
1

Incremental Deep Neural Network Learning using
Classification Confidence Thresholding

Justin Leo and Jugal Kalita
Department of Computer Science

University of Colorado at Colorado Springs
{jleo, jkalita}@uccs.edu

Abstract—Most modern neural networks for classification fail
to take into account the concept of the unknown. Trained
neural networks are usually tested in an unrealistic scenario
with only examples from a closed set of known classes. In
an attempt to develop a more realistic model, the concept of
working in an open set environment has been introduced. This
in turn leads to the concept of incremental learning where
a model with its own architecture and initial trained set of
data can identify unknown classes during the testing phase
and autonomously update itself if evidence of a new class is
detected. Some problems that arise in incremental learning are
inefficient use of resources to retrain the classifier repeatedly
and the decrease of classification accuracy as multiple classes
are added over time. This process of instantiating new classes is
repeated as many times as necessary, accruing errors. To address
these problems, this paper proposes the Classification Confidence
Threshold approach to prime neural networks for incremental
learning to keep accuracies high by limiting forgetting. A lean
method is also used to reduce resources used in the retraining of
the neural network. The proposed method is based on the idea
that a network is able to incrementally learn a new class even
when exposed to a limited number samples associated with the
new class. This method can be applied to most existing neural
networks with minimal changes to network architecture.

I. INTRODUCTION

When a trained classification model is used, it is realistically
deployed in a complex environment that is likely to be
dynamic and evolving. In other words, to perform effectively
in a realistic environment, a trained network should be able
to perform well on classes on which it was trained as well as
recognize classes on which it was not trained [1] [2]. Most
neural classifiers fail to incorporate the possibility of such a
complex environment. This may result in a failure of trained
neural networks, resulting in inadequate classification. Thus,
most neural networks suffer from the problem of inaccurate
classification as well as the inability to dynamically learn
newly encountered unknown classes. The objective of this
research is to produce a method to adapt the existing neural
classification process to allow for incremental class learning
while minimizing accumulated error and resource use; this
includes limiting network size and training times.

The problem of not being able to handle examples of
previously unseen classes can be remedied by endowing a
network with the ability to perform open set classification.
Open set classification is the ability of a trained classifier
to distinguish between known classes and identify potential
unknown classes [3]. This is particularly useful as recognizing

unknown classes greatly improves a classifier’s accuracy in
a complex environment. This research explores incremental
learning, the process where a neural classifier continuously
learns new classes when encountering examples from such
classes. It repeatedly uses ideas from open set classification to
recognize new classes and instantiate them. If a neural network
can be primed to expect unknown classes, it can continuously
learn by itself when encountering such unknown data.

An important factor to consider when developing an in-
cremental learning model is to reduce the error of classifying
samples of currently known classes mistakenly as belonging to
unknown classes. If such errors are made early, they are prop-
agated through the learning process, making overall accuracy
poor. Limiting this error, especially early in the process, allows
for continued accurate results [4]. In this paper, we propose
a method to modify a few widely used existing classification
models and adapt them to work as incremental class learners
that are exposed to examples of novel classes in addition
to previously learned classes. This process depends on being
careful in identifying examples as belonging to new classes,
in particular in reducing error in mis-recognizing examples
of known classes as belonging to unknown classes. When a
network potentially identifies the existence of one or more
new classes, the proposed method also minimizes the resources
used to further train the network. In this paper, we focus on
both vision and natural language classification tasks, and show
that our approach builds robust incremental classifiers.

Recent research in deep learning has shown that compared
to large complex neural networks, carefully extracted smaller
networks are also capable of having similar classification
abilities [5] [6]. This is an important factor to consider
as the process of incremental learning adds information to
a network and naturally makes it bigger. The incremental
learning method proposed in this paper focuses on minimizing
resource use and thus limits the growth of the network as much
as possible.

The main contributions of this paper include the following:

• We develop a method to prime neural networks for
incremental learning so that they expect to encounter
unknown classes.

• We present a classification confidence threshold method
used to perform open set classification for the purpose
of incremental learning, and for the purpose of limiting
catastrophic forgetting.

ar
X

iv
:2

10
6.

11
43

7v
1 

 [
cs

.L
G

] 
 2

1 
Ju

n 
20

21



2

• We minimize resource use when incrementally learning
new classes for networks.

• We develop a new incremental learning metric that eval-
uates the network at each new incremental learning step.

The rest of the paper is organized in the following manner.
Section II of the paper discusses related work. Section III
introduces our approach to incremental class learning. Section
IV presents a new metric for evaluation of incremental class
learning. Section V discusses results of several neural network
architectures as well as compares the approach with some
state-of-the-art approaches. Section VI concludes the paper.

II. RELATED WORK

The related work is presented in terms of four topics: incre-
mental class learning, open set recognition, node neurogenesis,
and optimization of networks.

Open set incremental learning is a multi-stage process.
Leo and Kalita [4] build upon the work by Prakhya et al.
[7] to propose a technique that can be used by a trained
text classifier to recognize unknown classes and to use the
identified unknown samples to retrain the trained classifier.
This will then include the unknown classes in the network’s
set of known classes. They modify the softmax layer in a
multi-layer convolutional neural network and replace it with
an ensemble layer designed to identify novel classes. The
ensemble layer is comprised of a voting model between three
outlier detection approaches: Mahalanobis Weibull [8], Local
Outlier Factor [9], and Isolation Forest [10]. The examples
of unknown classes identified by the ensemble layer is used
to fully retrain the classifier to handle new classes with
high accuracy. The approach described in our research uses
a similar concept where the softmax layer of a classifier is
modified in order to adapt a model for incremental learning.

