), and

Ls(G,F, ds) using Eq. (21);
10: if mink{Ls(G,F, ds,k)}Kk=1 ≥ 0 then
11: Update θF◦G = θF◦G − γ1(1− α)OLs(G,F, ds);
12: else
13: Calculate Lneg =

∑K
k=1 min{0, Ls(G,F, ds,k)};

14: Update θF◦G = θF◦G + γ1(1− α)OLneg;
15: end if
16: if T > Ts then
17: Calculate Ladv(G,F,D, ds, ds, dt) using Eq. (28);
18: Update θD = θD − γ2OLadv(G,F,D, ds, ds, dt);
19: Update θF◦G+ = γ2λOLadv(G,F,D, ds, ds, dt);
20: end if
21: end for
22: end for

help realize better adaptation results. The two loss functions
mentioned in Section V-A are adjusted as follows.

After obtaining mini-batch ds from Ds, we could calculate
the classification loss based on true-label data by

Ls(G,F, ds) = `(F ◦G(xi),yi), (26)

where ` is cross-entropy loss, ds = {(xi, yi)}
n′
s
i=1 and n′s =

|ds|. We could use a convex combination of classification risks
derived from true-label data and complementary-label data to
replace the oral complementary-label based only classification
risk shown as follows.

Lc = αLs(G,F, ds) + (1− α)Ls(G,F, ds), (27)

where α depends on the cost of labeling the two kind of data.
The new scattered conditional adversarial loss for PC-UDA

tasks is as follows.

Ladv(G,F,D, ds, ds, dt)

= −
∑

x∈ds[X] ωs(x) log(D(g(x)))∑
x∈ds[X] ωs(x)

−
∑

x∈ds[X] ωs(x) log(D(g(x)))∑
x∈ds[X] ωs(x)

−
∑

x∈dt ωt(x)log(1−D(g(x)))∑
x∈dt ωt(x)

,

(28)

where ωs(x), ωs(x) and ωt(x) are 1 + e−H(G,F,x), g(x) is
G(x)⊗ T (F ◦G(x)), ds[X] and ds[X] is the feature part of
ds and ds. The entire training procedures of CLARINET for
PC-UDA are shown in Algorithm 3.
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VI. EXPERIMENTS

This section conducts extensive evaluations of CLARINET
on several common transfer tasks against many state-of-the-art
transfer learning methods (e.g., two-step approach).

A. Datasets and Tasks

We investigate seven image and digits datasets: CIFAR-10
[69], STL [70], MNIST [71], USPS [72], SVHN [73], MNIST-M
[74] and SYN-DIGITS [74]. We adopt the evaluation protocol
of DANN [19], CDAN [20], ATDA [12], and DIRT-T [75]
with seven transfer tasks: CIFAR-10 to STL (C → T), MNIST
to USPS (M → U), USPS to MNIST (U → M), SVHN to
MNIST (S→ M), MNIST to MNIST-M (M→ m), SYN-DIGITS
to MNIST (Y → M) and SYN-DIGITS to SVHN (Y → S).

We train our model using the training sets: CIFAR-10
(45, 000), STL (4, 500), MNIST (60, 000), USPS (7, 438),
SVHN (73, 257), MNIST-M (59, 001), SYN-DIGITS (479, 400).
Evaluation is reported on the standard test sets: STL (7, 200),
MNIST (10, 000), USPS (1, 860), MNIST-M (9, 001), SVHN
(26, 032) (the numbers of images are in parentheses).

Since all datasets carry true labels, following [41], we
generate completely and partly complementary-label data.
Generating complementary-label data is straightforward when
the dataset is ordinary-labeled, as it reduces to just choosing
a class randomly other than true class.

B. Baselines

We compare CLARINET with the following baselines:
gradient ascent complementary label learning (GAC) [41],
namely non-transfer method, and several two-step methods,
which sequentially combine GAC with UDA methods (in-
cluding DAN [17], DANN [19] and CDAN [20]). Thus, we
have four possible baselines: GAC, GAC+DAN, GAC+DANN
and GAC+CDAN. For two-step methods, they share the same
pseudo-label source data on each task. Note that, in this paper,
we use the entropy conditioning variant of CDAN (CDAN E).

