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Abstract— The novel 2019 Coronavirus (COVID-19) infection
has spread worldwide and is currently a major healthcare
challenge around the world. Chest computed tomography (CT)
and X-ray images have been well recognized to be two effective
techniques for clinical COVID-19 disease diagnoses. Due to faster
imaging time and considerably lower cost than CT, detecting
COVID-19 in chest X-ray (CXR) images is preferred for efficient
diagnosis, assessment, and treatment. However, considering the
similarity between COVID-19 and pneumonia, CXR samples with
deep features distributed near category boundaries are easily mis-
classified by the hyperplanes learned from limited training data.
Moreover, most existing approaches for COVID-19 detection
focus on the accuracy of prediction and overlook uncertainty esti-
mation, which is particularly important when dealing with noisy
datasets. To alleviate these concerns, we propose a novel deep
network named RCoNetk

s for robust COVID-19 detection which
employs Deformable Mutual Information Maximization (DeIM),
Mixed High-order Moment Feature (MHMF), and Multiexpert
Uncertainty-aware Learning (MUL). With DeIM, the mutual
information (MI) between input data and the corresponding
latent representations can be well estimated and maximized to
capture compact and disentangled representational characteris-
tics. Meanwhile, MHMF can fully explore the benefits of using
high-order statistics and extract discriminative features of com-
plex distributions in medical imaging. Finally, MUL creates mul-
tiple parallel dropout networks for each CXR image to evaluate
uncertainty and thus prevent performance degradation caused by
the noise in the data. The experimental results show that RCoNetk

s
achieves the state-of-the-art performance on an open-source
COVIDx dataset of 15 134 original CXR images across several
metrics. Crucially, our method is shown to be more effective than
existing methods with the presence of noise in the data.

Index Terms— Chest X-rays (CXRs), COVID-19, deformable
mutual information maximization (DeIM), mixed high-order
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moment feature (MHMF), multiexpert uncertainty-aware learn-
ing (MUL), noisy data, RCoNetk

s , uncertainty.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) causes an
ongoing pandemic that significantly impacts everyone’s

life since it was first reported, with hundreds of thousands of
deaths and millions of infections emerging in over 200 coun-
tries [1], [2]. As indicated by the World Health Organiza-
tion (WHO), due to its highly contagious nature and lack
of corresponding vaccines, the most effective method to
control the spread of COVID-19 infection is to keep social
distance and contact tracing. Hence, early and fast diagnosis of
COVID-19 has become significantly essential to control fur-
ther spreading, and such that the patients could be hospitalized
and receive proper treatment in time.

Since the emergence of COVID-19, reverse transcription
polymerase chain reaction (RT-PCR), as a viral nucleic acid
detection method by gene sequencing, is the accepted stan-
dard for COVID-19 detection [3]. However, because of the
low accuracy of RT-PCR and limited medical test kits in
many hyperendemic regions or countries, it is challenging to
detect every individual affected by COVID-19 rapidly [4], [5].
Therefore, alternative testing methods, which are faster and
more reliable than RT-PCR, are urgently needed to combat
the disease.

Since most COVID-19 positive patients were diagnosed
with pneumonia, radiological examinations could help detect
and assess the disease. Recently, chest computed tomog-
raphy (CT) has been shown to be efficient and reliable
to achieve a real-time clinical diagnosis of COVID-19,
outperforming RT-PCR in terms of accuracy. Moreover,
some deep learning-based methods have been proposed for
COVID-19 detection using chest CT images [6]–[9]. For
example, an adaptive feature selection approach was proposed
in [10] for COVID-19 detection based on a trained deep forest
model. In [11], an uncertainty vertex-weighted hypergraph
learning method was designed to identify COVID-19 from
community-acquired pneumonia (CAP) using CT images.
However, the routine use of CT, which is conducted via
expensive equipment, takes considerably more time than X-ray
imaging and brings a massive burden on radiology depart-
ments. Compared to CT, X-rays could significantly speed up
disease screening, and hence become a preferred method for
disease diagnosis.
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Fig. 1. Visual illustration of CXR images, including normal, pneumonia,
and COVID-19.

Accordingly, deep learning-based methods for detecting
COVID-19 with chest X-ray (CXR) have been developed
and shown to be able to achieve accurate and speedy
detection [12], [13]. For instance, a tailored convolution
neural network platform trained on open-source dataset
called COVIDNet in [14] was proposed for the detection
of COVID-19 cases from CXR. Oh et al. [15] proposed a
novel probabilistic gradient-weighted class activation map to
enable infection segmentation and detection of COVID-19 on
CXR images. Fig. 1 shows three samples from the COVIDx
dataset [14] which contains three different classes: normal,
pneumonia, and COVID-19. However, due to a similar patho-
logical information between pneumonia and COVID-19 in
the early stage, the CXR samples may have latent features
distributed near the category boundaries, which can be easily
misclassified by the hyperplane learned from the limited
training data. Moreover, to the best of our knowledge, most of
the existing methods for COVID-19 detection were designed to
extract the lower-dimension latent representations which may
not be able to fully capture statistical characteristic of complex
distributions (i.e., non-Gaussian distribution presented in CXR
images). Furthermore, quantifying uncertainty in COVID-19
detection is still a major yet challenging task for existing deep
networks, especially with the presence of noise in the training
samples (i.e., label noise and image noise).

To address the above problems, we propose a novel
deep network architecture, referred to as RCoNetks , for
robust COVID-19 detection which, in particular, contains the
following three modules, i.e., Deformable mutual Infor-
mation Maximization (DeIM), Mixed High-order Moment
Feature (MHMF) and Multiexpert Uncertainty-aware Learning
(MUL):

1) The DeIM module estimates and maximizes the mutual
information (MI) between input data and learned
high-level representations, which pushes the model
to learn the discriminative and compact features.
We employ deformable convolution layers in this mod-
ule which are able to explore disentangled spatial fea-
tures and mitigate the negative effect of similar samples
across different categories.

2) The MHMF module fully explores the benefits of using
a mix of high-order moment statistics to better charac-
terize the feature distributions in medical imaging and
reduce the negative effects of noise.