Incremental learning is a process that incorporates open
set classification. Open set classification is the process that
identifies the unknown data from the known data. Work on
open set classification has been in both NLP [7] [11] as well
as Computer Vision [12] [3]. Open set classification also has
an aspect of confidence; this is the certainty of the network
in determining test data as known or unknown. Dhamija et al.
[13] propose a method to handle the open set classification
problem by developing a new loss function. The new loss
function increases the confidence in determining unknown
data by maximizing the entropy between unknown and known
data samples. The concept of confidence is emphasised in
our approach as we develop a novel method to optimize
incremental learning.

Neural networks attempt to digitally model the human brain
and associated neural functions. Since humans are capable of
continuous development and acquisition of novel knowledge, a
similar functionality is desirable for a neural network. Based
on this concept, Draelos et al. [1] propose a novel learning
method by studying adult neurogenesis by adding new neurons
to deep layers of neural networks. These new neurons facilitate
the acquisition of previously unseen information and move the
model to an incremental learning mode. Using this method, the
process of obtaining new knowledge minimizes the utilization

of resources. Our approach also utilizes neurogenesis by
adding new nodes to grow the incremental learning network’s
size in order to gradually learn new classes.

A problem often encountered when implementing the in-
cremental learning process is a network’s high number of
parameters. The fixed architecture, expensive training cost,
and density of the model make it difficult to efficiently
update the model to accommodate previously unseen classes.
The solution to this issue would be to optimize the neural
network. Some methods optimize networks in order to reduce
resource consumption such as training cost and memory. Dai
et al. [14] use a method that prunes unnecessary nodes from
networks. Rudd et al. [15] use a method specific to incremental
learning and optimize the specific data samples needed for
the multiple incremental learning steps. Resource management
and optimization are also part of our work as the approach
limits the data used for the retraining steps. Our approach also
balances the optimization such that while the training cost is
kept minimal, minimal knowledge is lost from the network.

III. APPROACH

A. Overview

The proposed approach is called the Classification Con-
fidence Threshold approach as it focuses on optimizing a
confidence level for classification. We start with a classification
neural network that can classify the input for a small number of
classes. We train it to achieve high classification accuracy and
then the classifier is deployed or tested. During deployment,
the trained classifier is augmented by adding a class node at the
output layer. This is a priming node that will catch examples
of new classes on which the network was not trained. These
caught examples are clustered to identify groups unseen by the
classifier so far. Output class nodes are instantiated for these
groups, augmenting the network, and then discarded. Learning
of such new classes is repeated till all classes are learned.

For incremental class learning to work well, there are two
conditions that need to be satisfied:
• The augmented networks should consistently perform

well on examples of trained classes, mapping them to
the output nodes corresponding to the trained classes.

• An augmented network should also be such that the extra
node catches samples from unknown classes for new class
instantiation.

Our training protocol ensures that both of these requirements
are taken care of and the method can be applied to modify any
neural classifier. The approach converts pre-existing classifiers
to incremental class learners.

B. Primary Notations Used

We first present the primary notations we use in the rest
of the paper. Other notations that are used in the paper are
introduced when needed.

We represent a dataset as D. A dataset D is comprised of a
number of examples, each one of which has a set of features
x and a label y. Thus, a dataset D = < xi, yi >, i = 1..m,
where m is the total number of examples in the dataset.



3

Fig. 1. Flowchart model of the Classification Confidence Threshold approach. The classifier’s softmax layer is primed to add the potential unknown data
node if unknown data samples are identified. After the potential unknown data has been identified and clustered, new nodes are added to the softmax layer
based on the number of new classes (shown on right of diagram). The classifier is then further trained on the newly labeled data to learn the new classes.

Let C be the set of classes represented in the dataset D.
Let there be ntotal classes. Thus, C = {C1, · · ·Cntotal

}. The
dataset can be thought of as the union of a number of sub-
datasets, each corresponding to one class in the dataset. In
other words,

D = D1 ∪D2 · · · ∪Dntotal
(1)

where Di is the subset of examples that belong to class Ci.
The m examples of the dataset D are usually divided into two
disjoint parts, one for training and the other for testing: Dtrain

and Dtest. The training set contains examples of all classes
as well as the test set. In particular, we can write

Dtrain = Dtrain
1 ∪Dtrain

2 · · · · · · ∪Dtrain
ntotal

(2)
Dtest = Dtest

1 ∪Dtest
2 · · · · · · ∪Dtest

ntotal.
(3)

Here, Dtrain
i is the subset of training examples from class Ci,

and Dtest
i is the subset of test examples in class Ci.

In incremental learning of classes, we first build a classifier
K0 trained to classify ninit number of classes; obviously,
we train using training examples of these classes: Dtrain

1 ∪
Dtrain

2 · · · ∪Dtrain
ninit

. Let us assume that the set of classes C
is arranged such that C = {C1, · · ·Cninit · · ·Cntotal

}, i.e., the
initial classifier K0 is built on the first ninit classes, and incre-
mental classification continues by learning nincr new classes
from the sequence of classes in C at a time. nincr is a small
positive integer. For example, if nincr = 1, we learn one new
class at a time. Therefore, we build dntotal−ninit

nincr
e classifiers in

sequence during incremental learning, given a dataset D with
ntotal classes. We call the sequence of classifiers we build
K0 · · · Kdntotal−ninit

nincr
e.

For this paper, we also need to define some terms frequently
used. A known class is a class previously seen by the classifier
and the associated data are known data. An unknown class is
a class not previously seen by the classifier and the associated
data are unknown Data. Lastly, noise data are a random mix
of data from known classes.