C. Experimental Setup

We follow the standard protocols for unsupervised domain
adaptation and compare the average classification accuracy
based on 5 random experiments. For each experiment, we take
the result of the last epoch.

The batch size is set to 128 and we train 500 epochs. SGD
optimizer (momentum= 0.9, weight decay= 5e − 5) is with
an initial learning rate of 0.005 in the adversarial network and
5e−5 in the classifier. In the sharpening function T , l is set to
0.5. For other special parameters in baselines, we all follow
the original setting. We implement all methods with default
parameters by PyTorch. The code of CLARINET is available
at github.com/Yiyang98/BFUDA.

D. Results on CC-UDA Tasks

Table I reports the target-domain accuracy of 5 methods on
7 CC-UDA tasks. As can be seen, our CLARINET performs
best on each task and the average accuracy of CLARINET is

significantly higher than those of baselines. Compared with
GAC method, CLARINET successfully transfers knowledge
from complementary-label source data to unlabeled target data.
Since CDAN has shown much better adaptation performance
than DANN and DAN [20], GAC+CDAN should outperform
other two-step methods on each task. However, on the U→M
task, the accuracy of GAC+CDAN is much lower than that
of GAC+DANN. This abnormal phenomenon shows that the
noise contained in pseudo-label source data significantly re-
duces transferability of existing UDA methods. Namely, we
cannot obtain the reliable adaptation performance by using
two-step CC-UDA approach.

CIFAR-10→ STL. CIFAR-10 and STL are 10-class object
recognition datasets. We remove the non-overlapping classes
(“frog” and “monkey”) and readjust the labels to align the two
datasets. Namely this task is reduced to a 9-class classification
problem. Furthermore, we downscale the 96×96 image dime-
sion of STL to match the 32×32 dimension of CIFAR-10. As
shown in Figure 4 (a), two-step methods could hardly transfer
knowledge, while our CLARINET’s performance surpasses
others by a comfortable margin.

MNIST ↔ USPS. MNIST and USPS are both grayscale
digits images, thus the distribution discrepancy between the
two tasks is relatively small. As shown in Figure 4 (b) and
(c), in both adaptation directions, CLARINET all achieve the
best performance far above other baselines.

SVHN → MNIST. SVHN and MNIST are both digit
datasets. Whereas MNIST consists of black-and-white hand-
written digits, SVHN consists of crops of colored, street
house numbers. MNIST has a lower image dimensionality than
SVHN, thus we adopt the dimension of MNIST to 32 × 32
with three channels to match SVHN. Because of the above
factors, the gap between two distributions are relatively larger
compared to that of the MNIST↔ USPS. As shown in Figure
4 (d), GAC+CDAN performs much better than GAC+DAN
and GAC+DANN, but still worse than our CLARINET.

MNIST → MNIST-M. MNIST-M is a transformed dataset
from MNIST, which is composed by merging clips of a
background from the BSDS500 datasets [76]. For a human, the
classification task on MNIST-M only becomes slightly harder,
whereas for a CNN network trained on MNIST, this domain is
quite different, as the background and the strokes are no longer
constant. As shown in Figure 4 (e), Our method is slightly
more effective than GAC+CDAN and far more effective than
the other two methods.

SYN-DIGITS → MNIST. This adaptation reflects a com-
mon adaptation problem of transferring from synthetic images
to real images. The SYN-DIGITS dataset consists of a huge
amount of data, generated from Windows fonts by varying the
text, positioning, orientation, background, stroke color, and
the amount of blur. As shown in Figure 4 (f), our method
outperforms other baselines and achieves pretty high accuracy.
Thus with sufficient source data, CLARINET could achieve
excellent results.