3) The MUL creates multiple parallel dropout networks,
each can be treated as an expert, to derive multiple
experts-based diagnosis similar to clinical practices,

which improves the prediction accuracy. MUL also
quantifies the prediction accuracy by obtaining the vari-
ance in prediction across different experts.

4) The experimental results show that our proposal achieves
the state-of-the-art performance in terms of most metrics
both on open source COVIDx dataset of 15134 original
CXR images and that of noisy setting.

The remaining of this article is organized as follows: In
Section II, we review related works on MI estimation and
uncertainty learning as well. In Section III, after an overview
of our proposed approach, we discuss the main components of
RCoNetks . In Section IV, we compare our proposed architec-
ture with the existing deep learning-based methods evaluated
on a publically available dataset of CXR images and also
the same dataset but under noisy conditions. And we also
conduct extensive experiments to demonstrate the benefits
of DeIM, MHMF, and MUL on the system’s performance.
Finally, we conclude this article in Section V.

II. BACKGROUND AND RELATED WORKS

In this section, we introduce related works on MI estimation
and uncertainty learning that lay the foundation of this article.

A. MI Estimation

MI, as a fundamental concept in information theory,
is widely applied to unsupervised feature learning for quan-
tifying the correlation between random variables. MI has
been exploited in a wide range of domains and tasks,
including biomedical sciences [16], blind source separation
(BSS, e.g., independent component analysis [17]), feature
selection [18], [19], and causal inference [20]. For example,
the object tracking task considered in [21] was treated as
a problem of optimizing the MI between features extracted
from a video with most color information removed and
those from the original full-color video. Closely related
work presented in [22] considered learning representations
to predict cross-modal correspondence by maximizing MI
between features from the multiview encoders and the con-
tent of the held-out view. Moreover, Mutual Information
Neural Estimation (MINE) proposed by [23] was designed
to learn a general-purpose estimator of the MI between
continuous variables based on dual representations of the
Kullback-Leibler (KL)-divergence, which are scalable, flex-
ible, and, most crucially, trainable via back-propagation.
Inspired by MINE, our proposal estimates and maximizes the
CXR image inputs and the corresponding latent representa-
tions to improve diagnosis performance.

B. Uncertainty in Deep Learning

Aiming at combating the significant negative effects of
uncertainty in deep neural networks, uncertainty learning has
been getting lots of research attention, which facilitates the
reliability assessment and solves risk-based decision-making
problems [24]–[26]. In recent years, various frameworks have
been proposed to characterize the uncertainty in the model
parameters of deep neural networks, referred to as model
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Fig. 2. Architecture of RCoNetks for COVID-19 detection.

uncertainty, due to the limited size of training data [27], [28],
which can be reduced by collecting more training data [25],
[29], [30]. Meanwhile, another kind of uncertainty in deep
learning, referred to as data uncertainty, measures the noise
inherent in given training data, and hence cannot be eliminated
by having more training data [31]. To combat these two
kinds of uncertainty, lots of works on various computer vision
tasks, i.e., face recognition [24], semantic segmentation [32],
object detection [33], and person reidentification [34], have
introduced deep uncertainty learning to improve the robustness
of deep learning model and interpretability of discriminant.
For face recognition task in [25], an uncertainty-aware proba-
bilistic face embedding (PFE) was proposed to represent face
images as distributions by utilizing data uncertainty. Exploiting
the advantage of Bayesian deep neural networks, one recent
study [35] leveraged the model uncertainty for analysis and
learning of face representations. To our knowledge, our pro-
posal is the first work that utilizes the high-order moment
statistics and multiple expert networks to estimate uncertainty
for COVID-19 detection using CXR images.

III. METHOD

In this section, we introduce the novel RCoNetks for robust
COVID-19 detection, which incorporates DeIM, MHMF, and
MUL, as illustrated in Fig. 2. k is the number of levels
of moment features that are combined in MHMF, and s is
the number of the expert network in MUL, which will be
further clarified in the sequel. The CXR images are first
processed by DeIM which consists of a stack of deformable
convolution layers, extracting discriminative features. The
compact features are then fed into MHMF module to generate
mixed high-order moment latent features, reducing negative
effects caused by similar images and noise. The proposed
MUL utilizes the learned high-order features to generate final
diagnoses.

A. Deformable Mutual Information Estimation and
Maximization

Due to the similarity between COVID-19 and pneumonia
in the latent space, we propose DeIM to extract discrimina-
tive and informative features, reducing the negative influence
caused by the lack of distinctiveness in the deep features.
In particular, we train the model by maximizing the MI
between the input and corresponding latent representation.

We use a stack of five convolutional stages, as shown
in Fig. 2, to encode inputs into latent representations, which
is denoted by a differentiable parametric function Eψ

Eψ : X → Z (1)

where ψ denotes the set of all the trainable parameters in
these layers, and X and Z denote the input and output spaces,
respectively.

The detailed architecture of each convolutional stage is
presented in Fig. 2, which consists of several convolutional
layers each followed by a batch normalization layer. Note that
we employ deformable convolutional layers which can better
extract spatial information of the irregular infected area com-
pared to conventional convolutional layers. More specifically,
regular convolution operates on predefined rectangular grid
from an input image or a set of input feature maps, while
the deformable convolution operates on deformable grids that
each grid point is moved by a learnable offset. For example,
the receptive grid P of a regular convolution with kernel size
3 × 3 is fixed and can be given by

P = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)} (2)

while, for deformable convolution, the receptive grid is moved
by the learned offsets �pn ∈ R2 and the output is given as
follows:

b(p0) =
∑
Pn∈P

w(pn) · a(p0 + pn +�pn) (3)
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where b(p0) denotes the value at location p0 on the output
feature map b, pn enumerates the locations in P , w(pn)
represents the weight at location pn of the kernel, and a(·)
is value at given location on the input feature map. We can
see that with the introduction of offsets�pn, the receptive grid
is no longer fixed to be a rectangle, and instead is deformable.