C. The Algorithm in Brief

We build an initial classifier that is trained on the initial
ninit classes. This initial classifier is then tested on examples
of the classes on which it was trained as well as training ex-
amples of the next nincr classes, which we consider unknown
at this time. We use an extra output node we inject into the
network, to catch the examples of the unknown classes. These
caught examples of the nincr unknown classes are clustered
into nincr clusters, and these clusters with the caught examples
are used as synonyms of the unknown classes. The network
is updated by adding nincr output nodes corresponding to
these new classes. Thus, the classifier evolves via a number
of iterations: one iteration consists of training the classifier
network on examples of a certain number of classes, catching
examples of unknown classes, clustering these examples, and
using the clusters to instantiate new classes. It is quite likely
that the evolving classifier makes mistakes in catching or
recognizing examples of unknown classes in such iterations,
or in classifying examples of known classes as unknown. Any
error made in an early iteration propagates through the later
iterations, decreasing the overall accuracy of the classifier.
Thus, care must be taken to reduce the amount of error
committed during the iterations when new classes are learned
progressively, especially in earlier iterations.

As discussed in the previous paragraph, we discover that
it is not necessary to train the evolving classifier on all
examples of the previously unknown classes; a few correctly
chosen examples obtained from the catching and clustering
process are enough. The process of catching and clustering
makes the classifier aware of the presence of examples of
previously unknown classes. To fortify the classifier so that
its performance does not degrade, the evolving classifier is
retrained on the caught unknown data samples as well as some
noise data; this helps reduce catastrophic forgetting.

As we can see, in the first iteration of the incremental
class learning process, the classifier is trained on all training
examples of the first ninit classes. However, when it learns
the next nincr classes, it is not trained on all examples of



4

these new classes; only those examples that are caught by the
current classifier with its limited knowledge of classes.

The protocol for incremental learning that we follow is
given precisely in Algorithm 1, with an accompanying illus-
tration in Figure 1. Lines 4-6 initialize the algorithm by setting
up the first ninit classes as currently known classes. It also
sets the rest of the ntotal − ninit classes as unknown classes
to be learned incrementally. The initial classifier trained on
the first ninit classes is called K0. The for loop in lines 7-17
builds a sequence of classifiers K1, · · · to incrementally learn
all ntotal classes. The steps inside the loop go through one
such incremental class learning process and are discussed in
subsequent subsections.

As an example, if for a classification task, ntotal =
50, ninit = 5 and nincr = 1, the algorithm builds an
initial classifier K0 to classify the first 5 classes C1, · · · , C5.
It then incrementally augments this initial classifier by
building a sequence of classifiers K1, · · · ,K45, classifying
6, · · · , 50 classes, respectively. Classfier K1 classifies classes
{C1, · · · , C6} whereas classifier K45 classifies all classes in
C = {C1, · · · , C50}.

Our method can be applied to modify any neural classifier,
including high-preforming pre-existing ones, and can move the
existing classification models to an incremental learning state
without much decrease of accuracy.

D. The Idea of Priming to Learn New Classes

In this paper, we present a method for incremental class
learning that repeatedly performs open set classification as
it increases the number of classes it knows. While there
have been other approaches to incremental learning, such
approaches typically involve fully retraining the classifier or
extensive layer editing, making them resource expensive as the
network may have a multitude of layers and a large training
step [14], [4], [16], [17]. To reduce the amount of resource
usage during incremental learning as well as to improve
efficiency and accuracy of incremental learning, we use the
concept of priming the network’s output layer to discover and
learn new classes during testing or deployment. Our hypothesis
is that a classification network that is primed for incremental
class learning minimizes re-training steps.

The term Priming in Psychology refers to “a technique
whereby exposure to one stimulus influences a response to a
subsequent stimulus, without conscious guidance or intention”
[18].

In other words, without conscious effort, certain tasks or
actions make other tasks or actions easier to perform in the
near future. When we talk about priming here, we refer to
positive priming. Positive priming [19] means that the first
stimulus or action activates parts of a particular representation
or association in memory just before carrying out an action
or task. The representation is already partially activated when
the second stimulus is encountered or the second action is
performed, and as a result less additional work is necessary.
Motivated by this idea of priming in psychology, we intend
to implement it in our neural network for incremental class
learning. We hypothesize that as a neural network learns to

classify a certain number of classes, it is already primed to
learn a small number of additional classes. In other words,
it already has some of the neural structure needed to learn a
small number of related classes.

Priming takes place in each iteration when the currently
trained network is tested with nincr new classes, with a view
to recognizing unknown classes for incorporation.

E. Implementing Priming in the Final Layer

Most neural networks use a softmax layer as shown in
Equation 4 for classification; in the scenario where a softmax
layer is not normally used, a softmax layer can be added to
the end of the network. The softmax layer takes as input a
sequence of numbers, produces a corresponding sequence of
numeric outputs such that each output is between 0 and 1, all
the numbers add up to 1, and the larger input numbers become
bigger so that the big ones stand out still bigger.

The first stage of the incremental learning approach is to
modify the softmax layer of the classifier. The concept of open
set classification implies that there is always the possibility
of encountering examples of novel classes in any testing or
deployment environment. Due to this reason, the softmax
layer is modified by adding an extra node such that there is
always the possibility of encountering nincr potential unknown
classes. To prime the network, we add one extra node after the
initial training process; this extra node is also initialized by
slightly balancing the weights of the other softmax nodes. The
balancing causes a minimal change of the weights as to not
drastically interfere with the trained knowledge of the network.
The purpose of the priming is to facilitate the confidence
threshold approach as detailed in Algorithm 2. The softmax
layer’s output is shown in Equation 4.

softmax(~x, i) =
exi∑k
i=1 e

xj

(4)

We simply add an extra priming node to the softmax layer.
This happens in Line 8 of Algorithm 1.