SYN-DIGITS → SVHN. This adaptation is another com-
mon adaptation problem of transferring from synthetic images
to real images, but is more challenging than in the case of the
MNIST experiment. As shown in Figure 4 (g), our method is

https://github.com/Yiyang98/BFUDA
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Fig. 4: Test Accuracy vs. Epochs on 7 CC-UDA Tasks in (a)-(g), and True Label (TL) vs. Complementary Label (CL) in (h). In (a)-(g), we
compare the target-domain accuracy of one-step approach, i.e., CLARINET (ours), with that of two-step approach (ours). In (h), “200TLs”
represents ordinary UDA method trained with 200 true-label source data. “200TLs+CLs” means a CLARINET trained with 200 true-label
source data and complementary-label source data and “CLs Only” represents a CLARINET trained with complementary-label source data.

TABLE I: Results on 7 CC-UDA Tasks. Bold value represents the highest accuracy (%) on each row. Please note, the two-step methods and
CLARINET are all first proposed in our paper.

Tasks GAC
Two-step approaches (ours)

CLARINET
GAC+DAN GAC+DANN GAC+CDAN E (ours)

C → T 45.167 45.711±0.535 45.628±0.572 45.228±0.270 47.083±1.395
U →M 51.860 60.692±1.300 77.580±0.770 71.498±1.077 83.692±0.928
M → U 77.796 87.215±0.603 88.688±1.280 92.366±0.365 94.538±0.292
S →M 39.260 45.132±1.363 50.882±2.440 61.922±2.983 63.070±1.990
M → m 45.045 43.346±2.224 62.273±2.261 71.379±0.620 71.717±1.262
Y →M 77.070 81.150±0.591 92.328±0.138 95.532±0.873 97.040±0.212
Y → S 72.480 78.270±0.311 75.147±1.401 82.878±0.278 84.499±0.537

Average 58.383 63.074 70.361 74.400 77.377

obviously more effective than other baselines. GAC+DANN
does not apply to this task, achieving the lowest accuracy.

E. Results on PC-UDA Tasks
Table II reports the target-domain accuracy of CLARINET

on PC-UDA tasks with different amounts of true-label source
data. “true only” means training on a certain number of true-
label source data with ordinary UDA method. “com only”
means training on complementary-label source data only with
CLARINET. “com+true” stands for training on a certain
number of true-label source data and complementary-label
source data with CLARINET. In general, the accuracy of
CLARINET increases when increasing the amount of true-
label source data from 0 to 1000. Thus, it is proved that
CLARINET can sufficiently leverage true-label source data
to improve adaptation performance.

The improvement is especially evident on U→M task and
S→M task. For U→M task, this is probably because the
dataset sample size of USPS is relatively small, true-label data
actually has occupied a big part. For S→M task, SVHN is
complicated for complementary-label learning. Hence adding
a small amount of true-label data could help to train a more

accurate classifier. This phenomenon also reminds us that for
complex datasets, adding some true-label data to assist training
would be pretty appropriate. On Y→M task, adding true-label
source data does not bring significant improvement, which is
most likely due to the result on complementary-label data is
already relatively good and true-label source data is unable to
assist in achieving better result.

We also compare the efficacy of true-label source data
with complementary-label source data. Taking S→M task as
an example (as shown in the left part of Figure 4 (h)), we
compare the target-domain accuracy of ordinary UDA method
trained with different amount of true-label source data and that
of CLARINET trained with complementary-label source data
only (“CLs Only”). The accuracy decreases significantly when
reducing the amount of true-label source data, which suggests
that sufficient true-label source data are inevitably required in
UDA scenario. Then we compare the target-domain accuracy
of CLARINET trained with complementary-label source data
only with that of CLARINET trained with different amount
of true-label and complementary-label source data. It is clear
that CLARINET effectively uses two kinds of data to obtain
better adaptation performance than using complementary-label
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TABLE II: Results on 7 PC-UDA Tasks. Amount represents the number of true-label data in the source domain. In general, the accuracy of
CLARINET increases when increasing the amount of true-label source data.