We optimize Eψ by maximizing the MI between the input
and the output, i.e., I (X; Z), where Z � Eψ(X). The precise
MI requires knowledge probability density functions (PDFs)
of X and Z , which is intractable to obtain in practice. To over-
come this issue, MINE proposed in [23] estimates MI by using
a lower-bound on the Donsker-Varadhan representation [36] of
the KL-divergence

I (X; Z) := DK L(J||M) ≥ Î (DV)
θ (X; Z)

:= EJ[Tθ (x, z)] − log EM

[
eTθ (x,z)

]
(4)

where J represents the joint probability of X and Z , i.e., J �
P(X, Z), and M denotes the product of marginal probabilities
of X and Z , M � P(X)P(Z). Tθ : X × Z → R denotes
a global discriminator modeled by a neural network with
parameters θ , which is trained to maximize Î (DV)

θ (X; Z) to
approximate the actual MI. Hence, we can simultaneously esti-
mate and maximize I (X; Eψ(X)) by maximizing Î (DV)

θ (X; Z)

(θ̂ , ψ̂) = arg max
θ,ψ

Î (DV)
θ (X; Eψ(X)). (5)

Since the encoder Eψ and the MI estimator Tθ are optimized
simultaneously with the same objective function, we can share
some layers between them, and replace the Tθ with Tθ,ψ to
account for this fact.

Since we are primarily interested in maximizing the MI
rather than estimating the precise value, we can alternatively
use a Jensen-Shannon MI estimator (JSD) [37], which offers
more interpretable tradeoff

Î (DeJSD)
θ,ψ (X; Eψ(X)) := EP

[− log
(
1 + e−Tθ,ψ (x,Eψ (x))

)]
− EP×P̃

[
log

(
1 + eTθ,ψ (x′,Eψ (x))

)]
(6)

where x is an input sample of an empirical probability
distribution P, x ′ denotes a fake sample from distribution P̃,
where P̃ = P. This estimator is illustrated by the DeIM block
shown in Fig. 2, which has the latent representation Eψ(x),
the input sample x and the fake sample x ′ as input, and the
difference between the outputs of the two softplus operations
as the estimation of MI.

Another alternative MI estimator is called Noise-Contrastive
Estimator (NCE) [38], which is defined as

Î (DeNCE)
θ,ψ (X; E ′

ψ(X))

:=EP

[
Tθ,ψ(x, E ′

ψ(x))− EP̃

[
log

∑
x′

eTθ,ψ (x′,E ′
ψ (x))

]]
. (7)

The experiments have found that using the NCE estimator
outperforms the JSD estimator in some cases, but appears to
be quite similar most of the time.

The existing works [39] that implement these estimators use
some latent representation of x , which is then merged with
some randomly generated features to obtain “fake” samples

Fig. 3. Data points from three Gaussian distributions and the corresponding
moment feature of order 1 to 4.

that satisfy P = P̃. In contrast, we use the samples from other
categories as the “fake” samples, i.e., x ′, instead. For example,
if the input is a pneumonia sample, then the fake sample is
either a normal or COVID sample. We note that this can push
the learned encoder to derive more distinguishable features for
samples from different categories.

B. Mixed High-Order Moment Feature

The presence of the image noise and label noise in CXR
datasets may cause image latent representations generated by
deep neural networks to be scattered in the entire feature space.
To deal with this issue, [24], [25], [34] represent each image as
a Gaussian distribution, that is defined by a mean (a standard
feature vector) and a variance. However, the deep features of
CXR samples we considered in this article typically follow a
complex, non-Gaussian distribution [40], [41], which cannot
be fully captured by its first-order (mean) or second-order
statistics (variance).

We seek a better combination of different orders of statistics
to more precisely characterize the latent representation of the
CXR images. We illustrate the moment features of different
orders [42] in Fig. 3, where we plot 350 data points in
R2 sampled from a distribution that combines three different
Gaussian distributions. We can observe that the high-order
moment features are more expressive of statistical charac-
teristic compared to low-order one. More specifically, they
capture the shape of the cloud of samples more accurately.
Therefore, we include the MHMF module in the proposed
model, as shown in Fig. 2, which outputs a combination
of high-order moment features with the latent representation
Eψ(X) as input. This will potentially solve the scattering
problem and capture the subtle differences between CXR
images of similar categories, i.e., pneumonia and COVID-19 in
our case.

We show how to obtain the complicated high-order moment
feature in the following. Define r th order moment feature
as φr (a), where a ∈ RH×W×C denotes a latent feature map
of dimension H × W × C . Lots of recent works adopt
the Kronecker product to compute high-order moment fea-
ture [41]. However, calculating Kronecker product of high
dimensional feature maps is significantly computational inten-
sive, and hence infeasible for real-world applications. Inspired
by [43]–[45], we approximate φr (a) by exploiting r random
projectors which rely on certain factorization schemes, such
as Random Maclaurin [46]. We use 1 × 1 convolution kernels
as the random projectors to estimate the expectations of
high-order moment features. That is

φr (a) ≈ K1(a)� K2(a)� · · · � Kr (a) ∈ R
H×W×C (8)
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where � represents the Hadamard (element-wise) product, and
K1,K2, . . . ,Kr are 1 × 1 convolution kernels with random
weights.

Note that Random Maclaurin produces an estimator that
is independent of the input distribution, which causes the
estimated high-order moments to contain noninformative
high-order moment components. We eliminate these com-
ponents by learning the weights of the projectors, i.e., the
1 × 1 convolution kernels, from the data. Also, note that the
Hadamard product of a number of random projectors may end
up with the estimated high-order moment features to be similar
to low-order ones. To solve this problem, we use a recursive
way to estimate the high-order moments instead

φr (a) = φr−1(a)� Kr (a). (9)

Since different order moments capture different informative
statistics, we design the MHMF module to keep the estimated
moments of different levels of order, as shown in Fig. 2,
the output of which is given as

J (a) = [φ1(a);φ2(a); . . . ;φr (a)] ∈ R
H×W×rC . (10)

Hence, J (a) is rich enough to capture the complicated
statistics, and produce discriminative features for the input of
different categories.