F. Determining Weights to Prime Node

After the network is initially trained, it is primed for
potential unknown classes. The weights to the new unknown
node need to be initialized before the model can utilize them
for testing and further training. Ideally, these nodes should
not disrupt the information already contained in the network;
to accomplish this, a small portion of each weight from the
existing softmax nodes is allocated to the weights of the new
nodes as shown in Equation 5. If new classes are identified,
these new nodes’ weights are updated in the further training
step. Here k is the number of pre-trained nodes and N is an
arbitrary large number, for our experimentation we use N =
1000 as that produces the most consistent results.

weight(nk+1 : nc) =

∑k
i=1 ni
N

(5)

If data belonging to one or more novel classes are found,
these new nodes become the classification nodes for the data
and a new node nnew is added.



5

Algorithm 1: Overview of the Classification Confidence Threshold Approach: We use } to indicate network nodes,
and 4 to indicate networks for additional clarity.

1 Input: A dataset D with examples from a set of classes C = {C1, · · ·Cninit
, · · · , Cntotal

}
2 Input: A small positive integer nincr, which is the number of new classes learned in each iteration
3 Output: Incrementally Trained Classifier 4K that recognizes all ntotal classes
4 Cknown

0 ← {C1, · · ·Cninit}, Cunknown
0 ← C − Cknown

0 initial sets of known and unknown classes
5 4K0 ← Train classifier on examples of Cknown

0 classes from D: Training data = Dtrain
1 ∪Dtrain

2 · · · ∪Dtrain
ninit

6 for l = 1 to dntotal−ninit

nincr
e do

7 4Kprimed
l ← prime classifier network 4Kl−1 with an unknown output class node }Cunk

l

8 Cnewunknown
l ← {Cninit+(l−1)nincr

· · ·Cninit+l nincr
}, new unknown classes to test with

9 Calltestedl ← Cknown
l−1 ∪ Cnewunknown

l

10 Test 4Kprimed
l on examples for classes belonging to Calltested: Testing Data =

{
⋃

Ci∈Cknown
l−1

Dtest
i } ∪ {

⋃
Ci∈Cnewunknown

l
Dtrain

i }; test data for known classes, all data for new unknown
11 Dknownsampled = {D′1 · · ·D′ninit+(l−1)nincr−1} ← sample a small number of examples from the training subsets

of the known classes to obviate catastrophic forgetting
12 Dnewunknown = {D′ninit+(l−1)nincr

· · ·D′ninit+l nincr
} ← Recognize examples of unknown classes Cnewunknown

l

using Algorithm 2, which takes as input all examples associated with priming node }Cunk
l and obtains nincr

clusters
13 4Kl ←4Kprimed

l −}Cunk
l + output nodes }OutNodes for Cnewunknown

l , newly augmented network
14 Cknown

l ← Cknown
l−1 ∪ Cnewunknown

l

15 Cunknown
l ← Cunknown

l−1 − Cnewunknown
l

16 4Kl ← Train 4Kl on Cknown
l with data from Dnewunknown ∪Dknownsampled

17 end
18 return 4Kl

G. Training the Network

After the softmax layer is primed for adding unknown
nodes, the second step is the testing process with a combi-
nation of known trained data and unknown data. Normally
this step would involve performing open set classification and
obtaining the unknown data samples and retrain the classifier
with these samples.

1) Issues in Training for Incremental Class Learning: A
serious incremental learning problem is the erroneous classi-
fication of known data examples as unknown; [4]; incremental
learning is a continuous process and this means the error
propagates over time as the incremental cycle continues. To
remedy this problem, we propose using the idea of a confi-
dence threshold. As shown in Algorithm 2, the approach only
obtains unknown data if there is a significant low classification
confidence in the softmax layer. The confidence threshold
utilizes the sample’s softmax probabilities to determine if
the sample should be classified as unknown. This process
only obtains a fraction of the total unknown data samples,
but in our experimentation we find the neural network is
capable of finding the new unknown class with a limited
number of samples. This means the approach utilizes a limited
instantiation of open set classification in order to improve
incremental learning performance. The confidence threshold
can be tuned to maximize results based on the architecture.

The Classification Confidence Threshold approach, as pro-
posed in this paper is a concept that has been briefly explored
before in open set classification for computer vision. The
approach, described in Equation 6 [15], utilizes a confidence
value to identify open set data.

y∗ =

{
argmaxl∈{1,...,M}P (Cl | x

′
) if P (Cl | x

′
) ≥ σ

“unknown” otherwise
(6)

The problem with this method is that it is designed more
for open set classification rather than incremental learning.
As mentioned before, our approach is designed to obtain
high accuracy for incremental learning rather than open set
classification results. Rudd et al. [15] also show an approach
for incremental learning; however, an additional step is added
to limit the resources required for multiple reclassification
steps. With the approach described in this paper, the additional
step is not required as the Classification Confidence Threshold
algorithm already limits the unknown data size for retraining
and reclassification. Thus, an efficient low resource utilization
method is developed for incremental learning.

2) Clustering, Handling Multiple Unknown Classes: One
additional problem that arises is the potential for multiple
unknown classes to arise during the testing process. To address
this problem, we use a clustering approach to determine if data
from multiple classes is present. The clustering algorithm used
is Spectral Clustering [20]. Spectral clustering was shown to
perform well with open set identification [4]. If the clustering
process produces more than one unknown class, the softmax
layer is modified to add more unknown nodes corresponding
to the new classes; since the network is already primed to
add additional nodes, this step is relatively quick and does not
cause much performance degradation.