Amount of of true-label source data

Tasks
0 200 400

true only com only true only com+true true only com+true

C → T - 47.083±1.395 11.839±0.019 49.408±1.776 13.875±1.366 49.553±1.362
U →M - 83.692±0.928 74.180±1.218 88.584±1.040 79.200±0.837 89.480±1.660
M → U - 94.538±0.292 78.011±1.473 93.204±1.398 83.204±1.545 94.677±0.576
S →M - 63.070±1.990 25.772±0.146 64.734±2.096 41.232±1.089 64.912±0.928
M → m - 71.717±1.262 59.414±1.381 70.730±1.620 59.805±0.951 71.198±0.623
Y →M - 97.040±0.212 49.232±1.354 97.182±0.383 60.640±1.570 97.242±0.117
Y → S - 84.499±0.537 23.009±1.102 84.269±0.814 49.120±1.236 85.538±0.596

Average - 77.377 45.922 78.302 55.297 78.943

Tasks
600 800 1000

true only com+true true only com+true true only com+true

C → T 17.722±2.626 50.897±0.969 19.278±0.853 51.058±1.737 20.972±1.061 53.297±1.655
U →M 82.532±0.859 90.358±1.938 85.800±0.621 91.106±0.561 88.184±1.280 93.342±1.294
M → U 83.925±1.511 94.839±0.254 85.839±2.074 94.796±0.104 85.699±0.777 95.022±0.280
S →M 41.680±0.525 67.898±1.625 51.652±0.850 70.416±1.819 53.500±1.872 70.446±1.358
M → m 63.757±1.344 72.732±0.947 65.161±0.766 73.050±1.264 68.522±1.285 73.336±0.727
Y →M 76.802±1.649 97.178±0.396 85.286±1.363 96.842±0.267 86.470±1.646 96.948±0.266
Y → S 67.922±1.079 85.921±1.098 67.788±1.878 86.772±0.291 74.654±1.054 87.024±0.542

Average 62.049 79.975 65.829 80.577 68.286 81.345

TABLE III: Ablation Study. Bold value represents the highest accuracy (%) on each column. Obviously to see, UDA methods cannot handle
complementary-label based UDA tasks directly. We also prove that the conditioning adversarial part and the sharpening function T can help
improve the adaptation performance.

Methods C → T U →M M → U S →M M → m Y →M Y → S Average

C w/ LCE 6.481±2.536 0.455±0.722 0.055±0.129 3.708±0.688 7.088±0.424 1.832±0.102 1.298±0.070 2.987
C w/o c 41.908±2.796 84.302±1.127 93.301±0.465 44.500±2.088 70.994±0.749 94.382±0.150 83.408±0.545 73.256
C w/o T 43.075±2.553 83.192±1.796 93.419±0.588 52.438±1.927 72.128±1.569 95.442±1.004 83.055±0.652 74.678
CLARINET 47.083±1.395 83.692±0.928 94.538±0.292 63.070±1.990 71.717±1.262 97.040±0.212 84.499±0.537 77.377

source data only. Besides, as the number of true-label source
data used increases, the classification accuracy becomes higher
(as shown in the right part of Figure 4 (h)).

F. Analysis

1) Labeling Cost: From a theoretical analysis, the infor-
mation carried by the true label is K − 1 times that of the
complementary label. We conduct experiments and prove the
ratio is actually far less than K − 1 when obtaining the same
result, which means using complementary label is low-cost.
More detailed analysis can be found in Appendix C.

2) Ablation Study: We conduct experiments to show the
contributions of different components in CLARINET. We
consider following baselines:
• C w/ LCE : train CLARINET by Algorithm 2, while

replacing Ls(G,F,Ds) by cross-entropy loss.
• C w/o c : train CLARINET without conditioning, namely

train the domain discriminator D only based on feature
representations gs and gt.

• C w/o T : train CLARINET by Algorithm 2, without
sharpening function T .

C w/ LCE uses the cross-entropy loss to take place of
complementary-label loss. Actually, it stands for applying
ordinary UDA methods directly on complementary-label based

UDA tasks. The target-domain accuracy of C w/ LCE will
show whether UDA methods can address the complementary-
label based UDA problem. C w/o c train the domain discrim-
inator D only based on feature representations gs and gt, thus
the result could indicate whether the conditional adversarial
way could capture the multimodal structures so as to improve
the transfer effect. Please notice, the sharpening function T is
useless in this network as it works on the label prediction fs
and ft. Comparing CLARINET with C w/o T reveals if the
sharpening function T takes effect.