C. Multiexpert Uncertainty-Aware Learning

The MHMF module, as described in Section III-B, generates
MHMFs of each sample in the latent space, which we aim to
further exploit to derive compact and disentangled information
for COVID-19 detection. Meanwhile, quantifying uncertainty
in disease detection is undoubtedly significant to understand
the confidence level of computer-based diagnoses. Motivated
by the clinical practices, we present a novel neural network
in this section, referred to as MUL, which takes in the
MHMFs and outputs the prediction and the quantification
of the diagnostic uncertainty caused by the noise in the
data.

The structure of the MUL module is shown in Fig. 2, which
consists of multiple dropout layers that process the output from
MHMF in parallel, each of which together with the following
several fully connected layers can be regarded as an expert
for COVID-19 detection. We note that each dropout layer uses
different masks which results in different subsets of latent
information to be kept, while the following fully connected
layers share the same weights across different experts. The
masks for the dropout layers are generated randomly at each
iteration during training but fixed during the inference time.
We denote the input-output function of each expert by C j

e (·),
j = 1, . . . , N , where N is the total number of experts. Hence,
we have the classification loss L j

e of j th expert given as
follows:

L j
e = 1

n

n∑
i=1

Lw
(
C j

e (J (Eψ(xi))), yi
)

(11)

where n represents the total number of labeled CXR samples,
and yi denotes the one-hot representation of the class label,
i = 1, . . . , n, and we recall that J (·) denotes the MHMF

operation given in (10) and Eψ(·) is the preprocessing step on
the CXR samples. Note that, the total number of COVID-19
cases is much smaller than non-COVID cases, i.e., normal and
pneumonia cases. This imbalance in the dataset leads to a high
ratio of false-negative classification. To mitigate this negative
effect, we employ a weighted cross-entropy Lw(·) given as
follows:

Lw(ŷi , yi) = − 1

C

C∑
c=1

λc · yi,c log ŷi,c (12)

where C is the total number of classes, yi,c is the cth
element of yi , and ŷi,c denotes the corresponding prediction.
λc represents the weight that controls how much the error on
class c contributes to the loss, c = 1, . . . ,C . Finally, the loss
LM of the whole MUL module is derived by averaging the
loss values of all the experts

LM = 1

N

N∑
j=1

L j
e . (13)

We use the variance of classification loss L j
e with regards

to the average loss LM to quantify the uncertainty, denoted by
σ , which is given as

σ = 1

N

N∑
j=1

(LM − L j
e

)2
. (14)

The proposed MUL module improves the diagnostic accu-
racy as the final prediction combines the results from multiple
experts, and also mitigates the negative effects caused by the
noise in the data by introducing the dropout layers. Moreover,
the experiments have revealed that the more experts in the
MUL module the faster the system converges during training.

D. Training

The whole architecture of RCoNetks is presented in Fig. 2,
where the CXR images are first processed by a stack of
deformable convolution layers, and then are transformed to
high-order moment latent features by the MHMF module.
Finally, the MUL module utilizes the learned high-order
features to generate final diagnoses. The loss used to optimize
RCoNetks is given as follows:

Ltotal = LM − αLI (15)

where LM is the prediction loss given by (13), and LI denotes
the MI between the input X and the latent representation
Eψ(X) estimated by either (6) or (7). α is a positive hyper-
parameter that governs how much LM and LI contribute to
the total loss. During training, the trainable parameters of the
whole systems are updated iteratively to minimize Ltotal, which
is to jointly minimize the prediction loss LM thus to improve
the accuracy and maximize the MI LI .

IV. EXPERIMENTS AND RESULTS

A. Dataset

We use a public CXR dataset, referred to as
COVIDx, to evaluate the proposed model, which is
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TABLE I

DETAILS OF PATIENT DATA USED FOR TRAINING AND TESTING

published by the authors of COVID-Net [14]. This
dataset contains a total of 13975 CXR images from
13870 patients of 3 classes: (a) normal (no infections);
(b) pneumonia (non-COVID-19 pneumonia); (c) COVID-19.
It contains samples from five open source available
data repositories https://github.com/lindawangg/COVID-
Net/blob/master/docs/COVIDx.md. Three random CXR
samples of these three classes are shown in Fig. 1.
To reduce the negative effect caused by extremely
unbalanced training samples, i.e., a very limited number
of COVID-19 positive cases compared to the other two
categories, we further include other open-source CXR
datasets from https://www.kaggle.com/c/rsna-pneumonia-
detection-challenge/data. Following [14], [47], the dataset is
finally divided into 13624 training and 1510 test samples.
The numbers of samples from different categories used for
training and testing are summarized in Table I. Moreover,
we also adopted various data augmentation techniques to
generate more COVID-19 training samples, such as flipping,
translation, rotation using random five different angles,
to tackle the data imbalance issue such that the proposed
model can learn an effective mechanism of detecting
COVID-19.

B. Evaluation Metrics

In our experiments, we use the following six metrics to
evaluate the COVID-19 detection performance of different
approaches:

1) Accuracy (ACC): ACC calculates the proportion of
images that are correctly identified. ACC = (TP +
TN/TP + TN + FP + FN).

2) Sensitivity (SEN): SEN is the ratio of the positive cases
that have been correctly detected to all the positive cases.
SEN = (TP/TP + FN).

3) Specificity (SPE): SPE is the ratio of the negative cases
that have been correctly classified to all the negative
cases. SPE = (TN/TN + FP).

4) Balance (BAC): BAC is the mean value of SEN and
SPE. BAC = (SEN + SPE/2).

5) Positive Predictive Value (PPV): PPV is the ratio of
correctly detected positive cases to all cases that are
detected to be positive. PPV = (TP/TP + FP).

6) F1-score (F1): F1 uses a combination of accuracy and
sensitivity to calculate a balanced average result. F1 =
(2 × ACC × SEN/ACC + SEN).

TN, TP, FN and FP represent the total number of true
negatives, true positives, false negatives, and false positives,
respectively.

C. Compared Methods

We compare the proposed RCoNetks with the following five
existing deep learning methods for COVID-19 detection:

TABLE II

DETAILS OF 10% NOISY PATIENT DATA USED FOR TRAINING

1) PbCNN [15]: A patch-based convolutional neural net-
work (CNN) with a relatively small number of trainable
parameters.