3) Retraining the Enhanced Network: The final stage is
further training the classifier with the identified data samples of



6

Algorithm 2: Unknown Sample Detection with Confidence Threshold

1 Input: Dtest, Testing data from Line 11 of Algorithm 1; data consists of all test data for the known classes, and all
data (test and train) for new unknown classes

2 Input: CT Value c from Equation 7; nincr: number of unknown classes; nknown: number of current known classes
3 Output: Dnewunknown, a set of examples recognized as belonging to new unknown classes
4 Dnewunknown ← φ, empty set
5 UnknownSamples← φ, empty set
6 for t ∈ Dtest (t is a test sample) do
7 pt = {pt1, · · · , ptnknown+1} ← Compute softmax probabilities that t ∈ Ci, i = 1, · · ·nknown + 1; nknown is the

number of currently known classes, the last node is the priming node
8 p′ ← Set of probabilities p without max(p), the highest value
9 if max(p) > (avg(p′) ∗ c) then

10 flagt ← 0; t is in a known class
11 else
12 flagt = 1; t is in an unknown class
13 UnknownSamples← UnknownSamples ∪ {t}
14 end
15 end
16 Dnewunknown ← cluster UnknownSamples into nincr clusters
17 return Dnewunknown

Fig. 2. Confidence Threshold analysis using Multi-Layer CNN and data
classification. These plots show accuracies of re-training an already pre-trained
network; this test was conducted on all the datasets resulting a similar pattern.
Both plots have a certain number of classes fully pre-trained and a new class
is incrementally added; the first plot shows the addition of class 2 and the
second plot shows the addition of class 5. The x-axis shows the number of
samples used in the re-training process, since some classes are already pre-
trained, the accuracies for these stay at 100%. The new class being added
has the testing accuracy increase as more of its associated samples are used
for the re-training. Two observations are identified by these plots: for a given
dataset approximately the same number of samples are needed to fully learn
a new class (this number changes based on dataset), and a network is able to
recognize/learn a new class with a fewer number of samples. The third plot
shows how changing the confidence threshold affects the results and Equation
7 ’s output for the addition of one class.

unknown classes so the new classes can be learned. Using our
low classification confidence threshold approach, the network
is further trained with the samples of the unknown classes.
In a realistic scenario, the network would be exposed to
both unknown data as well as known data, so random mixed
data samples (referred to as noise data samples) are added
during the retraining phase. The noise data also help the
network to not forget information about the old data in the

further training step. After further training, the classifier is
able to find most of the new classes’ data in the testing
stage even if the training only included a limited number of
the associated classes’ samples. One feature of the proposed
approach is the low resource consumption in order to achieve
incremental learning. Even though an additional training step
is needed in the process, the new training data is greatly limited
through the proposed approach, and so this additional time
is minimal in comparison to other approaches such as fully
retraining the classifier or iterative node addition through the
network’s deep levels. Through this process, the model moves
towards an incremental learning structure while maintaining
high classification accuracy results.

H. Confidence Threshold Determination
The main idea that the Confidence Threshold approach

addresses is that the primary source of error for incremental
learning is erroneous labeling of new training data. So to
address this problem, a confidence threshold needs to be calcu-
lated such that the unknown data selected for training is truly
unknown as well as being labeled correctly. Figure 2 shows
that we have more variability when determining the confidence
threshold value because the number of samples needed to learn
a new class is approximately the same regardless of iteration
(based on dataset), and that a network is able to learn a new
class even if all the new samples are not used for training.

Some other aspects of incremental learning models also
have an effect on the confidence threshold determination.
The first aspect is that more error is introduced in each
iteration if multiple classes are added in a single iteration.
The second aspect is that all incremental learning models
slowly loose accuracy over multiple iterations. The third aspect
is that incremental learning accuracy is dependent on the
regular classification accuracy of the selected dataset. Based
on the main idea of the Confidence Threshold approach and



7

the incremental learning aspects, Equation 7 was formed to
calculate thresholds. niner is the number of classes added
per iteration, l is the iteration number, Ainit is the base
classification accuracy of the entire dataset, a is an initial
constant value that’s variable (use either 9 or 10). The bias
is only used in rare cases where the network needs a greater
confidence threshold, only applies to the Transformer and
BERT network. The confidence threshold value shows the
largest softmax weight has to be greater than the threshold
times the average of the other weights. Figure 2 ’s third plot
shows a comparison of different confidence threshold values
for the first iteration, Equation 7 produces approximately the
best value.

CT =

[
(niner ∗ l) + a

Ainit

]
(7)

IV. EVALUATION METHODS

Normal metrics used for classification evaluation are accu-
racy and f1-score; however, we need a method for evaluating
incremental learning classification. Incremental learning is a
process where a classification network learns new classes over
iterations of learning, so each iteration must be evaluated for
accuracy and combined to a total score. For the purposes of
this paper, we define one iteration as one cycle of discovering
unknown class samples and fine training on the newly labeled
data. The reasoning behind evaluating the classifier between
each iteration is the propagated error through each iteration
[4]. If the incremental learning classifier is only evaluated at
the end of all the iterations, the final accuracy score might
be misleading because the final accuracy score may be high,
but one of the previous iteration’s accuracy scores may have
been low. This would mean the classifier has not fully learned
one or more of the incrementally added classes. We propose a
metric called Incremental Learning Accuracy or ILA, as shown
in Equation 8, that takes into account each iteration’s accuracy
and produces a final accuracy for the classifier. In Equation 8,
mi

correct is the total number of correctly classified test samples
and mi

total is the total number of test samples in iteration i.
The score is a type of accuracy, the values range from 0 to 1.

ILA =
1

l

l∑
i=1

[
mi

correct

mi
total

]
, l = IterationCount (8)

Other equations and approaches have also been proposed for
open set classification that involve assessing if the classifier
can find all unknown class samples [4], [15], and [12].
The incremental learning approach closest to this paper’s
approach uses Incremental Class Accuracy (ICA) [4]. This
metric assesses how well the clustering step needed for open
set classification is performed by averaging homogeneity of
clusters, completeness of clusters, and full encapsulation of
the open set data. While this metric is useful for open set
classification using clustering, this method is designed such
that it is not necessary for all the unknown class samples to
be found, but rather our goal is to limit the propagated error
through the learning process. Thus, the proposed ILA scores
show the results of this work better. Along with the ILA scores,

the work also shows the accuracy change over time through
the iterations of the incremental learning process.