As shown in Table III, the target-domain accuracy of C w/
LCE is much lower than that of other methods. Namely, UDA
methods cannot handle complementary-label based UDA tasks
directly. Its result is not even as good as random classification,
as the network is trained taking the wrong label as the
target result. Compared with C w/o T , C w/o c has a worse
performance, which proves that the conditional adversarial
way could really improve the transfer effect. Therefore, it is
necessary to capture the multimodal structures of distributions
with cross-covariance dependency between the features and
classes in the field of adversarial based UDA. Although
C w/o T achieves better accuracy than other baselines, its
accuracy still worse than CLARINET’s. The result reveals
that the sharpening function T helps to capture multimodal
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(a) GAC. (b) GAC+DAN.
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(c) GAC+DANN. (d) GAC+CDAN. (e) CLARINET.

Fig. 5: Feature visualization of target and source features on M → U task. 4 indicates source samples. � indicates target samples. Different
colors indicate different classes.
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Fig. 6: Parameter analyses. Hyper-parameter sensitivity studies are carried out to find their effect on the performance. Experiments are
conducted on M → U task. In (a)-(d), we show how these 4 parameters influence the test accuracy.

structures of distributions on basis of the characteristics of
complementary-label learning. Thus, the sharpening function
T can improve the adaptation performance.

3) Visualization: In order to intuitively demonstrate the
effect of our method, we show the feature visualization of
source and target domains by t-SNE [77], which is an effective
dimensionality reduction method. Figure 5 shows the effect
of domain adaptation of all the baselines and our method
in M→U task. Clearly, our method outperforms baselines in
aligning the distributions of two domains.

In Figure 5 (a), although the samples of two domains tend
to gather in general, they are not actually tightly clustered
together, and the class 9 (cyan) is an obvious example. As
GAC is a non-transfer method, it could be used to compare the
effect of before-after domain discrepancy with other methods.
In Figure 5 (e), it is cleraly that the intra-class centroids of two
domains are closer than other baselines and there are fewer
error clustered samples, namely CLARINET does better in
aligning the distributions of source and target domains.

4) Parameter Analysis: To investigate their effect on the
performance, we carry out hyper-parameter sensitivity studies.
Taking M→U task for example, we conduct experiments
to demonstrate the effect of 4 parameters for our method,
including batch size, learning rate, l in sharpening function
T and the number of unlabeled target domain samples.

As shown in Figure 6, the accuracy of CLARINET de-
creases in general when increasing the batch size from 64
to 256. We increase the learning rate from 0.001 to 0.01,
and it achieves the best result at 0.003. The l in sharpening
function T is an important parameter for CLARINET, as
the sharpening function T could effectively help improve the
adaptation performance. It could be seen that when l is small,
namely the output of sharpening function T approaches an
one-hot distribution, CLARINET could achieve a good result
in this task. We also test how the number of target samples

would affect the performance. As shown in Figure 6 (d), when
sufficient samples are available, the accuracy stays stable.

VII. CONCLUSION AND FURTHER STUDY

This paper presents a new setting, complementary-label
based UDA, which exploits economical complementary-label
source data instead of expensive true-label source data. We
consider two cases of the complementary-label based UDA:
one is that the source domain only contains complementary-
label data (CC-UDA), and the other is that the source domain
has plenty of complementary-label data and a small amount
of true-label data (PC-UDA). Since existing UDA methods
cannot address the complementary-label based UDA problem,
we propose a novel one-step approach called complementary
label adversarial network (CLARINET). CLARINET can han-
dle both CC-UDA and PC-UDA tasks. Experiments conducted
on 7 complementary-label based UDA tasks confirm that
CLARINET effectively achieves distributional adaptation from
complementary-label source data to unlabeled target data and
outperforms a series of competitive baselines.

In the future, we plan to explore more effective ways
to solve complementary-label based UDA and extend the
application of complementary labels in domain adaptation.
For example, instead of requiring the source domain and
the target domain to share the same label set, we could
apply complementary labels in the open set domain adaptation
scenario in which the target domain contains unknown classes
that are not observed in the source domain.
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