2) COVID-Net [14]: A tailored deep CNN that uses a
projection-expansion-projection design pattern.

3) DenseNet-121 [48]: A densely connected convolutional
network that connects each layer to every other layer in
a feed-forward fashion.

4) CoroNet [49]: A deep CNN model based on Xception
architecture pretrained on ImageNet dataset.

5) ReCoNet [47]: A residual image-based COVID-19
detection network that exploits a CNN-based multi-
level preprocessing filter block and a multitask learning
loss.

D. Implementation

We implement our RCoNetks using the PyTorch library and
apply ResNeXt [50] as the backbone network. We train the
model with the Adam optimizer with an initial learning rate of
2×10−4 and a weight decay factor of 1×10−4. All the exper-
iments are run on an NVIDIA GeForce GTX 1080Ti GPU.
We set the batch size to be 8, and resize all images to 224×224
pixels. The hyperparameter α in the loss function given in (15)
is set to be within the range of [0, 0.4]. The drop rate of each
dropout layer in the MUL module is randomly chosen from
{0.1, 0.3, 0.5}. The loss weight λc for each category, which is
used to calculate the weighted sum of the loss as given in (12),
is set to be 1, 1, and 20 for the normal, pneumonia, COVID-19
samples, respectively, corresponding to the number of train-
ing samples in each. We adopt fivefold cross-validation and
evaluate our proposed model with a different number of order
moments for the MHMF module k, and a different number of
experts s.

To evaluate the performance of the proposed model with
the presence of label noise, we derive a noisy dataset from the
given dataset in the following way: we randomly select a given
percentage of training samples in each category and assign
wrong labels to these samples. In particular, to ensure that the
fake COVID-19 samples are less than the real ones, we assign
the COVID-19 labels to select normal and pneumonia samples
in a way the number of normal and pneumonia samples
assigned with the COVID-19 label equals the number of
COVID-19 samples assigned with either normal or pneumonia
label. We show a realization of the derived noisy dataset when
the percentage of fake samples is set to be 10% in Table II.

E. Results and Discussions

1) Performance on Clean Data: The numerical results
on the clean dataset without any artificial noise added are
shown in Table III. The results are presented in the form of
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TABLE III

PERFORMANCE COMPARISON OF DIFFERENT APPROACHES FOR COVID-19 DETECTION ON THE COVIDx DATASET

Fig. 4. Confusion matrices of the proposed RCoNetks trained on noisy dataset with different percentages of noisy samples. (a) Clean. (b) 10% Noise. (c) 20%
Noise. (d) 30% Noise.

TABLE IV

PERFORMANCE COMPARISON OF DIFFERENT APPROACHES
ON COVIDx DATASET WITH NOISY SAMPLES

a ± b, where a and b denote the average and variance values
of each metric on five independent experiments, respectively.
We can see that RCoNet54, i.e., the proposed model with k = 4
levels of mixed moment features and s = 4 experts, achieves
notable performance improvement over the comparison meth-
ods in terms of most metrics considered, including ACC, SPE,
BAC, PPV, and F1 score. We note the performance of RCoNetk

s

can be further improved with a different set of k and s. For
instance, RCoNet54 achieves a better SEN and F1 score than
RCoNet44. The higher ACC and F1 score validate that RCoNetks
is able to obtain latent features, i.e., the mixed moment features
of different levels of order, that maintain interclass separability
and intraclass compactness better than other models. Note that
RCoNet54 leads to a higher SEN than all other methods, which
is particularly important to COVID-19 detection since success-
fully detecting COVID-19 positive cases is the key to control
the spread of this super contagious disease. Moreover, it can
be observed that RCoNetks has smaller variance compared to
the others, which demonstrates the robustness and stability of
our model.

2) Complexity Discussion: We also evaluate the complexity
of the proposed model in terms of numbers of parameters
and computational cost, i.e., Float-point operations (FLOPs),
which is presented in Table III. It can be observed that the pro-
posed model has much fewer parameters than several existing
methods, except ReCoNet. However, we note that the FLOPs
of RCoNetks is quite close to that of ReCoNet, which means
it takes a similar amount of time to diagnose COVID-19 from
CXR images by these two models. We can also observe that
the increase of k, i.e., the number of mixed moment features,
only causes a small or even neglectable amount of increase in
the number of parameters and FLOPs as well, which suggests
that we can improve the performance of the proposed model by
optimizing k, without the concern on the significant increase
of the complexity. As for s, the number of experts in MUL,
we select 4 which is confirmed to have better performance with
a bit of computational cost increase after a great number of
experiments.
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Fig. 5. t-SNE visualization of the latent features generated by different methods. Blue, green and red dots represent normal, pneumonia and COVID-19 samples,
respectively. (a) Baseline. (b) RCoNet-D. (c) RCoNet-M. (d) RCoNet-DM. (e) RCoNet24. (f) RCoNet34. (g) RCoNet44. (h) RCoNet54.

3) Performance on Noisy Data: We further compare the
proposed model to the existing ones when there is noise
present in the training dataset. We generate three noisy training
datasets in an aforementioned way from the clean dataset with
10%, 20%, and 30% samples with wrong labels, respectively.
The results, which we take the averages from five independent
experiments, are presented in Table IV. It can be easily seen
that the more fake samples we add, the more it degrades
the performance of all the methods. Note that the proposed
RCoNet44 still gets the state-of-the-art results in all considered
cases with different percentages of noisy samples in the
training dataset. Moreover, the performance gain over the
existing methods slightly increases with the ratio of noisy
samples, verifying that our model is more robust to the noise.
Note that the extreme case of 30% noisy samples leads to
great performance degradation of all the models. In practice,
the percentage of label noise is usually around 10% to 20%.
We present the confusion matrices in Fig. 4 to summarize the
prediction accuracy of different categories. We can observe
that, although with very limited number of COVID-19, our
model still maintains high accuracy of detecting COVID-19
cases, even with the presence of noisy samples.