V. EXPERIMENTS AND RESULTS

A. Datasets Used

Since this paper explores classification on both text and
image data, two datasets are used for text and four datasets
are used for images. The following datasts are used for text:
CCAT-50 [21], Amazon Reviews Data [22]. The following
datasets are used for images: CIFAR-100 [23], EMNIST [24],
ImageNet-Subset [25], Caltech-101 [26].

B. Models Tested

For the Classification Confidence Threshold algorithm, spe-
cific deep neural network architectures are tested. Since the
approach is being tested for both text and image data, some
models chosen are targeted to work with both forms of data.
Most of the models being tested are forms of the CNN
architecture as they have proven to be state-of-the-art for open
set image classification [12]. These CNN models are also
tested with the text data as they also work well for open set
text classification [27]. For text CNN models, the word2vec
[28] model is used to obtain word vector embeddings. Another
architecture type commonly used for text data is a Transformer
model [29]. Most state-of-the-art natural language processing
models are based on Transformer models such as BERT [30];
so the proposed incremental learning algorithm is applied and
tested on the base Transformer model and the BERT model.

The models being tested are: a multi-layer CNN model [31]
as described in [4] and [7], a LeNet-5 model [32], a ResNet-
18 model [33], a Transformer model [29] for textual data, and
a BERT model [30] for textual data.

C. Comparison to Existing Approaches

This paper focuses on incremental learning and specifically
addresses the problem of erroneous misclassification of un-
known data as known data. A common problem identified
in all incremental learning approaches is a neural network’s
tendency to forget data as more knowledge is added over
time through all incremental learning processes. While for-
getting knowledge is often the most observable problem in
incremental learning, it is often greatly amplified due to
erroneous misclassification problem. This is because when
a new data sample gets classified as known data, it impairs
the network to correctly classify data for the known class
in future learning and testing iterations. This accidental error
during classification of data is easily construed as forgetting
as the true class is now misrepresented by the network. The
Classification Confidence Threshold approach described in this
paper greatly helps reduce the network’s forgetting behavior
as it is specifically designed to reduce erroneous misclassifica-
tion. To test this, we compare the proposed approach to other
incremental class learning techniques specifically designed to
reduce forgetting.
Finetuning (FT) [34]: This method uses networks trained
using the triplet loss function and are used to compute distance



8

Model Classes Added CCAT-50 Amazon CIFAR-100 EMNIST ImageNet Caltech-101
Multi-Layer CNN [4] 1 0.935 ±0.021 0.937 ±0.026 0.894 ±0.035 0.967 ±0.008 0.818 ±0.032 0.861 ±0.024

2 0.879 ±0.023 0.911 ±0.030 0.842 ±0.045 0.934 ±0.009 0.739 ±0.038 0.739 ±0.023
3 0.830 ±0.038 0.827 ±0.036 0.813 ±0.045 0.863 ±0.009 0.711 ±0.042 0.710 ±0.028
5 0.781 ±0.049 n/a 0.787 ±0.051 n/a 0.654 ±0.045 0.668 ±0.044
10 0.628 ±0.051 n/a 0.710 ±0.049 n/a 0.554 ±0.047 0.576 ±0.045

LeNet-5 1 0.930 ±0.022 0.912 ±0.025 0.913 ±0.037 0.962 ±0.005 0.803 ±0.029 0.760 ±0.024
2 0.879 ±0.025 0.882 ±0.035 0.854 ±0.042 0.922 ±0.010 0.717 ±0.035 0.729 ±0.021
3 0.818 ±0.035 0.831 ±0.037 0.816 ±0.041 0.893 ±0.011 0.707 ±0.041 0.707 ±0.023
5 0.774 ±0.047 n/a 0.751 ±0.048 n/a 0.618 ±0.040 0.667 ±0.042
10 0.618 ±0.055 n/a 0.706 ±0.050 n/a 0.562 ±0.043 0.560 ±0.049

ResNet-18 1 0.871 ±0.028 0.891 ±0.028 0.887 ±0.038 0.970 ±0.007 0.821 ±0.035 0.799 ±0.028
2 0.816 ±0.028 0.827 ±0.034 0.815 ±0.045 0.936 ±0.013 0.722 ±0.037 0.726 ±0.028
3 0.781 ±0.033 0.798 ±0.037 0.789 ±0.045 0.887 ±0.014 0.720 ±0.044 0.723 ±0.029
5 0.728 ±0.048 n/a 0.745 ±0.044 n/a 0.650 ±0.041 0.669 ±0.045
10 0.615 ±0.057 n/a 0.704 ±0.048 n/a 0.576 ±0.042 0.551 ±0.046

Transformer 1 0.907 ±0.015 0.909 ±0.018 n/a n/a n/a n/a
2 0.856 ±0.022 0.855 ±0.023 n/a n/a n/a n/a
3 0.823 ±0.042 0.808 ±0.042 n/a n/a n/a n/a
5 0.800 ±0.045 n/a n/a n/a n/a n/a
10 0.628 ±0.054 n/a n/a n/a n/a n/a

BERT 1 0.929 ±0.014 0.926 ±0.015 n/a n/a n/a n/a
2 0.884 ±0.024 0.871 ±0.024 n/a n/a n/a n/a
3 0.861 ±0.039 0.808 ±0.040 n/a n/a n/a n/a
5 0.803 ±0.046 n/a n/a n/a n/a n/a
10 0.628 ±0.048 n/a n/a n/a n/a n/a

Test Stat Output CCAT-50 Amazon CIFAR-100 EMNIST ImageNet Caltech-101
ANOVA Test F-Statistic 0.201 0.442 0.131 0.676 0.043 0.105

P-Value 0.935 0.776 0.878 0.543 0.957 0.901
TABLE I

ILA MEAN AND STANDARD DEVIATION FOR EACH DATASET AND TESTED MODELS BASED ON EQUATION 4. SCORES ARE BASED ON THE RESULTS
SHOWN IN FIGURES

3 and 4. These scores show the accuracy of the models after all iterations of incremental learning when adding different number of classes. Only the large
datasets could be tested with 5 and 10 classes. The ANOVA test was also calculated for each dataset comparing the results of each model type; the low

F-Statistics and high P-Values show the groups have similar means, and this shows the Confidence Threshold method performs consistent for each model.