4) Uncertainty Estimation: One remarkable advantage of
our model is the ability to quantify the uncertainty in the final
prediction, which is significantly crucial for COVID-19 detec-
tion. This is done by obtaining the variance in the output of
different experts in MUL as described in Section III-C. The
larger the variance is, the more different experts disagree with
each other, and, hence, the more uncertain the model is about
the final prediction. We present two CXR samples in Fig. 6,
including the predictions and the corresponding uncertainty
level by RCoNetks . We can see that the correctly classified
CXR image has a low uncertainty level about its prediction,
i.e., 0.0094, and the misclassified CXR sample with a high
uncertainty level, i.e., 0.4792, suggests that an alternative way
of diagnosis should be sought to correct this prediction. This

Fig. 6. Example CXR samples with their predictions and the corresponding
uncertainty levels by RCoNet44.

greatly improves the reliability of the prediction by RCoNetks ,
and reduces the chance of misdiagnosis. We also show in Fig. 7
the average uncertainty levels of RCoNetks trained on clean and
noisy datasets with different ratios of noisy samples. It can be
observed that the uncertainty level increases almost linearly
with the percentage of noisy samples in the dataset, which
highlights the negative impact of noise on model training.

F. Analysis

We further numerically analyze the benefits of the three
key modules of RCoNetks , i.e., the DeIM, MHMF and MUL
modules in this section.

1) Effectiveness of DeIM: As shown in Fig. 5, we utilize t-
stochastic neighbor embedding (SNE) method [51] to visualize
the latent features, which are generated by the bottleneck
layers of the baseline model, i.e., ResNeXt, RCoNetk

s and
three variants of RCoNetks : (a) RCoNet-D: a model contains
only DeIM; (b) RCoNet-M: a model contains only MUL;
(c) RCoNet-DM: a model contains DeIM and MUL but
not MHMF. Comparing the latent feature distribution by the
baseline model shown in Fig. 5(a), and that by RCoNet-D
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TABLE V

IMPACT OF THE MHMF AND MUL ON THE MODEL PERFORMANCE

Fig. 7. Comparison on uncertainty level of the predictions by RCoNet44.

presented in Fig. 5(b), we can tell that the introduction of
DeIM leads to better class separation in the latent space.

2) Effectiveness of MHMF: We can observe in Fig. 5(a)–(d)
that the latent features of the COVID-19 samples, generated
by the models without MHMF, always distribute around the
category boundary, and are not quite separable from those
of some pneumonia samples. Meanwhile, the latent feature
distributions presented in Fig. 5(e)–(h) derived by the models
with MHMF show significant separability between different
categories, which implies that MHMF can extract discrimina-
tive features. We also include numerical results of RCoNetks ,
trained and tested on COVIDx dataset, with regards to different
values of k, i.e., the number of levels of the moment features
to be mixed, and s, i.e., the number of experts, in Table V in
terms of accuracy. We can observe that, for a given value
of s, the accuracy increases first with the value of k but
decreases after k is larger than 4. It demonstrates that including
more levels of moment feature could improve the model
performance. However, the overly high-order moments may
lead to performance degradation, which may be because these
features are not useful for COVID detection.

3) Effectiveness of MUL: From Table V, we observe that,
for a given value of k, accuracy increases first with the value
of s but saturates around s = 5. This implies that having more
experts in MUL can increase the prediction accuracy but it is
not necessary to have too many.

4) Parameter Sensitivity and Convergence: We evaluate
how sensitive the model performance in terms of accuracy
to the value of α. We show the average accuracy of five
independent experiments by RCoNet44 trained on the dataset
with different ratios of noisy samples in Fig. 8. As we can
see, the larger α, which means the prediction loss, i.e., LM ,
contributes less to the total loss, not necessarily leads to

Fig. 8. Prediction accuracy by RCoNet44 with regards to different values
of α.

Fig. 9. Comparison on the learning trajectories of different models.

degradation in the accuracy. This means maximizing the
MI between the input and the latent features could keep
useful information within the latent features, thus improving
the prediction accuracy. We have also shown the learning
curves of different models in Fig. 9, which shows that
RCoNet44 converges slightly faster than the others, including
COVID-Net, ReCoNet and CoroNet.

V. CONCLUSION

In this article, we proposed a novel deep network model,
named RCoNetks , for robust COVID-19 detection, which
contains three key components, i.e., DeIM, MHMF and MUL.
DeIM estimates and maximizes the MI between input data and
the latent representations simultaneously to obtain the cate-
gory separability in the latent space. MHMF overcomes the
limited expressive capability of low-order statistics, and uses
a combination of both low and high order moment features
to extract more informative and discriminative features. MUL
generates the final diagnosis and the uncertainty estimation by
combining the output of multiple parallel dropout networks,
each as an expert. We numerically validated that the proposed
RCoNet trained on either the public COVIDx dataset or
the noisy version of it outperforms the existing methods in
terms of all the metrics considered. We noted that these three
modules can be easily implemented into other frameworks for
different tasks.

REFERENCES

[1] K. Zhang et al., “Clinically applicable AI system for accurate
diagnosis, quantitative measurements, and prognosis of COVID-19
pneumonia using computed tomography,” Cell, vol. 181, no. 6,
pp. 1423.e11–1433.e11, Jun. 2020.



3410 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

[2] Z. Han et al., “Accurate screening of COVID-19 using attention-based
deep 3D multiple instance learning,” IEEE Trans. Med. Imag., vol. 39,
no. 8, pp. 2584–2594, Aug. 2020.

[3] “Artificial intelligence-enabled rapid diagnosis of patients with
COVID-19,” Nature Med., vol. 26, pp. 1224–1228, 2020.

[4] W. Xie, C. Jacobs, J.-P. Charbonnier, and B. van Ginneken, “Relational
modeling for robust and efficient pulmonary lobe segmentation in
CT scans,” IEEE Trans. Med. Imag., vol. 39, no. 8, pp. 2664–2675,
Aug. 2020.

[5] X. Ouyang et al., “Dual-sampling attention network for diagnosis of
COVID-19 from community acquired pneumonia,” IEEE Trans. Med.
Imag., vol. 39, no. 8, pp. 2595–2605, Aug. 2020.

[6] H. X. Bai et al., “AI augmentation of radiologist performance in
distinguishing COVID-19 from pneumonia of other etiology on chest
CT,” Radiology, vol. 296, no. 3, 2020, Art. no. 201491.

[7] A. A. Ardakani, A. R. Kanafi, U. R. Acharya, N. Khadem, and
A. Mohammadi, “Application of deep learning technique to manage
COVID-19 in routine clinical practice using CT images: Results of 10
convolutional neural networks,” Comput. Biol. Med., vol. 121, Jun. 2020,
Art. no. 103795.

[8] H. Kang et al., “Diagnosis of coronavirus disease 2019 (COVID-19)
with structured latent multi-view representation learning,” IEEE Trans.
Med. Imag., vol. 39, no. 8, pp. 2606–2614, Aug. 2020.

[9] D.-P. Fan et al., “Inf-Net: Automatic COVID-19 lung infection seg-
mentation from CT images,” IEEE Trans. Med. Imag., vol. 39, no. 8,
pp. 2626–2637, Aug. 2020.

[10] L. Sun et al., “Adaptive feature selection guided deep forest for
COVID-19 classification with chest CT,” 2020, arXiv:2005.03264.
[Online]. Available: http://arxiv.org/abs/2005.03264

[11] D. Donglin et al., “Hypergraph learning for identification of
COVID-19 with CT imaging,” Med. Image Anal., vol. 68, Feb. 2020,
Art. no. 101910.

[12] Z. Y. Zu et al., “Coronavirus disease 2019 (COVID-19): A perspective
from China,” Radiology, vol. 296, no. 6, 2020, Art. no. 200490.

[13] M. Siddhartha and A. Santra, “COVIDLite: A depth-wise separa-
ble deep neural network with white balance and CLAHE for detec-
tion of COVID-19,” 2020, arXiv:2006.13873. [Online]. Available:
http://arxiv.org/abs/2006.13873

[14] L. Wang and A. Wong, “COVID-Net: A tailored deep convolu-
tional neural network design for detection of COVID-19 cases from
chest X-ray images,” 2020, arXiv:2003.09871. [Online]. Available:
http://arxiv.org/abs/2003.09871

[15] Y. Oh, S. Park, and J. C. Ye, “Deep learning COVID-19 features on
CXR using limited training data sets,” IEEE Trans. Med. Imag., vol. 39,
no. 8, pp. 2688–2700, Aug. 2020.

[16] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual infor-
mation,” IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 187–198,
Apr. 1997.

[17] A. Hyvärinen and E. Oja, “Independent component analysis: Algo-
rithms and applications,” Neural Netw., vol. 13, nos. 4–5, pp. 411–430,
Jun. 2000.

[18] N. Kwak and C.-H. Choi, “Input feature selection by mutual information
based on Parzen window,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 12, pp. 1667–1671, Dec. 2002.

[19] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8,
pp. 1226–1238, Aug. 2005.

[20] A. J. Butte and I. S. Kohane, “Mutual information relevance net-
works: Functional genomic clustering using pairwise entropy mea-
surements,” in Biocomputing. Singapore: World Scientific, 1999,
pp. 418–429.

[21] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy,
“Tracking emerges by colorizing videos,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 391–408.

[22] R. Arandjelovic and A. Zisserman, “Look, listen and learn,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 609–617.

[23] M. I. Belghazi et al., “Mutual information neural estimation,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 531–540.

[24] J. Chang, Z. Lan, C. Cheng, and Y. Wei, “Data uncertainty learn-
ing in face recognition,” 2020, arXiv:2003.11339. [Online]. Available:
http://arxiv.org/abs/2003.11339

[25] Y. Shi and A. Jain, “Probabilistic face embeddings,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6902–6911.

[26] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet:
Model uncertainty in deep convolutional encoder-decoder architectures
for scene understanding,” 2015, arXiv:1511.02680. [Online]. Available:
http://arxiv.org/abs/1511.02680

[27] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” 2015, arXiv:1505.05424. [Online].
Available: http://arxiv.org/abs/1505.05424

[28] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, Univ.
Cambridge, Cambridge, U.K., 2016.

[29] D. J. C. MacKay, “A practical Bayesian framework for backpropagation
networks,” Neural Comput., vol. 4, no. 3, pp. 448–472, May 1992.

[30] R. M. Neal, Bayesian Learning for Neural Networks, vol. 118. Berlin,
Germany: Springer, 2012.

[31] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian
deep learning for computer vision?” in Proc. Adv. Neural Inf. Process.
Syst., 2017, pp. 5574–5584.

[32] S. Isobe and S. Arai, “Deep convolutional encoder-decoder network with
model uncertainty for semantic segmentation,” in Proc. IEEE Int. Conf.
Innov. Intell. Syst. Appl. (INISTA), Jul. 2017, pp. 365–370.

[33] J. Choi, D. Chun, H. Kim, and H.-J. Lee, “Gaussian YOLOv3:
An accurate and fast object detector using localization uncertainty
for autonomous driving,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 502–511.

[34] T. Yu, D. Li, Y. Yang, T. Hospedales, and T. Xiang, “Robust person
re-identification by modelling feature uncertainty,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 552–561.

[35] U. Zafar et al., “Face recognition with Bayesian convolutional networks
for robust surveillance systems,” EURASIP J. Image Video Process.,
vol. 2019, no. 1, p. 10, Dec. 2019.

[36] M. D. Donsker and S. R. S. Varadhan, “Asymptotic evaluation of certain
Markov process expectations for large time, I,” Commun. Pure Appl.
Math., vol. 28, no. 1, pp. 1–47, Sep. 2010.

[37] S. Nowozin, B. Cseke, and R. Tomioka, “f-GAN: Training generative
neural samplers using variational divergence minimization,” in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 271–279.

[38] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image
statistics,” J. Mach. Learn. Res., vol. 13, pp. 307–361, Feb. 2012.

[39] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representations
by maximizing mutual information across views,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 15509–15519.