Approach CIFAR-100 ImageNet Caltech-101
FT 0.215 0.205 0.422
AL 0.299 0.316 0.478

EWC 0.337 0.268 0.475
MAS 0.342 0.293 0.459
iCaRL 0.472 0.475 0.589

FN 0.665 0.513 0.639
CCT 0.682 0.535 0.661

TABLE II
ILA MEAN SCORES COMPARING PROPOSED AND EXISTING APPROACHES.

INITIALLY TRAIN 50 CLASSES WITH INCREMENTS OF 5 CLASSES PER
ITERATION. THE CCT APPROACH IS THE PROPOSED METHOD.

comparisons between classes to determine if a data sample is
known.
Alignment Loss (AL) [35]: This method matches softmax out-
puts of previously trained models to current data to determine
if samples belong to known classes.
Elastic Weight Consolidation (EWC) [36]: This method
focuses on keeping a network’s parameters similar when
adding a new class to the network.
Memory Aware Synapses (MAS) [37]: This method calcu-
lates an importance score for each parameter of a network
based on how sensitive the predicted output can change the
parameter values.

Incremental Classifier Representation Learning (iCaRL)
[2]: This method is designed to learn over time by learning
strong classifiers and data representations simultaneously.
FearNet (FN) [38]: This method is designed to incrementally
learn by using a dual-memory design where knowledge is
consolidated from a network to replicate a brain inspired long-
term memory storage.

D. Incremental Class Learning Results

Incremental learning is a process of continuous training and
classification through iterations. After the initial training step,
where the classifier learns an initial ninit number of classes,
each iteration tests on new nincr unknown classes along with
the previously learned classes. The testing phase separates out
the predicted examples of unknown data and is retrained only
on the new classes mixed with some noise data of previously
known classes. As discussed earlier, a neural network is able
to classify samples of new classes even if only trained on
a limited number of associated samples; so the goal of the
process is to limit the error produced by classifying samples
of known classes mistakenly as unknown classes.

To test if this process proves successful for incremental
learning, a neural network model must first be trained on a
known set of classes and incrementally tested as novel classes



9

Fig. 3. Incremental learning results for the tested models for the Text datasets. The plots show the classification accuracy over each iteration of the incremental
learning cycle. Each model is tested by adding x unknown classes per iteration.

Fig. 4. Incremental learning results for the tested models for the Image datasets. The plots show the classification accuracy over each iteration of the
incremental learning cycle. Each model is tested by adding x unknown classes per iteration.

Fig. 5. Comparison to results of existing approaches. Each network was initially trained on 50 classes and 5 classes are added per iteration. The last plot
shows average number of data samples processed in the neurogenesis step for each approach at each iteration.

are added. The first test trains on ninit = 5 classes and adds
nincr = 1, 2, 3, 5, 10 classes incrementally over a maximum
of 15 iterations to calculate the incremental learning accuracy
per iteration. Results are shown in Table 1 and Figures 3, 4.
Note only the large datasets can be tested for adding 5 and
10 classes each iteration. Table 1 also performs the ANOVA
statistical test to show statistical significance between mean
values. The ANOVA test was performed for each of the six
datasets comparing the results of each of the five model types.
The low F-Statistics and high P-Values in each column show
the groups have similar means, and this shows the Confidence
Threshold method performs consistently for each model.

The next test compares our proposed Classification Con-
fidence Threshold (CCT) approach with other approaches as
described in the previous section. For these tests, the focus

is mainly on limiting the network forgetting as new classes
are added. The networks are trained initially on 50 classes
and 5 classes are added incrementally; results are shown in
Figure 5 and Table 2. The incremental learning tests performed
all use the ResNet-18 architecture. The last plot in Figure 5
shows the average number of new data samples used for the
retrain/neurogenesis step where new classes are learned. The
proposed approach is designed to only select a reduced number
of samples, so the re-train step each iteration is more efficient
than that of the compared methods as the algorithm processes
a vastly reduced number of data samples.

The accuracy values do not change much for each iteration
and this shows that our method is working, and the propagated
error is greatly limited per iteration. However, the approach
has the greatest error in the clustering process; so when more



10

classes are added at once, the error in the clustering step
increases and this is observed in the results. Apart from these
incremental accuracy graphs, we also calculate our proposed
Incremental Learning Accuracy (ILA) scores for each model
and the results are shown in Table 1. High ILA scores show
us that the networks were successfully able to incrementally
learn the existence of new classes and classify the associated
samples with high accuracy. Our proposed approach also per-
forms better than the other approaches and reduces forgetting.

VI. CONCLUSION

This paper develops the Classification Confidence Thresh-
old method to adapt existing neural networks to move to
incremental learning. Our experiments show success with
NLP and CV classification tasks. The approach modifies a
network and primes the softmax layer for neurogenesis. The
new classes are added to the network with minimal use of
resources while maintaining a high classification accuracy. The
retraining step only includes the few data samples identified
by the thresholding approach; so this step along with the node
addition step are quicker than the initial training. Incremental
learning requires multiple iterations to form a continuous
cycle; so to evaluate the iterations we also developed a new
metric to analyze the accuracies within each iteration.