[40] J. Xu, P. Ye, Q. Li, H. Du, Y. Liu, and D. Doermann, “Blind image
quality assessment based on high order statistics aggregation,” IEEE
Trans. Image Process., vol. 25, no. 9, pp. 4444–4457, Sep. 2016.

[41] C. Chen et al., “HoMM: Higher-order moment matching for unsuper-
vised domain adaptation,” 2019, arXiv:1912.11976. [Online]. Available:
http://arxiv.org/abs/1912.11976

[42] E. Pauwels and J. B. Lasserre, “Sorting out typicality with the inverse
moment matrix sos polynomial,” in Proc. Adv. Neural Inf. Process. Syst.,
2016, pp. 190–198.

[43] P. Jacob, D. Picard, A. Histace, and E. Klein, “Metric learning
with HORDE: High-order regularizer for deep embeddings,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6539–6548.

[44] H. Jégou and O. Chum, “Negative evidences and co-occurences in image
retrieval: The benefit of pca and whitening,” in Proc. Eur. Conf. Comput.
Vis. Berlin, Germany: Springer, 2012, pp. 774–787.

[45] M. Opitz, G. Waltner, H. Possegger, and H. Bischof, “BIER—Boosting
independent embeddings robustly,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 5189–5198.

[46] P. Kar and H. Karnick, “Random feature maps for dot product kernels,”
in Proc. Artif. Intell. Statist., 2012, pp. 583–591.

[47] “ReCoNet: Multi-level preprocessing of chest X-rays for COVID-19
detection using convolutional neural networks,” medRxiv, to be pub-
lished.

[48] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[49] A. I. Khan, J. L. Shah, and M. M. Bhat, “CoroNet: A deep neural
network for detection and diagnosis of COVID-19 from chest X-ray
images,” Comput. Methods Programs Biomed., vol. 196, Nov. 2020,
Art. no. 105581.

[50] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987–5995.

[51] J. Donahue et al., “DeCAF: A deep convolutional activation feature
for generic visual recognition,” in Proc. Int. Conf. Mach. Learn., 2014,
pp. 647–655.



DONG et al.: RCoNet: DEIM AND HIGH-ORDER UNCERTAINTY-AWARE LEARNING 3411

Shunjie Dong received the B.S. degree in inte-
grated circuit design and integration system from
Xidian University, Xi’an, China, in 2018. He is
currently pursuing the Ph.D. degree with the College
of Information Science and Electronic Engineering,
Zhejiang University, Hangzhou, China.

Since 2018, he has been advised by Prof. Cheng
Zhuo. His research interests include medical image
analysis and machine learning.

Qianqian Yang (Member, IEEE) received the
B.S. degree in automation from Chongqing Univer-
sity, Chongqing, China, in 2011, the M.S. degree
in control engineering from Zhejiang University,
Hangzhou, China, in 2014, and the Ph.D. degree in
electrical and electronic engineering from Imperial
College London, London, U.K., in 2019.

She has held visiting positions at CentraleSu-
pelec Gif-sur-Yvette, France, in 2016, and the
New York University Tandon School of Engineering,
New York, NY, USA, from 2017 to 2018. After her

Ph.D., she served as a Post-Doctoral Research Associate for Imperial College
London, and as a Machine Learning Researcher for Sensyne Health Plc,
Oxford, U.K. She is currently a Tenure-Tracked Professor with the Department
of Information Science and Electronic Engineering, Zhejiang University. Her
main research interests include wireless communications, information theory,
machine learning and medical imaging. She serves as a Reviewer for IEEE
TRANSACTIONS ON INFORMATION THEORY (TIT), IEEE TRANSACTIONS

ON COMMUNICATIONS (TCOM), IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS (TWC), etc.

Yu Fu received the B.S. degree in computer science
and technology from Sichuan Agricultural Univer-
sity, Ya’an, China, in 2017, and the M.S. degree
in computer software and theory from Lanzhou
University, Lanzhou, China, in 2020. He is currently
pursuing the Ph.D. degree in electronic science and
technology with the College of Information Science
and Electronic Engineering, Zhejiang University,
Hangzhou, China.

Since 2020, he has been advised by Prof. Cheng
Zhuo. His research interests include medical image
analysis and brain imaging.

Mei Tian is the Director of Medical Imaging and
Nuclear Medicine Program of Zhejiang University,
Hangzhou, China, the Vice President of Zhejiang
University Medical Center, and the Vice President of
Hangzhou Riverside Hospital, Zhejiang University
School of Medicine. Her current research interests
include radiology, nuclear medicine, and molecular
imaging.

Prof. Tian was a recipient of the Merit Award from
the Radiological Society of North America (RSNA),
the International Young Investigator Grant from

RSNA, the International Development and Education Grant from ASCO,
the Asian and Oceanian Distinguished Young Investigator Award from the
Japanese Society of Nuclear Medicine (JSNM), and the Japan Society for
the Promotion of Science (JSPS) Fellowship. She has served the Associate
Editor or an Editorial Board Member for the official journals of the WMIS,
the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the
European Association of Nuclear Medicine (EANM), the British Society
for Nanomedicine (BSNM), and JSNM, and the Editorial Consultant of The
LANCET.

Cheng Zhuo (Senior Member, IEEE) received
the B.S. (Hons.) and M.S. degrees in electronic
engineering from Zhejiang University, Hangzhou,
China, in 2005 and 2007, respectively, and the
Ph.D. degree in computer science and engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 2010.

He is currently a Professor with the College of
Information Science and Electronic Engineering,
International Joint Innovation Center, Zhejiang
University. His current research interests include

medical imaging, deep learning, and hardware acceleration.
Dr. Zhuo was a recipient of three Best Paper nominations in DAC‘16,

CSTIC‘18 and ICCAD‘20, 2012 Association for Computing Machinery
(ACM) SIGDA Technical Leadership Award, and 2017 Japan Society for
the Promotion of Science (JSPS) Invitation Fellowship. He has served on
the Technical Program and Organization Committees of many international
conferences and as an Associate Editor for IEEE TECHNOLOGY

COMPUTER-AIDED DESIGN (TCAD), ACM Transactions on Design
Automation of Electronic System (TODAES), and Elsevier Integration.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