The major issue identified and addressed from prior ap-
proaches is the propagated error through each cycle. To limit
the propagated error, it is important that only the samples of
unknown classes are identified correctly for retraining. We also
find that a network trained on a few samples only can be used
to identify all samples of the corresponding class; so using
the Classification Confidence Threshold approach we find only
a limited number of correct samples so a high classification
accuracy is maintained. The main limitation is within the
clustering process for multiple unknown class identification.
Thus, the highest accuracy results are obtained when only
adding a single class per iteration. Using these methods we
demonstrate an efficient incremental learning process.

REFERENCES

[1] T. J. Draelos, N. E. Miner, C. C. Lamb, J. A. Cox, C. M. Vineyard, K. D.
Carlson, W. M. Severa, C. D. James, and J. B. Aimone, “Neurogenesis
deep learning: Extending deep networks to accommodate new classes,”
in IJCNN. IEEE, 2017, pp. 526–533.

[2] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “Icarl:
Incremental classifier and representation learning,” in CVPR, 2017, pp.
2001–2010.

[3] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE TPAMI, vol. 35, no. 7, pp. 1757–
1772, 2012.

[4] J. Leo and J. Kalita, “Moving towards open set incremental learning:
Readily discovering new authors,” in FICC. Springer, 2020, pp. 739–
751.

[5] S. Hassantabar, Z. Wang, and N. K. Jha, “Scann: Synthesis of compact
and accurate neural networks,” arXiv preprint arXiv:1904.09090, 2019.

[6] H. Yin, P. Molchanov, J. M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N. K.
Jha, and J. Kautz, “Dreaming to distill: Data-free knowledge transfer via
deepinversion,” in IEEE CVPR, 2020, pp. 8715–8724.

[7] S. Prakhya, V. Venkataram, and J. Kalita, “Open set text classification
using convolutional neural networks,” in ICNLP, 2017.

[8] G. Taguchi and R. Jugulum, The Mahalanobis-Taguchi strategy: A
Pattern Technology System. John Wiley & Sons, 2002.

[9] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Loop: local outlier
probabilities,” in ACM CIKM, 2009, pp. 1649–1652.

[10] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in ICDM.
IEEE, 2008, pp. 413–422.

[11] D. A. Pritsos and E. Stamatatos, “Open-set classification for automated
genre identification,” in European Conference on Information Retrieval.
Springer, 2013, pp. 207–217.

[12] A. Bendale and T. E. Boult, “Towards open set deep networks,” in CVPR,
2016, pp. 1563–1572.

[13] A. R. Dhamija, M. Günther, and T. Boult, “Reducing network agnosto-
phobia,” in NIPS, 2018, pp. 9157–9168.

[14] X. Dai, H. Yin, and N. K. Jha, “Incremental learning using a grow-
and-prune paradigm with efficient neural networks,” arXiv preprint
arXiv:1905.10952, 2019.

[15] E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult, “The extreme
value machine,” IEEE TPAMI, pp. 762–768, 2017.

[16] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and K. Alahari,
“End-to-end incremental learning,” in ECCV, 2018, pp. 233–248.

[17] Z. Li, C. Niu, F. Meng, Y. Feng, Q. Li, and J. Zhou, “Incremental trans-
former with deliberation decoder for document grounded conversations,”
in ACL, 2019, pp. 12–21.

[18] J. Bargh and T. Chartrand, “Studying the mind in the middle: a practical
guide to priming and automaticity research. handbook of research
methods in social psychology,” New York, NY: Cambridge University
Press, 2000.

[19] D. Reisberg, “Cognition. exploring the science of the mind, third media
edition,” 2007.

[20] X. Y. Stella and J. Shi, “Multiclass spectral clustering,” in International
Conference on Computer Vision. IEEE, 2003, p. 313.

[21] J. Houvardas and E. Stamatatos, “N-gram feature selection for author-
ship identification,” in ICAI: Methodology, Systems, and Applications.
Springer, 2006, pp. 77–86.

[22] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using
distantly-labeled reviews and fine-grained aspects,” in EMNLP-IJCNLP,
2019, pp. 188–197.

[23] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[24] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 IJCNN. IEEE, pp. 2921–2926.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in IEEE CVPR, 2009, pp.
248–255.

[26] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories,” in 2004 CVPR. IEEE, 2004, pp. 178–178.

[27] R. Higashinaka, K. Imamura, T. Meguro, C. Miyazaki, N. Kobayashi,
H. Sugiyama, T. Hirano, T. Makino, and Y. Matsuo, “Towards an
open-domain conversational system fully based on natural language
processing,” in COLING 2014, pp. 928–939.

[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL,
2019.

[31] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, high performance convolutional neural networks for
image classification,” in IJCAI, 2011.

[32] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[34] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,”
in International Workshop on Similarity-Based Pattern Recognition.
Springer, 2015, pp. 84–92.

[35] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE TPAMI,
vol. 40, no. 12, pp. 2935–2947, 2017.

[36] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” PNAS,
vol. 114, no. 13, pp. 3521–3526, 2017.

[37] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
“Memory aware synapses: Learning what (not) to forget,” in ECCV,
2018, pp. 139–154.

[38] R. Kemker and C. Kanan, “Fearnet: Brain-inspired model for incremen-
tal learning,” in ICLR, 2018.


	I Introduction
	II Related Work
	III Approach
	III-A Overview
	III-B Primary Notations Used
	III-C The Algorithm in Brief
	III-D The Idea of Priming to Learn New Classes
	III-E Implementing Priming in the Final Layer
	III-F Determining Weights to Prime Node
	III-G Training the Network
	III-G1 Issues in Training for Incremental Class Learning
	III-G2 Clustering, Handling Multiple Unknown Classes
	III-G3 Retraining the Enhanced Network

	III-H Confidence Threshold Determination

	IV Evaluation Methods
	V Experiments and Results
	V-A Datasets Used
	V-B Models Tested
	V-C Comparison to Existing Approaches
	V-D Incremental Class Learning Results

	VI Conclusion
	References

